WO1989006117A1 - Process for stabilizing a single-axle wheeled vehicle and vehicle so stabilized - Google Patents
Process for stabilizing a single-axle wheeled vehicle and vehicle so stabilized Download PDFInfo
- Publication number
- WO1989006117A1 WO1989006117A1 PCT/EP1989/000018 EP8900018W WO8906117A1 WO 1989006117 A1 WO1989006117 A1 WO 1989006117A1 EP 8900018 W EP8900018 W EP 8900018W WO 8906117 A1 WO8906117 A1 WO 8906117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- wheel
- wheels
- axle
- motors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/04—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/06—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs with obstacle mounting facilities, e.g. for climbing stairs, kerbs or steps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/10—Parts, details or accessories
- A61G5/1089—Anti-tip devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2036—Electric differentials, e.g. for supporting steering vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/52—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D37/00—Stabilising vehicle bodies without controlling suspension arrangements
- B62D37/04—Stabilising vehicle bodies without controlling suspension arrangements by means of movable masses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D61/00—Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D63/00—Motor vehicles or trailers not otherwise provided for
- B62D63/02—Motor vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K1/00—Unicycles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/16—Single-axle vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/44—Wheel Hub motors, i.e. integrated in the wheel hub
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/14—Acceleration
- B60L2240/16—Acceleration longitudinal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/14—Acceleration
- B60L2240/18—Acceleration lateral
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/14—Acceleration
- B60L2240/20—Acceleration angular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/28—Four wheel or all wheel drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/34—Stabilising upright position of vehicles, e.g. of single axle vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D61/00—Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
- B62D61/12—Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with variable number of ground engaging wheels, e.g. with some wheels arranged higher than others, or with retractable wheels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a method for stabilizing a uniaxial vehicle according to the preamble of claim 1 and vehicles which are stabilized by this method.
- Vehicles are usually equipped with at least three wheels arranged on two axles that form a stable footprint on the floor. These vehicles are stable to drive in normal operation, but they have poor maneuverability in a confined space and the off-road capability leaves something to be desired due to small wheel diameters and limited ground clearance between the axles.
- a special case is the so-called two-wheeled vehicle, in which two axles are arranged one behind the other in the longitudinal direction (bicycle, motorcycle). Such vehicles can only be driven stably by people who form a control loop with the vehicle.
- Wheelchairs capable of climbing stairs are also known from the literature. This is how AU-OS 20473/83 describes such a wheelchair that moves by means of caterpillars that are guided over several vertically movable pairs of rollers.
- the wheelchair contains a sensor that triggers a shift of the battery to the raised side when the wheelchair is tilted. This ensures a stable center of gravity, which prevents the wheelchair from tipping over.
- US Pat. No. 4,432,425 also describes a wheelchair capable of climbing stairs, which has two pairs of wheels, one of which is vertically movable.
- the axles of the wheel pairs drive a chain, which pulls the wheelchair up stairs via elements attached to it.
- the wheelchair is equipped with a sensor that measures the angle of inclination.
- the sensor signal uses a piston to operate a lever that keeps the seat of the wheelchair horizontal, regardless of the inclined position of the chassis.
- the present invention is based on the knowledge that vehicles with only one wheel or with two wheels arranged on one axle with regard to maneuverability, off-road capability and compact Construction offer significant advantages.
- the invention has for its object to stabilize such vehicles in a preselectable operating position relative to the horizontal plane, so that they are stable to drive.
- every tilting movement of the vehicle is sensed and the additional forces to be applied are controlled in such a way that they trigger a torque about the respective tilting axis which exactly reverses the tilting movement.
- All sensor and compensation elements form a closed control loop, so that the operating position of the vehicle is stabilized, regardless of uneven floors or shifts in the center of gravity.
- the operating position of the vehicle can be set by appropriate treatment of the sensor signals in the control loop.
- the additional forces can be applied by a relative displacement between the center of gravity of the vehicle and the wheel axle, for example by moving the wheel suspension or the axle.
- a particularly advantageous way of applying the additional forces for pitch stabilization is according to claim 3 to change the driving forces.
- the vehicle is either accelerated or decelerated and the corresponding vector forms a resultant with the vector of gravity, which passes through the position of a wheel or the connecting line between the points of contact of two wheels on the plane of motion.
- the drive motors of the vehicle work actively, they are part of the control loop. As a result, for example, a uniaxial vehicle lifts over an obstacle without requiring any special precautions.
- Claims 7-9 relate to vehicles with two wheels arranged on an axle, which stabilize the vehicle about its longitudinal axis. Such vehicles are designed with a particularly great advantage as disabled lifts.
- auxiliary wheels In the case of a single-wheel vehicle, two pairs of auxiliary wheels are to be provided in the longitudinal direction in front of and behind the vehicle wheel; in the case of a single-axle vehicle with two wheels, one auxiliary wheel in front of and behind the axle is sufficient.
- the auxiliary wheels can be designed so that they are raised as long as the stabilization is active and that they automatically lower quickly after this effect ceases. It is also possible to move the axis of the vehicle accordingly vertically and to arrange the auxiliary wheels firmly. Instead of the auxiliary wheels, supports could also be provided.
- the sensor signals are to be converted into control variables for the motors in order to apply the additional forces. Since complex processes have to be mastered, it is advantageous Use microcomputers in the control loop. Furthermore, it is advantageous to effect the regulation on the basis of a state model updated continuously by the computer (regulation in the state space).
