Consider the complex mathematical function on the line [1, 15]: f(x) = sin(x / 5) * exp(x / 10) + 5 * exp(-x / 2)
polynomial of degree n (w_0 + w_1 x + w_2 x^2 + ... + w_n x^n) is uniquely defined by any n + 1 different points through which it passes. This means that its coefficients w_0, ... w_n can be determined from the following system of linear equations:
Where x_1, ..., x_n, x_ {n + 1} are the points through which the polynomial passes, and by f (x_1), ..., f (x_n), f (x_ {n + 1}) - values that it must take at these points.
I'm trying to form a system of linear equations (that is, specify the coefficient matrix A and the free vector b) for the polynomial of the third degree, which must coincide with the function f at points 1, 4, 10, and 15. Solve this system using the scipy.linalg.solve function.
A = numpy.array([[1., 1., 1., 1.], [1., 4., 8., 64.], [1., 10., 100., 1000.], [1., 15., 225., 3375.]])
V = numpy.array([3.25, 1.74, 2.50, 0.63])
numpy.linalg.solve(A, V)
I got the wrong answer, which is
So the question is: is the matrix correct?



