aurel.solutions
Here are a couple solutions to Einstein’s field equations.
Functions in these modules generate numerical data based on
analytical expressions.
solutions.Collins_Stewart
Collins and Stewart 1971 Bianchi II γ-law perfect fluid solution.
This is a homogeneous solution, see section 3.3 of 2211.08133.
-
aurel.solutions.Collins_Stewart.Kdown3(t, x, y, z)[source]
Extrinsic curvature.
-
aurel.solutions.Collins_Stewart.data(t, x, y, z)[source]
Return dictionary of Collins Stewart data.
-
aurel.solutions.Collins_Stewart.gammadown3(t, x, y, z, analytical=False)[source]
Spatial metric.
-
aurel.solutions.Collins_Stewart.gdown4(t, x, y, z, analytical=False)[source]
Spacetime metric.
-
aurel.solutions.Collins_Stewart.press(t, x, y, z)[source]
Pressure.
-
aurel.solutions.Collins_Stewart.rho(t, x, y, z)[source]
Energy density.
solutions.EdS
FLRW spacetime with an Einstein-de Sitter model.
-
aurel.solutions.EdS.Hconf(t)[source]
Conformal Hubble function.
-
aurel.solutions.EdS.Hprop(t)[source]
Proper Hubble function.
-
aurel.solutions.EdS.Kdown3(t, x, y, z)[source]
Extrinsic curvature.
-
aurel.solutions.EdS.Omega_m(t)[source]
Matter density parameter.
-
aurel.solutions.EdS.a(t)[source]
Scale factor.
-
aurel.solutions.EdS.a_func_z(z)[source]
Scale factor from redshift.
-
aurel.solutions.EdS.alpha(t, x, y, z)[source]
Lapse.
-
aurel.solutions.EdS.an_today(t)[source]
Scale factor normalised by a(z=0).
-
aurel.solutions.EdS.betaup3(t, x, y, z)[source]
Shift.
-
aurel.solutions.EdS.fL(t)[source]
Growth index = d ln (delta) / d ln (a).
-
aurel.solutions.EdS.gammadown3(t, x, y, z)[source]
Spatial metric.
-
aurel.solutions.EdS.press(t)[source]
Pressure.
-
aurel.solutions.EdS.redshift(t)[source]
Redshift.
-
aurel.solutions.EdS.rho(t)[source]
Energy density.
-
aurel.solutions.EdS.t_func_Hprop(Hprop)[source]
Proper time from Hubble.
-
aurel.solutions.EdS.t_func_a(a)[source]
Proper time from scale factor.
-
aurel.solutions.EdS.t_func_z(z)[source]
Proper time from redshift.
solutions.Harvey_Tsoubelis
A.Harvey and T.Tsoubelis vacuum Bianchi IV plane wave solution.
This is a homogeneous spacetime, see section 3.5 of 2211.08133 or
page 191 of ‘Dynamical Systems in Cosmology’ by J.Wainwright and G.F.R.Ellis.
-
aurel.solutions.Harvey_Tsoubelis.Kdown3(t, x, y, z)[source]
Return the extrinsic curvature.
-
aurel.solutions.Harvey_Tsoubelis.Tdown4(t, x, y, z)[source]
Energy stress tensor.
-
aurel.solutions.Harvey_Tsoubelis.alpha(t, x, y, z)[source]
Return the lapse function.
-
aurel.solutions.Harvey_Tsoubelis.betaup3(t, x, y, z)[source]
Return the shift vector.
-
aurel.solutions.Harvey_Tsoubelis.data(t, x, y, z)[source]
Return dictionary of Harvey Tsoubelis data.
-
aurel.solutions.Harvey_Tsoubelis.gammadown3(t, x, y, z, analytical=False)[source]
Return the spatial metric.
-
aurel.solutions.Harvey_Tsoubelis.gdown4(t, x, y, z, analytical=False)[source]
Return the spacetime metric.
-
aurel.solutions.Harvey_Tsoubelis.press(t, x, y, z)[source]
Return the pressure.
-
aurel.solutions.Harvey_Tsoubelis.rho(t, x, y, z)[source]
Return the energy density.
-
aurel.solutions.Harvey_Tsoubelis.uup4(t, x, y, z)[source]
Fluid 4 velocity.
solutions.ICPertFLRW
Perturbed FLRW initial conditions.
See: https://arxiv.org/pdf/2302.09033
and: https://arxiv.org/pdf/1307.1478.
-
aurel.solutions.ICPertFLRW.Kdown3(sol, fd, t, Rc)[source]
Extrinsic curvature, nonlinear from gammmadown3.
-
aurel.solutions.ICPertFLRW.Rc_func(x, y, z, amp, lamb)[source]
Comoving curvature perturbation.
-
aurel.solutions.ICPertFLRW.delta1(sol, fd, t, Rc)[source]
Linear density contrast.
-
aurel.solutions.ICPertFLRW.gammadown3(sol, fd, t, Rc)[source]
Spatial metric with 1st order perturbations.
solutions.LCDM
FLRW spacetime with a \(\Lambda\)CDM model.
-
aurel.solutions.LCDM.Hconf(t)[source]
Conformal Hubble function.
-
aurel.solutions.LCDM.Hprop(t)[source]
Proper Hubble function.
-
aurel.solutions.LCDM.Kdown3(t, x, y, z)[source]
Extrinsic curvature.