- Figure 1 is a schematic diagram of a single-wheel vehicle in Se tenansicht.
- Fig. 2 shows the embodiment of Figure 1 in a view from above.
- FIG. 3 shows a basic illustration of a uniaxial vehicle which is stabilized about a longitudinal axis by two wheels arranged on the axle, in a side view;
- Fig. 4 shows the embodiment of Figure 3 in a view from above.
- F g. 5a the conditions when approaching an obstacle to 5c nit by the vehicle of FIGS. 3 and 4.
- FIG. 1 schematically denotes (1) a vehicle which stands on the plane of movement (3) with only one wheel (2).
- the illustration of suspension and damping elements has been omitted to simplify the illustration.
- the axle (4) of the wheel (2) is mounted in a bearing block (5), which at the same time comprises a drive motor seated on the axle (4).
- the bearing block (5) is displaceable in one in the direction of the longitudinal axis (x)
- Component (6) mounted, a hydraulic or electric servomotor (7) being used for longitudinal displacement.
- the component (6) is mounted rotatably about an axis (8) and can be pivoted in the direction of the transverse axis (y) by means of a servomotor (9).
- Other means for displacing the bearing block (5) can also be provided.
- the vehicle (1) is equipped with two pairs of auxiliary wheels (10) and C11), which do not stand up on level (3) during normal driving.
- a sensor (12) is arranged in the vehicle (1) and can be configured, for example, as a gyro platform, accelerometer, rotational speed gyroscope, position gyroscope or rotational accelerometer.
- the sensor (12) measures the pitch angle, i.e. the tilt angle about the transverse axis (y) and gives a corresponding signal to an electronic controller (13).
- This manipulated variable signal is amplified in the amplifier (14) and actuates the servomotor (7), which shifts the bearing block (5) and thus the wheel axle (4) in the longitudinal direction (x).
- a signal is generated by the sensor (12) which actuates the servomotor (9) via the adjustable controller (15) and the amplifier (1 ch). This moves the vehicle (2) and bearing block (5) relative to each other in direction (y) until a stable position is reached.
- the elements (12, 15, 16, 9) form a closed control loop with the other vehicle components for stabilizing the vehicle (1) to the set roll angle.
- the elements (13, 14, 15, 16) of simplicity are shown outside the vehicle (1). In reality, these elements are accommodated in the vehicle itself.
- the vehicle (1) is steered by a combined control of wheel drive and roll angle in a manner not shown here.
- FIG. 3 schematically shows a vehicle (21) which stands on the plane of movement (3) with two wheels (22, 23) which are arranged on an axis (24).
- the vehicle (21) is stabilized about its longitudinal axis (x) by these wheels.
- the two auxiliary wheels (25) and (26) serve to support the vehicle (21) in the rest position; they are not on level (3) during normal driving.
- the wheels (22, 23) are driven by separately controllable electric motors (27, 28).
- the vehicle (21) is steered by controlling these motors accordingly.
- the vehicle pivot point can be placed, for example, on the left or right wheel or in the center of the vehicle.
- Sensors (29) and (30) are connected to the wheels (22, 23), which measure the respective rotational speed and feed the corresponding signals to the controller (31), which is expediently designed as a computer.
- a sensor (32) is connected to the vehicle (21), which measures the angle of rotation about the transverse axis Cy), the rotational acceleration and / or the speed of rotation and supplies the corresponding signal to the controller (31).
- the controller (31) controls the power drive motors (27, 28) via power amplifiers (34) and (35) so that the resulting vector acting on the center of gravity (S), which is composed of the acceleration due to gravity (g) and the acceleration due to acceleration or braking , always intersects the connecting line of the contact points (36) of the wheels (22, 23). The pitch position is thus stabilized.
- the elements (27, 28, 29, 30, 31, 32, 34, 35) form a closed control loop which quickly stabilizes the vehicle (21) with respect to its pitch position, ie the rotational position about the transverse axis (y).
- the vehicle (21) can advantageously be designed as an elevator for the disabled. Such an elevator is able to overcome small obstacles, such as a curb. In addition, its maneuverability is very high.
- 5a to 5c show the conditions when approaching an obstacle, for example a threshold (40) by the vehicle of FIGS. 3 and 4.
- the vehicle (21) thus rises above the threshold (40) without the operator having to take any special measures. From the above explanations it can be seen that the vehicle according to the invention is also able to drive up stairs with a corresponding design of the wheel diameter, the tires and the wheel drive. If the vehicle is designed as a wheelchair, the stairs are approached backwards. The wheelchair then moves upstairs while constantly tilting backwards and straightening up, each step being overcome as shown in FIGS. 5a to 5c.
- sensors can be used to detect obstacles and uneven floors, which trigger suitable control processes for overcoming or circumventing the obstacles or for stopping the vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Motorcycle And Bicycle Frame (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Description
Verfah reπ zum Stabi lisieren eines einachsigen Process for stabilizing a uniaxial
Radfah rzeugs und Fah rzeug das nach diesem Ver ahren stabi lisert i stBicycle and vehicle that is stabilized after this procedure
Die vorliegende Erfindung bet ifft ein Verfahren zum Stabi lisieren eines einachsigen Fahrzeugs nach dem Oberbegriff des Anspruchs 1 sowie Fahrzeuge, die nach diesem Verfahren stabilisiert sind.The present invention relates to a method for stabilizing a uniaxial vehicle according to the preamble of claim 1 and vehicles which are stabilized by this method.
