Sanjivani Rural Education Society's
Sanjivani College of Engineering, Kopargaon 423603.
-Department of Strucutral Engineering-
By
Mr. Sumit S. Kolapkar (Assistant Professor)
Mail Id- kolapkarsumitst@sanjivani.org.in
Ø Why data visualization in Python-
• Is a quick and easy way to convey the concepts in a
universal manner.
Ø What is data visualization-
• Is a graphical way of representing information and
data.
Ø Types of data visualization in Python-
• Plotting Libraries-
• Matplotlib-
• Pandas Visualization-
• Seaborn-
• ggplot-
• Plotly-
Ø What is Matplotlib-
• Is a plotting library for Python and it is numerical
mathematical extension of Numpy
• Is 2D and 3D plotting Python library
• It was introduced by John Hunter in the year 2002
Ø Matplotlib graphs-
Ø Importing Matplotlib in Python-
• import matplotlib.pyplot as plt
OR
• from matplotlib import pyplot as plt
Example-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[6,7,8,9,10]
plt.plot(x,y)
plt.show ()
Example-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[6,7,8,9,10]
plt.bar(x,y)
plt.show ()
Ø Importing Matplotlib in Python-
Example-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[6,7,8,9,10]
Z=['b','g','r','black','pink']
plt.bar(x,y,color=Z)
plt.show ()
Base Color-
Ø Importing Matplotlib in Python-
Ø Matplotlib Bar Plot-
• import matplotlib.pyplot as plt
x = ['Python','C','C++', 'Java']
y = [90,65,82,85]
plt.bar(x,y)
plt.show ()
Ø Matplotlib Bar Plot-
• import matplotlib.pyplot as plt
x=[ ]
y=[ ]
z=[ ]
plt.bar(x,y, width=0.4, color=“y”, align= “edge” (or center),
edgecolor=“r”, linewidth=10, linestyle=“:”, alpha=0.4,
label=“Popularity”)
plt.bar(x,z, width=0.4, color=“g”, align=edge, edgecolor=“r”,
linewidth=10, linestyle=“:”, alpha=0.4, label=“Popularity1”)...for
multiple bar graphs
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
Ø Matplotlib Bar Plot-
• import matplotlib.pyplot as plt
x=[ ]
y=[ ]
z=[ ]
plt.bar(x,y, width=0.4, color=“y”,label=“Popularity”)
plt.bar(x,z, width=0.4, color=“g”, label=“Popularity1”)...for
multiple bar graphs.....overlapped
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
Ø Matplotlib Bar Plot- Side by Side Graph
• import matplotlib.pyplot as plt
• import numpy as np
x=[ “python”, “c”, “c++”, “java”]
y=[80,70,60,82 ]
z=[ 20,30,40,50]
p = [0,1,2,3].....indexing of x
OR
p = np.arange(len(x))...by importing numpy also we can create an array of indexing
width = 0.4
plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’
plt.bar(p,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
gives number
at x-axis and
is over lapped
Ø Matplotlib Bar Plot- Side by Side Graph
• import matplotlib.pyplot as plt
• import numpy as np
x=[ “python”, “c”, “c++”, “java”]
y=[80,70,60,82 ]
z=[ 20,30,40,50]
width = 0.4
p = np.arange(len(x))
p1=[ j+width for j in p]...will create another graph of same width on side
plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’
plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
gives number
at x-axis
Ø Matplotlib Bar Plot- Side by Side Graph
• import matplotlib.pyplot as plt
• import numpy as np
x=[ “python”, “c”, “c++”, “java”]
y=[80,70,60,82 ]
z=[ 20,30,40,50]
width = 0.4
p = np.arange(len(x))
p1=[ j+width for j in p]...will create another graph of same width on side
plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’
plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’
plt.xticks(p+width,x)......to show name at x-axisand at right hand side
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
gives name at
RHS
Ø Matplotlib Bar Plot- Side by Side Graph
• import matplotlib.pyplot as plt
• import numpy as np
x=[ “python”, “c”, “c++”, “java”]
y=[80,70,60,82 ]
z=[ 20,30,40,50]
width = 0.4
p = np.arange(len(x))
p1=[ j+width for j in p]...will create another graph of same width on side
plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’
plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’
plt.xticks(p+width/2,x,rotation=10)......to show name at x-axis and at
center
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
gives name in
rotation
Ø Matplotlib Bar Plot- Horizontal Graph
• import matplotlib.pyplot as plt
• import numpy as np
• x=['Python','C','C++', 'Java']
• y=[90,65,82,85]
• z=[23,52,29,20]
• width = 0.8
• p=np.arange(len(x))
• p1=[j+width for j in p]
• plt.barh(p,y, width, color='r')
• plt.bar(p1,z, width, color='k')
• plt.xticks(p+width/2,x,rotation=50)
• plt.show ()
Ø Matplotlib Step Plot-
• import matplotlib.pyplot as plt
x=[ ]
y=[ ]
plt.step(x,y,marker= “o”, color= “r”, ms=10, mfc=
“g”)
plt.legend()
plt.grid()
plt.show( )
plt.xlabel (“languages”, font size=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note-To align the bars on the right edge pass a negative
width and align='edge'
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• plt.pie(x)
• plt.show ()
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• plt.pie(x,labels=y)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z)
• plt.show ()
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• var1=["r","c","g","orange"]
• plt.pie(x,labels=y,explode=z,colors=var1)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• var1=["r","c","g","orange"]
• plt.pie(x,labels=y,explode=z,colors=var1,autopct="%0.
