Showing posts with label Mentor. Show all posts
Showing posts with label Mentor. Show all posts

Monday, 15 April 2024

Mentor 10 (USA 353), the NROL-70 payload, likely found near 98 E [UPDATED]

click image to enlarge. Image (c) by @mickeywzx, used with permission

It appears that Mentor 10 (USA 353), the payload of NROL-70, which launched on 9 April 2024 at 16:53 UTC, has been found on orbit by Twitter user @mickeyWZX (Zhuo-Xiao Wang) who is located at Baihuashan Observatory (MPC code P13) in the suburbs of Beijing. 

It is a bright object, reportedly about mag. +7.6, which conforms to the expectation of an ADVANCED ORION, a SIGINT satellite class known as 'Mentor' among independent trackers. These objects are the largest and brightest geosynchronous satellites in the sky with a typical observed brightness near mag +8 (see my 2016 article in The Space Review that discusses one of them as part of a larger story).

When found on April 11, two days after launch, it was located near longitude 97 E.

 A preliminary TLE which the observer posted on Twitter suggests it is drifting westwards in longitude at 0.6 deg/day, indicating it was originally inserted at 98.0 E

[update] a TLE over an arc of several days suggests it is drifting westwards in longitude at ~1.3 degrees/day, indicating it was originally inserted at 100.3 E. [/update]

That is basically in agreement with my pre-launch estimate (100 E), but the orbital inclination of 8 degrees is a bit higher than my estimated 5 degrees. Still, the resemblance to my pre-launch estimate is good.

 

click to enlarge

 

In the map below, my pre-launch estimated insertion orbit is depicted (blue) along with the orbital track of the payload after insertion (yellow), from April 9 22:45 UTC to April 19 12:00 UTC (note the daily analemma caused by the 8 degree orbital inclination). The yellow crosses give positions for various future dates if the current drift of 12.3 deg/day westwards continues:

Click map to enlarge


At this moment, the payload is probably controlled from Pine Gap Joint Defense Facility in Australia. If it continues to drift westwards, RAF Menwith Hill in the UK might at some point take over. 

At the current drift rate, if it continues this way, it should become visible at sufficient sky elevation from my location by late May 2024. 

It will be interesting to see where the drift stops. My guess, based on current hightened interest in what is going on in Ukraine, Gaza and the Red Sea area, is somewhere near 30 E. But who knows: it might go as far as 15 W, based on historic positions for this line of satellites.

A preliminary TLE based on observations by @mickeywzx [updated]:

Mentor 10
1 59453U 24067A   24109.01742676 0.00000000  00000-0  00000+0 0    06
2 59453   7.9821 302.0687 0008030 158.5115 201.5250  0.99896432    03

 

(I thank @mickeywzx for allowing the use of his photography in this post)

Wednesday, 27 March 2024

NROL-70, likely an ADVANCED ORION satellite

NROL-70 launch trajectory. Click map to enlarge

 

On 28 March 2024, if weather cooperates (see update at bottom of post), ULA will launch NROL-70 from SLC-37 at Cape Canaveral, carrying a classified payload for the National Reconnaissance Office (NRO). 

NROL-70 will be the last launch of ULA's iconic Delta IV Heavy rocket. Navigational Warnings for the launch (plotted on the map above) indicate a launch to Geosynchronous orbit. The launch window opens at 17:40 UTC and runs to 22:51 UTC. Back-up dates are March 29 to April 1. 

The classified payload is likely Mentor 10 (Orion 12), a Signals Intelligence (SIGINT) satellite in the ADVANCED ORION class.

The NRO launch patch for NROL-70 features a Snow Leopard:

 

NRO launch patch for NROL-70

 

ADVANCED ORION/MENTOR satellites are very large. At magnitude +8, they are the brightest geosynchronous satellites in the sky. In a 2010 speech a former Director of the NRO, Bruce Carlson, called one of these, the NROL-32 payload (Mentor 5), "the largest satellite in the world". 

The satellites feature a very large parabolic unfoldable mesh antenna, with estimates of the size of this antenna ranging from 20 to 100 (!) meter. An NSA internal newsletter from 2009 that was leaked as part of the Snowden files, contains an artist impression of the satellite which indeed features a large mesh dish antenna:


ADVANCED ORION artist impression from a 2009 leaked NSA newsletter

 

These ADVANCED ORION satellites (also known as 'Mission 7600') are huge listening 'ears' in the sky, monitoring large areas for radio emmissions, notably military COMINT (communications) and FISINT, as outlined in this leaked NSA document.

Here is an image of one of these ADVANCED ORION satellites, Mentor 4, imaged by me in January 2020. Note how much brighter it is, due to its size, than the nearby commercial geosynchronous satellite Thuraya 2 (that it is close to this commercial telecom satellite is no coincidence, see my 2016 article in The Space Review linked below):

 

click image to enlarge


From the Navigational Warnings for the launch and what we know of earlier ADVANCED ORION launches (see my 2016 Space Review paper), NROL-70 will first follow a low altitude (~200 km) coasting orbit. Near the descending node, some 25 minutes after launch, it will then boost into a Geosynchronous Transfer Orbit, which some 6 hours after launch will deliver the payload to a Geosynchronous orbit.