Fahrzeuge sind üblicherweise mit mindestens drei, auf zwei Achsen angeordneten Rädern ausgerüstet die eine stabi le Standfläche auf dem Boden bilden. Diese Fahrzeuge sind im normalen Betrieb stabil zu fahren, sie weisen jedoch eine schlechte Manövrierfähigkeit auf engem Raum auf und die Geländegängigkeit läßt, bedingt durch kleine Raddurchmesser und begrenzte Bodenfreihei zwischen den Achsen Wünsche offen.Vehicles are usually equipped with at least three wheels arranged on two axles that form a stable footprint on the floor. These vehicles are stable to drive in normal operation, but they have poor maneuverability in a confined space and the off-road capability leaves something to be desired due to small wheel diameters and limited ground clearance between the axles.
Einen Sonderfall bi lden die sog. Zweirad-Fahrzeuge, bei denen zwei Achsen mit e einem Rad in Längsrichtung hintereinander angeordnet sind (Fahrrad, Motorrad). Solche Fahrzeuge sind nur durch Menschen, die mit dem Fahrzeug einen Regelkreis bilden stabil zu fahren.A special case is the so-called two-wheeled vehicle, in which two axles are arranged one behind the other in the longitudinal direction (bicycle, motorcycle). Such vehicles can only be driven stably by people who form a control loop with the vehicle.
Aus der Literatur sind eine Reihe von Veröffentlichun¬ gen bekannt, die sich m t der Stabilisierung des Chassis von Zwei -Achs-Fahrzeugen bei der Fahrt über kleinere Hindernisse befassen.A number of publications are known from the literature which are concerned with stabilizing the chassis of two-axle vehicles when driving over smaller obstacles.
So ist es aus der DE-OS 23 51 841 bekannt mit dem Chassis eines Fahrzeugs mit abgefedertem Vierrad- Fahrgestell eine schnell umlaufende Masse fest zu verbinden, welche die Lage des Chassis bei der Fahrt über Boden-Unebenheiten stabilisiert. Aus der EP-OS 90 971 ist es bekannt bei einem Vierrad- Fahrzeug einen Sensor für Neigungswinkel und Beschleu¬ nigung vorzusehen und die von diesem Sensor erzeugten Signale dazu zu verwenden eine Masse um die zu stabilisierende Achse n d e eweils sensierte R ch¬ tung zu bewegen. Auch hier soll die Lage des Chassis bei der Fahrt über Boden-Unebenhe ten stabilisiert werden.It is known from DE-OS 23 51 841 to firmly connect a rapidly rotating mass to the chassis of a vehicle with a sprung four-wheel chassis, which stabilizes the position of the chassis when driving over uneven ground. From EP-OS 90 971 it is known to provide a sensor for the angle of inclination and acceleration in a four-wheel vehicle and to use the signals generated by this sensor to move a mass around the axis to be stabilized and the direction which is sensed at times . Here, too, the position of the chassis should be stabilized when driving over uneven ground.
Auch t reppenstei gfähige Rollstühle sind aus der Lite¬ ratur bekannt. So beschreibt die AU-OS 20473/83 einen solchen Rollstuhl, der sich m ttels Raupen bewegt, die über mehrere vertikal bewegliche Rollenpaare geführt sind. Der Rollstuhl enthält einen Sensor, der bei Schrägstellung des Rollstuhls eine Verschiebung der Batterie zu der angehobenen Seite hin auslöst. Dadurch wird eine stab le Schwerpunktlage erre cht, die verhindert, daß der Rollstuhl nach hinten kippt.Wheelchairs capable of climbing stairs are also known from the literature. This is how AU-OS 20473/83 describes such a wheelchair that moves by means of caterpillars that are guided over several vertically movable pairs of rollers. The wheelchair contains a sensor that triggers a shift of the battery to the raised side when the wheelchair is tilted. This ensures a stable center of gravity, which prevents the wheelchair from tipping over.
Die US-PS 4 432 425 beschreibt ebenfalls einen treppensteigfähigen Rollstuhl, der zwei Radpaare aufweist, von denen eines vertikal beweglich ist. Die Achsen der Radpaare treiben eweils eine Kette an, die über daran befestigte Elemente den Rollstuhl über Treppenstufen hochzieht. Der Rollstuhl ist mit einem Sensor ausgerüstet, der Neigungswinkel mißt. Das Sensor-Signal betätigt über einen Kolben einen Hebel, der die Sitzfläche des Rollstuhls horizontal hält, unabhängig von der Schräglage des Fahrgestells. Alle diese Veröffen lichungen beschäftigen sich mit der Stabi lis erung von mehrachsigen Fahrzeugen.US Pat. No. 4,432,425 also describes a wheelchair capable of climbing stairs, which has two pairs of wheels, one of which is vertically movable. The axles of the wheel pairs drive a chain, which pulls the wheelchair up stairs via elements attached to it. The wheelchair is equipped with a sensor that measures the angle of inclination. The sensor signal uses a piston to operate a lever that keeps the seat of the wheelchair horizontal, regardless of the inclined position of the chassis. All of these publications deal with the stabilization of multi-axle vehicles.