1f%%")
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• var1=["r","c","g","orange"]
• plt.pie(x,labels=y,explode=z,colors=var1,autopct="%0.
3f%%")
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad
ow=True)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu
s=1.5)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",label
distance=1.3)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",start
angle=90)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",textp
rops={"fontsize":15})
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",textp
rops={"fontsize":15},counterclock=False)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad
ow=True,textprops={"fontsize":15},wedgeprops={"line
width":5})
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad
ow=True,textprops={"fontsize":15},wedgeprops={"line
width":5,"edgecolor":"c"})
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad
ow=True,textprops={"fontsize":15},wedgeprops={"line
width":5},rotatelabels=True)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu
s=0.9,shadow=True,textprops={"fontsize":15},wedgep
rops={"linewidth":5},rotatelabels=True)
• plt.title("Computers and Structures")
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu
s=0.9,shadow=True,textprops={"fontsize":15},wedgep
rops={"linewidth":5},rotatelabels=True)
• plt.title("Computers and Structures")
• plt.legend(loc=1).....loc=1 to 10
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• x1=[40,30,20,10]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,radius=1.5)
• plt.pie(x1,radius=1)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• x1=[40,30,20,10]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,radius=1.5)
• plt.pie([1],colors="w",radius=1)
• plt.show ()
Ø Matplotlib Save Figure-
• import matplotlib.pyplot as plt
x=[ ]
y=[ ]
plt.plot(x,y)
plt.savefig(“fname”, dpi=1000, facecolor= “g”,
transparent=True)
plt.savefig(fname.pdf)......save in format as per
requirement
plt.show( )
Ex-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[90,65,82,85,80]
plt.plot(x,y)
plt.savefig("line")
plt.show()
Note- File gets saved in a folder location
Ø Matplotlib Work With Axes-
• import matplotlib.pyplot as plt
• x=[1,2,3,4,5]
• y=[3,2,1,3,4]
• plt.plot(x,y)
• plt.xticks(x)
• plt.yticks(x)
• plt.show ()
Ø Matplotlib Work With Axes-
• import matplotlib.pyplot as plt
• x=[1,2,3,4,5]
• y=[3,2,1,3,4]
• plt.plot(x,y)
• plt.xticks(x,labels=["Python","Java","C","C++","HTML"])
• plt.yticks(x)
• plt.show ()
Ø Matplotlib Work With Axes-
• import matplotlib.pyplot as plt
• x=[1,2,3,4,5]
• y=[3,2,1,3,4]
• plt.plot(x,y)
• plt.xlim(0,10)
• plt.show ()
Ø Matplotlib Work With Axes-
• import matplotlib.pyplot as plt
• x=[1,2,3,4,5]
• y=[3,2,1,3,4]
• plt.plot(x,y)
• plt.axis([0,10,0,7])
• plt.show ()
Ø Text in Matplotlib-
text- Add text at an arbitrary location of the axes.
annotate- Add an annotation with an optional arrow at an
arbitrary location of the axes
xlabel- Add a label to the axes’s along x-axis
ylabel- Add a label to the axes’s along y-axis
title- Add a title to the axes
Ø Text in Matplotlib-
Ex-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[3,2,1,3,4]
plt.plot(x,y)
plt.text(2,3,"java",style="italic",bbox={"facecolor":"c"})
plt.annotate("python",xy=(2,1),xytext=(4,4),arrowprops=dict(facec
olor="green"))
plt.legend(["up"],loc=9,facecolor="red",edgecolor="c",framealpha
=0.5,shadow=True)
plt.show ()
text position on x and y
axis
THANK YOU....

Introduction to Data Visualization,Matplotlib.pdf

  • 1.
    Sanjivani Rural EducationSociety's Sanjivani College of Engineering, Kopargaon 423603. -Department of Strucutral Engineering- By Mr. Sumit S. Kolapkar (Assistant Professor) Mail Id- kolapkarsumitst@sanjivani.org.in
  • 2.
