Showing posts with label NASA. Show all posts
Showing posts with label NASA. Show all posts

Saturday, 30 May 2020

New attempt to launch the Crew Dragon on May 30: trajectory

screenshot from the May 27 live webcast


In an earlier post I discussed the SpaceX Crew Dragon Demo-2 launch. Originally slated for 27 May, it was postponed (with the astronauts already seated on board) because of bad weather: Tropical Storm Bertha more north on the US coast was the main culprit.

The new launch attempt will be on May 30 at about 19:22:45 UT (the subminute time comes from Spaceflight Now, not from an official SpaceX or NASA source, so is apocryphal). If that launch is scrapped to, the third backup date is May 31 near 18:59 UT.

As things currently (29 May 21:00 UT) stand, weather prospects are not that good for both these dates either, with currently a 50% chance of a weather violation on the 30th and 40% on the 31st: so perhaps we will see a scrub again.


Click map to enlarge

But in case the launch does happen on 30 May, the map above is the trajectory the Crew Dragon will fly on its first revolution (times on the map are in UT).

Some 23 minutes after launch, the Crew Dragon will pass over Europe, along this trajectory (times are inUT: add one hour to get BST and 2 hours to get CEST):

Click map to enlarge
Note the location of the day/night terminator...only eastern and southeastern Europe has sufficiently dark skies at that moment.

The launch time has shifted considerably forward compared to the May 27 original launch date, by about 1h 10m. As a result, the pass is no longer favourable for NW Europa, as the pass will be before sunset for the UK, and around sunset for coastal Europe.

Only longitudes east of say longitude 13 deg E will have a sufficiently dark sky to see it on the first revolution, so eastern and southeast Europe will have a prime seat this time.

Coastal western Europe and the UK might have, depending on your locality, a theoretical chance to see the second pass 1.5 hours later, near 21:18 UT. For most localities, that will however be a very low elevation pass though, often at a maximum elevation of les sthan 10 degrees.

At the end of this blogpost, I will provide some sky charts for several European localities for both those localities with a chance to see something of the first pass, and those who might theoretically catch the second pass.

The reason that the launch time is 1h 10m earlier on May 30 than on May 27, is that the launch time is instantanious as it is determined by the moment that the orbital plane of the ISS passes over the launch site. This time shifts back by 23m 22s each day, as is clear from this tabel in which I calculated orbital plane crossings over LC-39A (and is visualized in the illustrations below it):

ISS plane crossing over LC-39A:
-------------------------------
Date           UT   
27 May         20:36:52
28 May         20:13:30
29 May         19:50:09
30 May         19:26:47
31 May         19:03:26

-------------------------------



You can also see in the table that the actual launch time is a few minutes before the plane crossing. This has two main reasons.

One is that what is actually of relevance is the position of the orbital plane once the rocket reaches orbital height (a few minutes after launch).

The other is that the Crew Dragon initially is inserted into a ~200 km altitude orbit, which is only half the orbital altitude of the ISS. As a result, the Precession rate of the RAAN is faster than that of the ISS: so launch has to be somewhat earlier or otherwise, over the 19 hour flight, its RAAN would overshoot rather than match that of the ISS upon arrrival at the orbital altitude of the ISS.

The reason May 28 and May 29 were not chosen as backup dates, is because of a second consideration: the ISS has to be within a certain distance window to the launch site in order for the two (Crew Dragon and ISS) to meet up after 19 hours of flight. As it happens, and I am not sure that is deliberate or just a happy coincidence, this also means that on the chosen dates, docking will happen on the night-time side of the Earth (with launch on May 28 or 29 it would have happened on the daytime-side).

Below are a number of sky maps for localities that have a dark enough sky (generally: sun no less than 5 degrees below the horizon) to see the first pass, some 25 minutes (for eastern Europe) after launch near 21:46 CEST. Note that there is a time uncertainty of about 1 minute or so.

TLE's are provided below the maps.