Die vorliegende Erfindung geht nun von der Erkenntnis aus, daß Fahrzeuge mit nur einem Rad oder mit zwei, auf einer Achse angeordneten Rädern hinsichtlich Manövrierf higkeit, Geländegängigkeit und kompaktem Aufbau wesentliche Vorteile bieten. Der Erfindung liegt die Aufgabe zugrunde solche Fahrzeuge in einer vorwählbaren Betriebslage relativ zur Horizontalebene zu stabilisieren, so daß sie stabil zu fahren sind.The present invention is based on the knowledge that vehicles with only one wheel or with two wheels arranged on one axle with regard to maneuverability, off-road capability and compact Construction offer significant advantages. The invention has for its object to stabilize such vehicles in a preselectable operating position relative to the horizontal plane, so that they are stable to drive.
Diese Aufgabe ird durch das Verfahren nach dem Kenn¬ zeichen des Anspruchs 1 gelöst.This object is achieved by the method according to the characterizing part of claim 1.
Nach diesem Verfahren ird jede Kippbewegung des Fahr¬ zeugs sensiert und die aufzubringenden Zusatzkräfte werden so gesteuert, daß sie ein Drehmoment um die jeweilige Kippachse auslösen, das die Kippbewegung exakt wieder rückgängig macht. Alle Sensor- und Kompensationselemente bilden einen geschlossenen Regelkreis, so daß die Betriebslage des Fahrzeugs stabilisiert wird und zwar unabhängig von Boden- Unebenheiten oder von Versc iebungen des Schwerpunkts.According to this method, every tilting movement of the vehicle is sensed and the additional forces to be applied are controlled in such a way that they trigger a torque about the respective tilting axis which exactly reverses the tilting movement. All sensor and compensation elements form a closed control loop, so that the operating position of the vehicle is stabilized, regardless of uneven floors or shifts in the center of gravity.
Die Betriebslage des Fahrzeugs ist durch eine entspre¬ chende Behandlung der Sensor-Signale im Regelkreis einstel Ibar .The operating position of the vehicle can be set by appropriate treatment of the sensor signals in the control loop.
Die Zusatzkräfte lassen sich nach dem Merkmal des Anspruchs 2 durch Relativverschiebung zwischen Fahr¬ zeugschwerpunkt und Radachse aufbringen, beispiels¬ weise durch Verschieben der Radaufhängung oder der Achse .According to the feature of claim 2, the additional forces can be applied by a relative displacement between the center of gravity of the vehicle and the wheel axle, for example by moving the wheel suspension or the axle.
Eine besonders vorteilhafte Art die Zusatzkräfte für die Nickstabilisierung aufzubringen besteht nach Anspruch 3 darin die Antriebskräfte zu verändern. Dabei wird das Fahrzeug entweder beschleunigt oder verzögert und der entsprechende Vektor bi ldet mit dem Vektor der Schwerkraft eine Resultierende, welche durch den AufStandspunkt eines Rades, bzw. durch die Verbindungslinie der Aufstandspunkte zweier Räder auf der Bewegungsebene geht. Bei dieser Art die Zusatzkräfte aufzubringen, arbeiten die Antriebsmotoren des Fahrzeugs aktiv mit, sie sind Bestandteil des Regelkreises. Dadurch hebt sich bei¬ spielsweise ein einachsiges Fahrzeug über ein Hindernis, ohne daß es dazu besonderer Vorkehrungen bedarf.A particularly advantageous way of applying the additional forces for pitch stabilization is according to claim 3 to change the driving forces. The vehicle is either accelerated or decelerated and the corresponding vector forms a resultant with the vector of gravity, which passes through the position of a wheel or the connecting line between the points of contact of two wheels on the plane of motion. In this way, to apply the additional forces, the drive motors of the vehicle work actively, they are part of the control loop. As a result, for example, a uniaxial vehicle lifts over an obstacle without requiring any special precautions.
Einrädrige Fahrzeuge, die nach dem erfindungsgemäßen Verfahren stabilisert sind, sind Gegenstand der Ansprüche 4-6. Die Ansprüche 7-9 beziehen sich auf Fahrzeuge mit zwei auf einer Achse angeordneten Rädern, die das Fahrzeug um seine Längsachse stabili¬ sieren. Solche Fahrzeuge sind mit besonders großem Vorteil als Behindertenfahrstühle ausgebi ldet.Single-wheeled vehicles which are stabilized by the method according to the invention are the subject of claims 4-6. Claims 7-9 relate to vehicles with two wheels arranged on an axle, which stabilize the vehicle about its longitudinal axis. Such vehicles are designed with a particularly great advantage as disabled lifts.
