How to covert a DataFrame column containing strings and NaN values to floats. And there is another column whose values are strings and floats; how to convert this entire column to floats.
7 Answers
NOTE:
pd.convert_objectshas now been deprecated. You should usepd.Series.astype(float)orpd.to_numericas described in other answers.
This is available in 0.11. Forces conversion (or set's to nan)
This will work even when astype will fail; its also series by series
so it won't convert say a complete string column
In [10]: df = DataFrame(dict(A = Series(['1.0','1']), B = Series(['1.0','foo'])))
In [11]: df
Out[11]:
A B
0 1.0 1.0
1 1 foo
In [12]: df.dtypes
Out[12]:
A object
B object
dtype: object
In [13]: df.convert_objects(convert_numeric=True)
Out[13]:
A B
0 1 1
1 1 NaN
In [14]: df.convert_objects(convert_numeric=True).dtypes
Out[14]:
A float64
B float64
dtype: object
7 Comments
df['ColumnName'] = df['ColumnName'].convert_objects(convert_numeric=True) You can convert just a single column.You can try df.column_name = df.column_name.astype(float). As for the NaN values, you need to specify how they should be converted, but you can use the .fillna method to do it.
Example:
In [12]: df
Out[12]:
a b
0 0.1 0.2
1 NaN 0.3
2 0.4 0.5
In [13]: df.a.values
Out[13]: array(['0.1', nan, '0.4'], dtype=object)
In [14]: df.a = df.a.astype(float).fillna(0.0)
In [15]: df
Out[15]:
a b
0 0.1 0.2
1 0.0 0.3
2 0.4 0.5
In [16]: df.a.values
Out[16]: array([ 0.1, 0. , 0.4])
Comments
In a newer version of pandas (0.17 and up), you can use to_numeric function. It allows you to convert the whole dataframe or just individual columns. It also gives you an ability to select how to treat stuff that can't be converted to numeric values:
import pandas as pd
s = pd.Series(['1.0', '2', -3])
pd.to_numeric(s)
s = pd.Series(['apple', '1.0', '2', -3])
pd.to_numeric(s, errors='ignore')
pd.to_numeric(s, errors='coerce')
1 Comment
pd.to_numeric to a DataFrame, one can use df.apply(pd.to_numeric) as explained in detail in this answer.df['MyColumnName'] = df['MyColumnName'].astype('float64')
4 Comments
ValueError: could not convert string to float: 'date'import pandas as pd
df['a'] = pd.to_numeric(df['a'])
1 Comment
Here is an example
GHI Temp Power Day_Type
2016-03-15 06:00:00 -7.99999952505459e-7 18.3 0 NaN
2016-03-15 06:01:00 -7.99999952505459e-7 18.2 0 NaN
2016-03-15 06:02:00 -7.99999952505459e-7 18.3 0 NaN
2016-03-15 06:03:00 -7.99999952505459e-7 18.3 0 NaN
2016-03-15 06:04:00 -7.99999952505459e-7 18.3 0 NaN
but if this is all string values...as was in my case... Convert the desired columns to floats:
df_inv_29['GHI'] = df_inv_29.GHI.astype(float)
df_inv_29['Temp'] = df_inv_29.Temp.astype(float)
df_inv_29['Power'] = df_inv_29.Power.astype(float)
Your dataframe will now have float values :-)
convert_objects. It is deprecated. Useto_numericorastypeinstead