NOTE: if you are not near one of these localities, then Heavens-Above provides you with predictions for your custom location. Please note however that Heavens-Above predictions for the second revolution (the 23:19 CEST pass over Europe) seem to be based on the TLE for the first revolution, resulting in a time difference of about 1 minute with my predictions below.(but also realise there is an uncertainty of 1-2 minutes in the estuimated orbit anyway).










Maps for locations in NW Europe might theoretically be able to see the Crew Dragon on its second revolution, near 23:18 CEST (22:18 BST), some 2 hours after launch. But in most cases this will be very low above the horizon. Please note that the time uncertainty is 1-2 minutes at least!







Here is an estimated TLE for the first revolution:

CREW DRAGON                                      initial orbit
1 70000U 20999A   20151.80474535 -.00003603  11390-4  00000+0 0    04
2 70000  51.6423 075.0039 0122953  45.6251 315.4951 15.99554646    01



And here is an estimated TLE for the second revolution:

CREW DRAGON                                      second revolution
1 70001U 20999A   20151.93029831 -.18507952  12289+0 -23808-1 0    05
2 70001  51.6233 074.5097 0096856  46.3995 314.2887 15.95177824    03


Sunday, 24 May 2020

The trajectory of the upcoming Crew Dragon Demo-2 launch, returning the US to crewed spaceflight

Photo: SpaceX

UPDATE: the Crew Dragon launch has been postponed to NET 30 May, 19:22 UT
Below is the original text and maps, which are however no longer valid!
New maps in a new, separate post.

If everything goes well, SpaceX and NASA will launch the Crew Dragon Demo-2 flight with astronauts Bob Behnken and Doug Hurley to the International Space Station on 27 May 2020. The launch is slated for 20:33:33 UT (note: some sources now say 20:33:31 UT), from LC-39A.

This is a historic flight, because after a 9-year hiatus it will return NASA to a crewed flight capacity. It is the first crewed flight launching from US soil on a US rocket since the Space Shuttle program ended in 2011. Over the past 9 years, US astronauts had to hitch a ride on Russian Soyuz spacecraft in order to get to space.

The Crew Dragon Demo-2 will fly this approximate flight trajectory, bringing it over Europe some 23 minutes after launch:

click map to enlarge
click map to enlarge

The times in the map above are in UT (GMT): for CEST add +2 hours; for BST add +1 hour. I created the maps using the (uncrewed) Crew Dragon Demo-1 test flight from March 2019 as a proxy.

Based on that same Crew Dragon Demo-1 flight, I estimate these orbital elements for the first orbit:


CREW DRAGON DEMO-2   
1 70000U 20999A   20148.85443285 -.00003603  11390-4  00000+0 0    03
2 70000  51.6423 089.9835 0122953  45.6251 315.4951 15.99554646    09
 

estimated initial orbit for launch at 27 May 2020, 20:33:33 UT


You can use this so called TLE (for an explanation of these numeric lines click here) to make pass predictions and maps of the trajectory in your local sky for your own location, using prediction software like HeavenSat.

Be aware that it is approximate: so allow for a possible error of 1-2 minutes in the time it will pass in your sky, and a small cross-track error (I expect this latter to be less than 1 degree, i.e. less than two moon diameters).

Weather willing,  the Crew Dragon containing the astronauts and the Falcon 9 upper stage will be visible from much of Europe some 23 minutes after launch.

Northwest Europe has it pass in twilight, but Dragon's tend to be bright, so twilight should be no problem and the Dragon and Falcon 9 should be easily visible by the naked eye, except perhaps from the British Isles where it is still quite light.

I do advise using binoculars once you have located the spacecraft, as the Crew Dragon and the Falcon 9 upper stage will be close together, and with binoculars you will see them separately (you can see some photographs of a pass of a just launched Cargo-Dragon and its Falcon 9 upper stage from March this year in an earlier post here).