Die Fahrzeuge nach den Ansprüchen 4-9 würden ohne besondere Vorkehrungen kippen, wenn die Stabilisierung ausgeschaltet wird oder ausfällt. Deshalb ist es notwendig entsprechend Anspruch 10 Hilfsräder vorzu¬ sehen. Bei einem einrädrigen Fahrzeug sind zwei Hilfs- radpaare in Längsr chtung vor und hinter dem Fahrzeug¬ rad vorzusehen, bei einem einachsigen Fahrzeug mit zwei Rädern genügt je ein Hilfsrad vor und hinter der Achse. Die Hilfsräder können so ausgebildet sein, daß sie hochgefahren werden, solange die Stabilisierung wirkt und daß sie nach Aufhören dieser Wirkung automatisch schnell abgesenkt werden. Es ist auch möglich die Fa rzeugachse entsprechend vertikal zu verschieben und die Hilfsräder fest anzuordnen. Anstelle der Hi lfsräder könnten auch Stützen vorge¬ sehen se n.The vehicles according to claims 4-9 would tip over without special precautions if the stabilization is switched off or fails. It is therefore necessary to provide 10 auxiliary wheels. In the case of a single-wheel vehicle, two pairs of auxiliary wheels are to be provided in the longitudinal direction in front of and behind the vehicle wheel; in the case of a single-axle vehicle with two wheels, one auxiliary wheel in front of and behind the axle is sufficient. The auxiliary wheels can be designed so that they are raised as long as the stabilization is active and that they automatically lower quickly after this effect ceases. It is also possible to move the axis of the vehicle accordingly vertically and to arrange the auxiliary wheels firmly. Instead of the auxiliary wheels, supports could also be provided.
Im Regelkreis für die Stabilisierung sind die Sensoi— signale n Steuergrößen für die Motoren zur Aufbrin¬ gung der Zusatzkräfte umzuwandeln. Da dabei komplexe Prozeße zu bewältigen sind, ist es vorteilhaft Mikrorechner im Regelkreis zu verwen en. Ferner st es vorteilhaft die Regelung auf der Basis eines vom Rechner laufend aktualisierten Zustandsmodells zu bewirken (Regelung im Zustands räum) .In the control loop for stabilization, the sensor signals are to be converted into control variables for the motors in order to apply the additional forces. Since complex processes have to be mastered, it is advantageous Use microcomputers in the control loop. Furthermore, it is advantageous to effect the regulation on the basis of a state model updated continuously by the computer (regulation in the state space).
Die Erfindung wird im folgenden anhand der in den Fig. 1-5 der beigefügten Zeichnungen dargestellten Ausfüh¬ rungsbeispiele für Fahrzeuge nach der Erfindung näher erläutert. Im einzelnen zeigen:-The invention is explained in more detail below with reference to the exemplary embodiments for vehicles according to the invention shown in FIGS. 1-5 of the accompanying drawings. In detail show: -
Fig. 1 eine Prinzipdarstellung eines einrädrigen Fahrzeuges in Se tenansicht;Figure 1 is a schematic diagram of a single-wheel vehicle in Se tenansicht.
Fig. 2 das Ausführungsbeispiel der Fig. 1 in der Ansicht von oben;Fig. 2 shows the embodiment of Figure 1 in a view from above.
Fig. 3 eine Prinzipdarstellung eines einachsigen Fahrzeuges, das durch zwei auf der Achse angeordnete Räder um eine Längsachse stabi li¬ siert ist, in Seitenansicht;3 shows a basic illustration of a uniaxial vehicle which is stabilized about a longitudinal axis by two wheels arranged on the axle, in a side view;
Fig. 4 das Ausführungsbeispiel der Fig. 3 in der Ansicht von oben;Fig. 4 shows the embodiment of Figure 3 in a view from above.
F g. 5a die Verhältnisse beim Anfahren eines Hinder- bis 5c nisses durch das Fahrzeug der Fig. 3 und 4.F g. 5a the conditions when approaching an obstacle to 5c nit by the vehicle of FIGS. 3 and 4.
In Fig. 1 ist mit (1) schematisch ein Fahrzeug bezeich¬ net, das mit nur einem Rad (2) auf der Bewegungsebene (3) aufsteht. Auf die Darstellung von Federungs- und Dämpfungselementen ist zur Vereinfachung der Darstellung verzichtet.1 schematically denotes (1) a vehicle which stands on the plane of movement (3) with only one wheel (2). The illustration of suspension and damping elements has been omitted to simplify the illustration.
Die Achse (4) des Rades (2) ist in einem Lagerbock (5) gelagert, welcher zugleich einen auf der Achse (4) sitzenden Antriebsmotor umfaßt. Der Lagerbock (5) ist in Richtung der Längsachse (x) verschiebbar in einem Bauelement (6) gelagert, wobei zur Längsverschiebung ein hydraulischer oder elektrischer Stellmotor (7) dient. Das Bauelement (6) ist um eine Achse (8) dreh¬ bar gelagert und mittels eines Stellmotors (9) in Richtung der Querachse (y) schwenkbar. Es können auch andere Mittel zur Verschiebung des Lagerbocks (5) vorgesehen sein.The axle (4) of the wheel (2) is mounted in a bearing block (5), which at the same time comprises a drive motor seated on the axle (4). The bearing block (5) is displaceable in one in the direction of the longitudinal axis (x) Component (6) mounted, a hydraulic or electric servomotor (7) being used for longitudinal displacement. The component (6) is mounted rotatably about an axis (8) and can be pivoted in the direction of the transverse axis (y) by means of a servomotor (9). Other means for displacing the bearing block (5) can also be provided.
Das Fahrzeug (1) ist mit zwei Paar Hilfsrädern (10) und C11) ausgerüstet, die im normalen Fahrbetrieb nicht auf der Ebene (3) aufstehen.The vehicle (1) is equipped with two pairs of auxiliary wheels (10) and C11), which do not stand up on level (3) during normal driving.
