Showing posts with label Trident. Show all posts
Showing posts with label Trident. Show all posts

Monday, 22 September 2025

A Trident-II D5 SLBM launch in the Atlantic on 21 September 2025: analysis of footage from Puerto Rico (UPDATED)

frame stack of movie by SAC station Anasco, Puerto Rico

 

click map to enlarge

On 15 September 2025, Navigational Warnings appeared that pointed to an upcoming Trident-II D5 SLBM (Submarine Launched Ballistic Missile) unarmed test launch in the Atlantic between 17 and 22 September 2025, from a submarine of either the US Navy or UK Royal Navy positioned some 400 km out of the coast of Florida (update 24 Sept 2025: according to this US DoD bulletin it was an American test launch from an unnamed Ohio-class SSBN (Ballistic Missile submarine). The submarine test-launched four Trident missiles between Sept 17 and 21). I have posted about such tests and the typical pattern of Navigational Warnings associated to them earlier, in an analysis of a Trident launch that was inadvertently captured on camera in a time-lapse by an amateur astronomer on La Palma in September of 2013.

And now we have another case of inadvertant capture on camera of such a launch, and a second opportunity for analysis! 

In the evening of 21 September 2025 near 23:30 UTC, eyewitnesses in Puerto Rico saw a fuzzy object and what looked like expanding missile exhaust clouds move through the sky, consistent with a rocket or missile launch. The event was captured by amongst others a meteor camera of the Caribbean Astronomy Society (SAC) near Anasco, Puerto Rico. 

Eddie Irizarry of SAC was so kind to send me the video footage for identification and analysis. Immediately, it was clear to me that the video showed the Trident test launch we expected.

In top of this post is a frame-stack from the footage. Below it is a map I prepared showing the northern part of the sky as seen from the camera station in Puerto Rico, with the blue line representing the sky trajectory expected for this Trident launch for an assumed (but see below) apogee altitude of 2200 km. They compare well (note: the video stack shows a part of the trajectory only, up to about azimuth 30 degrees, while the sky map shows the full trajectory).

Here is the video footage itself (courtesy of  Eddie Irizarry, used with permission):

 

 

The trajectory for this Trident test launch is known, as it can be reconstructed from the Navigational Warnings that have been issued for it. Below is the Navigational Warning, and a map where I have plotted the exclusion zones A-D from it, and a fitted ballistic trajectory:

151958Z SEP 25
HYDROLANT 1538/25(GEN).
ATLANTIC OCEAN.
DNC 01, DNC 16.
1. HAZARDOUS OPERATIONS 171830Z TO 220136Z SEP
   IN AREAS BOUND BY:
   A. 28-34.00N 076-29.00W, 29-07.00N 076-28.00W,
      29-05.00N 075-33.00W, 28-30.00N 075-35.00W.
   B. 28-37.00N 075-51.00W, 28-55.00N 075-44.00W,
      27-44.00N 070-28.00W, 27-05.00N 070-28.00W.
   C. 16-28.00N 044-01.00W, 17-01.00N 043-43.00W,
      14-36.00N 038-46.00W, 13-37.00N 039-33.00W.
   D. 10-35.00S 001-40.00W, 10-05.00S 001-25.00W,
      12-01.00S 002-21.00E, 12-45.00S 002-55.00E,
      13-11.00S 002-20.00E, 13-01.00S 002-02.00E,
      13-04.00S 002-00.00E, 12-38.00S 001-15.00E.
   E. 26-58.00N 070-28.00W, 28-14.00N 070-28.00W,
      25-56.00N 063-20.00W, 24-34.00N 063-50.00W.
2. CANCEL THIS MSG 220236Z SEP 25.
click map to enlarge

 

On the map, I have undicated the part of the trajectory that was captured by the SAC camera on Puerto Rico as a yellow line

Area A is the launch area where the submarine is located. Areas B, E and C are respectively the splashdown zones of the first, second and third stages of the missile. Area D is the RV (Reentry Vehicle) target zone. The switched designations for the C and E area are probably a clerical error.

The launch area, 400 km out of the Florida coast is one of two well established launch locations for Trident tests in the Atlantic (see my earlier investigation here). Likewise, the target area in the southeastern part of the Atlantic, 900 km east of St Helena at a range of about 9500 km from the launch site, is a well known target location for these test launches.

What cannot be well gleaned from Navigational Warnings alone, is the apogee altitude of this test. 

In this post, I will however reconstruct it from a combination of the known missile flight trajectory and measurements of the missile's sky track in the video footage from Puerto Rico, in a similar way as I analysed the earlier 2013 Trident observation from La Palma. For that 2013 test, I found an apogee at ~1800 km.

The video (the original is higher resolution than the version posted in this blogpost) provides plenty of reference stars to do astrometry on the missile path through the sky. So I measured the missile's position with respect to the stars for several frames from the video. Plotting  these observed positions (in RA/DEC) on a star map along with the expected sky trajectories in RA/DEC for various assumed apogee altitudes (based on the trajectory from the Navigational Warnings), it is clear that an apogee of 2200 km fits best. Red crosses in the plot below are the measured positions from the video: the blue lines provide the expected missile tracks for various apogee altitudes:

click map to enlarge

(note that I choose to plot RA on the Y-axis rather than X-axis, in order to get a plot orientation that is most easily compared to the video footage).

