Showing posts with label CRYSTAL. Show all posts
Showing posts with label CRYSTAL. Show all posts

Thursday, 22 April 2021

NROL-82: an upcoming new KH-11 EVOLVED ENHANCED CRYSTAL launch [UPDATED]

image: ULA

(updated 27 Apr 2021 with first observational orbit, see end of post)


If the weather and the launch Gods cooperate, ULA will launch a Delta IV Heavy with a classified payload for the NRO on 26 April 2021. The launch is designated NROL-82 and the payload will likely receive the designation USA 314. In a tweet from April 19, ULA mentions a prospective launch time of 20:46 UT.

Several lines of evidence lead us to believe that the payload is a KH-11 EVOLVED ENHANCED CRYSTAL optical reconnaissance satellite, colloquially also known as a 'Keyhole'. It is the kind of satellite that makes these kind of detailed pictures of areas of interest for the NRO.

A map in the ULA Mission Overview for this launch, and the Navigational Warnings issued for this launch (NAVAREA XII 173/21 and HYDROPAC 1221/21) provide information on the launch azimuth and from that the orbital inclination targetted. Likewise the position and time window of the upper stage deorbit area provides - in a very broad sense- information on the orbital altitude aimed for. Together they indicate a launch into a sun-synchronous Low Earth Orbit with an orbital inclination near 98 degrees. This is a very familiar orbit, as we will discuss later in this post.

Below is a map I prepared depicting the hazard areas from these Navigational Warnings as well as the launch trajectory I calculate based on this information:


click map to enlarge

The listed times along the track are for launch at 20:46 UT into the 250 x 1020 km, 97.9 degrees inclined estimated orbit below:

 NROL-82 (USA 314)          for launch on 26 April 2021 at 20:46:00 UT
1 70002U 21999A   21116.86527778  .00000000  00000-0  00000-0 0    03
2 70002 097.8600 222.0898 0548970 157.1680 337.2110 14.78203944    02

 

The text of the Navigational Warnings:

220434Z APR 21
NAVAREA XII 173/21 (also: HYDROPAC 1221/21)
EASTERN NORTH PACIFIC.
EASTERN SOUTH PACIFIC.
CALIFORNIA.
1. HAZARDOUS OPERATIONS:
   A. 2016Z TO 2257Z DAILY 26 THRU 28 APR
      IN AREA BOUND BY
      34-38N 120-40W, 34-36N 120-30W,
      34-07N 120-39W, 34-08N 120-44W.
   B. 2016Z TO 2257Z DAILY 26 THRU 28 APR
      IN AREA BOUND BY
      22-57N 120-46W, 23-47N 125-18W,
      26-27N 124-45W, 25-36N 120-08W.
   C. 2016Z TO 2257Z DAILY 26 THRU 28 APR
      IN AREA BOUND BY
      13-28S 121-20W, 10-47S 138-34W,
      00-47S 136-41W, 03-52S 119-54W.
   D. 2253Z TO 0029Z COMMENCING DAILY
      26 THRU 29 APR IN AREA BOUND BY
      63-14S 174-16W, 32-49S 159-58W,
      33-23S 156-28W, 64-16S 168-07W.
2. CANCEL THIS MSG 300129Z APR 21.

 

Area D from the Navigational Warnings, located in the southern Pacific Ocean, appears to be the deorbit area for the Delta Cryogenic Second Stage (DCSS). The DCSS deorbit takes place some two hours after launch, just after the start of the second revolution (with the deorbit burn happening over the Arctic, near the end of the first revolution).

As mentioned above, the orbit that seems to be targetted is one that is very familiar in terms of orbital inclination and sun-synchronous character. It is the typical orbit of a KH-11 EVOLVED ENHANCED CRYSTAL electro-optical reconnaissance satellite. Several years ago I discussed the KH-11 orbital constellation in depth on this blog ("Past and future of the KH-11 Keyhole/Evolved Enhanced CRYSTAL constellation" - 2013). As a side note, the type of rocket used to launch NROL-82 is consistent with a KH-11 launch too: the Delta IV Heavy has a long history of launching KH-11's.

Currently there are at least three, and possibly four active KH-11 satellites on orbit: USA 186 (2005-042A), USA 224 (2011-002A), USA 245 (2013-043A), and possibly USA 290 (2019-004A).  The latter, USA 290, is in an odd orbit for a KH-11 and its identification as a KH-11 is open to questioning (I will discuss this later in this blog post).

Historically (see "Past and future of the KH-11 Keyhole/Evolved Enhanced CRYSTAL constellation"), new KH-11 satellites are launched into one of two primary orbital planes some 48 degrees apart in RAAN: a "primary East" plane and a "primary West" plane. The time window and the 20:46 UT launch time given by ULA for the upcoming April 26 launch corresponds well with targetting the "primary East" plane. This orbital plane results in passes around local noon and midnight. The KH-11 satellite currently occupying this orbital plane is USA 224 launched 10 years ago in 2011.

 

USA 224 imaged in June 2014. click image to enlarge


KH-11 constellation (minus USA 290), situation mid-April 2021 (polar view). Click to enlarge
 

The orbital plane of USA 224 passes over the launch site of NROL-82, Space Launch Complex 6 (SLC-6) at Vandenberg Air Force Base, around 21:20 UT on April 26. This is a difference of some 35 minutes with the launch time (20:46 UT) from the ULA tweet.

In 2011, when USA 224 itself was launched to replace USA 161 in the primary East plane, the launch occurred some 20 minutes before the USA 161 orbital plane crossed over the launch site (a similar time difference would hence see launch around 21:00 UT for the upcoming April 26 launch).

If history is our guide, the following sequence of event will likely happen. To start with, NROL-82 will be launched into the KH-11 Primary East plane, with an orbital inclination of ~97.9 degrees and orbital altitude of ~250 x 1020 km, almost co-planar with USA 224. The illustration below shows the orbital plane situation around orbit insertion. Note the similarity of the orbital planes of NROL-82 and USA 224:

 

expected situation just after launch of NROL-82. click to enlarge

 

After a check-out period of a few weeks, the NROL-82 payload (likely designated USA 314) will take over the primary plane mission from USA 224, the satellite previously occupying this orbital plane. 

