2

Say I have:

import polars as pl

df = pl.DataFrame({'a':[1,1,2], 'b': [4,5,6]}).with_columns(c=pl.concat_list('a', 'b'))

print(df)
shape: (3, 3)
┌─────┬─────┬───────────┐
│ a   ┆ b   ┆ c         │
│ --- ┆ --- ┆ ---       │
│ i64 ┆ i64 ┆ list[i64] │
╞═════╪═════╪═══════════╡
│ 1   ┆ 4   ┆ [1, 4]    │
│ 1   ┆ 5   ┆ [1, 5]    │
│ 2   ┆ 6   ┆ [2, 6]    │
└─────┴─────┴───────────┘

I can normalise column 'c' by doing:

In [15]: df.with_columns(c_normalised = pl.col('c') / pl.col('c').list.sum())
Out[15]:
shape: (3, 4)
┌─────┬─────┬───────────┬──────────────────────┐
│ a   ┆ b   ┆ c         ┆ c_normalised         │
│ --- ┆ --- ┆ ---       ┆ ---                  │
│ i64 ┆ i64 ┆ list[i64] ┆ list[f64]            │
╞═════╪═════╪═══════════╪══════════════════════╡
│ 1   ┆ 4   ┆ [1, 4]    ┆ [0.2, 0.8]           │
│ 1   ┆ 5   ┆ [1, 5]    ┆ [0.166667, 0.833333] │
│ 2   ┆ 6   ┆ [2, 6]    ┆ [0.25, 0.75]         │
└─────┴─────┴───────────┴──────────────────────┘

How can I do this in DuckDB? I've tried

In [17]: duckdb.sql("""
    ...: from df
    ...: select c / list_sum(c)
    ...: """)
---------------------------------------------------------------------------
BinderException                           Traceback (most recent call last)
Cell In[17], line 1
----> 1 duckdb.sql("""
      2 from df
      3 select c / list_sum(c)
      4 """)

BinderException: Binder Error: No function matches the given name and argument types '/(BIGINT[], HUGEINT)'. You might need to add explicit type casts.
        Candidate functions:
        /(FLOAT, FLOAT) -> FLOAT
        /(DOUBLE, DOUBLE) -> DOUBLE
        /(INTERVAL, BIGINT) -> INTERVAL

1 Answer 1

3

Found it:

In [26]: duckdb.sql("""
    ...: from df
    ...: select *, list_transform(c, x -> x / list_sum(c)) as c_normalised
    ...: """)
Out[26]:
┌───────┬───────┬─────────┬───────────────────────────────────────────┐
│   a   │   b   │    c    │               c_normalised                │
│ int64 │ int64 │ int64[] │                 double[]                  │
├───────┼───────┼─────────┼───────────────────────────────────────────┤
│     1 │     4 │ [1, 4]  │ [0.2, 0.8]                                │
│     1 │     5 │ [1, 5]  │ [0.16666666666666666, 0.8333333333333334] │
│     2 │     6 │ [2, 6]  │ [0.25, 0.75]                              │
└───────┴───────┴─────────┴───────────────────────────────────────────┘


Or, even nicer:


In [39]: duckdb.sql("""
    ...: from df
    ...: select *, [x / list_sum(c) for x in c] as c_normalised
    ...: """)
Out[39]:
┌───────┬───────┬─────────┬───────────────────────────────────────────┐
│   a   │   b   │    c    │               c_normalised                │
│ int64 │ int64 │ int64[] │                 double[]                  │
├───────┼───────┼─────────┼───────────────────────────────────────────┤
│     1 │     4 │ [1, 4]  │ [0.2, 0.8]                                │
│     1 │     5 │ [1, 5]  │ [0.16666666666666666, 0.8333333333333334] │
│     2 │     6 │ [2, 6]  │ [0.25, 0.75]                              │
└───────┴───────┴─────────┴───────────────────────────────────────────┘
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.