Im Fahrzeug (1) ist ein Sensor (12) angeordnet, der beispielsweise als Kreiselplattform, Beschleunigungs¬ messer, Drehgeschwindigkeitskreisel, Lagekreisel oder Drehbeschleunigungsmesser ausgeb ldet sein kann. Der Sensor (12) mißt den Nickwinkel, d.h. den Kippwinkel um die Querachse (y) und gibt ein entsprechendes Signal zu einem elektronischen Regler (13). Dieser bildet eine Stellgröße, deren Größe von der am Regler (13) einstellbaren stationären Betriebs Lage, d.h. von dem gewünschten Nickwinkel und der vom Sensor (12) gemessenen Abweichung von diesem Sollwert abhängt. Dieses Stellgrößen-Signal wird im Verstärker (14) verstärkt und betätigt den Stellmotor (7), der den Lagerbock (5) und damit die Radachse (4) in Längsrich¬ tung (x) verschiebt.A sensor (12) is arranged in the vehicle (1) and can be configured, for example, as a gyro platform, accelerometer, rotational speed gyroscope, position gyroscope or rotational accelerometer. The sensor (12) measures the pitch angle, i.e. the tilt angle about the transverse axis (y) and gives a corresponding signal to an electronic controller (13). This forms a manipulated variable, the size of which depends on the stationary operating position that can be set on the controller (13), i.e. depends on the desired pitch angle and the deviation from the target value measured by the sensor (12). This manipulated variable signal is amplified in the amplifier (14) and actuates the servomotor (7), which shifts the bearing block (5) and thus the wheel axle (4) in the longitudinal direction (x).
Verlagert sich beispielsweise der Schwerpunkt (S) des Fahrzeugs (1) nach vorne in Richtung (x), so entsteht ein Drehmoment, das eine Kippung des Fahrzeugs (1) um die Achse (y) verursacht. Diese Kippung, bzw. die zugeordnete Drehbeschleunigung oder Drehgeschwindi g- keit löst ein Signal des Sensors (12) aus, das über den Regler (13) und den Verstärker (14) den Stellmotor (7) betätigt. Dieser bewegt den Lagerbock (5) in Rich¬ tung (x) nach vorne und zwar solange bis ein Dreh- moment entsteht, welches das Fahrzeug (1) um die Quer¬ achse (y) nach hinten kippt und zwar solange bis die eingestellte stationäre Betriebslage wieder erreicht ist. Da die Elemente (12, 13, 14, 7) mit den übrigen Fahrzeugkomponentεn einen geschlossenen Regelkreis bilden stellt sich die Betriebslage bezüglich der Querachse (y) schnell und stabi l ein.If, for example, the center of gravity (S) of the vehicle (1) shifts forward in the direction (x), a torque is created which causes the vehicle (1) to tilt about the axis (y). This tilting or the associated rotational acceleration or rotational speed triggers a signal from the sensor (12) which actuates the servomotor (7) via the controller (13) and the amplifier (14). This moves the bearing block (5) in the direction (x) to the front until a rotation The moment arises which tilts the vehicle (1) backwards about the transverse axis (y) until the set stationary operating position is reached again. Since the elements (12, 13, 14, 7 ) form a closed control loop with the other vehicle components, the operating position with respect to the transverse axis (y) is established quickly and stably.
Bei einer Kippung um die Längsachse (x), d.h. bei einem sog. Rollen des Fahrzeugs (1) wird vom Sensor (12) ein Signal erzeugt, das über den einstellbaren Regler (15) und den na chgeordneten Verstärker (1ό) den Stellmotor (9) betätigt. Dieser bewegt Fahrzeug (2) und Lagerbock (5) relativ zueinander in Richtung (y) solange bis eine stabile Lage erreicht ist. Die Elemente (12, 15, 16, 9) bilden mit den übrigen Fahr¬ zeugkomponenten einen geschlossenen Regelkreis zur Stabilisierung des Fahrzeugs (1) auf den eingestellten Rollwinkel.With a tilt about the longitudinal axis (x), i.e. in the event of a so-called rolling of the vehicle (1), a signal is generated by the sensor (12) which actuates the servomotor (9) via the adjustable controller (15) and the amplifier (1 ch). This moves the vehicle (2) and bearing block (5) relative to each other in direction (y) until a stable position is reached. The elements (12, 15, 16, 9) form a closed control loop with the other vehicle components for stabilizing the vehicle (1) to the set roll angle.
In den Fig. 1 und 2 sind die Elemente (13, 14, 15, 16) der Einfachheit außerhalb des Fahrzeugs (1) darge¬ stellt. In Wirklichkeit sind diese Elemente im Fahr¬ zeug selbst untergebracht.1 and 2, the elements (13, 14, 15, 16) of simplicity are shown outside the vehicle (1). In reality, these elements are accommodated in the vehicle itself.
Die Lenkung des Fahrzeugs (1) erfolgt durch eine kombinierte Steuerung von Radantrieb und Rollwinkel in einer hier nicht näher dargestellten Weise.The vehicle (1) is steered by a combined control of wheel drive and roll angle in a manner not shown here.