If you are lucky, you might even catch some small corrective thruster firings as small "puffs", like in this movie which I shot of a pass of the Dragon CRS-20 in March this year (look for the "puff" going upwards around 05:13:00 UT in the video):




(the two slowly varying objects astride the Dragon and Falcon 9 stage in the video above are the two ejected solar panel covers. The Crew Dragon does not have these, as far as I know).

The Falcon 9 upper stage will be deorbitted some 55 minutes after launch, over the southern Indian Ocean west of Australia.


photo: SpaceX

Below are my predicted sky tracks for a number of places in West and Central Europe, valid for launch on 27 May at 20:33:33 UT .

Times listed in the plots below are in local time (generally CEST, except for London which is BST). Please be aware that there is an uncertainty of about 1 to 2 minutes in the actual pass time!!! The track placement in the sky should generally be correct though. Bottom of the plots is either South or North, depending on the location (see the annotations on the plots).


Note added 25 May: the Heavens-Above webservice now provides you with custom predictions for the Crew Dragon for your observing site.



Amsterdam

Berlin

Brussels

London

Paris

Prague

Vienna
Hamburg

Lyon

Marseille

Munich

Reims

Strassbourg


Sunday, 16 October 2011

OT - Draconid observations from Northern Germany, 8-9 October 2011


click image to enlarge
16 Draconid meteors photographed between 19:27 and 21:18 UTC, 8 October 2011. Canon EOS 450D + EF 2.0/35mm, 800 ISO, Dunkelsdorf, Germany. Photo by author.
In the evening of October 8-9 2011, the Draconid meteor shower performed a rare meteor outburst. In normal years, hardly any Draconid meteors can be seen. But in 1933, 1946, 1952, 1985 and 1998, short but (very, in the cases of 1933 and 1946) intense outburst were observed. The earth crossed through dust trails left by the parent comet 21P Giacobini-Zinner those years. Zenith Hourly Rates were in the several hundreds in 1985 and 1998, in the thousands in 1933 and 1946.

Last October 8th (2011), the earth was predicted to encounter a dust trail left by the comet in 1900. Predictions for the activity varied, from virtually nil to several hundreds/hour, depending on the modeller and model (see summary in sidebar here).

Several scientific efforts were set up to monitor the event. I joined one of them, a joint effort lead by Peter Jenniskens (SETI/NASA-Ames) in cooperation with the Leibniz-Institut für Atmosphärenphysik (IAP) in Kühlungsborn, Germany (Michael Gerding), and Carl Johannink and me from the Dutch Meteor Society (DMS). Our project was a groundbased part of a wider effort including two aircraft flying with scientific equipment (the Draconid 2011 Multi-Instrument Aircraft Campaign, see here).


Our goal was to do observations that could not be easily done from the aircraft: determine 3D trajectories of meteors in the atmosphere by triangulation of images taken from two locations, in combination with an attempt to detect debris/ionization trails of these same meteors using a LiDAR.

The LiDAR in question, was the LiDAR of the Leibniz-Institut für Atmosphärenphysik (IAP) in Kühlungsborn, a small bathing resort at the Baltic coast of eastern Germany. This part of the observations was done by Dr Michael Gerding of the IAP, who was also our host during the effort. Peter Jenniskens, Carl Johannink and me would employ and operate the multistation video network, using the CAMS system build by Peter and his team at SETI/NASA-Ames (the CAMS project is part of NASA's Planetary Astronomy program).




click images to enlarge
The CAMS systems (4 low-light level video cameras per station) used. Top: the setup at Lebatz station operated by Carl Johannink and the author (DMS). Bottom: the setup at the IAP Kühlungsborn station operated by Peter Jenniskens (left; SETI/NASA-Ames) and Michael Gerding (right, IAP).
Wednesday 5 October

I fetched Peter Jenniskens from Schiphol airport near Amsterdam on Wednesday the 5th. We hauled his equipment (two heavy metal cases, apart from Peter and mine personal luggage) into the train to Enschede in the eastern Netherlands, where Carl fetched us and drove us the few remaining kilometers to Gronau, just over the Dutch-German border. This was our first base-station. The weather prospects were still very uncertain at that time. Peter wanted to press on with the plan to go to Kühlungsborn (because of the LiDAR). Carl and I were less certain: southern Europe had the best papers in terms of clear sky prospects at that moment.

