1

I am using the awesome scikit-optimize toolbox for hyperparameter optimization. My goal is to compare keras and scikit-learn models.

According to the example https://scikit-optimize.github.io/stable/auto_examples/sklearn-gridsearchcv-replacement.html#sphx-glr-auto-examples-sklearn-gridsearchcv-replacement-py only scikit learn models had been used. Trying something like the following code does not allow to integrate the keras mode in the BayesSearchCV.

# Function to create model, required for KerasRegressor
def create_model(optimizer='rmsprop', init='glorot_uniform'):
    # create model
    model = Sequential()
    model.add(Dense(12, input_dim=8, kernel_initializer=init, activation='relu'))
    model.add(Dense(8, kernel_initializer=init, activation='relu'))
    model.add(Dense(1, kernel_initializer=init, activation='linear'))
    # Compile model
    model.compile(loss='mse', optimizer=optimizer, metrics=['r2'])
    return model

model = KerasRegressor(build_fn=create_model, verbose=0)
NN_search = {
    'model': [model()],
    'model__optimizers': optimizers,
    'model__epochs' : epochs, 
    'model__batch_size' : batches, 
    'model__init' : init
}

Has anyone managed to merge a KerasClassifier/Regressor into BayesSearch CV?

1 Answer 1

0

Well, I found an option to define a model that is build up based on global parameters. So inside of the scikit-opt minimize function the objective function is called, here the global parameters are set, and used in the create_model_NN function, which is built on the keras scikit-learn KerasRegressor Wrapper.

def create_model_NN():
    #start the model making process and create our first layer
    model = Sequential()
    model.add(Dense(num_input_nodes, input_shape=(40,), activation=activation
                   ))
    #create a loop making a new dense layer for the amount passed to this model.
    #naming the layers helps avoid tensorflow error deep in the stack trace.
    for i in range(num_dense_layers):
        name = 'layer_dense_{0}'.format(i+1)
        model.add(Dense(num_dense_nodes,
                 activation=activation,
                        name=name
                 ))
    #add our classification layer.
    model.add(Dense(1,activation='linear'))
    
    #setup our optimizer and compile
    adam = Adam(lr=learning_rate)
    model.compile(optimizer=adam, loss='mean_squared_error',
                 metrics=['mse'])
    return model

def objective_NN(**params):
    print(params)

    global learning_rate
    learning_rate=params["learning_rate"]
    global num_dense_layers
    num_dense_layers=params["num_dense_layers"]
    global num_input_nodes
    num_input_nodes=params["num_input_nodes"]
    global num_dense_nodes
    num_dense_nodes=params["num_dense_nodes"]
    global activation
    activation=params["activation"]
    
    model = KerasRegressor(build_fn=create_model, epochs=100, batch_size=1000, verbose=0)
    X_train, X_test, y_train, y_test = train_test_split(X_time, y_time, test_size=0.33, random_state=42)
    
    model.fit(X_train, y_train)
    
    y_pr = model.predict(X_test)
    
    res = metrics.r2_score(y_test, y_pr)
return -res

And to call it:

res_gp = gp_minimize(objective_NN, space_NN, n_calls=10, random_state=0)
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.