 

NROL-70 launch trajectory. Click map to enlarge

 

It initially will likely be placed near longitude 100 E, over Indonesia and within range of the Pine Gap facility in Australia, where it will undergo checkout. It will then be moved to its operational slot, which is unknown.

Initial control will be from the joint US/Australian Pine Gap facility in Australia. Depending on where its operational position will be, control at some point might be handed over to RAF Menwith Hill in the UK.

More backgrounds on the role of these kind of SIGINT satellites can be found in this 2016 article in The Intercept and in my 2016 article in The Space Review.

Here is the text of the relevant Navigational Warning (the three hazard areas A, B and C have been plotted by me as red boxes in the map above):

 

191855Z MAR 24
NAVAREA IV 333/24(GEN).
NORTH ATLANTIC.
FLORIDA.
1. HAZARDOUS OPERATIONS, ROCKET LAUNCHING
   281740Z TO 282251Z MAR, ALTERNATE
   291737Z TO 292251Z MAR AND 011725Z TO 012251Z
   APR IN AREAS BOUND BY:
   A. 28-34.73N 080-34.39W, 28-37.00N 080-20.00W,
      28-34.00N 079-44.00W, 28-30.00N 079-45.00W,
      28-28.00N 080-20.00W, 28-28.88N 080-32.26W,
      28-30.00N 080-32.80W, 28-33.65N 080-34.05W.
   B. 28-31.00N 073-23.00W, 28-22.00N 070-35.00W,
      27-51.00N 070-38.00W, 27-58.00N 073-22.00W.
   C. 22-05.00N 042-25.00W, 22-29.00N 042-17.00W,
      20-36.00N 036-57.00W, 20-22.00N 037-03.00W.
2. CANCEL THIS MSG 012351Z APR 24. 

 

Below are very approximate orbit estimates for the various phases of the launch. They are valid for launch on 28 March 2024, 17:40 UTC:


NROL-70 COASTING PHASE                        (valid 17:45-18:05 UTC)
1 70000U 24999A   24088.73611111  .00000000  00000-0  00000-0 0    06
2 70000 028.4000 281.1702 0007584 097.3393 339.7290 16.21678257    00

NROL-70 GTO PHASE                             (valid 18:05-23:30 UTC)
1 70001U 24999A   24088.75364583  .00000000  00000-0  00000-0 0    07
2 70001 028.4000 281.0464 7360043 179.7976 360.0000 02.21326367    09

MENTOR 10 initial placement guess              (valid from 23:30 UTC)
1 70002U 24999A   24088.98149645 0.00000000  00000-0  00000+0 0    02
2 70002   5.0000 278.2000 0001186 360.0000   2.0110  1.00277482    05

The last, Geosynchronous orbit assumes initial orbit placement at longitude 100 E at an initial orbital inclination of 5 degrees.

NRO Press kit for NROL-70
ULA Press kit for NROL-70

 

UPDATE 27 March 17:35 UTC:

Currently the weather forecast for 28 March does not look very positive, so launch might be postponed.

Friday, 2 December 2016

SIGINT Galore!


USA 136 (Trumpet 3), a TRUMPET in HEO. 28 Nov 2016
click to enlarge

The evening of 28 November was very clear - no moon and an extremely transparent sky, with temperatures around zero.

I used it to target several objects in GEO and HEO. Due to the favourable sky I could use exposure times twice as long as usual.

All the classified objects imaged were Signals Intelligence (SIGINT) satellites, i.e. eavesdropping satellites. The image above shows you one of the TRUMPET satellites, USA 136 (1997-068A), crossing through Andromeda. This is an object in a 63 degree inclined HEO orbit. The satellite was coming down from apogee at that moment and at an altitude of ~31 500 km.

Below is another object in HEO, USA 184 (2006-027A). This too is a SIGINT satellite, part of the TRUMPET-Follow On program (aka Advanced TRUMPET. It also serves as a SBIRS platform.

USA 184, a TRUMPET-FO in HEO, 28 Nov 2016
click to enlarge

This object was near apogee at this moment, at an altitude of 39 000 km over the Faroƫr Islands, which is why it looks stellar in this 20-second exposure. The star field is in Cassiopeia.

Both these objects hadn't been observed by our network for a while, hence they were somewhat off their predictions (1.5 degrees in position in the case of USA 136; and 1 degree off position in the case of USA 184).

I also briefly imaged a part of the geosynchronous belt, much lower in the sky. The targetted GEO objects were SIGINT satellites too: both Mercury 1 and Mercury 2 (1994-054A and 1996-026A), The Advanced ORION satellites Mentor 4 and Mentor 6 (2009-001A and 2012-034A) and the NEMESIS satellite PAN (2009-047A).

PAN and Mentor 4 (both shown below) have a story attached to them and were the subject of my recent article in The Space Review, which you can read here.