Next, after USA 314 has taken over its role, USA 224 will be moved away from the primary plane, into a new orbital plane with RAAN some 10-20 degrees East of the primary plane: the so called '"secondary East plane". It will also lower its apogee and take up a ~400 km altitude orbit. In this new orbit it will continue to be operational for several years, entering its extended mission phase. 

From this moment on, for the first time since the deorbit of USA 161 in the winter of 2014-2015, all the two primary planes and all the two secondary planes will be occupied by a KH-11 again. The orbital constellation will become something like that in the image below:


Approximate KH-11 constellation after expected rearrangement later this year. Click to enlarge

 

How about USA 290?

You will have noted that after a brief initial mention, I carefully left USA 290, launched in 2019, out of the discussion so far. So what about that object? Is it a KH-11?

USA 290 (2019-004A) was launched as NROL-71 from Vandenberg on a Delta IV Heavy on 19 January 2019 (see an earlier blogpost) and it was suspected by some noted analysts to be a KH-11. It however went into a weird, 73.6 degree inclined ~400 km altitude orbit that is not sun-synchronous and nothing like previous KH-11 orbits. So, had the NRO broken with the previous 'classic' pattern of the KH-11 orbital constellation and were they trying something new?

The identification of  USA 290 as a KH-11 never has been sitting well with me. The odd orbital inclination and non sun-synchronous character of the orbit gives few reasons to think it is an IMINT mission.

In light of the apparent return to the known 'classic' KH-11 constellation with the upcoming launch of NROL-82, I have again started to foster these doubts. Maybe USA 290 isn't a KH-11 after all but something else, something experimental (readers of this blog will have noted that the past 4-5 years, a lot of NRO launches appear to be experimental, going into 'new' previously unseen types of orbit. Some of these are, I suspect, radar imaging satellites).

Ted Molczan has recently suggested that USA 290 is a KH-11, and that its odd orbit is inspired by that of the notorious 'Misty' stealth IMINT satellites of the 1990-ies which were launched in ~65 degree orbits. Basically, he argues that USA 290 is a 'Misty' imaging satellite without the stealth!

I remain agnostic at best about the identity of USA 290. Perhaps, if new payloads are launched into similar orbits over the coming years, the picture will become more clear. For now, I regard USA 290 as an oddity, and not necessarily a KH-11.

UPDATE 27 Apr 2021 11:00 UT

Cees Bassa optically observed the NROL-82 payload on the 2nd and 3rd revolution. Radio observers including Scott Tilley are also tracking it.

Based on a hybrid optical/radio orbit computed by Scott Tilley, the orbital altitude is somewhat different than expected, the orbit less eccentric: but the orbital plane is even closer to that of USA 224.

The orbital plane is very close to that of USA 224 indeed: a ~1 degree difference in RAAN and 0.1 degree difference in orbital inclination.

Orbital altitude currently appears to be about 525 x 760 km, i.e. less eccentric than our initila pre-launch estimate. That of USA 224 is 256 x 997 km.

The NROL-82 payload might manoeuvre in the coming days and weeks in order to have it's apogee and perigee altitudes match with  that of USA 224.



click to enlarge

Thursday, 16 March 2017

USA 186 recovered

click to enlarge


The image above shows USA 186 (2005-042A), a KH-11 ADVANCED CRYSTAL ("Keyhole") optical reconnaissance satellite. It is cruising just below the Pleiades star cluster in this image, which I shot yesterday evening using the Samyang 1.4/85 mm lens and an exposure of 2 seconds.

USA 186 was recovered last week after being briefly lost in the Northern hemisphere winter blackout. Leo Barhorst made one or two possible detection in February, but it was Cees Bassa who unambiguously recovered it on March 13th. Two days later, I made the image above.

The arc is still short, but it appears to be in an approximately 265 x 435 km sun-synchronous orbit. The apogee is some 20 km lower than it previously was, the perigee is about 5 km higher (i.e., the current orbit is more circular than previous orbits). It's ground repeat interval is 4 days.

USA 186 is the secondary West plane satellite in the KH-11 constellation. The hunt is now on for USA 245, the primary West plane KH-11. Recovery of the primary East plane KH-11, USA 224, will have to wait untill early summer.

When I observed it yesterday it was bright (mag +1.5) and briefly flared to mag 0 near 19:32:50 UT (March 15, 2017).

Thursday, 30 June 2016

USA 224 recovered: an update of the KH-11 constellation




Russell Eberst in Scotland has recovered the noon-plane KH-11 ADVANCED CRYSTAL/"Keyhole" optical reconnaissance satellite USA 224 (2011-002A) this week. The recovery happened relatively late (in 2015 it was recovered 2 months earlier).

This recovery means that, after the preliminary update last March, I can provide my periodic update on the orbits of the KH-11 constellation based on timely orbital data.

In various previous post to this blog, I outlined how the KH-11 constellation consists of two primary orbital planes, the primary East and West planes; and originally two, now one, secondary orbital plane(s). Of the latter secondary planes, only one, the secondary West plane, is left after the de-orbit of USA 161 late 2014.

The past decade or so, the primary planes have been 48-49 degrees apart in RAAN. That is still the case: USA 224 and USA 245, the primary East and West plane KH-11's, are currently 49 degrees apart in RAAN.

The secondary planes used to be either 10 or 20 degrees from the corresponding primary plane in RAAN, but since mid-2014 the secondary West plane (currently USA 186) has moved further out, to 24 degrees West of the primary orbital plane.

As I have outlined before on this blog, the secondary plane(s) differ in orbital altitudes from the primary planes. The current configuration:


         perigee   apogee    l time   repeat
Sat        km        km      d node   (days)   plane
USA 186    261       454     08:05      3      secondary W
USA 224    262      1007     12:58      4      primary E
USA 245    266      1000     09:42      4      primary W

Given are the apogee and perigee altitudes of the satellites, the average local time they pass through their descending node (an indication of around what time they pass a given area - all satellites in the constellation are sun-synchronous, i.e. they pass  at a similar solar elevation each day), the repeat interval of the ground track in days, and the plane they orbit in.

