Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 15:7:1997.
doi: 10.3389/fmicb.2016.01997. eCollection 2016.

Sensitive Quantitative Analysis of the Meconium Bacterial Microbiota in Healthy Term Infants Born Vaginally or by Cesarean Section

Affiliations

Sensitive Quantitative Analysis of the Meconium Bacterial Microbiota in Healthy Term Infants Born Vaginally or by Cesarean Section

Ravinder Nagpal et al. Front Microbiol. .

Abstract

For decades, babies were thought to be born germ-free, but recent evidences suggest that they are already exposed to various bacteria in utero. However, the data on population levels of such pioneer gut bacteria, particularly in context to birth mode, is sparse. We herein aimed to quantify such bacteria from the meconium of 151 healthy term Japanese infants born vaginally or by C-section. Neonatal first meconium was obtained within 24-48 h of delivery; RNA was extracted and subjected to reverse-transcription-quantitative PCR using specific primers for Clostridium coccoides group, C. leptum subgroup, Bacteroides fragilis group, Atopobium cluster, Prevotella, Bifidobacterium, Lactobacillus, Enterococcus, Enterobacteriaceae, Staphylococcus, Enterococcus, Streptococcus, C. perfringens, and C. difficile. We detected several bacterial groups in both vaginally- and cesarean-born infants. B. fragilis group, Enterobacteriaceae, Enterococcus, Streptococcus, and Staphylococcus were detected in more than 50% of infants, with counts ranging from 105 to 108 cells/g sample. About 30-35% samples harbored Bifidobacterium and Lactobacillus (104-105 cells/g); whereas C. coccoides group, C. leptum subgroup and C. perfringens were detected in 10-20% infants (103-105 cells/g). Compared to vaginally-born babies, cesarean-born babies were significantly less often colonized with Lactobacillus genus (6% vs. 37%; P = 0.01) and Lactobacillus gasseri subgroup (6% vs. 31%; P = 0.04). Overall, seven Lactobacillus subgroups/species, i.e., L. gasseri subgroup, L. ruminis subgroup, L. casei subgroup, L. reuteri subgroup, L. sakei subgroup, L. plantarum subgroup, and L. brevis were detected in the samples from vaginally-born group, whereas only two members, i.e., L. gasseri subgroup and L. brevis were detected in the cesarean group. These data corroborate that several bacterial clades may already be present before birth in term infants' gut. Further, lower detection rate of lactobacilli in cesarean-born babies suggests that the primary source of lactobacilli in infant gut is mainly from maternal vaginal and-to a lesser extent-anal microbiota during vaginal delivery, and that the colonization by some important Lactobacillus species is delayed in babies delivered via cesarean-section.

Keywords: C-section; Lactobacillus; RT-qPCR; dysbiosis; gut bacteria; intestinal microbiota; meconium.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Comparison of proportional ratio of obligatory anaerobic vs. facultative anaerobic bacteria (A), and relative proportions of different gut bacteria (B) in the meconium samples of vaginally- vs. cesarean-born infants. Proportions were calculated by using the original arithmetical number of the bacterial count and are expressed as the percent of numerical value of the total bacterial count. Obligates: Clostridium coccoides group, C. leptum subgroup, C. perfringens, Bacteroides fragilis group, and Bifidobacterium. Facultatives: Lactobacillus, Enterobacteriacea, Enterococcus, Staphylococcus, and Streptococcus.
FIGURE 2
FIGURE 2
Differences in the detection rate of Lactobacillus genus, subgroups and species between vaginally- and cesarean-born babies at different time-points during the first 3 years of life. Detection rate (%) was expressed as the percentage of infants in which the specific bacterium was detected. The count of genus Lactobacillus was expressed as the sum of the counts of six subgroups (L. casei subgroup, L. gasseri subgroup, L. plantarum subgroup, L. reuteri subgroup, L. ruminis subgroup, and L. sakei subgroup) and two species (L. brevis, L. fermentum). P < 0.05 vs. vaginally-born at same-point (Fisher’s exact test). Age (x-axis): 1, 3, and 7 days, 1, 3, and 6 months, 3 years.

References

    1. Aagaard K., Ma J., Antony K. M., Ganu R., Petrosino J., Versalovic J. (2014). The placenta harbors a unique microbiome. Sci. Transl. Med. 6:237ra65 10.1126/scitranslmed.3008599 - DOI - PMC - PubMed
    1. Arboleya S., Solis G., Fernandez N., de los Reyes-Gavilan C. G., Gueimonde M. (2012). Facultative to strict anaerobes ratio in the preterm infant microbiota: a target for intervention? Gut Microbes 3 583–588. 10.4161/gmic.21942 - DOI - PMC - PubMed
    1. Ardissone A. N., de la Cruz D. M., Davis-Richardson A. G., Rechcigl K. T., Li N., Drew J. C., et al. (2014). Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS ONE 9:e90784 10.1371/journal.pone.0090784 - DOI - PMC - PubMed
    1. Arrieta M. C., Stiemsma L. T., Dimitriu P. A., Thorson L., Russell S., Yurist-Doutsch S., et al. (2015). Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7:307ra152 10.1126/scitranslmed.aab2271 - DOI - PubMed
    1. Backhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., et al. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:852 10.1016/j.chom.2015.05.012 - DOI - PubMed

LinkOut - more resources