PAN (USA 207), a NEMESIS in GEO, 28 Nov 2016
click to enlarge

Mentor 4 (USA 202), an Advanced ORION in GEO, 28 Nov 2016
click to enlarge

Monday, 27 June 2016

Mentor 7 (NROL-37) stopped drifting at 102.6 E

Mentor 7 on 25 June 2016 
image (c) Paul Camilleri, used with permission
click to enlarge

On June 11, 2016, the National Reconnaisance Office (NRO) launched NROL-37: a new Mentor (Advanced ORION) SIGINT satellite, Mentor 7 (2016-036A). Paul Camilleri in Warners Bay, Australia, located it in orbit three days later, on June 14 (see a previous post).

At that time, it was in a semi-geosynchonous, 7.5 degree inclined drift orbit, and drifting westwards in longitude at a rate of ~0.28 degrees/day (see a previous post), after initial orbit insertion near longitude~105 E.

New observations by Paul Camilleri on June 24 and 25 show that this drift has stopped. The satellite is now geosynchronous in a stable, 7.5 degree inclined position at longitude 102.6 E. It arrived there on June 19th, after a 7-day drift.

click map to enlarge

This is almost certainly a temporary check-out position. In this location the satellite is positioned at 45 degrees elevation (i.e. halfway between zenith and horizon) for the Pine Gap Joint Defense Facility in central Australia, one of the primary ground stations for US SIGINT satellites:

Mentor 7: position as seen from Pine Gap
click to enlarge

It will probably remain here for a few weeks or a few months, and then be moved to an operational location, which I suspect will be near longitude 80 E.

Current elements:

Mentor 7
1 41584U 16036A   16177.93784503 0.00000000  00000-0  00000+0 0    01
2 41584   7.5070 353.7330 0045273  39.1128 322.1888  1.00270000    04

Sunday, 19 June 2016

Updated orbit for Mentor 7 (NROL-37 payload)

In my previous post I reported that the geosynchronous payload of June 11th's NROL-37 launch, the SIGINT satellite Mentor 7 (USA 268, 2016-036A) was found on June 14 by Paul Camilleri in Australia.

Paul has communicated new observations from June 15 and 16, extending the observational arc to 2.1 days. I fit the following updated orbit to it:

Mentor 7
1 41584U 16036A   16167.96105997 0.00000000  00000-0  00000+0 0    07
2 41584   7.5055 353.7008 0046333  41.2140 319.1375  1.00195548    05

rms 0.004 deg      from 9 obs June 14.70 - June 16.79  (2.09 day arc)


This orbit results in a drift rate of ~0.28 degrees per day in longitude, westwards. If this drift rate does not change in the future, the satellite will reach longitude 80 E (my guess for its eventual operational position) at the end of the first week of September 2016 [update 27 June: but see follow-on post here].

More on Mentor 7 and its recovery (including one of Paul's recovery images) in my previous post.

UPDATE 27 June 2016: Mentor 7 has stopped drifting and is stable at longitude 102.6 E - more on that in this follow-on post.

Saturday, 18 June 2016

Mentor 7, the NROL-37 payload, found

Launch of NROL-37 (photo credit: ULA)

On 11 June 2016 at 17:51 UT, after a one-day postponement, the US National Reconnaissance Office (NRO) launched a classified payload from Cape Canaveral under the launch designation NROL-37. It was a launch into geosynchronous orbit using a Delta IV-Heavy rocket.

The NROL-37 payload  has been catalogued under the generic designation USA 268 (2016-036A, 41584). It is widely believed to be a Mentor (Advanced Orion) SIGINT ('eavesdropping') satellite, Mentor 7.

Initial assessments pre-launch indicated a possible orbit insertion of the payload over Southeast Asia. After launch, Paul Camilleri, a novice satellite observer in Australia, was guided by Ted Molczan and me in an attempt to find the payload by means of a dedicated photographic survey.

In the early morning of June 15 (local time -  June 14 in UT), three days after the launch, Paul indeed successfully located the payload! The image below shows one of Paul's initial images, with the NROL-37 payload visible as a bright dot.

Mentor 7 (NROL-37) imaged June 14 by Paul Camilleri in Australia
click to enlarge - photo (c) Paul Camilleri, used with permission

From imagery on June 14 and 15, the following very preliminary orbit was calculated (for the time being, I have fixed a few parameters towards 'round' values here):

Mentor 7
1 41584U 16036A   16166.96303997 0.00000000  00000-0  00000+0 0    06
2 41584   7.5000 353.7000 0046000  41.4155 318.9349  1.00200000    04

rms 0.006, from 7 obs, 2016 June 14.70 - June 15.48 UTC


This places the satellite near longitude 104 E, over the Strait of Malacca, around the time of discovery, in a ~7.5 degree inclined near-geosynchronous orbit.

[edit 19 June 2016, 20:15 UT: I have posted an updated orbit in a later post here]


click map to enlarge

While the Mean Motion still remains somewhat ill defined from this short an observational arc, the satellite appears to be slowly drifting westwards, towards its eventual operational position.  My guess (and no more than that) is that it will eventually stop drifting near either 80 E (south of Sri Lanka) or perhaps 10 E (over central Africa). The reason for the initial placement near 104 E is likely that in this position it is initially well placed for the Pine Gap Joint Defense Facility ground station in central Australia (one of two facilities dedicated to NRO SIGINT payloads) during the initial check-out phase.