    Ø Why datavisualization in Python- • Is a quick and easy way to convey the concepts in a universal manner. Ø What is data visualization- • Is a graphical way of representing information and data. Ø Types of data visualization in Python- • Plotting Libraries- • Matplotlib- • Pandas Visualization- • Seaborn- • ggplot- • Plotly-
  • 3.
    Ø What isMatplotlib- • Is a plotting library for Python and it is numerical mathematical extension of Numpy • Is 2D and 3D plotting Python library • It was introduced by John Hunter in the year 2002 Ø Matplotlib graphs-
  • 4.
    Ø Importing Matplotlibin Python- • import matplotlib.pyplot as plt OR • from matplotlib import pyplot as plt Example- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[6,7,8,9,10] plt.plot(x,y) plt.show () Example- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[6,7,8,9,10] plt.bar(x,y) plt.show ()
  • 5.
    Ø Importing Matplotlibin Python- Example- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[6,7,8,9,10] Z=['b','g','r','black','pink'] plt.bar(x,y,color=Z) plt.show () Base Color-
  • 6.
  • 7.
    Ø Matplotlib BarPlot- • import matplotlib.pyplot as plt x = ['Python','C','C++', 'Java'] y = [90,65,82,85] plt.bar(x,y) plt.show ()
  • 8.
    Ø Matplotlib BarPlot- • import matplotlib.pyplot as plt x=[ ] y=[ ] z=[ ] plt.bar(x,y, width=0.4, color=“y”, align= “edge” (or center), edgecolor=“r”, linewidth=10, linestyle=“:”, alpha=0.4, label=“Popularity”) plt.bar(x,z, width=0.4, color=“g”, align=edge, edgecolor=“r”, linewidth=10, linestyle=“:”, alpha=0.4, label=“Popularity1”)...for multiple bar graphs plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend.
  • 9.
    Ø Matplotlib BarPlot- • import matplotlib.pyplot as plt x=[ ] y=[ ] z=[ ] plt.bar(x,y, width=0.4, color=“y”,label=“Popularity”) plt.bar(x,z, width=0.4, color=“g”, label=“Popularity1”)...for multiple bar graphs.....overlapped plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend.
  • 10.
    Ø Matplotlib BarPlot- Side by Side Graph • import matplotlib.pyplot as plt • import numpy as np x=[ “python”, “c”, “c++”, “java”] y=[80,70,60,82 ] z=[ 20,30,40,50] p = [0,1,2,3].....indexing of x OR p = np.arange(len(x))...by importing numpy also we can create an array of indexing width = 0.4 plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’ plt.bar(p,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’ plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend. gives number at x-axis and is over lapped
  • 11.
    Ø Matplotlib BarPlot- Side by Side Graph • import matplotlib.pyplot as plt • import numpy as np x=[ “python”, “c”, “c++”, “java”] y=[80,70,60,82 ] z=[ 20,30,40,50] width = 0.4 p = np.arange(len(x)) p1=[ j+width for j in p]...will create another graph of same width on side plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’ plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’ plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend. gives number at x-axis
  • 12.
    Ø Matplotlib BarPlot- Side by Side Graph • import matplotlib.pyplot as plt • import numpy as np x=[ “python”, “c”, “c++”, “java”] y=[80,70,60,82 ] z=[ 20,30,40,50] width = 0.4 p = np.arange(len(x)) p1=[ j+width for j in p]...will create another graph of same width on side plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’ plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’ plt.xticks(p+width,x)......to show name at x-axisand at right hand side plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend. gives name at RHS
  • 13.
    Ø Matplotlib BarPlot- Side by Side Graph • import matplotlib.pyplot as plt • import numpy as np x=[ “python”, “c”, “c++”, “java”] y=[80,70,60,82 ] z=[ 20,30,40,50] width = 0.4 p = np.arange(len(x)) p1=[ j+width for j in p]...will create another graph of same width on side plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’ plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’ plt.xticks(p+width/2,x,rotation=10)......to show name at x-axis and at center plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend. gives name in rotation
  • 14.
    Ø Matplotlib BarPlot- Horizontal Graph • import matplotlib.pyplot as plt • import numpy as np • x=['Python','C','C++', 'Java'] • y=[90,65,82,85] • z=[23,52,29,20] • width = 0.8 • p=np.arange(len(x)) • p1=[j+width for j in p] • plt.barh(p,y, width, color='r') • plt.bar(p1,z, width, color='k') • plt.xticks(p+width/2,x,rotation=50) • plt.show ()
  • 15.