Earlier, while similarly analyzing the Trident launch seen from La Palma in 2013, I found an indicated apogee of ~1800 km, some 400 km lower than seems to be the case with this latest test launch. Both values are significantly higher than the ~1200 km that is often taken as a canonical value for an intercontinental missile apogee. These tests in the Atlantic therefore appear to be a bit "lofted", perhaps simply to keep the Reentry Vehicle (RV) impact area sufficiently out of the African coast.

From the timing of the Puerto Rico video, the actual launch time was likely somewhere near 23:27 UTC (Sept 21) from a location  near 28.8 N, 76.3 W, with a flight time near 41 minutes from launch to RV impact. As seen from Puerto Rico the missile cleared the horizon while at ~150 km altitude, steadily climbing to  ~800 km when it left the field of view of the CAS camera station (while continuing its ascend towards apogee). The closest slant range to the camera station was ~1300 km. The big cloud of exhaust gas seen in the early part of the video likely stops upon ejection of the second or third stage. The various smaller "pufs" of exhaust cloud that can be seen later emanating from the fuzzy object, are probably due to either the third stage or post-boost vehicle orienting itself.

(With thanks to Eddie Irizarry/CAS for sending me the footage and for his permission to use it in this blog) 

UPDATE 24 Sept 2025: 

According to this US DoD bulletin the missile was launched from an unnamed US Ohio-class Ballistic Missile submarine (SSBN). The submarine reportedly test-launched as much as four Trident missiles of the 5DLE variety between Sept 17 and 21. The below image was published, showing a Sept 21 nighttime launch, the missile that was seen from Puerto Rico:

 

Sept 21 2025 Trident missile launch. Photo US Navy/Shelby Thompson

Wednesday, 21 February 2024

January UK Trident-II D5 SLBM test failed


It probably generated a lot of Stiff Upper Lip and an "Ow well, that is regrettable Old Boy...." from the UK Defense Secretary and the UK Royal Navy Commander that were on scene to witness the test.

For British media (e.g. The Sun here and the BBC here) report that the 30 January Trident-II D5 SLBM test launch from the British Royal Navy submarine HMS Vanguard, on which I wrote earlier here, failed.

From the description of the failure by The Sun, the suggestion is that the first stage failed to ignite after ejection of the missile from the submarine. As a result, it fell back into sea close to the submarine.

A previous British Royal Navy Trident test launch, in 2016, failed as well when the missile veered into the wrong direction after launch and had to be destroyed in flight.

In general, the Trident-II D5 is a reliable missile. The US Navy test-fires Trident SLBM's frequently, and most of their tests reportedly were successful. It just seems the British have bad luck lately.

UPDATE:  Statement by the UK Ministry of Defense to UK Parliament on the matter.

Monday, 29 January 2024

An upcoming British Royal Navy Trident SLBM test in the Atlantic [UPDATED]

click map to enlarge

Over the past month, there was much anticipation for a (almost certainly) British Royal Navy Trident-II D5 SLBM test in the Atlantic. The arrival of the British nuclear ballistic missile armed submarine HMS Vanguard and several support ships at Port Canaveral in the past weeks suggested as much. Port Canaveral is the home base for such Trident SLBM tests.

And now the corresponding Navigational Warnings have appeared, for the period January 30 - Feb 4.

290215Z JAN 24
NAVAREA IV 89/24(GEN).
NORTH ATLANTIC.
WESTERN NORTH ATLANTIC.
1. HAZARDOUS OPERATIONS 302100 TO 040356 FEB
   IN AREAS BOUND BY:
   A. 29-00.00N 079-56.00W, 29-05.00N 079-35.00W,
      29-00.00N 079-07.00W, 28-38.00N 079-06.00W,
      28-36.00N 079-33.00W, 28-42.00N 079-52.00W.
   B. 28-28.00N 076-03.00W, 28-19.00N 075-04.00W,
      28-06.00N 075-07.00W, 28-16.00N 076-01.00W.
   C. 27-03.00N 069-40.00W, 27-20.00N 069-37.00W,
      26-58.00N 068-02.00W, 26-43.00N 068-05.00W.
   D. 19-42.00N 050-06.00W, 20-19.00N 049-55.00W,
      19-02.00N 046-24.00W, 18-23.00N 046-46.00W.
   E. 08-32.00N 031-06.00W, 08-39.00N 031-01.00W,
      08-03.00N 028-55.00W, 06-43.00N 027-40.00W,
      05-49.00N 028-16.00W, 05-59.00N 028-34.00W,
      05-25.00N 028-53.00W, 06-25.00N 029-17.00W.
2. CANCEL NAVAREA IV 88/24
3. CANCEL THIS MSG 040456Z FEB 24.

I have depicted the five hazard zones from this Navigational Warning (also issued as HYDROLANT 214/24, and a re-issue of an earlier warning that had a typo in the coordinates of Area A) in the map in top of this post. Area A is the launch area. Areas B, C and D are the splash-down zones of the first, second and third stages. Area E is the RV target area.

The launch is from one of two standard test firing areas, some 80-90 km in front of the coast of Florida (see also this earlier post). The launch will be visible from Florida, so from previous experience I expect it to generate a number of 'UFO' reports from eyewitnesses who don't know what they are seeing.