What can be seen is that the secondary plane satellite, USA 186, is in a much more circular orbit with a much lower apogee (454 km), compared to the two primary satellites (~1000 km). Perigee altitudes of all three satellites are similar. I have speculated on the reason for this apogee difference of the secondary plane satellite at the end of a previous post.

The West plane satellites, USA 186 and USA 245, make morning passes, about 1h45m after each other. The East plane satellite, USA 224, makes passes about an hour after local noon.

The current orbital configuration has been more or less stable since mid-2014 (or more exactly, since USA 161 was de-orbitted late 2014).

Thursday, 31 March 2016

USA 186 rising, and revisiting the KH-11 constellation

click image to enlarge

The image above shows the KH-11 ADVANCED CRYSTAL/"KeyHole" optical reconnaissance satellite USA 186 (2005-042A) rising over the roof of my house in late twilight of March 28, 2016.

It had passed perigee at 260 km altitude just 10 minutes earlier and was at about 285 km altitude when I photographed it. At that low an altitude, it races over the sky (these are 5 second images with a 50mm lens). Clearly visible by the naked eye, I watched it rise over the roof, and then slowly flare to mag. -1 near 19:17:55 UT:

USA 128 186 flaring near 19:17:55 UT (March 28, 2016)
click image to enlarge

USA 186 is the oldest of the remaining KH-11 ADVANCED CRYSTAL satellites. After the de-orbit of  USA 161 late 2014, there are now three KH-11's left on-orbit:  

(a)  USA 186  (2005-042A) pictured here;
(b)  USA 224  (2011-002A), and;
(c)  USA 245  (2013-043A).

USA 224, the primary East plane satellite, and USA 245, the primary West plane satellite, are separated by 48.7 degrees in RAAN. USA 186, the secondary West plane satellite, is 24.3 degrees (half the separation of the two primary satellites) West of USA 245 in RAAN:

click to enlarge

All the orbits are sun-synchronous, meaning that they maintain an orbital precession coupled to the daily precession of the sun.This ensures that they make passes at roughly the same time each day, imaging terrain with roughly similar solar elevations. This helps interpret imagery, as the shadow patterns will be similar on images from nearby days and changes in shadow pattern will stand out.  

USA 224, the primary East plane satellite in the constellation, makes daily passes around 13h local solar time. It's ground track repeats each 4 days. USA 245, the primary West plane satellite, makes daily passes around 9:45h local solar time, also with a ground track repeating each 4 days. USA 186, the secondary west plane satellite, makes daily passes around 8h local time, with a repeating ground track each 10 days.

Basic data ():

sat      orbit           mlt DN    repeat  plane 

USA 124  265 x 1009 km*  13:00     4 days  primary E
USA 245  268 x 1020 km   09:45     4 days  primary W
USA 186  260 x 456  km   08:05    10 days  secondary W

* September 2015 (sat not yet recovered in 2016)

("mlt DN" means mean "local time of passage through Descending Node") 

Note that due to the winter blackout in the Northern hemisphere we haven't observed USA 224 for seven months: the orbit shown here assumes it has kept up its September 2015 orbit. We will know for sure when we recover the object in early summer.

The previous secondary West plane satellite in the constellation, USA 129 (de-orbited in late April of 2014) used to make passes near 9h local time. By changing the RAAN difference between the primary and secondary satellite from 10 degrees to 24.3 degrees after USA 186 moved from the primary to the secondary plane and took over from USA 129 following the launch of USA 245 (see earlier post here and links theirin), the pass time was shifted to one that occurs one hour earlier.

As can be seen in the table above, all current KH-11's have perigee at a roughly similar altitude of ~260-270 km. The primary plane satellites have apogee at ~1010-1020 km. The secondary plane satellite has a much lower apogee, at ~455 km altitude.

The exact reason why the secondary plane KH-11's lower their apogee is unclear. USA 129 was the first to lower apogee connected to its move from the primary West plane to the secondary West plane in 2006. USA 161 repeated this pattern in 2011 when it was moved from the primary East plane to the secondary East plane (since the de-orbit of USA 161 late 2014, this latter secondary East plane no longer exists). Various options can be considered:

(a) some operational constraint, e.g. aim for a particular ground-track repeat interval;

(b) some operational constraint, e.g. related to image resolution (this is unlikely);

(c) some operational constraint, e.g.different imaging role compared to the primary plane satellites;

(d) making it easier to de-orbit the satellite near end-of-life: if fuel reserves are low, a lower apogee would allow de-orbit from apogee if necessary, so one does not necessarily have to wait for perigee to be located over the southern Pacific.

Wednesday, 20 January 2016

SIGINT, IMINT and MH17

(this post continues discussions in earlier posts on possible classified space-based observations of the shootdown of Malaysian Airlines flight MH17 over the Ukraine in 2014)

My position paper written for the Dutch Parliament Foreign Affairs committee hearing of Jan 22 (see my previous post) has a strong focus on infra-red detections of a missile by SBIRS. There are however a few other relevant aspects of Space Based observations in connection to the MH17 disaster that I could not cover in the space available to me for that paper.

In this post, I will provide some brief additional information about:

1) potential roles for IMINT satellites;
2) the positions of SIGINT satellites.


Optical and radar IMINT

1. optical IMINT

Both (unclassified) commercial and (classified) military satellite systems for high-resolution optical imagery (Image Intelligence, IMINT) exist, and both sources will be discussed below.

Optical and radar imagery obtained in the hours before, as well as during the event, might be used to look for missile systems, both on the Ukrainian as well as separatist sides of the front, in a wide circle around the site of the shootdown. It could also be used to verify the reconstruction of the purported movements of a Russian BUK system published by citizen journalist team Bellingcat, a study which is not uncontested. The Bellingcat team places the BUK in certain places at certain times, and if space-based imagery (either military or commercial) for those locations and times exist they could perhaps verify these claims.

The US military has one classified system of optical satellites with a (much-) better-than-1-meter capability: the KH-11 IMPROVED CRYSTAL/Evolved Enhanced CRYSTAL (aka 'Keyhole' or 'KENNAN') which reportedly (and theoretically, from known 2.4 meter mirror size specs) have a resolution in the order of  10-20 cm.

