I would suggest you NOT to follow the path proposed by Juho Östman and keep purity - otherwise, why should you use Prolog in first instance? If you are too lenient with sticking to the logical paradigm you obtain some unpleasing results. In this case, Juho's predicate is definitely different from yours, and I'll show you why.
First, just drop the useless edu_le(A,B) :- edu_less(A,B). rule, as larsmans suggests. You will obtain a less redundant version of your original predicate:
edu_le1(A, A).
edu_le1(A, B) :- edu_less(A, C), edu_le1(C, B).
It just behaves as edu_le, meaning: given an arbitrary query, it produces exactly the same answer, except for duplicates (edu_le1 has less). You may just be happy with it, but it still has some redundant answers that you may not like; e.g, under SWI:
?- edu_le1(hs, hs)
true ;
false.
Now you may say you do not like it because it still has the redundant false, but if you use Juho's predicate instead (without the useless rule):
edu_le2(A, A) :- !.
edu_le2(A, B) :- edu_less(A, C), edu_le2(C, B).
it's true that you eliminate the useless final false:
?- edu_le2(hs, hs)
true.
?-
but you lose more than that: You lose, as mat remarks, the possibility of generating all the solutions when one variable is not instantiated:
?- edu_le1(hs, B) %same, with more copies, for edu_le
B = hs ;
B = college ;
B = masters ;
B = phd ;
false.
?- edu_le2(hs, B)
B = hs. %bad!
?-
In other words, the latter predicate is NOT equivalent to the former: edu_le and edu_le1 have type edu_le(?A, ?B), while instead edu_le2 has type edu_le2(+A, +B) (see [1] for the meaning). Be sure: edu_le2 is less useful because it does less things, and thus can be reused in less contexts. This because the cut in edu_le2 is a red cut, i.e., a cut that changes the meaning of the predicate where it is introduced. You may nevertheless be content with it, given that you understand the difference between the two. It all depends on what you want to do with it.
If you want to get the best of the two worlds, you need to introduce in edu_le1 a proper green cut that lowers the redundancy when A and B are completely instantiated to terms. At the purpose, you must check that A and B are instantiated to the same term before cutting. You cannot do it with =, because = does not check, but unifies. The right operator is ==:
edu_le3(A, B) :- (A == B -> ! ; true), A = B.
edu_le3(A, B) :- edu_less(A, C), edu_le3(C, B).
Note that the additional cut in the first rule is active only when A and B happen to be the same term. Now that the cut is a proper green cut, the predicate works also in the most general cases as your original one:
?- edu_le3(A, A).
true.
?- edu_le3(A, B). %note that A and B are not the same term
A = B ;
A = hs,
B = college ;
A = hs,
B = masters ;
A = hs,
B = phd ;
A = college,
B = masters ;
A = college,
B = phd ;
A = masters,
B = phd ;
false.
?-
with Prolog backtracking through all the solutions.
I don't think there is some way to eliminate the last false without introducing too strong dependency on edu_lt. This because we must keep open the possibility that there is another edu_lt to explore, in the case you decide later to enrich it with more ground facts. So, in my opinion, this is the best you can have.
[1] SWI Prolog reference manual, section 4.1.