    Ø Matplotlib StepPlot- • import matplotlib.pyplot as plt x=[ ] y=[ ] plt.step(x,y,marker= “o”, color= “r”, ms=10, mfc= “g”) plt.legend() plt.grid() plt.show( ) plt.xlabel (“languages”, font size=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note-To align the bars on the right edge pass a negative width and align='edge'
  • 16.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • plt.pie(x) • plt.show () • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • plt.pie(x,labels=y) • plt.show ()
  • 17.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z) • plt.show () • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • var1=["r","c","g","orange"] • plt.pie(x,labels=y,explode=z,colors=var1) • plt.show ()
  • 18.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • var1=["r","c","g","orange"] • plt.pie(x,labels=y,explode=z,colors=var1,autopct="%0. 1f%%")
  • 19.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • var1=["r","c","g","orange"] • plt.pie(x,labels=y,explode=z,colors=var1,autopct="%0. 3f%%")
  • 20.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad ow=True) • plt.show ()
  • 21.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu s=1.5) • plt.show ()
  • 22.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",label distance=1.3) • plt.show ()
  • 23.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",start angle=90) • plt.show ()
  • 24.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",textp rops={"fontsize":15}) • plt.show ()
  • 25.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",textp rops={"fontsize":15},counterclock=False) • plt.show ()
  • 26.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad ow=True,textprops={"fontsize":15},wedgeprops={"line width":5}) • plt.show ()
  • 27.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad ow=True,textprops={"fontsize":15},wedgeprops={"line width":5,"edgecolor":"c"}) • plt.show ()
  • 28.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad ow=True,textprops={"fontsize":15},wedgeprops={"line width":5},rotatelabels=True) • plt.show ()
  • 29.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu s=0.9,shadow=True,textprops={"fontsize":15},wedgep rops={"linewidth":5},rotatelabels=True) • plt.title("Computers and Structures") • plt.show ()
  • 30.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu s=0.9,shadow=True,textprops={"fontsize":15},wedgep rops={"linewidth":5},rotatelabels=True) • plt.title("Computers and Structures") • plt.legend(loc=1).....loc=1 to 10 • plt.show ()
  • 31.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • x1=[40,30,20,10] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,radius=1.5) • plt.pie(x1,radius=1) • plt.show ()
  • 32.
    Ø Matplotlib PiePlot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • x1=[40,30,20,10] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,radius=1.5) • plt.pie([1],colors="w",radius=1) • plt.show ()
  • 33.
    Ø Matplotlib SaveFigure- • import matplotlib.pyplot as plt x=[ ] y=[ ] plt.plot(x,y) plt.savefig(“fname”, dpi=1000, facecolor= “g”, transparent=True) plt.savefig(fname.pdf)......save in format as per requirement plt.show( ) Ex- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[90,65,82,85,80] plt.plot(x,y) plt.savefig("line") plt.show() Note- File gets saved in a folder location
  • 34.
    Ø Matplotlib WorkWith Axes- • import matplotlib.pyplot as plt • x=[1,2,3,4,5] • y=[3,2,1,3,4] • plt.plot(x,y) • plt.xticks(x) • plt.yticks(x) • plt.show ()
  • 35.
    Ø Matplotlib WorkWith Axes- • import matplotlib.pyplot as plt • x=[1,2,3,4,5] • y=[3,2,1,3,4] • plt.plot(x,y) • plt.xticks(x,labels=["Python","Java","C","C++","HTML"]) • plt.yticks(x) • plt.show ()
  • 36.
    Ø Matplotlib WorkWith Axes- • import matplotlib.pyplot as plt • x=[1,2,3,4,5] • y=[3,2,1,3,4] • plt.plot(x,y) • plt.xlim(0,10) • plt.show ()
  • 37.
    Ø Matplotlib WorkWith Axes- • import matplotlib.pyplot as plt • x=[1,2,3,4,5] • y=[3,2,1,3,4] • plt.plot(x,y) • plt.axis([0,10,0,7]) • plt.show ()
  • 38.
    Ø Text inMatplotlib- text- Add text at an arbitrary location of the axes. annotate- Add an annotation with an optional arrow at an arbitrary location of the axes xlabel- Add a label to the axes’s along x-axis ylabel- Add a label to the axes’s along y-axis title- Add a title to the axes
  • 39.
    Ø Text inMatplotlib- Ex- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[3,2,1,3,4] plt.plot(x,y) plt.text(2,3,"java",style="italic",bbox={"facecolor":"c"}) plt.annotate("python",xy=(2,1),xytext=(4,4),arrowprops=dict(facec olor="green")) plt.legend(["up"],loc=9,facecolor="red",edgecolor="c",framealpha =0.5,shadow=True) plt.show () text position on x and y axis
  • 40.