The first thing of note is that the range of this test, at approximately 5900 km, is rather short compared to other Trident tests.

That can be seen in the map below, which depicts the RV target area of this test along with the target areas of earlier Trident-II D5 tests fired from the same test launch area 1.

click map to enlarge

Whereas the other RV target areas are at latitudes 9 S to 18 S, the target area for this test is much more north, near latitude 7 N, i.e. a range some 3000-5000 km short of earlier tests. It is effectively about half the range of a typical Trident test.

HMS Vanguard (S28) has recently come out of a long 7.5 years maintenance overhaul and refuel period, and this test likely is part of its recertification as an operational SLBM submarine. The Royal British Navy has four Vanguard-class submarines in active service. Each of them carries 16 Trident-II D5 missiles.

In June 2016, the previous Royal British Navy Trident missile test, a Trident test-fired from HMS Vengeance, went awry when the missile veered into the wrong direction (towards Florida) after launch: according to newspaper The Guardian because if was given wrong trajectory information. It had to be destroyed in flight. That test targetted a target area just east-southeast of Ascension Island. I guess some nervous officials will watch the upcoming launch carefully with their finger on the destruct button.

UPDATE 21 Feb 2024:

The missile test failed, according to UK Media (.e.g. BBC here and The Sun here). It appears that the first stage did not ignite after missile ejection from the submarine. As a result, the missile plunged back into sea close to the submarine. The test was reportedly witnessed by the UK Defense Secretary Shapps and the Commander of the Royal Navy, so I guess there was a lot of Stiff Upper Lip that day, with some "Ow well, that's unfortunate Old Boy...".
A previous UK Royal Navy test launch, in 2016, failed as well (see discussion above in blogpost).

Thursday, 22 June 2023

UPDATED: Ceci n'est pas une pipe... (French and US missile tests in the Atlantic in June)

click map to enlarge

They must love Magritte over at the French DoD, looking at the shape of the exclusion zones for a missile test published as Navigational Warnings HYDROLANT 1371/23 and HYDROLANT 1372/23.

The Navigational Warnings point to a French missile test launched from DGA Essais de Missiles near Biscarosse in Nouvelle-Aquitaine, over the Bay of Biscaye, in the period 26 to 30 June 2023. Below is the text of the Navigational Warnings:

201628Z JUN 23
HYDROLANT 1371/23(36,37).
BAY OF BISCAY.
CELTIC SEA.
EASTERN NORTH ATLANTIC.
FRANCE.
DNC 08, DNC 19.
1. MISSILE OPERATIONS 1230Z TO 2230Z DAILY
   26 THRU 30 JUN IN AREA BOUND BY
   46-33.50N 004-51.90W, 48-27.00N 010-03.00W,
   48-27.00N 015-12.00W, 47-04.50N 014-59.10W,
   46-05.70N 013-39.00W, 44-02.30N 001-20.00W,
   44-49.50N 001-12.30W.
2. CANCEL THIS MSG 302330Z JUN 23.


201646Z JUN 23
HYDROLANT 1372/23(36).
CELTIC SEA.
EASTERN NORTH ATLANTIC.
DNC 19.
1. MISSILE OPERATIONS 1230Z TO 2230Z DAILY
   26 THRU 30 JUN IN AREA BOUND BY
   50-15.00N 011-08.00W, 49-40.00N 010-11.00W,
   48-27.00N 010-03.00W, 48-27.00N 015-12.00W,
   49-51.00N 013-15.00W.
2. CANCEL THIS MSG 302330Z JUN 23.

 

The shape and range of the Navigational Warnings suggest something SRBM/MRBM rather than, for example an SLBM. The curved shape is odd. After I posted the Warnings on Twitter, there has been some speculation that this might be a test of a hypersonic glider, perhaps V-Max. Taking into account the curve in the exclusion area, the range of this test would be in the order of 1250 km.

 

UPDATE 27 June 2023:

The test launch took place yesterday, 26 June 2023 at 22h CEST: see this French DoD bulletin, which also confirms that it was a test of the VMax glider on top of a sounding rocket.

A lot of chance sightings of the lingering missile exhaust cloud, illuminated by the sun, have been posted on Twitter, most of these from northern Spain but also a few from SW France. See for example here, here and here for a few examples. 

The French Ministère des Armées provided this image of  *a* launch. I have some doubts whether it is this particular VMAX launch, as the scenery seems sunlit with the sun in the South-Southeast (look at the shadows), while the launch was near 22 CEST, with the sun setting or just set in the Northwest...

[EDIT: the image seems to be a cgi render, i.e. not a real image, so that explains...]
 

