[スポンサーリンク]

化学者のつぶやき

アルキンから環状ポリマーをつくる

[スポンサーリンク]

環状高分子の効率的な合成法を目指して

環状高分子は分子末端をもたない高分子です。環状高分子は鎖状高分子に比べて高分子間の絡まり方が異なるため、融点や粘性などにおいて鎖状高分子とは異なる物性を有することが知られています。しかし、環状高分子合成は難しく例も多くない。現在、環状高分子の効率的な合成法の開発が重要な課題となっています。

これまでに環状高分子の合成法として、末端連結法環拡大重合法が開発されてきました(図 1)。

末端連結法は、同種または相補的な反応性末端基を導入した鎖状高分子を合成したのち、二つの末端基を分子内環化反応により連結する手法です。

例えばGraysonらは、アルキニル基及びアジド基をそれぞれ両末端に導入した鎖状前駆体を調製し、続く分子内反応により環状高分子の合成しています[1]。また、久保らは末端にアミノ基とカルボキシル基を有する鎖状高分子を合成し、分子内縮合反応により環状高分子を合成しています[2]。しかし、末端連結法は分子内反応と分子間反応が競合するため効率的な合成法とは言えませません。

一方で環拡大重合法は、環状のモノマーを開始剤としてモノマーを逐次的に挿入して環拡大することにより、より大きな環状高分子を合成する手法です。

Grubbsらは、ルテニウム錯体を用いた環状オレフィンの開環メタセシス重合を用いることで環状高分子を合成しています[3]。また、Waymuthらは、含窒素環状カルベン(NHC)を触媒として用いた環状ラクトンの開環重合によって環状高分子の合成に成功しています[4]

このように環拡大重合法は副反応が少なく大量合成に適用可能であるが、基質適用範囲が厳しく制限される欠点がありました。

 

2016-08-14_00-27-35

図1 従来の環状ポリマーの合成法

 

これらの背景を受け、最近米国フロリダ大学のVeige教授らは、ピンサー型配位子を有するタングステン触媒を用いることでアルキンから環状高分子を合成する新たな手法を開発しました。本手法はさまざまなアルキンに適用可能であり、これまで合成されたことのない環状ポリアセチレンの合成を可能としています。今回は、著者等による以下の論文を紹介します。

“Cyclic polymer from alkynes”

Roland, C. D.; Li, H.; Abboud, K. A.; Wagener, K. B.; Veige, A. S.;Nature Chem 2016, 8, 791. DOI: 10.1038/nchem.2516

 

環状高分子合成と構造同定

筆者らは環状高分子を合成するためにピンサー型配位子を有するタングステン触媒を選択しました(図2)。この触媒には、環状高分子を合成するために幾つか工夫が施されていまし。まず、meridional型のピンサー型配位子用いて配位座を大きくあけることで、重合反応で生成する高分子鎖がタングステンに配位できるようにしています。またピンサー型配位子をトリアニオン性にし、中心金属として高原子価状態をとることができるタングステンを用いることで、モノマーが触媒に容易に配位できるようにしています。

筆者らは、2013年にタングステン触媒2を合成し、タングステン触媒2がアルキンの重合反応を進行させることを報告しています[5]。しかし、合成した高分子の構造については一切調べられていませんでした。また、触媒2によるポリマー合成の収率が十分でないため、触媒の改善が必要でありました。そこで新たに触媒4を合成しアルキンの重合反応を検討したところ、ポリマー合成の収率が向上し、さらに生成物の構造を詳細に解析すると環状高分子の生成が確認されました。

環状高分子はタングステン触媒4存在下、アセチレンモノマーをトルエン中で攪拌することで、逐次的な環拡大反応により合成されています。フェニルアセチレンをモノマーとして用いたところ、数平均分子量Mn = 4.5×104、分散度Mw/Mn = 1.95(Mwは重量平均分子量)の環状ポリフェニルアセチレンが生成することがわかりました。また本手法は、様々なアリールアセチレン誘導体をモノマーとした環状高分子合成に適用可能です。

2016-08-14_00-33-13

図2 触媒と高分子合成

 

目的の環状高分子の構造決定は動的光散乱(DLS)及び静的光散乱(SLS)測定、水素化実験、オゾン分解実験で行っています(図3)。環状高分子は同じ分子量をもつ鎖状高分子と比べて見た目の粒子径が小さい。筆者らは環状ポリフェニルアセチレンと同程度の絶対分子量と分散度を有する鎖状ポリフェニルアセチレンを別法で合成し、環状・鎖状の両ポリフェニルアセチレンをDLS測定とSLS測定によって分子鎖の重心からの広がりを表す慣性半径及Rgび流体半径RHを測定しました。その結果、<Rg2>cyclic / <Rg2>linear = 0.53、RHcyclic / RHlinear = 0.86であることがわかりました。これらの結果は一般的な環状・鎖状化合物のRgRHの関係と同一であることから、環状高分子の生成を示唆する根拠となりました。