In Fig. 3 ist ein Fahrzeug (21) schematisch darge¬ stellt, das mit zwei Rädern (22, 23), die auf einer Achse (24) angeordnet sind auf der Bewegungsebene (3) aufsteht. Durch diese Räder ist das Fahrzeug (21) um seine Längsachse (x) stabilisiert. Die beiden Hilfsräder (25) und (26) dienen zur Abstützung des Fahrzeugs (21) in Ruhelage; sie stehen im normalen Fahrbetrieb nicht auf der Ebene (3) auf. Der Antrieb der Räder (22, 23) erfolgt über getrennt ansteuerbare Elektromotore (27, 28). Durch entspre¬ chende Ansteuerung dieser Motoren erfolgt die Lenkung des Fahrzeugs (21). Dabei kann der Fa rzeugdrehpunkt z.B. auf das linke oder rechte Rad oder in die Fahr¬ zeugmitte gelegt werden.3 schematically shows a vehicle (21) which stands on the plane of movement (3) with two wheels (22, 23) which are arranged on an axis (24). The vehicle (21) is stabilized about its longitudinal axis (x) by these wheels. The two auxiliary wheels (25) and (26) serve to support the vehicle (21) in the rest position; they are not on level (3) during normal driving. The wheels (22, 23) are driven by separately controllable electric motors (27, 28). The vehicle (21) is steered by controlling these motors accordingly. The vehicle pivot point can be placed, for example, on the left or right wheel or in the center of the vehicle.
Mit den Rädern (22, 23) sind Sensoren (29) und (30) verbunden, welche die jeweilige Drehgeschwindigkeit messen und die entsprechenden Signale dem Regler (31) zuführen, der zweckmäßig als Rechner ausgebildet ist.Sensors (29) and (30) are connected to the wheels (22, 23), which measure the respective rotational speed and feed the corresponding signals to the controller (31), which is expediently designed as a computer.
Mit dem Fahrzeug (21) ist ein Sensor (32) verbunden, der den Drehwinkel um die Querachse Cy), die Drehbe- schleuπigung und/oder die Drehgeschwindigkeit mißt und das entsprechende Signal dem Regler (31) zuführt.A sensor (32) is connected to the vehicle (21), which measures the angle of rotation about the transverse axis Cy), the rotational acceleration and / or the speed of rotation and supplies the corresponding signal to the controller (31).
Mit (33) ist ein Kommandogeber für Vortriebsgeschwin¬ digkeit und Lenkung bezeichnet, der entsprechende Signale ebenfalls dem Regler (31) zuführt.(33) denotes a command transmitter for propulsion speed and steering, which also feeds the corresponding signals to the controller (31).
Der Regler (31) steuert über Leistungsverstärker (34) und (35) die Radantriebsmotoren (27, 28) so, daß der am Schwerpunkt (S) angreifende resultierende Vektor, der sich aus der Erdbeschleunigung (g) und der Vortriebs- oder Bremsbeschleunigung zusammensetzt, stets die Verbindungslin e der Aufstandspunkte (36) der Räder (22, 23) schneidet. Damit ist eine Stabili¬ sierung der Nicklage erreicht.The controller (31) controls the power drive motors (27, 28) via power amplifiers (34) and (35) so that the resulting vector acting on the center of gravity (S), which is composed of the acceleration due to gravity (g) and the acceleration due to acceleration or braking , always intersects the connecting line of the contact points (36) of the wheels (22, 23). The pitch position is thus stabilized.
Die Elemente (27, 28, 29, 30, 31, 32, 34, 35) bilden einen geschlossenen Regelkreis der eine schnelle Stabilisierung des Fahrzeugs (21) bezüglich seiner Nicklage, d.h. der Drehlage um die Querachse (y) errei cht. Das Fahrzeug (21) kann vortei lhaft als Fahrstuhl für Behinderte ausgebi ldet sein. Ein solcher Fahrstuhl ist in der Lage kleinere Hindernisse, z.B. einen Bordstein zu überwinden. Zudem ist seine Manövrierfähigkei sehr hoch .The elements (27, 28, 29, 30, 31, 32, 34, 35) form a closed control loop which quickly stabilizes the vehicle (21) with respect to its pitch position, ie the rotational position about the transverse axis (y). The vehicle (21) can advantageously be designed as an elevator for the disabled. Such an elevator is able to overcome small obstacles, such as a curb. In addition, its maneuverability is very high.
Die Fig. 5a bis 5c zeigen die Verhältnisse beim Anfahren eines Hindernisses, beispielsweise einer Bordschwelle (40) durch das Fahrzeug der Fig. 3 und 4.5a to 5c show the conditions when approaching an obstacle, for example a threshold (40) by the vehicle of FIGS. 3 and 4.
Sobald die Räder (22, 23) die Schwelle (40) berühren, existieren, wie Fig. 5a zeigt, zwei Aufstandslinien (36) und (41). Die in diesem Moment vom Kommandogeber (33) vorgegebene Antriebs raft reicht nicht aus die Räder (22, 23) weiterhin in Drehung zu halten, so daß die Sensoren (29, 30) ein Signal an den Regler (31) geben. Der Regler (31) löst dann über die Leistungs¬ verstärker (34, 35) und die Antriebsmotoren (27, 28), ein Drehmoment aus, welches das Fahrzeug (21) nach vorne neigt, und zwar solange bis der Schwerpunkt (S) über der AufStands l i ni e (41) liegt (Fig. 5b).As soon as the wheels (22, 23) touch the threshold (40), there are two contact lines (36) and (41), as shown in FIG. 5a. The drive raft specified by the command transmitter (33) at this moment is not sufficient to keep the wheels (22, 23) rotating, so that the sensors (29, 30) give a signal to the controller (31). The controller (31) then triggers a torque via the power amplifiers (34, 35) and the drive motors (27, 28), which tilts the vehicle (21) forward until the center of gravity (S) the uprising line (41) is (Fig. 5b).
