Explore by Tag
Explore by Tag
X
  • Access
  • Adaptability
  • Administration
  • Agency
  • AI
  • Air
  • Algorithms
  • Analytics
  • Automation
  • Autonomy
  • Bio-complexity
  • Bio-systems
  • BMC2
  • CBRN
  • Chemistry
  • Communications
  • Complexity
  • Contracts
  • Cost
  • Countermeasures
  • Cyber
  • Data
  • Decentralization
  • Disease
  • Electronics
  • Energy
  • Events
  • EW
  • Finance
  • Forecasting
  • Formal
  • Fundamentals
  • Games
  • Globalization
  • Ground
  • Health
  • History
  • Imagery
  • Injury
  • Integration
  • Interface
  • ISR
  • Language
  • Launch
  • Leadership
  • Logistics
  • Manufacturing
  • Maritime
  • Materials
  • Math
  • Med-Devices
  • Microchips
  • Microstructures
  • Microsystems
  • Mobile
  • Munitions
  • Networking
  • Neuroscience
  • Opportunities
  • Photonics
  • PNT
  • Policy
  • Privacy
  • Processing
  • Programming
  • Quantum
  • Resilience
  • Restoration
  • Robotics
  • Satellites
  • SBIR
  • Security
  • Sensors
  • Space
  • Spectroscopy
  • Spectrum
  • SWAP
  • Syn-Bio
  • Systems
  • Targeting
  • Tech-Foundations
  • Testimony
  • Therapy
  • Thermal
  • Training
  • Transition
  • Trust
  • Unmanned
  • Visualization
Defense Advanced
Research Projects Agency
Main Menu
X
  • About Us
    • About DARPA
    • People
    • Offices
    • Testimony
    • Budget
    • DARPA History
    • Image Gallery
  • /
  • Our Research
  • /
  • News
  • /
  • Events
  • /
  • Work With Us
    • Opportunities
    • New Program Managers
    • Contract Management
    • For Industry
    • For Small Businesses
    • For Universities
    • For Government and Military
    • Employment at DARPA
    • Visitor Information
  • /
  • Search
Main Menu Explore by Tag
Defense Advanced Research Projects AgencyProgram Information

Quiness

The Department of Defense requires secure communications, but the broad availability of advanced communications technology possessed by adversaries makes it increasingly difficult to ensure the integrity and confidentiality of DoD information. The science of quantum communications—in which single photons from entangled photon pairs are transmitted over a distance—offers the possibility of unconditionally secure communication because the act of measuring a quantum object changes it. For quantum communications to be practical, however, several technological barriers must be overcome.

Quantum communications have traditionally operated at low data rates because they relied on the transmission of fragile single-photon states which are extremely sensitive to loss and noise, and for which no high sensitivity, high efficiency, high data rate single photon detectors exist. As a result, contemporary quantum communications are limited to short distances and low data rates. In contrast, classical telecommunications are capable of extremely high data rates (measured in gigabits per second) and long distances (more than 1000 kilometers). DARPA created the Quiness program to investigate novel technologies capable of high-rate, long-distance quantum communications.

Quiness is exploring a variety of approaches to improving quantum communications, including:

  • coupling single-photon states or few-photon states to bright optical states for long-distance transmission;
  • theoretical constructs and protocols which can extend the reach and rate of more traditional quantum approaches;
  • new types of quantum repeaters; and
  • novel encodings which allow photonic states to transfer additional quantum information.

Success in this effort would enable secure, point-to-point DoD communications and could support development of a quantum network in which secure information could be shared between one point and many.

Tags

| Fundamentals | Quantum |

 

Similarly    Tagged    Content

Nascent Light-Matter Interactions (NLM) Webcast Proposers Day
Developing “ABCs” for Exploiting New Phenomena in Light-Matter Interactions
Counting Photons…How Low Can You Go?
Study on Magnetic Compass Orientation in Birds Builds Case for Bio-Inspired Sensors
Theorists Predict New State of Quantum Matter May Have Big Impact on Electronics
Back To Top

  • Print

 

Selected DARPA Achievements

DARPA collaborated with industry on stealth technology.
DARPA’s Stealth Revolution
In the early days of DARPA’s work on stealth technology, Have Blue, a prototype of what would become the F-117A, first flew successfully in 1977. The success of the F-117A program marked the beginning of the stealth revolution, which has had enormous benefits for national security.
DARPA microelectronics gave rise to today's GPS devices.
Navigation in the Palm of Your Hand
Early GPS receivers were bulky, heavy devices. In 1983, DARPA set out to miniaturize them, leading to a much broader adoption of GPS capability.
First rough conceptual design of the ARPANET.
Paving the Way to the Modern Internet
ARPA research played a central role in launching the Information Revolution. The agency developed and furthered much of the conceptual basis for the ARPANET—prototypical communications network launched nearly half a century ago—and invented the digital protocols that gave birth to the Internet.
  • About Us
  • About DARPA
  • People
  • Offices
  • Testimony
  • Budget
  • DARPA History
  • Image Gallery
  • Our Research
  • Open Catalog
  • News
  • Events
  • Work With Us
  • Opportunities
  • New Program Managers
  • Contract Management
  • For Industry
  • For Small Businesses
  • For Universities
  • For Government and Military
  • Employment at DARPA
  • Site Info
  • Sitemap
  • Cookie Disclaimer
  • Web Policy
  • Privacy Policy
  • Accessibility/Section 508
  • No Fear Act
  • Usage Policy
  • USA.gov
  • /
  • Freedom of Information Act
  • /
  • Visitor Information
  • /
  • Contact Us
  • Twitter
  • Facebook
  • Goolge+
  • YouTube
  • RSS
Defense Advanced Research Projects Agency 675 North Randolph Street
Arlington, VA 22203-2114
703.526.6630

This is an official U.S. Department of Defense website sponsored by the Defense Advanced Research Projects Agency.

You are now leaving the DARPA.mil website that is under the control and management of DARPA. The appearance of hyperlinks does not constitute endorsement by DARPA of non-U.S. Government sites or the information, products, or services contained therein. Although DARPA may or may not use these sites as additional distribution channels for Department of Defense information, it does not exercise editorial control over all of the information that you may find at these locations. Such links are provided consistent with the stated purpose of this website.


After reading this message, click  to continue immediately.

Go Back