Mentor (Advanced Orion) satellites are SIGINT satellites: satellites that "listen" for radio signals. They are "the largest satellite[s] in the World", according to a statement by the then NRO director Bruce Carlson in 2010 at the time of the Mentor 5 (NROL-32) launch. There has been some speculation (it seems to be not more than that) that these satellites might have a huge fold-out mesh antenna some 100 meters wide.

Our observations suggest that these satellites indeed appear to be extraordinarily large. They are very bright (brighter than other geosynchronous payloads), typically of magnitude +8. They are the easiest geosynchronous satellites to photograph: a standard 50mm lens with a 10-second exposure will do.

The other six Mentor satellites, launched between 1995 and 2012, currently make up this configuration:

click map to enlarge

I thank Paul Camilleri for permission to use one of his photographs and for his willingnes to undertake the hunt for Mentor 7

 [edit 19 June 2016, 20:15 UT: an update here]

Wednesday, 20 January 2016

SIGINT, IMINT and MH17

(this post continues discussions in earlier posts on possible classified space-based observations of the shootdown of Malaysian Airlines flight MH17 over the Ukraine in 2014)

My position paper written for the Dutch Parliament Foreign Affairs committee hearing of Jan 22 (see my previous post) has a strong focus on infra-red detections of a missile by SBIRS. There are however a few other relevant aspects of Space Based observations in connection to the MH17 disaster that I could not cover in the space available to me for that paper.

In this post, I will provide some brief additional information about:

1) potential roles for IMINT satellites;
2) the positions of SIGINT satellites.


Optical and radar IMINT

1. optical IMINT

Both (unclassified) commercial and (classified) military satellite systems for high-resolution optical imagery (Image Intelligence, IMINT) exist, and both sources will be discussed below.

Optical and radar imagery obtained in the hours before, as well as during the event, might be used to look for missile systems, both on the Ukrainian as well as separatist sides of the front, in a wide circle around the site of the shootdown. It could also be used to verify the reconstruction of the purported movements of a Russian BUK system published by citizen journalist team Bellingcat, a study which is not uncontested. The Bellingcat team places the BUK in certain places at certain times, and if space-based imagery (either military or commercial) for those locations and times exist they could perhaps verify these claims.

The US military has one classified system of optical satellites with a (much-) better-than-1-meter capability: the KH-11 IMPROVED CRYSTAL/Evolved Enhanced CRYSTAL (aka 'Keyhole' or 'KENNAN') which reportedly (and theoretically, from known 2.4 meter mirror size specs) have a resolution in the order of  10-20 cm.

Mid-2014 this system consisted of four satellites: USA 161, USA 186, USA 224 and USA 245. All of these have been discussed on this blog before and are tracked by our amateur network.

We have accurate tracking data on three of these, USA 161, USA 224 and USA 245 for the days around 17 July 2014 and hence can pinpoint when these potentially had the crash area in their sight to better than a minute. For USA 186, which was actively manoeuvering around that time and for which we have a gap in our coverage form June to August 2014, pass times are a bit less certain and constrained to about 20-30 minutes accuracy.

First, we can positively affirm that one of the KH-11, USA 161 (2001-044A) actually had the Ukraine in its potential view during the incident at 13:20 UT:


click images to enlarge

Please note well: this does however NOT mean that USA 161 delivered imagery of the event. A number of factors should be taken into account:

1. the cloud cover at that moment, which might hinder imagery;
2. the crash site is located quite in the perifery of the satellites footprint area;
3. these satellites do likely not make images continuously, but only if commanded to do so, for specific areas of interest;
4. there is the question of whether USA 161 was still operational at that time. It was the oldest of the on-orbit KH-11, being launched 14 years earlier. Only a few months later it was de-orbitted, so it was clearly at the end of its lifetime.

In addition to their KH-11 system, the US military hires space on commercial high resolution optical IMINT satellites from the US commercial firm Digitalglobe (the same firm that supplies Google Earth with satellite imagery).  

Digitalglobe operates a number of satellites with a better-than-1-meter capability: Geoeye-1 (0.4 meter resolution), and Worldview 1, 2 and 3 (0.25-0.50 meter resolution). Most of the satellite imagery that the US Department of Defense supplies to the press (when briefing on the military situation in e.g. North Korea, Syria and Libya) comes from these commercial satellites.

Imagery from these same Digitalglobe satellites is also available commercially, to any interested party with money. And in addition to DigitalGlobe, the European company Airbus Defense and Space also offers commercial high-resolution optical imagery from its SPOT and PlƩiades satellites. PlƩiades 1A and 1B offer a 0.5 meter resolution. SPOT 5 and 6 offer a 2.5-1.5 meter resolution.

Accurate orbital data from non-classified sources are available for all the commercial imagers for 17 July 2014. The satellites in question made several daylight passes over the area in the morning of July 17, 2014, between 8:00 and 10:00 GMT, i.e. during the 3 to 5 hours before the shootdown, a period when the skies were still less clouded.