Mid-2014 this system consisted of four satellites: USA 161, USA 186, USA 224 and USA 245. All of these have been discussed on this blog before and are tracked by our amateur network.

We have accurate tracking data on three of these, USA 161, USA 224 and USA 245 for the days around 17 July 2014 and hence can pinpoint when these potentially had the crash area in their sight to better than a minute. For USA 186, which was actively manoeuvering around that time and for which we have a gap in our coverage form June to August 2014, pass times are a bit less certain and constrained to about 20-30 minutes accuracy.

First, we can positively affirm that one of the KH-11, USA 161 (2001-044A) actually had the Ukraine in its potential view during the incident at 13:20 UT:


click images to enlarge

Please note well: this does however NOT mean that USA 161 delivered imagery of the event. A number of factors should be taken into account:

1. the cloud cover at that moment, which might hinder imagery;
2. the crash site is located quite in the perifery of the satellites footprint area;
3. these satellites do likely not make images continuously, but only if commanded to do so, for specific areas of interest;
4. there is the question of whether USA 161 was still operational at that time. It was the oldest of the on-orbit KH-11, being launched 14 years earlier. Only a few months later it was de-orbitted, so it was clearly at the end of its lifetime.

In addition to their KH-11 system, the US military hires space on commercial high resolution optical IMINT satellites from the US commercial firm Digitalglobe (the same firm that supplies Google Earth with satellite imagery).  

Digitalglobe operates a number of satellites with a better-than-1-meter capability: Geoeye-1 (0.4 meter resolution), and Worldview 1, 2 and 3 (0.25-0.50 meter resolution). Most of the satellite imagery that the US Department of Defense supplies to the press (when briefing on the military situation in e.g. North Korea, Syria and Libya) comes from these commercial satellites.

Imagery from these same Digitalglobe satellites is also available commercially, to any interested party with money. And in addition to DigitalGlobe, the European company Airbus Defense and Space also offers commercial high-resolution optical imagery from its SPOT and Pléiades satellites. Pléiades 1A and 1B offer a 0.5 meter resolution. SPOT 5 and 6 offer a 2.5-1.5 meter resolution.

Accurate orbital data from non-classified sources are available for all the commercial imagers for 17 July 2014. The satellites in question made several daylight passes over the area in the morning of July 17, 2014, between 8:00 and 10:00 GMT, i.e. during the 3 to 5 hours before the shootdown, a period when the skies were still less clouded.

This does not mean that they necessarily made imagery of course. Yet any imagery these commercial Digitalglobe and Airbus satellites did make on July 16, 17 and 18 have the advantage that they are not "classified", unlike the US military data, meaning that they could be used and published without diplomatic problems by the Dutch government in the Dutch criminal investigation into the disaster.

I would therefore expect the Dutch OM to either buy or subpoena all potential Digitalglobe and Airbus imagery from these dates. They can be used to reconstruct missile system positions in the area (both on the Ukrainian, the separatist and Russian sides) within range of the shootdown location, and they can be used to hunt for missile transports (see my earlier remarks about the Bellingcat claims). The Dutch Air Force has an imagery analysis unit that is well suited to help with such an analysis. Including imagery from the days before and after the incident as well is useful to look for differences between imagery of these respective dates.


2. Radar IMINT

The US military has two systems for high resolution radar IMINT: the Lacrosse (ONYX) system of which currently only one satellite, Lacrosse 5 (2005-016A) is left on-orbit, and the radar component of the Future Imagery Architecture (known as TOPAZ), consisting of three satellites: FIA Radar 1, 2 and 3 (2010-046A, 2012-014A and 2013-072A). These systems should be capable of providing imagery with sub-meter resolutions, and like optical imagery, they can be used to look for the presence of missile systems in the area. They have the added bonus that they are not hampered by cloud cover, unlike optical imagery.

Apart from the USA, the German military also operates a radar satellite system, the SAR-Lupe satellites. The French military likewise operates its own radar satellite system, the Hélios system. Japan operates the IGS system (which includes both optical and radar satellite versions).

All of these satellites made passes over the Ukraine at one time or another on July 17 2014, so all of them might have provided useful imagery.  FIA Radar 3 made a pass right over the area in question near 11:43 UT for example, some 1.5 hours before the tragedy. FIA Radar 2 made a pass over the area at 18:00 UT, 4.5 hours after the shootdown. These are just a few examples.

Given what was happening in the area around this time, and the strong concern of NATO and the EU about this, it is almost certain that imagery of the area was collected by these US, German and French satellite systems.


SIGINT

My position paper briefly mentions that a number of countries have space-based SIGINT (Signals Intelligence) capacities. This does not only concern capacities for (for example) the NSA to tap into your cellphone and satellite telephone conversations: another important strategic aspect of space-based SIGINT is the capacity to detect radar and telemetry signals from enemy weapons systems. Such detections allow identification of the used weapons system (each system has its own 'signature'). They also allow, according to remarks by the then NRO director Bruce Carlson in a speech from September 2010 at the National Space Symposium, geolocation of the source of this radar signal (in the case of MH17: geolocation of the Target Acquisition Radar of the launch unit).

The US military has a number of SIGINT systems in several types of orbits: Low Earth Orbit (LEO) below 1500 km which allows coverage of a few minutes during a pass over a target; and Highly Elliptical Orbit (HEO) and geosynchronous orbit (GEO), which allow to monitor targets for many hours (HEO) to continuously (GEO) from distances of 36 000+ km.

France has a number of SIGINT satellites in LEO. China no doubt has SIGINT satellites too, as does Russia. For the moment I will focus on the US systems. I must ad that I did check the French systems as well but none of the French systems (ESSAIM and Elisa, both in LEO) had sight of the Ukraine at that time.

The US systems, under the catch-all codename ORION, include the TRUMPET-FO which move in HEO. One of them is USA 184, mentioned before in the discussion of SBIRS as it has a piggyback SBIRS capacity in addition to its main SIGINT role.