Click to enlarge (image: Ministère des Armées, France)
[end of update]

 

More Atlantic tests: US or UK Trident test

This is not the only test in the Atlantic this June. Slightly earlier, a Navigational Warning, HYDROLANT 1302/23, appeared, strongly suggesting a Trident-II D5 SLBM test in the period 14 to 17 June 2023, launched from a submarine near Florida:

121246Z JUN 23
HYDROLANT 1302/23(GEN).
ATLANTIC OCEAN.
DNC 01, DNC 16.
1. HAZARDOUS OPERATIONS 141140Z TO 170029Z JUN
   IN AREAS BOUND BY:
   A. 28-39.00N 076-31.00W, 29-09.00N 076-13.00W,
      28-47.00N 074-59.00W, 28-17.00N 075-14.00W.
   B. 28-01.00N 073-25.00W, 28-07.00N 073-22.00W,
      27-53.00N 072-04.00W, 27-31.00N 071-57.00W,
      27-33.00N 072-24.00W.
   C. 25-46.00N 067-21.00W, 26-19.00N 067-01.00W,
      25-40.00N 065-42.00W, 25-08.00N 065-59.00W.
   D. 14-00.00N 042-36.00W, 14-14.00N 042-28.00W,
      13-41.00N 041-24.00W, 12-15.00N 039-09.00W,
      11-40.00N 039-30.00W, 12-41.00N 041-09.00W.
   E. 19-32.00S 007-27.00E, 18-42.00S 007-53.00E,
      19-52.00S 010-33.00E, 20-46.00S 010-02.00E,
      20-24.00S 009-17.00E, 20-12.00S 008-49.00E,
      20-06.00S 008-41.00E, 20-03.00S 008-33.00E,
      20-02.00S 008-29.00E.
2. CANCEL THIS MSG 170129Z JUN 23.



Here is the map I created from this Navigational Warning, with the areas A to E and the approximately 10600 km trajectory:

click map to enlarge

At the moment of writing, we are past the window of the Navigational Warning for this Trident test, but no word has come about a successful test launch yet.

The launch area some 450 km out of the coast of Florida is one of two regularly used launch areas for Trident test launches. It is launch area 2 in the compilation below of data from nine 9 Trident test launches from the last 10 years I could identify:

click map to enlarge


The RV target area in front of the coast of Namibia is near one of three areas regularly used (target area 3 in the map below), but somewhat closer to the African coast than previous tests:

Click map to enlarge    


A few more maps for tis and histroic Trident tests: first, stage 1 and stage 2 splashdown areas for launches from launch area 1 (top) and launch area 2 (bottom):

Launch area 1 launches. Click map to enlarge

Launch area 2 launche. Click map to enlarge

As I indicated in an earlier analysis, I suspect that launch area 1, much closer to the Florida coast than launch area 2, is used for launches with a VIP audience.

The two maps below show the mid-Atlantic third stage splashdown zones for the two launch areas in question:




Friday, 17 September 2021

An upcoming Trident-II D5 SLBM test in the Atlantic

click map to enlarge

A few days ago a Navigational Warning (NAVAREA IV 838/21, also issued as HYDROLANT 2336/21) appeared which points to an upcoming Trident-II D5 SLBM (Submarine-Launched Ballistic Missile) test from a US or Royal Navy SSBN on the Atlantic Eastern Missile Range between 12:30 UT on September 17, and 1:23 UT on Sept 20. The distance between the launch area and MIRV target area is about 9900 km.

This is the text of the Navigational Warning (the map in top of this post shows them mapped, along with a simple ballistic trajectory):

151459Z SEP 21
NAVAREA IV 838/21(11,24,26).
ATLANTIC OCEAN.
FLORIDA.
1. HAZARDOUS OPERATIONS 171230Z THRU 200123Z SEP
   IN AREAS BOUND BY:
   A. 28-56N 079-59W, 29-02N 079-53W,
      29-06N 079-37W, 28-59N 079-10W,
      28-37N 079-10W, 28-36N 079-35W,
      28-45N 079-56W.             
   B. 28-24N 076-44W, 28-42N 076-42W,
      28-21N 074-40W, 28-06N 074-44W.
   C. 27-27N 071-21W, 27-52N 071-15W,
      27-25N 068-46W, 26-54N 068-54W.
   D. 17-22N 044-54W, 18-33N 044-32W,
      16-54N 040-55W, 16-00N 041-23W.
   E. 09-00S 003-51W, 08-22S 003-22W,
      12-35S 002-40E, 13-05S 002-19E,
      11-56S 000-16E, 12-09S 000-16W,
      11-34S 000-20W.
2. CANCEL THIS MSG 200223Z SEP 21.

The launch area (area A) is one of two launch areas used for these kind of tests in the Atlantic (see an earlier post from 2019 analyzing several of these launches). It is the variant closest to the Florida coast, one which I suspect is used when the launch has an 'audience' of officials.

The area is close enough to the Florida coast that Florida east coast residents might see the launch, as has previously happened.

The target area is the regular target area in the southern Atlantic some 1000 km out of the coast of Angola.

Areas B, C and D are where the first, second and third stage splash down.

 

 

The location of the hazard areas does not match a simple ballistic trajectory well (such a trajectory is indicated by the line in the map in the top of this post), which might point to some mid-flight manoeuvering of the MIRV-bus.

The test launch is probably a DASO ("Demonstration and Shakedown Operation"), done to recertify the readiness of the submarine and its crew after major overhauls. One candidate submarine for this test launch is the Ohio-class SSBN USS Tennessee (SSBN 734) which reportedly completed a major overhaul at Kings Bay on July 1. [EDIT 18 sept 2021 15:45 UT: it actually was USS Wyoming, which fired two Trident missiles as part of the test]

 

UPDATE 18 Sep 2021 15:45 UT

The US Navy has announced that as part of DASO-31, the Ohio-class SSBN-742 USS Wyoming has fired two Trident missiles on September 17th.

image: US Navy/David Holmes
image US Navy/David Holmes



Monday, 8 February 2021

A possible (now CONFIRMED) Trident-II SLBM test launch between February 9 and 14, 2021 [UPDATED]

click map to enlarge

A Navigational Warning, NAVAREA IV 117/21, appeared yesterday, and is suggestive of an upcoming Trident-II SLBM test in the Atlantic. I have posted on such test launches before.