This does not mean that they necessarily made imagery of course. Yet any imagery these commercial Digitalglobe and Airbus satellites did make on July 16, 17 and 18 have the advantage that they are not "classified", unlike the US military data, meaning that they could be used and published without diplomatic problems by the Dutch government in the Dutch criminal investigation into the disaster.

I would therefore expect the Dutch OM to either buy or subpoena all potential Digitalglobe and Airbus imagery from these dates. They can be used to reconstruct missile system positions in the area (both on the Ukrainian, the separatist and Russian sides) within range of the shootdown location, and they can be used to hunt for missile transports (see my earlier remarks about the Bellingcat claims). The Dutch Air Force has an imagery analysis unit that is well suited to help with such an analysis. Including imagery from the days before and after the incident as well is useful to look for differences between imagery of these respective dates.


2. Radar IMINT

The US military has two systems for high resolution radar IMINT: the Lacrosse (ONYX) system of which currently only one satellite, Lacrosse 5 (2005-016A) is left on-orbit, and the radar component of the Future Imagery Architecture (known as TOPAZ), consisting of three satellites: FIA Radar 1, 2 and 3 (2010-046A, 2012-014A and 2013-072A). These systems should be capable of providing imagery with sub-meter resolutions, and like optical imagery, they can be used to look for the presence of missile systems in the area. They have the added bonus that they are not hampered by cloud cover, unlike optical imagery.

Apart from the USA, the German military also operates a radar satellite system, the SAR-Lupe satellites. The French military likewise operates its own radar satellite system, the HƩlios system. Japan operates the IGS system (which includes both optical and radar satellite versions).

All of these satellites made passes over the Ukraine at one time or another on July 17 2014, so all of them might have provided useful imagery.  FIA Radar 3 made a pass right over the area in question near 11:43 UT for example, some 1.5 hours before the tragedy. FIA Radar 2 made a pass over the area at 18:00 UT, 4.5 hours after the shootdown. These are just a few examples.

Given what was happening in the area around this time, and the strong concern of NATO and the EU about this, it is almost certain that imagery of the area was collected by these US, German and French satellite systems.


SIGINT

My position paper briefly mentions that a number of countries have space-based SIGINT (Signals Intelligence) capacities. This does not only concern capacities for (for example) the NSA to tap into your cellphone and satellite telephone conversations: another important strategic aspect of space-based SIGINT is the capacity to detect radar and telemetry signals from enemy weapons systems. Such detections allow identification of the used weapons system (each system has its own 'signature'). They also allow, according to remarks by the then NRO director Bruce Carlson in a speech from September 2010 at the National Space Symposium, geolocation of the source of this radar signal (in the case of MH17: geolocation of the Target Acquisition Radar of the launch unit).

The US military has a number of SIGINT systems in several types of orbits: Low Earth Orbit (LEO) below 1500 km which allows coverage of a few minutes during a pass over a target; and Highly Elliptical Orbit (HEO) and geosynchronous orbit (GEO), which allow to monitor targets for many hours (HEO) to continuously (GEO) from distances of 36 000+ km.

France has a number of SIGINT satellites in LEO. China no doubt has SIGINT satellites too, as does Russia. For the moment I will focus on the US systems. I must ad that I did check the French systems as well but none of the French systems (ESSAIM and Elisa, both in LEO) had sight of the Ukraine at that time.

The US systems, under the catch-all codename ORION, include the TRUMPET-FO which move in HEO. One of them is USA 184, mentioned before in the discussion of SBIRS as it has a piggyback SBIRS capacity in addition to its main SIGINT role.

There are also the big MENTOR satellites in GEO, plus two MERCURY satellites also in GEO, and the older VORTEX system. Of these systems, TRUMPET-FO, MENTOR and MERCURY are certainly still active based on their orbital behaviour.

The map below shows the positions of those satellites in this series for which we have enough tracking data to allow a reconstruction of their positions and footprints on 17 July 2014, 13:20 UT and which had the MH17 crash area within potential view:


click map to enlarge

Again: this does NOT necessarily mean that all of these satellites were actively monitoring the Ukraine at that time. Quite a number of them will have been tasked on the Middle East.

Yet, given the strong NATO interest in events in the Ukraine at that time, notably the rising concern about advanced surface-to-air missile systems following the shootdown of a Ukrainian Antonov-26 a few days earlier, I would be surprised if none of them monitored the Ukraine at all.


A clarification note on the position of USA 184 (SIGINT/SBIRS)

In my position paper written for the Dutch Parliament Foreign Affairs committee meeting coming Friday, I included this map with the positions of three SBIRS satellites with view on the Ukraine at that time:


click map to enlarge

I should point out here that there is some leeway in the exact position of USA 184, depending on whether it made a corrective manoeuvre to maintain its Mean Motion of about 2.00615 revolutions/day or not since the day we last observed it.

If it did, its position would be slightly more westward compared to the position depicted above, i.e. in a position just north of Scotland rather than above the Norwegian coast:


Let me be clear: this does NOT influence the conclusions of my position paper: the MH17 crash site in both variants is well within the field of view as seen from USA 184, i.e. the satellite could potentially provide both Infra-red and SIGINT detections. In the interest of accuracy, I thought I should however mention it here.


