Use DataFrame.groupby with lambda function for get first letter of columns for mean, also if first column is not index use DataFrame.set_index:
df=df.set_index('ID').groupby(lambda x: x[0], axis=1).mean().add_suffix('_mean').reset_index()
print (df)
ID A_mean B_mean
0 ID1 1.5 5.0
1 ID2 5.0 4.0
Another solution is extract columns names by indexing str[0]:
df = df.set_index('ID')
print (df.columns.str[0])
Index(['A', 'A', 'B', 'B'], dtype='object')
df = df.groupby(df.columns.str[0], axis=1).mean().add_suffix('_mean').reset_index()
print (df)
ID A_mean B_mean
0 ID1 1.5 5.0
1 ID2 5.0 4.0
Or:
df = (df.set_index('ID')
.groupby(df.columns[1:].str[0], axis=1)
.mean()
.add_suffix('_mean').reset_index()
Verify solution:
a = df.filter(like='A').mean(axis=1)
b = df.filter(like='B').mean(axis=1)
df = df[['ID']].assign(A_mean=a, B_mean=b)
print (df)
ID A_mean B_mean
0 ID1 1.5 5.0
1 ID2 5.0 4.0
EDIT:
If have different columns names and need specify them in lists:
a = df[['A1','A2']].mean(axis=1)
b = df[['B1','B2']].mean(axis=1)
df = df[['ID']].assign(A_mean=a, B_mean=b)
print (df)