There are also the big MENTOR satellites in GEO, plus two MERCURY satellites also in GEO, and the older VORTEX system. Of these systems, TRUMPET-FO, MENTOR and MERCURY are certainly still active based on their orbital behaviour.

The map below shows the positions of those satellites in this series for which we have enough tracking data to allow a reconstruction of their positions and footprints on 17 July 2014, 13:20 UT and which had the MH17 crash area within potential view:


click map to enlarge

Again: this does NOT necessarily mean that all of these satellites were actively monitoring the Ukraine at that time. Quite a number of them will have been tasked on the Middle East.

Yet, given the strong NATO interest in events in the Ukraine at that time, notably the rising concern about advanced surface-to-air missile systems following the shootdown of a Ukrainian Antonov-26 a few days earlier, I would be surprised if none of them monitored the Ukraine at all.


A clarification note on the position of USA 184 (SIGINT/SBIRS)

In my position paper written for the Dutch Parliament Foreign Affairs committee meeting coming Friday, I included this map with the positions of three SBIRS satellites with view on the Ukraine at that time:


click map to enlarge

I should point out here that there is some leeway in the exact position of USA 184, depending on whether it made a corrective manoeuvre to maintain its Mean Motion of about 2.00615 revolutions/day or not since the day we last observed it.

If it did, its position would be slightly more westward compared to the position depicted above, i.e. in a position just north of Scotland rather than above the Norwegian coast:


Let me be clear: this does NOT influence the conclusions of my position paper: the MH17 crash site in both variants is well within the field of view as seen from USA 184, i.e. the satellite could potentially provide both Infra-red and SIGINT detections. In the interest of accuracy, I thought I should however mention it here.


Acknowledgement -  I thank Mike McCants (USA) and Ted Molczan (Canada) for discussions about satellite positions, notably concerning USA 184.

Wednesday, 29 April 2015

KH-11 USA 224 recovered



Over the past week I twice tried to recover the KH-11 CRYSTAL ('Keyhole') USA 224 (2011-002A) but failed. Leo Barhorst and Cees Bassa however did recover it on the night of April 27-28, in an orbital plane which is 4 degrees more westward than its previous plane. This meant that on two previous nights when I was doing a 1.5-hours (one orbital revolution) photographic coverage of the old plane, it actually passed outside the FOV of my camera...

Last night, based on Cees' search orbit, I did observe it as it was passing through Lyra around 22:57 UT. The image above and below shows it, together with the old Japanese scientific satellite Tansei 3 (MS-T3, 1977-012A), which was captured as a stray in the same images. The Japanese satellite is moving in a much higher orbit, as can be seen from the much shorter trails. It slowly faded in and out, so it appears to be slowly tumbling.

The image below is a stack of 13 images (4 seconds exposure each, with 5-second gaps). The image above at the top of this post is a single image from this series. The images were made with the very fine Samyang 1.4/85 mm lens.


The plane change was probably done to keep the separation of this primary East plane KH with the primary West plane KH (USA 245) near 48-49 degrees (the angle between the primary East and West planes maintained over the past several years). This would also bring the separation with USA 161, the secondary East plane KH, to 25 degrees, similar to the current distance between the orbital planes of  USA 245 and USA 186 in the primary and secondary West plane.

I therefore expect that when we recover USA 161, the secondary East plane KH, it will be in an orbital plane about 25 degrees east of USA 224.

Thursday, 9 April 2015

Chasing USA 186

After Greg did the last observations from the southern hemisphere mid-February, the northern hemisphere observers recovered the KH-11 CRYSTAL ('Keyhole') optical reconnaissance satellite  USA 186 (2015-042A) late March. Alberto Rango captured it on March 30 from Italy and several observers have followed since. I observed it on April 6 in early twilight. Below is one of the images, showing it passing west of Castor and Pollux in a still blue twilight sky:




The current elements are here. USA 186 is currently moving in a 269 x 467 km orbit.

Next is the hunt for USA 245, the other West (evening) plane KH-11 that should emerge out of its winter shadow blackout by now. The East plane KH's, USA 161 and USA 224 will not be recoverable until early summer.

Tuesday, 23 September 2014

USA 186, bright and fast

USA 186 (top) and an old Russian r/b (1988-039B, lower corner)
click image to enlarge

Yesterday evening at the end of twilight, I observed USA 186 (2005-045A) pass amidst some scattered clouds. It had cleared just in time.

Close to perigee, the satellite was moving fast. At 70 degrees elevation due East, it became bright (about mag. +1.5), and then briefly flared to mag -1 near 19:06:20 UTC (22 Sep).

A second bright object was moving lower in the sky, and slower. It was an old Russian rocket from the Kosmos 1943 launch in 1988, 1988-039B.

Unfortunately, it later became completely clouded, so I missed this morning's favourable pass of the ISS and Dragon CRS-4, just hours before berthing.

Saturday, 20 September 2014

USA 186 manoeuvered on the 17th

USA 186 being half a minute late one hour after the manoeuvre, 17 Sept 2014, 19:32:02 UT.  Chinese satellite Yaogan 11 also visible  (click image to enlarge)


Ten days after the first post-summer-glareout observations of the KH-11 Keyhole/CRYSTAL optical reconnaissance satellite  USA 186 (2005-042A), it has made another orbital manoeuvre.

In the evening of Wednesday 17 September I was targetting the satellite in a somewhat hazy sky, using the 1.4/85mm lens and a FOV near the tip of the Big Dipper tail.

To my surprise, the satellite was over half a minute late with respect to a 3-day-old element set. This suggested a  manoeuvre. My observations were corroborated by video observations of Leo Barhorst in the Netherlands and visual observations by Pierre Neirinck in France, obtained during the same pass.

The image above shows one of my images. As it turns out, this image was taken perhaps only an hour after the manoeuvre! USA 186 is overtaking Yaogan 11 (2010-047A) in the image (the fainter shorter, upper trail). Yaogan 11 is a Chinese optical reconnaissance satellite.

Observations the following evening by Cees Bassa and me in the Netherlands showed the satellite running even more late by that time: it passed 6m 32s late, low in the west. My camera caught it very close to the image edge. A few hours later, Kevin Fetter in Canada captured it as well.

