Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep 1;7(1):37.
doi: 10.1186/s13229-016-0099-3. eCollection 2016.

Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder

Affiliations

Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder

Christopher Newell et al. Mol Autism. .

Abstract

Background: Gastrointestinal dysfunction and gut microbial composition disturbances have been widely reported in autism spectrum disorder (ASD). This study examines whether gut microbiome disturbances are present in the BTBR(T + tf/j) (BTBR) mouse model of ASD and if the ketogenic diet, a diet previously shown to elicit therapeutic benefit in this mouse model, is capable of altering the profile.

Findings: Juvenile male C57BL/6 (B6) and BTBR mice were fed a standard chow (CH, 13 % kcal fat) or ketogenic diet (KD, 75 % kcal fat) for 10-14 days. Following diets, fecal and cecal samples were collected for analysis. Main findings are as follows: (1) gut microbiota compositions of cecal and fecal samples were altered in BTBR compared to control mice, indicating that this model may be of utility in understanding gut-brain interactions in ASD; (2) KD consumption caused an anti-microbial-like effect by significantly decreasing total host bacterial abundance in cecal and fecal matter; (3) specific to BTBR animals, the KD counteracted the common ASD phenotype of a low Firmicutes to Bacteroidetes ratio in both sample types; and (4) the KD reversed elevated Akkermansia muciniphila content in the cecal and fecal matter of BTBR animals.

Conclusions: Results indicate that consumption of a KD likely triggers reductions in total gut microbial counts and compositional remodeling in the BTBR mouse. These findings may explain, in part, the ability of a KD to mitigate some of the neurological symptoms associated with ASD in an animal model.

Keywords: Autism spectrum disorder; BTBR mouse; Gut microbiome; Ketogenic diet.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Assessment of total microbial content, partial least squares discriminant analysis (PLS-DA), and variable importance of projection (VIP) scores for relative bacterial abundance. Descriptive comparisons of total microbial content, score plots of PLS-DA, and VIP scores for both cecal and fecal matter are presented. a Total bacterial species composition measured from cecal matter. b Total bacterial species composition measured from fecal matter. c PLS-DA score plot for cecal matter showing model discrimination between each genotype. d PLS-DA score plot for fecal matter showing model discrimination between each genotype. e Cecal VIP plot indicating the most discriminating bacteria in descending order of importance. f Fecal VIP plot indicating the most discriminating bacteria in descending order of importance. Statistical comparisons between genotype and diet were determined by ANOVA, followed by Tukey’s post hoc test. PLS-DA and VIP scores were assessed using MetaboAnalyst 3.0. Ellipses represent 95 % confidence intervals for each individual group on PLS-DA plots with Q 2 and R 2 values being used to assess the robustness of the model and the amount of variation represented by the principal components, respectively. VIP scores reflect the degree of importance of a bacteria, with values >1.0 seen as driving the calculated discrimination. All data were collected using qRT-PCR and are presented as mean 16S rRNA gene copies/mg of corresponding tissue ± SEM (CC, B6-chow; CK, B6-ketogenic; BC, BTBR-chow; and BK, BTBR-ketogenic; n = 11, 10, 15, and 10, respectively). p < 0.01 if values do not share a superscript letter. An adapted version of this table has been previously published. Reprinted with permission of the American Chemical Society, Copyright 2016

References

    1. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8:e76993. doi: 10.1371/journal.pone.0076993. - DOI - PMC - PubMed
    1. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E, Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green JA. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–53. doi: 10.1016/j.anaerobe.2010.06.008. - DOI - PubMed
    1. Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015;54:325-41. - PMC - PubMed
    1. Kamada N, Seo S-U, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13:321–35. doi: 10.1038/nri3430. - DOI - PubMed
    1. de Theije CGM, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J, Garssen J, Kraneveld AD, Oozeer R. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun. 2014;37:197–206. doi: 10.1016/j.bbi.2013.12.005. - DOI - PubMed

Publication types

Grants and funding