This is the text of the Navigational Warning:

 071431Z FEB 21
 NAVAREA IV 117/21(GEN).
 ATLANTIC OCEAN.

 1. HAZARDOUS OPERATIONS, ROCKET LAUNCHING
    091340Z TO 140226Z FEB IN AREAS BOUND BY:
    A. 28-56N 76-17W, 28-56N 75-34W,
       28-36N 75-34W, 28-43N 76-17W.
    B. 28-02N 73-18W, 28-17N 73-13W,
       27-47N 71-11W, 27-34N 71-17W,
       27-44N 72-10W.
    C. 26-25N 67-23W, 26-47N 67-10W,
       25-44N 63-47W, 25-06N 63-57W,
       25-32N 65-52W.
    D. 17-10N 45-30W, 17-37N 45-11W,
       16-53N 43-06W, 15-23N 41-22W,
       14-46N 41-42W, 16-11N 44-26W.
    E. 06-00S 09-39W, 05-13S 09-08W,
       06-37S 06-56W, 07-17S 07-22W,
       06-55S 07-57W, 07-00S 08-05W.
 2. CANCEL THIS MSG 140326Z FEB 21.


The map in top of this post shows the hazard areas A to E from this Navigational Warning plotted, and a fitted ballistic trajectory. Together they define what strongly looks like a Trident-II Submarine Launched Ballistic Missile (SLBM) trajectory

Area 'A' is the launch area where the submarine is located; areas 'B', 'C' and 'D' is where respectively the first, second and third stages of the missile splash down; area 'E' is the target area of the warhead(s).

The indicated range, from the distance between area's A and E, is about 8400 km. That is somewhat shorter than most earlier Trident-II tests in the Atlantic.

Earlier tests in the Atlantic typically had a range near  9800 km, in one case even 10 600 km (see my overview here). So this test falls short from a  typical test by about 1500 km. 

An earlier clearly shorter range was however indicated for the infamous June 2016 Royal British Navy Trident-II test, which would have had a 8900 km range with a target area west of Ascension Island if it had not failed. The range of the upcoming February 2021 test is 500 km shorter than that of this June 2016 test, with a target area slightly more north and the launch area further out of the Florida coast. 

The launch area is nevertheless a familiar one: one of two areas regularly used for Atlantic Trident test launches

It is the same as that for the 10 Sep 2013, March 2016 and June 2018 Trident tests. It is the area labelled 'launch area B' in the map below, which plots the launch areas of several previous Trident tests. The figure comes from this previous post and is discussed there (including a suggestion for why there might be two distinct launch areas).

click map to enlarge
 

The target area near Ascension Island and shorter range might perhaps indicate that this will be a British Royal Navy test with the SLBM launched from a Vanguard-class submarine rather than a US Navy test, but this is by no means certain. It could also mean a US Navy test with new hardware, e.g. a more heavy dummy warhead or a new stage engine.

US Navy tests are usually acknowledged after the test, so it will be interesting to see whether such an acknowledgement will appear from either the US or British Navy.


UPDATE  10 Feb 2021 10:50 UT

Overnight, images and footage have appeared from Florida and Bahama residents that show an exhaust plume, indicating that the test indeed took place, near 23:30 UT on Feb 9. These are a few of them:


 

The imagery shows the sun-illuminated exhaust plume of the missile. The missile itself is in space by that time, ascending towards its ~1200-1800 km apogee.

I did a quick calculation: for a launch at 23:30 UT on 9 February 2021, the missile (and its expanding exhaust plume) should break into sunlight about a minute after launch once above ~147 km altitude. I have indicated the sunlit part of the trajectory in the map below in yellow. This means that the exhaust plume on the imagery is from either the second or third stage of the missile.

click map to enlarge

UPDATE 16 Feb 2021:

The Drive reports that the US Navy has now confirmed that this was a Trident test. The name of the submarine from which the missile was launched has not been released.

Tuesday, 22 October 2019

A reanalysis of the Trident SLBM test of 10 September 2013 and other tests

9 May 2019 Trident-II D5 test launch from USS Rhode Island in front of Florida
Photo: John Kowalski/US Navy


NOTE: This post reanalyses a case from September 2013 that turned out to be a Trident SLBM test launch. New information on the launch trajectory allows to glean information on the missile's apogee. The 10 September 2013 test launch trajectory is compared to those of several other Atlantic Trident test launches in subsequent years

Elements of this re-analysis were already published in May of this year in two Twitter threads here and here. As Twitter is highly ephemeral in nature, this blog post serves to preserve and consolidate the two analysis.