The Sept 17 and 18 observations suggest that the manoeuvre happened on Sept 17, just before I did my Sept 17 observations (perhaps only an hour before, i.e. less than one revolution!). The current orbital solutions vary a bit between analysts (the post-manoeuvre observational arc is still short), but they agree in that the manoeuvre slightly adjusted the inclination, raised perigee and lowered apogee.

The new orbit is sun-synchronous and close to a 321 x 417 km orbit (it was 265 x 440 km before the manoeuvre), i.e. perigee was raised by about 55 km and apogee lowered by about 23 km. The new orbit is more circular, and starts to conform to the orbit I envisioned in October 2013. I suspect more manoeuvres gently raising perigee and lowering apogee until an approximate 390 x 400 km orbit is reached will occur over the coming half year.

An analysis using COLA suggests the manoeuvre(s) occured on 17 September, either near 17:46 UT or 18:25 UT. Or perhaps (and I favour that) it was a double manoeuvre, performed near both of these moments.

17:46 UT corresponds to passage through the ascending node on the equator, only minutes after passing through perigee. 18:25 UT corresponds to passing through apogee.

A manoeuvre to change inclination is normally done in one of the orbital nodes, or near the poles. A manoeuvre to raise or lower perigee is normally done while the satellite passes through it's apogee, and a manoeuvre to raise or lower apogee is normally done in the perigee. If either one of these (in the current case: the perigee) closely coincides with passage through one of the nodes, this is the ideal moment to change both peri- or apogee, and the inclination in one boost, which spares fuel.

It is very difficult to  adjust the inclination, change the apogee altitude and change the perigee altitude in one manoeuvre.

My favoured scenario is therefore that a first manoeuvre happened near 17:46 UTC in or near the ascending node (and near perigee). This lowered the apogee altitude from 440 to 417 km, and allowed a slight adjustment of the inclination at the same time. Half a revolution later, while passing through apogee near 18:25 UTC, a second manoeuvre was made to raise the perigee altitude from 265 to 321 km.

(click map to enlarge)


Saturday, 13 September 2014

KH-11 USA 186 has stabilized its orbit

Note 15/09/2014 9:25 UT: corrected inadvertent apogee - perigee mix-up in 4th paragraph
USA 186 passing in early twilight of the evening of Sept 12, 2014
(click image to enlarge)

At the end of May, Northern hemisphere observers lost visibility of KH-11 Keyhole/CRYSTAL USA 186 (2005-042A) when the midsummer nights became too short. The orbital plane of the satellite was still drifting at that time, a process that started after a manoeuvre in mid-November 2013 (see earlier posts on this blog). The big question was, when that drifting would stop. I expected that when the satellite reached its new intended orbital plane it would manoeuvre into a stable sun-synchronous orbit again.

It now has done so, having manoeuvered probably on or near July 1. The orbital plane drift has stopped.

Kevin Fetter in Canada made a chance recovery of the satellite, the first post-summer glare-out sighting, on September 8: he was looking for another object and saw a "unid" in Low Earth Orbit pass through his field of view, that Cees Bassa was quick to identify as USA 186, in a new orbit. Over the next nights several other observers tracked it (including me on Thursday and Friday evening) yielding a first version of the new orbit it is in.

USA 186 passing close to Arcturus (top left) in the evening of Sept 11, 2014
(click image to enlarge)

The satellite has drastically lowered its perigee apogee by almost 500 km, and gently raised its apogee perigee by a few km. It is now in an approximately 265 x 440 km, 96.9 degree inclined orbit. This orbit is sun-synchronous again.

This means that the RAAN drift relative to the other satellites in the KH-11 constellation that had been going on since mid-November 2013, has stopped. It has finally settled at a RAAN distance of about 25 degrees from USA 245 (2013-043A), the primary West plane KH-11.



Comparing the new orbit to the old orbit suggests that the manoeuvre into the new orbit happened on or near July 1st.

In all, the satellite has kept itself pretty much to the expected scenario which I outlined on this blog in several posts in September and October 2013, e.g. here and here. Following the launch of USA 245 (2013-043A) into the primary West plane of the KH-11 constellation in August 2013, I had predicted that:

1) USA 186, at that time the primary West plane satellite, would migrate its orbital plane to the secondary West plane; 
2) USA 129, the extremely aged satellite in the secondary West plane, would be de-orbitted;
3) after a period of drifting, USA 186 would manoeuvre back into a sun-synchronous orbit again, stopping the RAAN drift, when reaching the intended plane location of the secondary West plane;
4) that in that manoeuvre it would drastically lower its apogee from near 1000 km to near 400 km and gently raise its perigee.

This all has basically happened. It differed on details with my predictions, but the bigger picture is pretty much as I anticipated.

What was somewhat unexpected, is that the satellite had its RAAN drift to a much larger distance with respect to the primary West plane (now occupied by USA 245) than I had anticipated. I expected 10, maybe 20 degrees. It turned out to be almost 25 degrees.

The perigee, although indeed raised, is slightly lower than I expected. The massive lowering of the apogee is exactly how I expected it to be however.

The current orbital plane makes it make passes near 8 am and 8 pm local time.

Meanwhile, there are indications that USA 245 (2013-043A) in the primary West plane has manoeuvered. Russell Eberst still observed it in it's last known orbit from Scotland on Sep 7. Then Bjorn Gimmle from Sweden observed an unknown object on Sep 10, that I suspect is USA 245 after a perigee raising orbital manoeuvre conducted between Sep 7 and Sep 10.

[note 14/09/2014: Mike McC identified Bjorn's object as a Russian r/b near decay]
[note 15/09/2014 9:25 UT: corrected inadvertent apogee - perigee mix-up in 4th paragraph]

Tuesday, 10 June 2014

Tracking USA 161

click image to enlarge

I am a bit behind with posting the image above taken a week ago, on 3 June 2014 . It shows the KH-11 Keyhole/CRYSTAL optical reconnaissance satellite USA 161 (2001-044A), which was recently recovered.