Acknowledgement -  I thank Mike McCants (USA) and Ted Molczan (Canada) for discussions about satellite positions, notably concerning USA 184.

Monday, 14 December 2015

Imaging Geostationary satellites, and PAN's past relocations

Last week saw some clear evenings, and I used one of them to image some geostationary satellites. It concerned "the usual suspects": MENTOR's, MERCURY's and the enigmatic, probably SIGINT satellite PAN (2009-047A). The latter satellite has not been moved for quite a while now: since the end of 2013 it is at longitude 47.7 E, parked close to a number of commercial comsats. In the past it was frequently relocated, taking positions next to various commercial COMSATS. In four years time between 2009-2013, it moved at least 9 times (which is a lot) to various longitudes between 33 E and 52.5 E.

PAN amidst several commercial COMSATS on 9 December 2015 (click to enlarge)

The diagram below charts these frequent movements of PAN. Relocations typically took place about once every 6 months. Late 2013, they stopped. PAN however must still be operational, as active station-keeping is necessary for it to stay at 47.7 E.

relocations of PAN over time, 2009-2015 (click to enlarge)

Four other SIGINT satellites and a military comsat were imaged as well: Mentor 4 (2009-001A) and Mentor 6 (2012-034A), Mercury 1 (1994-054A) and Mercury 2 (1996-026A), and the military comsat Milstar 5 (2002-001A).


Mentor 4, next to commercial comsat Thuraya 2 on 9 Dec 2015 (click to enlarge)

Mentor 6 and a number of commercial satellites, close to the Orion nebula, on 9 Dec 2015

Using the remote telescope at Warrumbungle (MPC Q65) in Australia, I recently (4 December 2015) also checked-up on the recently launched US Navy COMSAT MUOS 4 (2015-044A). It is still at its check-out location over the Pacific at longitude 172 W, but some recent press statements suggest check-out has been successfully completed, and it will be moved to its operational position at longitude 75 E near India in the spring of 2016.

Friday, 18 July 2014

SBIRS, SIGINT and the MH17 tragedy (updated)



Yesterday 17 July near 13:15 UT, 298 people including at least 173 189 192 of my countrymen perished when Malaysian Airlines flight MH17 on its way from Amsterdam to Kuala Lumpur crashed over the eastern Ukraine, reportedly after being hit by a missile.

This is a terrible tragedy. Among the victims are complete families, including children. It is the start of the holidays in the Netherlands, and the flight carried many Dutch families on their way to their holiday destinations in southeast Asia. My thoughts are with these highly stricken families.

For me personally, it is an unnerving fact that I was about to fly the same route from Amsterdam to southeast Asia only a few days later.

In the wake of the incident, accusations fly between the Ukrainians, pro-Russian separatists and Russians, all accusing each other of being responsible for this tragedy. At the moment it is difficult to say which bits of information floating around are true and which are false. I strongly suspect that the current suspicion against Russian-backed separatists will hold though. Some less ambiguous evidence (e.g. the location of the crash, which is close to the locations where separatists earlier downed two other (military) aircraft) certainly seem to suggest this. But we will see: at the moment, nothing is certain.

Of interest to this blog, is that US Intelligence officials have confirmed that the aircraft was hit by a surface-to-air missile, according to several US media. Senior US officials appear to have told CNN that they detected a radar signal from a surface-to-air missile system being turned on right before the crash, and that they also detected a 'heat signature' at the time the aircraft was lost.

If the CNN report is correct, it is highly likely that the 'heat signature' detection was a space-born detection by the SBIRS system of infra-red early warning satellites. I have written about this satellite system before, in the context of that other recent tragedy with a Malaysian Airlines flight, the disappeared flight MH370.

click image to enlarge

Three of the four SBIRS satellites, SBIRS GEO 1 (2011-019A) and SBIRS GEO 2 (2013-011A) in geostationary orbit and USA 184 (2006-027A) in HEO, had coverage of the area where MH17 went down at the time this happened (17 July 14:15 GMT, see image above).

SBIRS and SIGINT platform USA 184, imaged on 20 March 2014

SBIRS GEO 2 imaged on 20 June 2014

It is possible that the quoted detection of a missile radar tracking system activation around the time of the disaster was done by satellites too. Several SIGINT and ELINT satellites cover this area, including various MENTOR (ORION) satellites and one MERCURY satellite in GEO, and USA 184, which is both a TRUMPET-FO SIGINT satellite and a SBIRS platform, in HEO. That these SIGINT satellites amongst others serve to detect and monitor signals from military radar and missile systems, is known. Given the interest of the USA and NATO in closely watching military developments in the Ukraine conflict, it is almost certain that some of these are targetting the area.

The question is, whether these satellites can help pinpoint the location from where the missile was launched, and hence provide an indication of who did it (Ukrainian forces, separatist militia, or the Russians).

