Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 22;64(8):e00730-20.
doi: 10.1128/AAC.00730-20. Print 2020 Jul 22.

In Vitro Activity of Manogepix (APX001A) and Comparators against Contemporary Molds: MEC Comparison and Preliminary Experience with Colorimetric MIC Determination

Affiliations

In Vitro Activity of Manogepix (APX001A) and Comparators against Contemporary Molds: MEC Comparison and Preliminary Experience with Colorimetric MIC Determination

Karin Meinike Jørgensen et al. Antimicrob Agents Chemother. .

Abstract

Manogepix (APX001A) is the active moiety of the drug candidate fosmanogepix (APX001), currently in clinical development for the treatment of invasive fungal infections. We compared manogepix EUCAST minimum effective concentrations (MECs) to MICs of five comparators and CLSI MECs and MICs by a colorimetric method against contemporary molds. EUCAST susceptibility testing was performed for 161 isolates. Interlaboratory and intermethod reproducibility were determined by comparison with published manogepix MECs. Colorimetric MICs (measuring metabolic activity) were evaluated using three Aspergillus fumigatus isolates and one Aspergillus flavus isolate with four inocula at 24 to 48 h of incubation and 1 to 3 h 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT)/menadione (MEN) exposure. Manogepix modal MECs (range in mg/liter) against Aspergillus species were 0.03 to 0.06 (0.008 to 0.125) and unaffected by itraconazole resistance. Manogepix was as active against two Fusarium isolates but inactive against Trichophyton interdigitale, Lichtheimia ramosa, and Rhizomucor pusillus isolates (MECs >0.5). Modal MEC/MICs were ≥3 2-fold dilutions apart without overlapping ranges comparing manogepix with amphotericin B, isavuconazole, and voriconazole against Aspergillus isolates. Manogepix and posaconazole MECs/MICs correlated for Aspergillus niger (Pearson's r = 0.711; P = 0.0044). The MEC at which 50% of the isolates tested are inhibited (MEC50), mode, and MEC90 values were within ±1 dilution in all cases compared with published EUCAST and CLSI data. The colorimetric method showed excellent agreement with the MECs when plates were inoculated with the lowest inoculum (1 × 102 CFU/ml to 2.5 × 102 CFU/ml), incubated for 24 h, and exposed for 1 to 3 h to XTT/MEN. Broad-spectrum in vitro activity of manogepix against clinically relevant molds was confirmed with excellent agreement across EUCAST and CLSI methods reported from experienced mycology laboratories. Colorimetric MIC determination warrants further investigation as a potential alternative that is less dependent on mycology expertise.

Keywords: APX001; APX001A; Aspergillus; CLSI; EUCAST; antifungal susceptibility testing; fosmanogepix; manogepix; mold.

PubMed Disclaimer

References

    1. Miyazaki M, Horii T, Hata K, Watanabe NA, Nakamoto K, Tanaka K, Shirotori S, Murai N, Inoue S, Matsukura M, Abe S, Yoshimatsu K, Asada M. 2011. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother 55:4652–4658. doi:10.1128/AAC.00291-11. - DOI - PMC - PubMed
    1. Berkow EL, Lockhart SR. 2018. Activity of novel antifungal compound APX001A against a large collection of Candida auris. J Antimicrob Chemother 73:3060–3062. doi:10.1093/jac/dky302. - DOI - PubMed
    1. Arendrup MC, Chowdhary A, Astvad KMT, Jørgensen KM. 2018. APX001A in vitro activity against contemporary blood isolates and candida auris determined by the EUCAST reference method. Antimicrob Agents Chemother 62:1–9. doi:10.1128/AAC.01225-18. - DOI - PMC - PubMed
    1. Pfaller MA, Huband MD, Flamm RK, Bien PA, Castanheira M. 2019. In vitro activity of APX001A (manogepix) and comparator agents against 1,706 fungal isolates collected during an international surveillance program in 2017. Antimicrob Agents Chemother 63:e00840-19. doi:10.1128/AAC.00840-19. - DOI - PMC - PubMed
    1. Hager CL, Larkin EL, Long L, Zohra Abidi F, Shaw KJ, Ghannoum MA. 2018. In vitro and in vivo evaluation of the antifungal activity of APX001A/APX001 against Candida auris. Antimicrob Agents Chemother 62:e02319-17. doi:10.1128/AAC.02319-17. - DOI - PMC - PubMed

Publication types

Supplementary concepts

LinkOut - more resources