With new observations including mine, the orbit is now getting better defined. During the winter blackout, the orbit of the satellite appears to have been further circularized to a 389 x 391 km orbit, by a small perigee rise.

In the image above, another object is also visible: a Falcon 9 r/b, 2010-066K, at over 5000 km altitude at that time.

Sunday, 1 June 2014

Sorting out the confusion: USA 161 and IGS 8R

Okay, so yesterday considerable confusion arose about the current orbit of USA 161 (see previous post). This was due to the (luckily shortlived) confusion between two objects: the real USA 161, and a Japanese spysat that was briefly mistaken by me for USA 161.

The object which I photographed during the night of May 30-31 and which Björn Gimmle photographed from Sweden on April 22, turned out to be not USA 161 but, as Cees Bassa pointed out, another classified object we had "lost" in the winter blackout: IGS 8R (2013-002C), a Japanese radar imaging satellite launched early 2013.

So the image below actually shows IGS 8R flaring brightly, not USA 161 as I initially thought:

click image to enlarge

Luckily, Russell Eberst in Scotland observed the real USA 161 on June 1. Together with the observation by Leo on May 23, this means we do have an idea of the current orbit of USA 161 now, although further refinement through more observations is necessary. What is clear, is that USA 161 still is in the same orbital plane it was in when we lost it in August 2013. It's RAAN difference with the primary East plane KH-11 USA 224 is still 20 degrees, and it's orbit is sun-synchronous and about 385 x 393 km (these are approximate values which are subject to change, as the current orbit is preliminary and needs some refinement with more observations). The current KH11 Keyhole/CRYSTAL constellation now looks like this:





The short-lived confusion of yesterday could arise because both objects (IGS 8R and USA 161) currently move in a similar orbital plane. This can be seen in the image below, where the IGS 8R orbit is yellow and the USA 161 orbit is light grey:


This is the kind of confusion that can arise when multiple objects who's orbit have not been recently updated, move in a similar orbital plane. It does not only happen to us amateur trackers: even the professionals at JSpOC sometimes confuse objects.

Actually, this situation ended positive with a double recovery: that of USA 161, and that of IGS 8R.

Saturday, 31 May 2014

[AGAIN UPDATED] USA 161 recovered (?) - and new ideas on changes in the KH system

CORRECTION 1 June 2014: The object I observed on May 31 turns out to be NOT the KH USA 161, but one of the IGS objects, IGS 8R (2013-002C) which we had 'lost' in the winter blackout, just like USA 161. Their orbital planes happen to be very close (with a few tenths of a degree in inclination and a few degrees in RAAN) at the moment.

This renders the whole story below incorrect and hence moot.

Luckily, Russell Eberst did observe the real USA 161 last night (June 1) and his observations fit with Leo's observations from May 23. More in a new post later. (this new post is up now here)

ML, 01/06/2014

- STOP PRESS - (31 May 2014, 19:00 UT). Okay. Cees Bassa thinks last night's object is not USA 161. See here. So read the story below with caution: the jury is still out on all this.

Although it all was/is a bit confusing, it appears USA 166 (2001-044A), the secondary East plane KH-11 Keyhole/CRYSTAL has finally been recovered. [UPDATE: OR PERHAPS NOT???]. It had not been positively observed since August 2013 and over the past half year had been hiding in the northern hemisphere winter blackout.

USA 161 ?. IGS 8R last night
(click image to enlarge)

Initially, Leo Barhorst in Almere (NL) appeared to have recovered it on May 23. However, his observed object now turns out to not have been USA 161 but an unidentified other object.

Last night it was clear, after a very rainy week. Suffering from a bout of insomnia, I took advantage of the clear skies by conducting a 30 minute plane search, from 01:00 UT to 01:31 UT (May 31), using the EF 2.0/35 mm wide angle lens.

Just as I was about to abandon the effort at 01:30 UT, a bright and fast satellite appeared with a direction that was correct for USA 161 in a generally correct area of the sky. I managed to capture it on two images, the second one of which is depicted above. The object was about mag +2 when I first visually picked it up, and then becoming brighter as it produced a slow flare to mag -2 near 01:30:27 UTC. The image above shows the slow flare moment. It moved fast, producing long trails on the 10 second images with the 35 mm wide angle, so it evidently was near perigee.

The object could not be matched to any known object, but did appear to move in the general secondary East orbital plane of the KH-11. Visually, the slow bright flare it showed was quite typical for the KH-11 too. So I was (and am) fairly certain it is USA 161. Or not? Problem was, my observation was difficult to match with Leo's observation a week earlier...

After I reported my observations, Ted Molczan next managed to positively match my object to a UNID observation by Björn Gimmle in Sweden on April 22 (so over a month earlier), proceeding to fit a very reasonable orbit. The suggestion of this all is, that Leo's object from May 23 was something else, as it does not fit well with the other observations.

The preliminary orbit calculated by Ted, which needs to be refined by further observations, suggests that USA 161 made a manoeuvre into a (compared to the orbit it was last seen in in 2013) slightly higher orbit of 411 x 425 km, with the orbital inclination changed by half a degree to 97.52 degrees. This is the same orbital inclination as USA 129 (1996-072A), the former secondary West plane KH which we have recently "lost" and which is suspected to have been de-orbitted, was orbiting in.

Like the drifting secondary West plane KH USA 186 (2005-042A, see several previous posts on this blog for a discussion), USA 161 is no longer sun-synchronous as a result of this manoeuvre, and hence in what appears to be a plane transfer orbit. Its distance in RAAN relative to the primary East plane KH-11, USA 224 (2011-002A), has increased and will keep increasing steadily until it makes a corrective manoeuvre (which I suspect will happen near June 12, see below).

The orbital constellation for May 31 looks like this:

(image removed)
click image to enlarge

The current situation is that the two new primary plane objects, USA 224 and USA 245, are keeping a more or less steady plane distance (in terms of RAAN) of 48.5 degrees. The two (older) secondary plane satellites, USA 186 and USA 161 however have now both lost sun-synchronicity, and are both drifting outwards with respect to the orbital planes of their corresponding primary plane satellite.