*********


On 9 May 2019, I noted a Maritime Broadcast Warning issued for the period of May 9 to 12, that clearly defined the trajectory of  a Trident-II SLBM test in the Atlantic (this was was later confirmed to be a Trident test launch from the submarine USS Rhode Island):

NAVAREA IV 394/2019 

(Cancelled by NAVAREA IV 403/2019)

WESTERN NORTH ATLANTIC.
FLORIDA.
1. HAZARDOUS OPERATIONS, ROCKET LAUNCHING
   091340Z TO 120026Z MAY IN AREAS BOUND BY:
   A. 28-53N 080-01W, 29-00N 079-35W, 28-55N 078-58W,
      28-38N 079-00W, 28-40N 079-37W, 28-50N 080-01W.
   B. 28-34N 076-26W, 28-24N 075-24W, 28-10N 075-27W,
      28-21N 076-29W.
   C. 27-45N 070-22W, 27-14N 068-45W, 26-48N 068-56W,
      27-18N 070-32W.
   D. 17-46N 045-38W, 16-22N 042-18W, 15-44N 042-36W,
      17-09N 045-55W.
   E. 15-47S 004-32E, 17-17S 007-04E, 17-10S 007-08E,
      17-29S 007-49E, 17-20S 007-52E, 17-19S 008-07E,
      17-28S 008-12E, 17-41S 008-04E, 17-45S 008-14E,
      18-27S 007-50E, 17-51S 006-44E, 17-43S 006-50E,
      16-11S 004-16E.
2. CANCEL THIS MSG 120126Z MAY 19.

071718Z MAY 2019 EASTERN RANGE 071600Z MAY 19.

The five hazard areas defined in the Broadcast Warning correspond to: the launch area in front of the coast of Florida; the splash-down zones of the three booster stages;  and the MIRV target area in front of the Namibian coast. This is what it looks like when the coordinates are mapped - the dashed line in the map below is a modelled simple ballistic trajectory between the lauch area and target area:

click map to enlarge

The case brought me back six years, to September 2013, when I was asked to look at photographs made by German astrophotographer Jan Hattenbach that showed something mysterious. I suggested it was a missile test, a suggestion which was later confirmed.

In this blog post, I revisit the 2013 analysis in the light of new information about this test, and compare it to other tests for which I could find trajectory information.

In the evening of 10 September 2013, Jan Hattenbach was making a time-lapse of the night sky near the GranTeCa dome at the Roque de los Muchachos observatory on La Palma in the Canary Islands, at 2300 meter altitude.

Suddenly, a strange fuzzy objects producing cloudy "puffs" moved through the sky. I wrote about it in two blog posts in 2013 (here, and follow-up here), identifying the phenomena as a Trident-II SLBM test launch conducted from a US Navy Ohio-class submarine.

This is Hattenbach's time lapse of the phenomena: the fuzzy cloud moving from bottom center to upper left is the missile (the other moving object briefly visible above the dome is a Russian satellite, Kosmos 1410). The distinct "puffs" are likely the missile's Post-Boost Control System (PBCS) reorienting while deploying RV's during the post-boost phase:





Here is a stack of the frames from the time-lapse, and a detail of one of the frames:

click to enlarge

click to enlarge

At that time, Ted Molczan had managed to dig up a Broadcast Warning that appeared to be for the MIRV target area:

( 090508Z SEP 2013 )
HYDROLANT 2203/2013 (57) 
(Cancelled by HYDROLANT 2203/2013)

SOUTH ATLANTIC.
ROCKETS.
1. HAZARDOUS OPERATIONS 091400Z TO 140130Z SEP
   IN AREA BOUND BY
   09-18S 000-26W, 09-50S 000-32E,
   12-03S 002-39E, 13-40S 004-09E,
   14-09S 003-49E, 13-06S 001-56E,
   11-05S 000-58W, 10-55S 001-05W,
   09-56S 000-50W.
2. CANCEL THIS MSG 140230Z SEP 13.



The case of May this year made me realize there should be Broadcast Warnings for the launch area and stage splashdown zones as well. Searching the database for such Navigational Warnings, I indeed managed to find them, as a separate Broadcast Warning:

( 082155Z SEP 2013 )
NAVAREA IV 546/2013 (24,25,26) 
(Cancelled by NAVAREA IV 546/2013)

WESTERN NORTH ATLANTIC.
ROCKETS.
1. HAZARDOUS OPERATIONS 091400Z TO 140130Z SEP
   IN AREAS BOUND BY:
   A. 28-57N 076-17W, 28-56N 075-54W,
      28-44N 075-11W, 28-29N 075-13W,
      28-43N 076-17W.
   B. 27-53N 073-02W, 28-14N 072-56W,
      27-58N 071-52W, 27-46N 071-08W,
      27-38N 071-11W, 27-39N 071-43W,
      27-39N 071-48W, 27-41N 072-04W.
   C. 26-42N 066-58W, 26-16N 065-36W,
      25-37N 063-38W, 25-18N 063-35W,
      25-06N 063-42W, 25-02N 063-52W,
      25-39N 065-51W, 26-07N 067-12W.
   D. 15-59N 043-47W, 16-51N 043-14W,
      15-54N 040-54W, 14-19N 038-09W,
      13-48N 038-28W, 13-30N 039-26W.
2. CANCEL THIS MSG 140230Z SEP 13.