I suspect they can. If the SIGINT detections were indeed done by satellites, it is known that the US recently made large progress in geolocating the origin of detected signals. In a speech from September 2010 available on the NRO website, NRO director Bruce Carlson specifically remarked on the NRO's increasing capability to geolocate using SIGINT:

"I will tell you that just in the last 24 months, we’ve improved the accuracy of geo-location by nearly an order of magnitude, and we’re going to continue to do that and bring it down. We’re getting to the point where here very, very shortly, within the very near term, we will be able to target using signals intelligence". 

If they indeed have a SIGINT detection of the missile's radar system (and the CNN quote seems to say that), the character of the signature might yield information on what missile system was used (i.e. if it was indeed an SA-17/BUK).

Likewise, and although as far as I know no exact public information is available on the accuracy of this kind of detections (update: but see the update at the end of this post!) , I suspect that the  'heat signature' detections of the missile launch,  if indeed SBIRS infra-red detections, are also accurate enough to geolocate the launch site (and whether that is in Ukranian held, or separatist held territory).

A SBIRS platform has two sensors: one in staring mode, and one in scanning mode. The staring scanning mode sensor watches for heat signatures over a wide semi-global area. The scanning staring sensor targets specific regions, and when the staring scanning sensor detects a signature, the scanning staring sensor (at least according to some sources) can be employed to further pinpoint and track this event (more sources amongst others here, here and here). The goal of SBIRS reportedly is to be able to track launches, pinpoint launch sites and accurately predict potential target locations from the tracking data. That needs quite accurate tracking.

(note added: a 1-hour timezone conversion error in the original version of this post has been corrected)

Update 19/07/2014: Daniel Fischer managed to dig up this unclassified presentation from 2006, which shows that SBIRS indeed can detect SAM. Pages 2 and 3 mention the capability to pinpoint the launch location. 
Rainer Kresken has raised the legitimate question of the cloud cover present at the time of the shootdown. Water vapour obscures Infra Red, which means the cloud cover might have blocked detection of the initial launch phase of the SAM. The SIGINT detection of the missile system radar does not suffer from this problem.

Monday, 17 March 2014

Open Question: Could US Military SIGINT satellites help to narrow down flight MH370's last location?

Please note: this post contains discussions of a highly speculative nature

Over the past days, it has become clear that the lost Malaysian Airlines flight MH370 has flown on for some 7 hours after contact was lost at 17:20 UT (March 7 UT, local March 8). This information comes from radio "ping-backs" of the aircraft's ACARS system received by the Inmarsat 3-F1 satellite, a geostationary communications satellite that is located at longitude 64 E over the Indian Ocean. These ping-backs were received hours after the last radio contact with the pilots and hours after the transponder was shut off, and indicate that the aircraft was still powered and 'alive' hours after it disappeared. A well written story at the CNN website gives backgrounds on the receptions and the system.

Position and footprint of Inmarsat 3-F1
click image to enlarge

In this post, I will briefly summarize how Inmarsat 3-F1 detected the aircraft and determined a wide arc where the aircraft could have been at that time. I will then explore whether additional signal receipts by classified US Military Signals Intelligence (SIGINT) satellites might perhaps have been possible. If such additional receptions exist (an open question!) they would enable to further narrow down the location of the last ping-back.

That will largely be a theoretical exercise, as so far there has been no word that the US SIGINT satellite constellation did detect these ping-backs. This post therefore entails a clear element of speculation, and the central question remains an explicit open question.


Backgrounds: 'Marco Polo' between an aircraft and a satellite

Someone in the aircraft shut off the radar transponder beacon and the active ACARS messaging system near 17:20 UT. Yet this did not fully disable the ACARS system. The system kept answering periodic "pings" by the Inmarsat 3-F1 (1996-020A) satellite. These "pings", basically a kind of "Marco?" message,  are periodically sent out by the satellite and when received by the aircraft ACARS antenna, the aircraft pings back a brief "handshake" basically saying "Polo!". While such a handshake does not contain clear information about where the aircraft is when the active ACARS is disabled, it does contain the aircraft ID.

According to press reports, the last ping-back from flight MH370 was received 7 hours after the flight disappeared, near 00:11 UT on March 8. Apparently, only Inmarsat 3-F1 received these ping-backs.

From the time it took the radio-ping to travel from Inmarsat 3-F1 to the aircraft and then back again, the distance (but not direction) of the aircraft to the satellite can be determined. For example, at a radiowave speed of 300 000 km/s, a time difference of say 0.2 seconds between Inmarsat sending the ping and receiving the answer back, indicates the aircraft is at a distance of 30 000 km from the satellite.

Once you know the distance, you can draw a globe with that radius around the location of the Inmarsat satellite. Where that globe cuts the earth surface, it creates a circle, centred on the sub-satellite point. The aircraft must have been somewhere on that circle. This is basically how the wide arc that has been published was constructed, an arc which runs from Thailand to Kazakhstan in the north, and Indonesia to Australia and the Indian Ocean in the south. The aircraft could have been anywhere on that big arc, an area stretching thousands of kilometers.


To pinpoint the aircraft more accurately to a particular spot in the arc, one needs a detection by a second and preferably a third satellite.