Frequent readers of this blog will remember that I initially expected USA 186 to manoeuvre back into a non-drifting sun-synchronous orbit when the RAAN difference with USA 245 was 10 degrees, early February. That didn't happen. As a secondary option, I then thought it would manoeuvre when the difference was 20 degrees, early May. That didn't happen either. I then was at a loss as to what "they" were planning to do with USA 186.

Now USA 161 has been recovered and turns out to have been manoeuvered into a drifting plane-changing orbit as well, just like USA 186, I am getting a possible idea again about what they might intend. Please note: I have been wrong twice before, so my track-record in these kind of predictions is not quite good :-p

Nevertheless: assuming that symmetry is what is being aimed for, I think both objects (USA 186 and USA 161) will manoeuvre back into a non-drifting, sun-synchronous orbit on or near June 10 to June 12.

On May 31 the RAAN difference between USA 245 (primary West) and USA 186 (drifting secondary West) was 23.0 degrees. The RAAN difference between USA 224 (primary East) and USA 161 (drifting secondary East) was 23.7 degrees. Their rate of drift is different: it is -0.11 degrees/day for USA 186 and +0.056 degrees/day for USA 161 (i.e., USA 186 is drifting twice as fast as USA 161). These differential drift rates mean that at some point in time, both satellites will reach a matching value in RAAN difference with their primary partner, i.e.be at similar RAAN distances from their primary partner on the same day. This is depicted in the diagram below:

(image removed)
click diagram to enlarge

What can be seen from the diagram, is that this moment will occur in about 10-12 days from now, near June 10-12. On June 12, both satellites (USA 186 and USA 161) will reach a matching difference in RAAN of 23.3 degrees with their primary partners USA 245 and USA 224. Interestingly, this value is very close to 0.5 times the RAAN difference between the primary plane satellites, USA 224 and USA 245 which are 48.5 degrees apart in RAAN.

But please be advised: until now, I was wrong each time I thought I could make sense of it....

Wednesday, 21 May 2014

USA 224 recovered, USA 186 still drifting, and looking for GPS IIF-6 20 minutes after launch

For various reasons, I am a bit late in keeping the reader up to what is happening to the KH-11 Keyhole/CRYSTAL system of optical reconnaissance satellites.

USA 186 (2005-042A), the secondary West plane KH-11, is still in a non sun-synchronous orbit and hence still drifting westwards. It is drifting for over half a year now. The difference in RAAN with USA 245, the primary West plane KH-11, is now over 20 degrees (21.8 degrees on May 19th). I am very curious as to when the drifting will stop, if ever. If it continues to drift for many weeks to come, we should contemplate whether perhaps the satellite is "dead", i.e. has lost manoeuverability. Problem is that NW European observers temporarily have lost visibility of the satellite, due to the current short nights. Tracking all comes down now to observers in the US and southern Europe.

Meanwhile, Russell Eberst in Scotland recovered USA 224 (2011-002A), the primary East plane KH-11, on May 9th. It is in a 260 x 1006 km orbit, which means it has slightly lowered its apogee. Before the winter blackout it was in a 258 x 1023 km orbit. The difference in RAAN with USA 245, the primary West plane KH-11, is now 48.5 degrees.

My own first observation of USA 224 was in the night of May 16-17. The image below shows it crossing through Corona borealis:

click image to enlarge

USA 161 (2001-044A), the secondary East plane KH-11, has still not emerged out of the winter blackout. Meanwhile, USA 129 (1996-072A) has gone missing since April 24 (see a previous post). There is a good chance it has been de-orbitted.

The current KH-11 constellation now looks like this (where the current orbital configuration of USA 161, in red, is uncertain, and USA 129 left out as it is no longer in its old orbit, and presumed de-orbitted):




click images to enlarge

In the early morning of May 17 (evening of May 16 in the US) and after a one day delay due to bad weather, a new GPS satellite, GPS II-F6 was launched from Cape Canaveral on a Delta IV rocket. It would pass over the Netherlands some 20 minutes after launch, still ascending and still attached to the 2nd stage. A number of search orbit had been published, but it looks like none of these was very accurate. I visually observed a bright UNID near 00:24:00 UT (May 17) moving just a few degrees to the 'right' of Altair on a trajectory parallel to the predicted ones but some 20 degrees cross-track in a southern direction. It was already descending over the roof when I picked it up, so I had no time to snap a picture alas. It did not match any known object so I am quite confident it was GPS II F-6 on its way to orbit. It was bright, about mag +1 to 0.

Monday, 5 May 2014

KH-11 USA 129 is missing, USA 186 has still not manoeuvered

USA 129 (96-072A), the oldest of the KH-11 Keyhole/CRYSTAL/KENNAN optical reconnaisance satellites, has gone missing. The last observers to see it were me on April 22 and Russel Eberst on April 24. The photo below shows one of my images from April 22, with USA 129 passing near Castor and Pollux:


click image to enlarge

Somewhere between that date and May 1, when various observers noted it missing, it disappeared.

There is a possibility that it has been de-orbitted, as it is over 17.5 years old now and appears to be 'redundant' after the launch of USA 245 and plane move of USA 186 (see various earlier posts on this blog). On the other hand, we should be cautious and not too hasty: in the recent past (Feb 2014) we erroneously wrote USA 129's eulogy before, and it turned out it had just manoeuvered. Maybe it did this time as well. A dedicated plane watch I did in the evening of 3 May between 20:41 -21:05 UT yielded nothing.

Meanwhile, we had expected USA 186 (2005-042A) to manoeuvre early May. But up to yesterday May 4th it hasn't. Maybe it will do in the coming days. On May 1st the difference in RAAN with the main West plane KH, USA 245, was 19.8 degrees. At a drift rate of 0.11 degrees/day, it reached 20 degrees the past weekend. If it hasn't manoeuvered by the end of the coming week, it will become interesting. Unfortunately, it is disappearing in evening twilight for my location these days.

The image below shows USA 186 crossing Canis minor in deep evening twilight of May 2nd:

click image to enlarge

I imaged USA 245 (2013-043A), the current main West plane KH-11, last Saturday evening. In evening twilight, it was visible in the same camera field with FIA Radar 1 (2010-046A):


click image to enlarge