When the coordinates of these two Broadcast Warnings are mapped, they define a clear trajectory for this test (map below). It is somewhat different from the hypothetical trajectory we reconstructed in 2013 (the launch site is at a different location, much closer to Florida) and it is very similar to that of the recent May 2019 test. The dashed line is, again, a modelled simple Ballistic trajectory between the launch area and MIRV impact area, this time fitting the hazard areas extremely well:


click map to enlarge

The trajectory depicted is for an apogee height of 1800 km. This altitude was found by modelling ballistic trajectories for various apogee altitudes, and next looking which one of them matches the actual sky positions seen in Hattenbach's photographs from La Palma best.

In order to do so, I astrometrically measured Jan Hattenbach's images in AstroRecord, measuring RA and declination of the missile in each image using the stars on the images as a reference. The starmap below shows these measured sky positions, as red crosses.

When compared to various modelled apogee altitudes (black lines in the starmap), the measured positions best match an apogee altitude of ~1800 km:


click starmap to enlarge

So, we have learned something new about the Trident-II D5 apogee from Hattenbach's La Palma observations. At 1800 km the apogee is a bit higher than initially expected (ICBM/SLBM apogees normally are in the 1200-1400 km range).

This is how it approximately looks like in 3D (green lines depict the approximate trajectories of the missile stages). The ground range of this test was about 9800 km:



click to enlarge


Out of curiosity, and now knowing what to look for in terms of locations, I next searched the Broadcast Warning database for more Broadcast Warnings connected to potential Trident-II tests. I found six of them between 2013 and 2019, including the 10 September 2013 and 9 May 2019 test launches. It concerns additional test launches in June 2014, March 2016, June 2016, and June 2018. Putting them on a map reveals some interesting patterns, similarities and dissimilarities:


click map to enlarge

The set of Broadcast warnings points to at least two different launch areas, and three different MIRV target areas.

The two launch areas are in front of the Florida coast, out of Port Canaveral. One (labelled A in the map) is located some 60 km out of the coast, the other (labelled B in the map) is further away, some 400 km out of the coast.

I suspect that the area closest to Florida is used for test launches special enough to gather an audience of high ranking military officials. The recent test of 9 May 2019 belongs into this category, as well as a test in June 2014, and also the infamous British Royal Navy test of June 2016 (I will tell you why this test has become infamous a bit later in this blog post).

As to why area A is tapered and area B isn't, I am not sure, except that the launch location for these tests could perhaps be more defined, restrained by the audience that needs a good, predefined and safe spot to view it.

Click map to enlarge

Not only are there two different launch locations near Florida, but likewise there are at least three different MIRV target areas near Africa.

Four tests, including the 10 September 2013 test imaged by Hattenbach, target the same general area, some 1000 km out of the coast of Angola (indicated as 'impact area 1' in the map below). Two of the tests however target a slightly different location.


click map to enlarge

One of these two deviating tests is the earlier mentioned infamous Trident-II test by the British Royal Navy from June 2016.

This test has become notorious because the Trident missile, fired from the submarine HMS Vengeance, never made it to the target area. Instead it took a wrong course after launch, towards Florida (!)  and had to be destroyed. That test had a planned target area (dark green in the map above) somewat shortrange from the other tests, closer to Ascension island. This is the shortest ground range test of all the tests discussed here, approximately 8900 km, some 1000 km short of most other tests. Incidently, the choice of launch area indicates this failed test had a launch audience, so I reckon some top brass was not amused that day.

The other is the recent 9 May 2019 test. This US Navy test had a target area (red in the map above) some 400 km out of the African coast, further downrange from previous tests. This is the longest range test of all the tests discussed here, with a ground range of approximately 10 700 km, about 700 km longer than the other tests. From the choice of launch area, this test too might have had a launch audience.

The other tests had a range of 9600 to 9900 km. The different ranges could point to different payload masses (e.g. number or type of RV's), different missile configurations, or different test constraints.

There have certainly been many more Trident-II tests than the six I could identify in Broadcast Warnings (e.g. see the list here). Why these didn't have Broadcast Warnings issued, or why I was not able to identify those if they were issued, I do not know.

The Trident-II is a 3-staged Submarine-Launched Ballistic Missile with nuclear warheads. The missile is an important part of US and British nuclear deterrance strategies. The missiles are caried by both US and British Ballistic Missile submarines.

click to enlarge

Edit 23 Oct 2019:
Considering the Trident-II D5 range, the US Navy clearly needs to update it's own 'fact file' here (which at the time of writing lists a maximum range of 7360 km, well short of the distances found in this analysis)

Thursday, 26 September 2013

[UPDATED 2x] Visualizing the trajectory of the September 10 Trident missile test in the Atlantic

The past days I have covered the story about German astrophotographer Jan Hattenbach's September 10 strange photographic observations from La Palma on this blog. Along with Jonathan McDowell I quickly suspected this was a  missile test launched from a submarine in the Atlantic. This was later confirmed: Lockheed-Martin and the US Navy announced that it was a test with a Trident II D5 SLBM launched from a submerged Ohio-class submarine.

More information next emerged that contained some clues to the launch trajectory. Now Cees Bassa has done an extensive analysis, modelling a trajectory. The details can be found here on the Seesat-L mailing list. He finds a launch location near 28 N, 68 W, more to the west than I initially thought.