Thursday 6 October

Weather predictions now suggested Northern Germany (where Kühlungsborn is situated) could benefit from a zone of clear air created over Denmark and Sleswig-Holstein in northern Germany in the "shadow" of the Norwegian mountains. It was settled that we would try Kühlungsborn. The early part of the day was spent running various errands. More seriously, one of the PC systems operating CAMS had a malfunction and Peter was not able to solve it. We left in the afternoon, driving several hundreds of kilometers to Kühlungsborn, where Michael Gerding of the IAP welcomed us near 22h local time after a long exhausting drive.

Friday October 7

This day, we set up shop in the LiDAR control room of the IAP, which was to become our headquarters for the campaign. An IT specialist of the IAP was brought in to solve the PC trouble - eventually, he managed to find what was wrong and got everything operating again! Meanwhile, we had gotten a sightseeing tour of the IAP facilities. It is a beautiful, modern institute and the guest lodging in town where Michael put us up for the night was very fine. Kühlungsborn itself is a small cozy town, a bathing resort on the Baltic coast in the former Eastern Germany. Peter held a lecture before the institute members, Carl and I made a small beachwalk that afternoon.



click images to enlarge
The LiDAR control room at the IAP became our headquarters. Top: Peter (right) and Carl (left) with the CAMS systems. Bottom: checking the weather predictions and plotting potential locations for our second station (left Peter, middle Carl, right our host Michael)

That evening was a test evening for the LiDAR, to see whether anything needed trouble-shooting. There actually was a problem initially with the LiDAR, but it was solved and didn't hamper the actual observations the next night.



 
click images to enlarge
the IAP Kühlungsborn LiDAR at work during a test run a day before the actual observing night. Second image shows the beam hitting a low cloud. Photograph by author using an 8mm semi-fisheye.
Seeing the massive laser beam of the LiDAR shooting up into the sky was quite impressive. Meanwhile, the weather was still very dynamic, so we worried about the next night, when all had to happen.

Saturday, October 8th

Based on the latets weather forecasts, we picked a location 91 km to the west for our second site, right in the middle of the projected clear area in the weather forecast. Carl and I would run it, and so we drove away at noon, to the small village of Lebatz (53 deg 58' N, 10 deg 35' E) in Sleswig Holstein, about 30 km north of Lübeck. We had picked a small hotel from the internet there. The hotel owner was a bit surprised by our demand for a room "with a view to the north east". We needed the latter, as the mutual aiming point we had calculated for the Kühlungsborn and Lebatz CAMS systems meant we had to point at 46 degrees elevation to the northeast. Peter at Kühlungsborn filmed 15 degrees north of the Zenith, just north of the LiDAR beams. In that way, we would film the same meteors from both stations, appearing at 95 km altitude over the Baltic sea just north of Kühlungsborn: meteors whose ionization trails next would drift into the LiDAR beams, as a result of a high altitude wind blowing from the north-northeast at 95 km altitude.
Meanwhile, two other Dutch observers, Peter van Leuteren and Sietse Dijkstra, had joined us: they had driven to Lebatz from the eastern Netherlands that same day, arriving about an hour after us.