-
aurel.solutions.LCDM.Omega_m(t)[source]
Matter density parameter.
-
aurel.solutions.LCDM.a(t, analytical=False)[source]
Scale factor.
-
aurel.solutions.LCDM.alpha(t, x, y, z)[source]
Lapse.
-
aurel.solutions.LCDM.an_today(t)[source]
Scale factor normalised by a(z=0).
-
aurel.solutions.LCDM.betaup3(t, x, y, z)[source]
Shift.
-
aurel.solutions.LCDM.fL(t)[source]
Growth index = d ln (delta) / d ln (a).
-
aurel.solutions.LCDM.gammadown3(t, x, y, z, analytical=False)[source]
Spatial metric.
-
aurel.solutions.LCDM.redshift(t)[source]
Redshift.
-
aurel.solutions.LCDM.rho(t)[source]
Energy density.
solutions.Non_diagonal
See section 3.2 of 2211.08133.
-
aurel.solutions.Non_diagonal.A(z, analytical=False)[source]
Conformal factor.
-
aurel.solutions.Non_diagonal.Kdown3(t, x, y, z)[source]
Extrinsic curvature.
-
aurel.solutions.Non_diagonal.Tdown4(t, x, y, z)[source]
Stress-energy tensor, from Einstein’s field equations.
-
aurel.solutions.Non_diagonal.data(t, x, y, z)[source]
Return dictionary of Non-diagonal data.
-
aurel.solutions.Non_diagonal.dzA(z)[source]
Conformal factor 1st derivative.
-
aurel.solutions.Non_diagonal.dzdzA(z)[source]
Conformal factor 2nd derivative.
-
aurel.solutions.Non_diagonal.gammadown3(t, x, y, z, analytical=False)[source]
Spatial metric.
-
aurel.solutions.Non_diagonal.gdown4(t, x, y, z, analytical=False)[source]
Spacetime metric.
solutions.Rosquist
Rosquist and Jantzen Bianchi VI tilted γ-law perfect fluid solution.
This is a homogeneous solution with vorticity, see section 3.4 of 2211.08133.
-
aurel.solutions.Rosquist_Jantzen.Kdown3(t, x, y, z)[source]
Return the extrinsic curvature.
-
aurel.solutions.Rosquist_Jantzen.Tdown4(t, x, y, z)[source]
Return the energy-stress tensor.
-
aurel.solutions.Rosquist_Jantzen.data(t, x, y, z)[source]
Return dictionary of Roquist Jantzen data.
-
aurel.solutions.Rosquist_Jantzen.gammadown3(t, x, y, z, analytical=False)[source]
Return the spatial metric.
-
aurel.solutions.Rosquist_Jantzen.gdown4(t, x, y, z, analytical=False)[source]
Return the spacetime metric.
solutions.Schwarzschild_isotropic
Schwarzschild solution in isotropic coordinates with maximal slicing.
See https://arxiv.org/pdf/0904.4184.
-
aurel.solutions.Schwarzschild_isotropic.Kdown3(t, x, y, z)[source]
Return the extrinsic curvature.
-
aurel.solutions.Schwarzschild_isotropic.Kretschmann(t, x, y, z)[source]
Kretschmann scalar.
-
aurel.solutions.Schwarzschild_isotropic.Tdown4(t, x, y, z)[source]
Return the energy-stress tensor.
-
aurel.solutions.Schwarzschild_isotropic.alpha(t, x, y, z, analytical=False)[source]
Return the lapse function.
-
aurel.solutions.Schwarzschild_isotropic.betaup3(t, x, y, z)[source]
Return the shift vector.
-
aurel.solutions.Schwarzschild_isotropic.data(t, x, y, z)[source]
Return dictionary of Schwarzschild data.
-
aurel.solutions.Schwarzschild_isotropic.gammadown3(t, x, y, z, analytical=False)[source]
Return the spatial metric.
-
aurel.solutions.Schwarzschild_isotropic.gdown4(t, x, y, z, analytical=False)[source]
Return the spacetime metric.
-
aurel.solutions.Schwarzschild_isotropic.null_ray_exp_out(t, x, y, z)[source]
Outward null ray expansion.
solutions.Szekeres
\(\Lambda\) - Szekeres solution.
Perturbed solution of the flat dust FLRW + LCDM spacetime,
see section 3.1 of 2211.08133.
-
aurel.solutions.Szekeres.Kdown3(t, x, y, z)[source]
Return the extrinsic curvature.
-
aurel.solutions.Szekeres.Z_terms(t, x, y, z, analytical=False)[source]
Return F, Z, dtZ functions.
-
aurel.solutions.Szekeres.alpha(t, x, y, z)[source]
Return the lapse function.
-
aurel.solutions.Szekeres.betaup3(t, x, y, z)[source]
Return the shift vector.
-
aurel.solutions.Szekeres.data(t, x, y, z)[source]
Return dictionary of Szekeres data.
-
aurel.solutions.Szekeres.gammadown3(t, x, y, z, analytical=False)[source]
Return the spatial metric.
-
aurel.solutions.Szekeres.gdown4(t, x, y, z, analytical=False)[source]
Return the spacetime metric.
-
aurel.solutions.Szekeres.press(t, x, y, z)[source]
Return the pressure.
-
aurel.solutions.Szekeres.rho(t, x, y, z)[source]
Return the energy density.