Wikipedia.
  • Fast Fourier Transform (radix2): Takes any function and converts it to an equivalent set of sine waves; applications such as audio, spectral analysis, and image compression (computed at radix 2).
  • Linear Algebra (linear_alg): Derived from Linpack; useful for understanding balancing forces in structural engineering, converting between reference frames in relativity, solving differential equations, and understanding rotation and fluid flow, for example.
  • Enhanced Livermore Loops (loops, inner-product): This one kernel contains two dozen real-world functions extracted from programs used at Lawrence Livermore Labs. They are used to test the computational capabilities of parallel hardware and cover areas such as 2D Particle-in-Cell, Tri-diagonal Elimnation and Planckian Distribution.
  • LU Decomposition (lu): Performs lower-upper matrix decomposition.
  • Neural Net (nnet): A small neural-net inference engine.
  • Ray-Tracer (ray): A technique for image generation by tracing light path through pixels in an image plane and simulating the effects of its encounters with virtual objects.
  • Fourier Coefficients (xp1px): Numerical analysis routine for calculating series or representing a periodic function by a discrete sum of complex exponentials, also known as (x+1)^x, defined on the interval [0+epsilon,2-epsilon].
  • Example Output

    Out of the box, FPMark can be compiled using the GNU make utility, and for convenience, a PERL script computes all of the summary marks from the dozens of component runs. Here is example output running all of the kernels and computing all of the marks. In the example below, each of the kernels is run with three different dataset sizes (small, medium, large) and both single-precision (SP) and double-precision (DP). The final marks reflect different groupings of these kernel results' geometric means. The benchmark was run with XCMD='-c4' which runs the benchmark with four contexts. When compared to a single core run, the last column indicates the scaling factor between four contexts and one.

    % make TARGET=macos certify-all XCMD='-c4'
    
    WORKLOAD RESULTS TABLE
    
                                                       MultiCore   SingleCore           
    Workload Name                                       (iter/s)     (iter/s)      Scaling
    ------------------------------------------------ ----------- ------------ ------------
    atan-1M                                               144.93      47.8469       3.0290
    atan-1M-sp                                            172.41      59.8802       2.8793
    atan-1k                                            188679.25   53475.9358       3.5283
    atan-1k-sp                                         217391.30   60975.6098       3.5652
    atan-64k                                             3246.75     888.0995       3.6558
    atan-64k-sp                                          3759.40     983.2842       3.8233
    blacks-big-n5000v200                                   16.34       4.9652       3.2909
    blacks-big-n5000v200-sp                                21.55       6.5703       3.2802
    blacks-mid-n1000v40                                   400.00     123.4568       3.2400
    blacks-mid-n1000v40-sp                                526.32     161.2903       3.2632
    blacks-sml-n500v20                                   1666.67     500.0000       3.3333
    blacks-sml-n500v20-sp                                2000.00     625.0000       3.2000
    horner-big-100k                                       598.80     169.2047       3.5389
    horner-big-100k-sp                                    606.06     169.2047       3.5818
    horner-mid-10k                                       6097.56    1686.3406       3.6159
    horner-mid-10k-sp                                    6097.56    1686.3406       3.6159
    horner-sml-1k                                       58139.53   16129.0323       3.6047
    horner-sml-1k-sp                                    58139.53   16181.2298       3.5930
    inner-product-big-100k                                 79.68      42.3729       1.8805
    inner-product-big-100k-sp                             138.89      58.9971       2.3542
    inner-product-mid-10k                                1606.43     571.4286       2.8112
    inner-product-mid-10k-sp                             2259.89     720.7207       3.1356
    inner-product-sml-1k                                23255.81    7407.4074       3.1395
    inner-product-sml-1k-sp                             31250.00    8333.3333       3.7500
    linear_alg-big-1000x1000                                1.90       1.2509       1.5198
    linear_alg-big-1000x1000-sp                             4.90       2.5694       1.9060
    linear_alg-mid-100x100                                980.39     292.3977       3.3529
    linear_alg-mid-100x100-sp                            1515.15     420.1681       3.6061
    linear_alg-sml-50x50                                 6410.26    1811.5942       3.5385
    linear_alg-sml-50x50-sp                              7812.50    2222.2222       3.5156
    loops-all-big-100k                                      0.93       0.4135       2.2547
    loops-all-big-100k-sp                                   1.12       0.4770       2.3535
    loops-all-mid-10k                                      19.67       5.4951       3.5795
    loops-all-mid-10k-sp                                   22.48       6.3540       3.5382
    loops-all-tiny                                       9803.92    2793.2961       3.5098
    loops-all-tiny-sp                                   10638.30    3048.7805       3.4894
    lu-big-2000x2_50                                       20.16       6.4433       3.1290
    lu-big-2000x2_50-sp                                    20.24       6.4893       3.1194
    lu-mid-200x2_50                                      1760.56     476.8717       3.6919
    lu-mid-200x2_50-sp                                   1754.39     479.6163       3.6579
    lu-sml-20x2_50                                      20242.92    5488.4742       3.6883
    lu-sml-20x2_50-sp                                   20366.60    5515.7198       3.6925
    nnet-data1-sp                                       24390.24    6802.7211       3.5854
    nnet_data1                                          18867.92    5347.5936       3.5283
    nnet_test                                              33.22      10.6270       3.1262
    nnet_test-sp                                           33.90      10.8696       3.1186
    radix2-big-64k                                       1669.45     450.8566       3.7028
    radix2-mid-8k                                       25773.20    6988.1202       3.6881
    radix2-sml-2k                                      187969.92   51867.2199       3.6241
    ray-1024x768at24s                                       0.11       0.0283       3.7279
    ray-320x240at8s                                         2.71       0.8635       3.1384
    ray-64x48at4s                                         150.60      41.9111       3.5934
    xp1px-big-c10000n2000                                   2.01       0.6384       3.1537
    xp1px-mid-c1000n200                                   188.68      62.5000       3.0189
    xp1px-sml-c100n20                                   24390.24    6666.6667       3.6585
    
    MARK RESULTS TABLE
    
    Mark Name                                        MultiCore SingleCore    Scaling
    ----------------------------------------------- ---------- ---------- ----------
    FPMark                                            66007.92   20419.76       3.23
    FPv1.0. DP Small Dataset                          14723.08    4183.84       3.52
    FPv1.1. DP Medium Dataset                           458.69     137.21       3.34
    FPv1.2. DP Big Dataset                               16.43       5.84       2.81
    FPv1.3. SP Small Dataset                          20614.55    5814.44       3.55
    FPv1.4. SP Medium Dataset                           696.27     201.17       3.46
    FPv1.5. SP Big Dataset                               32.06      11.77       2.72
    FPv1.D. DP Mark                                     533.97     165.64       3.22
    FPv1.S. SP Mark                                     886.56     273.21       3.25
    MicroFPMark                                       20614.55    5814.44       3.55
    

    More Info

    FPMark has a list of Frequently Asked Questions.

    Purchase a license or request more information.

    Contact Info


    Contact Us

    Privacy Policy

    Stay in Touch


    Sign up for our newsletter

    Twitter

    GitHub

    LinkedIn

    EEMBC Benchmarks


    ULPMark®

    IoTMark®

    SecureMark®

    MLMark®

    ADASMark™

    AudioMark™

    CoreMark®

    CoreMark-PRO

    FPMark™

    MultiBench™

    AndEBench™-PRO

    BrowsingBench®

    AutoBench™

    DENBench™

    Networking

    OABench™

    TeleBench™

    Copyright © EEMBC