また、環状高分子は鎖状高分子に比べ溶液中における分子サイズが小さいため、GPCでは環状高分子の方が鎖状高分子より遅く溶出することが知られています。環状高分子に対してオゾンを作用させる前後でGPC測定を行ったところ、オゾン分解後の生成物はオゾン分解前よりも溶出時間が短くなった(分子サイズが大きくなった)ことからも、環状高分子の生成が示唆されました。

2016-08-14_00-33-42

図3 環状ポリマーの構造決定

 

推定反応機構

本反応の推定反応機構は以下の通りです(図4)。まず、タングステン錯体からTHFが解離しアセチレンモノマーがπ配位します(A)。次に、配位したアルキンモノマーがメタラシクロプロペンの金属-炭素結合に挿入することで環拡大したメタラシクロペンタジエンBが生成します。なお、この反応中間体Bは単離・構造決定されています。さらに連続的な挿入反応による逐次的な環拡大反応を経て大環状メタラサイクル(C)が生じた後に、還元的脱離によって環状ポリアセチレンが生成します。

通常メタラシクロヘプタトリエンC(n = 1)は還元的脱離によってベンゼン環が生成してしまい環状高分子は生成しないと考えられます。筆者らは、「本触媒系は還元的脱離の反応速度よりも、アセチレンモノマーの配位と挿入の反応速度の方が早いため環状ポリマーの伸長反応が進行する」と推測しています。

2016-08-14_00-34-08

図4 推定反応機構

今後の展望

今回著者らは、タングステンカルベン錯体触媒による環拡大重合反応によりアルキンをモノマーに用いた環状高分子の新たな合成法の開発に成功しました。本手法は、これまで基質適用範囲の狭かった環拡大重合法による環状高分子合成の基質適用範囲を格段に広げるものであり、多様な構造を有する環状高分子の合成と物性評価に展開できるでしょう。

 

参考文献

  1. Laurent, B. A.; Grayson, J. J. Am. Chem. Soc., 2006, 128, 4238. DOI: 10.1021/ja0585836
  2. Kubo, M.; Nishigawa, T.; Uno, T.; Ito, T.; Sato, H. Macromolecules, 2003, 36, 9264. DOI: 10.1021/ma030433x
  3. Bielawski, C. W.; Benitez, D.; Grubbs, R. H.; Science, 2002, 297, 2041. DOI: 10.1126/science.1075401
  4. Culkin, D. A.; Jeong, W.; Csihony, S; Gomez, E. D.; Balsara, N. P.; Hedrick, J. L.; Waymouth, R. M.; Angew. Chem. Int. Ed., 2007, 46, 2627. DOI: 10.1002/anie.200604740
  5. Kevin, P. S.; Reilly, M. E.; Ghiviriga, I.; Abboud, A.; Veige, A. S. Chem. Sci., 2013, 4, 1145. DOI:10.1039/C2SC21750C
  6. 足立馨, 手塚育志, 高分子論文集, 2007, 64, 709.
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 捏造のロジック 文部科学省研究公正局・二神冴希
  2. 第19回ケムステVシンポ「化学者だって起業するっつーの」を開催し…
  3. 鴻が見る風景 ~山本尚教授の巻頭言より~
  4. 有機色素の自己集合を利用したナノ粒子の配列
  5. 砂糖水からモルヒネ?
  6. エチレンをつかまえて
  7. 化学者のためのエレクトロニクス講座~無電解卑金属めっきの各論編~…
  8. 第26回ケムステVシンポ「創薬モダリティ座談会」を開催します!

注目情報

ピックアップ記事

  1. ChemDrawからSciFinderを直接検索!?
  2. エナンチオ選択的Heck反応で三級アルキルフルオリドを合成する
  3. のむ発毛薬の輸入承認 国内初、年内にも発売へ
  4. MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法
  5. 「新規高活性アルコール酸化触媒 nor-AZADOの有用性」 第1回 Wako 有機合成セミナー オンデマンド配信を開始! 富士フイルム和光純薬
  6. がん細胞をマルチカラーに光らせる
  7. 原子移動ラジカル重合 Atom Transfer Radical Polymerization
  8. 誤った科学論文は悪か?
  9. Nitrogen Enriched Gasoline・・・って何だ?
  10. 第147回―「カリックスアレーンを用いる集合体の創製」Tony Coleman教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

ブテンを原料に天然物のコードを紡ぐ ―新触媒が拓く医薬リード分子の迅速プログラム合成―

第 687回のスポットライトリサーチは、東京大学大学院 有機合成化学教室 (金井…

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP