5

When using iPyWidgets and Matplotlib in a Jupyter notebook, it is fairly easy to get a live-updating figure, even with multiple subplots, and multiple variables with multiple sliders. Simply set an interact to contain the activated plot function, and constructors for two slider variables:

%pylab inline
from ipywidgets import *
from IPython.display import display
import numpy as np
import matplotlib

t = np.arange(0.0, 4*pi, 0.01)

def pltsin(f1, f2):
    ax11 = plt.subplot(121)
    ax11.set_title('Plot 1')
    ax11.plot(t, sin(2*pi*t*f1/4/pi), 'k'); ax11.grid(True)
    ax11.plot(t, cos(2*pi*t*f1/4/pi), 'r'); ax11.grid(True)

    ax12 = plt.subplot(122)
    ax12.set_title('Plot 2')
    ax12.plot(t, sin(2*pi*t*f2/4/pi), 'k'); ax12.grid(True)
    ax12.plot(t, cos(2*pi*t*f2/4/pi), 'r'); ax11.grid(True)

    plt.show()

interact(pltsin, f1 = (1, 2, 0.01), f2 = (1, 2, 0.01))

This could easily be extended to a plot where (say) three sliders control three polynomial coefficients all in a single window (i.e., no subplots).

But, it would be highly useful to have a reset button, which returns all variables to their default condition. How can I cause an ipywidget button's on_click method to affect the variables of the slider, and the figure itself?

1 Answer 1

4

This can be done by leveraging the interactive function.

%pylab inline
from ipywidgets import widgets
from IPython.display import display
import numpy as np
import matplotlib

t = np.arange(0.0, 4*pi, 0.01)

def pltsin(f1, f2):
    ax11 = plt.subplot(121)
    ax11.set_title('Plot 1')
    ax11.plot(t, sin(2*pi*t*f1/4/pi), 'k'); ax11.grid(True)
    ax11.plot(t, cos(2*pi*t*f1/4/pi), 'r'); ax11.grid(True)

    ax12 = plt.subplot(122)
    ax12.set_title('Plot 2')
    ax12.plot(t, sin(2*pi*t*f2/4/pi), 'k'); ax12.grid(True)
    ax12.plot(t, cos(2*pi*t*f2/4/pi), 'r'); ax11.grid(True)

    plt.show()

def reset_values(b):
    """Reset the interactive plots to inital values."""
    my_plts.children[0].value = 1
    my_plts.children[1].value = 1

reset_button = widgets.Button(description = "Reset")
reset_button.on_click(reset_values)

my_plts = widgets.interactive(pltsin, f1 = (1, 2, 0.01), f2 = (1, 2, 0.01))
display(my_plts, reset_button)

Can't stand hard-coded variables? Then replace the reset_values function with this more elastic version:

def reset_values(b):
    """Reset the interactive plots to inital values."""

    my_plts.children[0].value = my_plts.children[0].min
    my_plts.children[1].value = my_plts.children[1].min

Hope that helps.

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.