Just before our car turned into Lebatz (which, by the way, turned out to be one of the rare spots in NW Europe without cellphone coverage), I had noted a small roadsign saying: 'Dunkelsdorf, 1 km'. 'Dunkelsdorf' means "dark village" in German. So naturally, that name appealed to us! After setting up shop in the hotel in Lebatz (our CAMS system would run from the open hotel window, as we needed electric power and a dry place for the PC), we drove the 2 km to Dunkelsdorf, and found a nice hiltop with 360 degrees view. The farmer was working nearby, and gave us permission to use the field that night (he turned out to be an astronomy enthusiast himself).




click image to enlarge
Our observing spot (bottom) near Dunkelsdorf, photographed the morning after

After a good meal in the small tavern at the hotel, Peter v. L. and Sietse left for the observing field at dusk. The sky was clearing at that moment, witha few remnant fields of clouds. This looked very promising for the night! Carl and I stayed at the hotel waiting for the sky to become dark enough to aim and focus the cameras. That took some effort, also because we were not used to this new equipment. But with some trial and error, we managed to get the whole system running: and after the cameras are aimed, and focussed well, the PC takes over and the whole system runs automatically, and we could leave for the field. Neat!

So after setting up, aiming, focussing and initiating the camera systems, Carl and I drove to the observing field as well, arriving there at 20:30 local time. Sietze and Peter v. L. already had seen some bright Draconids, they reported as we arrived. We set up our gear (field bed, sleeping bag, handheld memorecorders, and in my case a tripod with my photo camera) and joined the observations. The last cumulus clouds were moving out of the sky and it became brilliantly clear. Observing due North away from the moon, I determined a limiting magnitude of +6.3 in Draco to my (and my fellow observer's) astonishment, with the milky way visible into Perseus. This was wonderful, I have never experienced such a good sky with moonlight before! Directly in the minutes after I started observing, the first Draconids were seen. So there was activity, at least! Would it lead to a peak near 20h UTC (22h local time)?

Observing the activity peak

It did indeed lead up to a peak just after 22h local time. More and more meteors appeared, shooting away from a radiant in the head of Draco. Around 20 UTC, I counted 3-4 Draconid meteors per minute. Most were rather faint, so we wondered what we would have seen without the moon.... Nevertheless, even in a moonlit sky, the show was impressive, and it was clear the Zenith Hourly Rates must be in the hundreds. We were excited!

We were also worried. Low in the east, below 5 degrees elevation, we could see persistent clouds. That was where our other station was, Kühlungsborn with Peter, Michael and the LiDAR..... Telephonic contact (our cell phone did have coverage from the hilltop) revealed that they had a lot of clouds, but also clear periods.

click diagram to enlarge
ZHR diagram of my observations, suggesting a peak ZHR near 250 just after 20 UTC


My observations suggest that the ZHR at the peak was in the order of 250. This is just an indication, as it are observations with moonlight, from one observer. In total, I observed 248 Draconid meteors in 2.77h effective observing time.


My photo camera with EF 2.0/35mm lens captured 16 Draconids (image above) in slightly less than two hours time: most meteors were simply too faint to be photographed. Our video camera's meanwhile, sensitive to much fainter meteors, filmed hundreds of meteors.

Some meteors left persistent trains. It are these trains of course, that were the target for the LiDAR. Below animated GIF shows a bright Draconid I photographed, with traces of a dissipating persistent trail drifting on the wind in several images obtained after it appeared:



The short movie shows the trail drifting from bottom right to upper left in about 2 minutes time: indeed consistent with a high altitude wind direction from the NE to SW.

After 22h local time (20h UT), activity was on the decline again. The peak was over. Around midnight, we stopped our observations (the CAMS system would run untill 1 am). It was still brilliantly clear: we couldn't have been in a better spot!


click image to enlarge
Four happy observers the morning after the outburst observations. From left to right: Carl Johannink, Peter van Leuteren, Sietse Dijkstra, and the author

Kühlungsborn

The next day, Peter van Leuteren and Sietse drove back to the Netherlands, and Carl and I drove back to Kühlungsborn. Ariving there near 11 am, we heard the story of Peter and Michael. They had a lot of clouds, but luckily also a largely clear period of about an hour around the peak time. This increased our hopes to have filmed at least a few meteors multistation, hopefully with a LiDAR detection as well.

