Description:
I have this data represented in a cartesian coordinate system with 256 columns and 640 rows. Each column represents an angle, theta, from -65 deg to 65 deg. Each row represents a range, r, from 0 to 20 m.
An example is given below:
With the following code I try to make a grid and transform each pixel location to the location it would have on a polar grid:
def polar_image(image, bearings):
(h,w) = image.shape
x_max = (np.ceil(np.sin(np.deg2rad(np.max(bearings)))*h)*2+1).astype(int)
y_max = (np.ceil(np.cos(np.deg2rad(np.min(np.abs(bearings))))*h)+1).astype(int)
blank = np.zeros((y_max,x_max,1), np.uint8)
for i in range(w):
for j in range(h):
X = (np.sin(np.deg2rad( bearings[i]))*j)
Y = (-np.cos(np.deg2rad(bearings[i]))*j)
blank[(Y+h).astype(int),(X+562).astype(int)] = image[h-1-j,w-1-i]
return blank
This returns an image as below:
Questions:
This is sort of what I actually want to achieve except from two things:
1) there seem to be some artifacts in the new image and also the mapping seems a bit coarse.
Does someone have a suggestion on how to interpolate to get rid of this?
2) The image remains in a Cartesian representation, meaning that I don't have any polar gridlines, nor can I visualize intervals of range/angle.
Anybody know how to visualize the polar grids with axis ticks in theta and range?