I used Cees' results on the launch location and STK to fit a ballistic trajectory through Cees' launch location and the probable target area discussed earlier. The trajectory (visualized below) fits well with the altitudes and azimuths as photographically observed by Jan Hattenbach from La Palma (see astrometry in the appendix to my post here).





click maps to enlarge

The trajectory STK fits allows to say something about altitudes and flight-times. The launch occurred near 21:10:40 UT. After a 36 minute flight over a distance of 8660 km, the target area between St. Helena and the Gabon/Congo coast was reached near 21:47:00 UT. In the top of its ballistic trajectory, the missile reached an altitude of 1800 1900 km.

(note added 27 Sep 2013, 13:00 UT : Cees Bassa has since released the detailed data of his ballistic curve fitting: he has the apogee somewhat lower, at 1650 km, and a flight time between 21:10:00 UT and 21:44:45 UT, one minute faster. Please note that the diagrams below are based on the STK derived trajectory I cobbled together, not Cees' data.

Update 28 sep 13:00 UT: Cees' trajectory does not have the impact point in the published exclusion zone, but somewhat to the East of it. That is the major cause of the discrepancy between the results Cees published, and the ballistic trajectory I present here, which does land squarely in the exclusion zone. With the impact point shifted slightly westwards, the apogee altitude shifts upward if one wants to match the azimuth/elevation data from La Palma.)



click diagrams to enlarge

The two events at 21:17:08 and 21:08:43 UT that I initially misidentified as the 2nd and 3rd stage ignitions, but which are, as Jonathan McDowell pointed out, likely the MIRV bus and MIRV separations, happened at 1130 and 1330 km altitude in the ascending phase, after 6.5 and 8 minutes of flight-time, 1860 respectively 2235 km from the launch location. They are marked in the diagram below:

click diagram to enlarge


(note: for this post I am much indebted to Cees Bassa and his fine analysis. His trajectory reconstruction provided the basis for the diagrams and the timing and altitude information in this post. Cees' own detailed trajectory data can be found here - they slightly differ from what I present above, but see the note elsewhere in the post above.)

Wednesday, 25 September 2013

More on the September 10 mid-Atlantic Trident SLBM test captured by astrophotographer Jan Hattenbach


On September 20 I blogged with an analysis of photo's taken from La Palma on September 10 near 21:18 UT by German astrophotographer Jan Hattenbach. The pictures showed a strange phenomena which was quickly suspected to be a SLBM test. A suspicion that was confirmed yesterday when Lockheed and the US Navy announced they indeed tested a Trident II D5 missile that day, launched from a submerged Ohio-class submarine in the Atlantic.

Since then, more discussions have ensued on the SeeSat-L mailing list. Chiming in were amongst others Ted Molczan, Jonathan McDowell, Allen Thomson and Cees Bassa. These discussions and new pieces of evidence provide a possible target area for the test, and if some of the things brought up are correct, indicate that the launch location, the trajectory and imaged part of the flight path might be somewhat different from my initial assessment (which as I noted was very rough and very approximate: there was a reason I didn't provide a detailed map)

First, Ted Molczan managed to dig up a Broadcast Warning to mariners for the south Atlantic (that I was not able to trace to a URL). The text:

( 090508Z SEP 2013 )
HYDROLANT 2203/2013 (57)  
(Cancelled by HYDROLANT 2203/2013)

SOUTH ATLANTIC.
ROCKETS.
1. HAZARDOUS OPERATIONS 091400Z TO 140130Z SEP
   IN AREA BOUND BY
   09-18S 000-26W, 09-50S 000-32E,
   12-03S 002-39E, 13-40S 004-09E,
   14-09S 003-49E, 13-06S 001-56E,
   11-05S 000-58W, 10-55S 001-05W,
   09-56S 000-50W.
2. CANCEL THIS MSG 140230Z SEP 13

Ted speculates that the area indicated is the target area of the (dummy) warheads from the Trident. Indeed, it is about 7000 km away, well within the ~11 000 km range of the Trident missile, from the general launch area I deduced earlier (but see below). It would mean my launch azimuth estimate was off by 40-45 degrees (and closer to 130 degrees). And it could very well be given that it was a very rough deduction from observations from only one location, with several assumptions involved. To reconstruct it properly, you need observations from two locations, so you can triangulate.

The potential target area is in the eastern part of the South Atlantic, between St. Helena and the coast of Gabon and Congo. It is elongated and the major axis of the polygon might be indicative of the launch direction. In that case, the missile trajectory was approximately as pictured below (Red line: missile trajectory. Yellow lines: sightlines from La Palma for the range I astrometrically measured (21:17:08 to 21:19:42 UT): this does not include the earliest part where it emerged from the horizon as seen from La Palma. The grey polygon is the potential target area mentioned in above Broadcast Warning).

click map to enlarge

Meanwhile, the actual launch location is a point of discussion as well. In my earlier analysis, I interpreted two distinct events in the  photographed trail as the moments the 2nd and 3rd stage of the missile kick in:



 Jonathan McDowell has a different suggestion: he thinks these moments represent the MIRV bus and MIRV (the warheads) separations. These happen at much higher altitudes than the rocket stage burns. It would mean the object(s) were at a much larger range from La Palma than I deduced from my earlier notion it were the 2nd and 3rd rocket stage burns. It would shift the launch location significantly more to the Northwest (see map above).