With the data reduced we can now say we filmed at least 34 Draconids plus two sporadic meteors from both stations, yielding accurate atmospheric trajectories, lightcurves, and orbits in the solar system. The LiDAR did have detections as well, but work to correlate these with meteors filmed by us is still in progress. If we do have LiDAR detections that we can correlate with meteors we filmed (more precisely: with the atmospheric trajectories and lightcurves that our multistation filming produced), that will yield a lot of information about processes happening in the upper atmosphere because of these meteors.

Below is a compilation of video meteors filmed by three of the Lebatz cameras and one of the Kühlungsborn cameras. The latter images also shows the LiDAR beams (and clouds, unfortunately). Draconid meteors are moving from top to bottom, everything from another direction is an aircraft, satellite, or sporadic meteor.




It was ten years ago that I last had been involved in such a scientific meteor observing effort - I participated in several of the Leonid meteor outburst scientific campaigns in the 1990-ies. It was exciting to get involved again for the Draconids.

note: I want to warmly thank the people of the IAP and especially Dr Michael Gerding for housing us during the campaign.

Sunday, 25 September 2011

"UARS crash" at Okotoks Alberta (Canada) now confirmed to be hoax

After all the hectic of the previous night, I spent yesterday out of house in the dunes and near the beach. Time to pick up now where I left.

NASA has held a teleconference. Basically, they did not report anything new regarding the potential reentry location than what I already reported here based on SSC and Harro Zimmer's conclusions. Note that this NASA map released is basically the same I posted here earlier.

I don't share some of the critique currently levelled at NASA. See discussion at the end of this post.


Okotoks, Canada: a HOAX
The Okotoks (Alberta, Canada) video and report of debris being found (see earlier post here) - news media now report  it is a HOAX. Seems I was right with having my reservations. [update 26 sep: more here. The report on wreckage was a hoax created by an aspiring film maker, apparently]

Aircraft contrails being mistaken for UARS

Meanwhile, simple aircraft contrails keep being mistaken for UARS as well: see the previous post and another case here.

Radar artefacts being mistaken for UARS

This one that is doing the rounds, is a mis-interpretation of a very common weather radar artefact. Note how the streak neatly points to the radar origin in the center.

Chinese lantern balloons being presented as "UARS"

As I pointed out in the previous post, footage of Chinese lantern balloons are either deliberately or mistakenly being passed off as "UARS" in the media as well.

Possible confusion with meteoric fireballs

To complicate the picture, there is also the point that "normal" meteoric fireballs appear and can be mistaken for UARS. Multiple such fireballs occur somewhere on this world every day.

Indeed, we had a very nice meteoric firebal (seen by amongst others myself while waiting for the UARS pass) of mag. -5 appear 5 minutes before the 1:37 UTC UARS pass on the 24th. Klaas Jobse has a nice all-sky image of that one here. Yet another one appeared a mere 17 minutes later (video of both fireballs here, again by Klaas Jobse). These were meteoric fireballs, little bits of asteroid or comet debris not related to UARS at all.

While it didn't fool experienced observers like me, laypersons could have easily mistaken it for UARS debris.

Some genuine reports of bright fireball phenomena seen around the predicted reentry time from a.o. Canada, could be such cases of meteoric fireballs. Without clear details on duration and character, it is difficult to discern between these and any potential real reentry observations.


Critique on NASA: I don't share that critique

There is currently a lot of critique on NASA that they can't pinpoint the point of reentry. I think those critiques are unfounded and stem from unrealistic expectations.

All I can say is: people expect too much of NASA and modern technology, notably under the influence of unrealistic TV-series that depict NASA as know-it-alls that can do anything (with just a few computer keystrokes and maybe a hack into a satellite feed here and there typically, according to the TV series that increasingly mold the public's "reality").

But even the best technology and best experts have their limits (and in terms of the actual tracking, this technology is not operated by NASA, but by the US Air Force, by the way), and with the last few UARS revolutions largely over empty ocean devoid of tracking stations, things simply get difficult. There are limits to what models can do when devoid of real-time tracking sensor input.

I might, given time and energy, elaborate on that later in a separate post