Could US SIGINT satellites provide additional receptions for these pings?

One source of such additional ping-back signal receptions, in theory could be one of several Signals Intelligence (SIGINT) satellites employed by the US military. Please note that I say IN THEORY as the US government hasn't provided any statements that they did (which might indicate that they didn't). In other words: I am speculating on an open question here.

It depends on a lot of factors, not the least of which are questions whether these satellites were listening at the time, and whether they were monitoring the particular VHF/UHF radiofrequencies in question. Those are questions I do not have the answers to. What I will do, is discuss which US military satellites could potentially have received these ping-backs because they had coverage of the area.

1. The Mentor and Trumpet SIGINT satellites

Two US SIGINT systems in high orbits cover(ed) the relevant area: (1) several of the very large Mentor/Advanced Orion SIGINT satellites in geostationary orbit: and (2) one of the SBIRS/TRUMPET combined SIGINT and SBIRS satellites which moves in a Highly Elliptical Orbit and hovered high above the northern hemisphere at the time.

These SIGINT satellites serve to eavesdrop on radio communications including satellite- and mobile telephony, missile telemetry and signals from groundbased and airborne radar systems.

USA 184 TRUMPET imaged on 25 Aug 2009 by the author

 Mentor 4 imaged on 18 Nov 2012 by the author


The TRUMPET satellite in HEO which had coverage of (a part of) the area at that time is  USA 184 (2006-027A). The geostationary Mentor satellites covering the area are Mentor 1, 3, 4, 5 and 6 (1995-022A, 2003-041A, 2009-001A, 2010-063A and 2012-034A).

Position of various Mentor satellites and TRUMPET USA 184
Mentor satellite footprints


USA 184 area coverage and footprint detail
click image to enlarge

2. NOSS (Naval Ocean Surveillance System) SIGINT satellites

Apart from the Mentor and Trumpet SIGINT satellites in high orbits, the US also operates a series of SIGINT satellites with accurate geolocalization capabilities in a Low Earth Orbit. It concerns the US Navy Naval Ocean Surveillance System (NOSS) satellites, of which there are several. They operate in close pairs, orbiting at an altitude of about 1000 x 1200 km in 63 degree inclined orbits. Their main purpose is to locate and track shipping through the radio communications of the latter.

A NOSS duo (NOSS 3-4) imaged by the author on 29 Jan 2011


Two duo's of NOSS satellites were covering the northern half of the area at the time of the last ping-back received by Inmarsat 3-F1: the NOSS 3-5 and NOSS 3-6 duo's (2011-014A and B and 2012-048A and P).

The NOSS 3-6 duo had the best coverage, which includes the full northern arc from Thailand to Kazakhstan determined by the Inmarsat reception:

click images to enlarge
position of the NOSS 3-5 and NOSS 3-6 duo at the time of the last pingback

in 3D: yellow arc is where the aircraft could be according to the Inmarsat 3-F1 reception

Chinese SIGINT

China operates a satellite system similar to the US NOSS, consisting of three satellite trio's in the Yaogan series (Yaogan 9A, B, C; 16A, B, C; 17A, B, C). None of these however had coverage of the relevant areas in the Indian Ocean, central Asia or southern Eurasia at that time.

Coverage summary

From the brief satellite coverage analysis summed up above, it seems that the northern overland arc from Thailand to Kazakhstan was potentially well covered by various US military SIGINT satellites: five Mentor satellites, a TRUMPET and a NOSS duo. The southern Indian Ocean arc is slightly less well covered (no TRUMPET or NOSS coverage) but was nevertheless in view of several geostationary Mentor SIGINT satellites.

The question now is: could one or more of these SIGINT satellites have captured the same ACARS ping-backs received by Inmarsat 3-F1? If so, the combination of their data with the Inmarsat data could potentially narrow down the last known position of the aircraft considerably.

It all depends on whether the satellites in question were actively listening at that time, and moreover, whether their monitoring includes the radio frequencies in which the ACARS ping-backs of flight MH370 operated. It perhaps also includes questions like whether any signals received are all kept on file, or if some selection is made and much deemed of no interest is directly discarded.

Those are some big serious "ifs", that I simply do not know the answers to: this stuff is, after all, classified. So far, the US government has not indicated that one of their SIGINT systems did capture the ping-backs. Which might mean that they didn't, as I can't imagine that they did not check for it.

Classified SIGINT satellite positions in this post (and previous posts) are based on orbits calculated by Mike McCants, based on amateur observations communicated on the SeeSat-L mailing list.


Addendum 18 March 2014:
In my initial analysis posted 17/03/2014, I forgot to include two other and older geostationary US SIGINT satellites: the two Mercury/ADVANCED VORTEX satellites that are located over East Africa.


 click images to enlarge

It concerns Mercury 1  (1994-054A) and Mercury 2 (1996-026A). Both satellites were recently moved to a new orbital position over East Africa and are station-keeping there, indicating they are operational. Their footprint includes the area of interest, although the southern Indian Ocean arc is close to the edge of their coverage.

Mercury 1 imaged by the author on 29 Dec 2013