Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Feb;37(2):183-92.
doi: 10.1177/0192623308329280. Epub 2009 Jan 30.

Differential evaluation of excisional non-occluded wound healing in db/db mice

Affiliations
Comparative Study

Differential evaluation of excisional non-occluded wound healing in db/db mice

Vanesa Ivetić Tkalcević et al. Toxicol Pathol. 2009 Feb.

Abstract

The full-thickness wound in the genetically diabetic (db/db) mouse is a commonly used model of impaired wound healing. We investigated delayed healing of non-occluded, excisional, full-thickness, dermal wounds in db/db mice in comparison to their normal littermate controls and refined methods for monitoring skin wound re-epithelialization, contraction, granulation tissue formation, and inflammation. We have confirmed with a computer-assisted planimetry method the results of previous studies showing that healing of non-occluded full excision wounds in db/db mice does not occur by contraction as much as in healthy mice. In addition, we have developed separate histological methods for the assessment of re-epithelialization, contraction, granulation tissue (mature, immature, fibrosis), and inflammation (lipogranulomas, secondary, nonspecific). Using a new approach to histological assessment, we have shown that wound closure in db/db mice is delayed owing to: (1) delayed granulation tissue maturation; (2) ''laced,'' widely distributed granulation tissue around fat lobules; and (3) obstruction by lipogranulomas, whereas the rate of re-epithelialization seems to be the same as in C57Bl/6 mice. This methodology should permit a more precise differentiation of effects of novel therapeutic agents on the wound healing process in db/db mice.

PubMed Disclaimer

LinkOut - more resources