In dieser Position wird zusätzlich zu dem vom Komman¬ dogeber (33) gesteuerten Drehmoment an den Rädern (22, 23) ein Drehmoment (P.a) ausgeübt, wobei (P) das am Schwerpunkt (S) angreifende Gewicht des Fahrzeugs (21) und (a) der aus Fig. 5b ersichtlichte Abstand ist. Unter der Wirkung dieses Gesamt-Drehmoments hebt sich das Fahrzeug (21) auf die Stufe (40) . Dabei wird die Neigung des Fahrzeugs nach vorne laufend vermindert, d.h. das Fahrzeug richtet sich auf, bis es in der Position der Fig. 5c wieder seine, der Fig. 5a entsprechende stationäre Lage erreicht hat.In this position, in addition to the torque on the wheels (22, 23) controlled by the command transmitter (33), a torque (Pa) is exerted, with (P) the weight of the vehicle (21) acting on the center of gravity (S) and ( a) is the distance shown in FIG. 5b. Under the effect of this total torque, the vehicle (21) rises to step (40). The vehicle's forward inclination is continuously reduced, i.e. the vehicle stands up until it has again reached its stationary position corresponding to FIG. 5a in the position of FIG. 5c.
Das Fahrzeug (21) hebt sich also über die Schwelle (40), ohne daß die Bedienungsperson spezielle Maßnah¬ men ergreifen muß. Aus den vorstehenden Erläuterungen läßt sich erkennen, daß das Fahrzeug nach der Erfindung bei entsprechender Auslegung der Rad-Durchmesser, der Bereifung und des Radtriebes auch in der Lage ist Treppen aufwärts zu befahren. Bei Ausbildung des Fahrzeugs als Rollstuhl wird dazu die Treppe rückwärts angefahren. Unter stän¬ dig wechselndem Neigen nach hinten und Aufrichten bewegt sich der Rollstuhl dann treppauf, obe jede Stufe so überwunden wird, wie dies die Fig. 5a bis 5c zeigen.The vehicle (21) thus rises above the threshold (40) without the operator having to take any special measures. From the above explanations it can be seen that the vehicle according to the invention is also able to drive up stairs with a corresponding design of the wheel diameter, the tires and the wheel drive. If the vehicle is designed as a wheelchair, the stairs are approached backwards. The wheelchair then moves upstairs while constantly tilting backwards and straightening up, each step being overcome as shown in FIGS. 5a to 5c.
Es ist klar, daß auch das Ξinradfahrzeug der Fig. 1 und 2 bezüglich seiner Nicklage durch entsprechende Ansteuerung des Antr ebsmotors im Block (5) nach dem beschriebenen Wirkungsmechanismus stabilisiert werden kann.It is clear that the radinradfahrzeug of Fig. 1 and 2 can be stabilized with respect to its pitch by appropriate control of the drive motor in block (5) according to the described mechanism of action.
Es kann auch vorteilhaft sein, eine Stabilisierung der Nicklage durch eine Kombination der im Zusammenhang mit den Fig. 1, 2 und 3, 4 beschriebenen Maßnahmen zu erreichen, wobei größere Verlagerungen des Schwer¬ punkts zweckmäßig durch Längsverschiebung der Radauf¬ hängung kompensiert werden.It can also be advantageous to achieve a stabilization of the pitch position by a combination of the measures described in connection with FIGS. 1, 2 and 3, 4, larger displacements of the center of gravity being expediently compensated for by longitudinal displacement of the wheel suspension.
Anstelle der in Fig. 1 und 2 dargestellten Verschie¬ bung der Radaufhängung in den Richtungen (x) und (y) können auch Zusatzmassen im Fahrzeug in diese Richtun¬ gen verschoben werden um eine Stabilisierung zu erreichen.Instead of the displacement of the wheel suspension in directions (x) and (y) shown in FIGS. 1 and 2, additional masses in the vehicle can also be shifted in these directions in order to achieve stabilization.
Zur weiteren Unterstützung des Fahrbetriebs können Sensoren zur Erkennung von Hindernissen und Bodenun¬ ebenheiten herangezogen werden, die geeignete Steue¬ rungsabläufe zur Überwindung oder Umgehung der Hinder¬ nisse oder zum Fahrzeugstop auslösen. To further support driving, sensors can be used to detect obstacles and uneven floors, which trigger suitable control processes for overcoming or circumventing the obstacles or for stopping the vehicle.
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE3800476A DE3800476A1 (en) | 1988-01-11 | 1988-01-11 | METHOD FOR STABILIZING A UNI-AXLE CYCLING VEHICLE AND VEHICLE STABILIZED BY THIS METHOD |
| DEP3800476.3 | 1988-01-11 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1989006117A1 true WO1989006117A1 (en) | 1989-07-13 |
Family
ID=6345037
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP1989/000018 Ceased WO1989006117A1 (en) | 1988-01-11 | 1989-01-11 | Process for stabilizing a single-axle wheeled vehicle and vehicle so stabilized |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP0378588A1 (en) |
| DE (1) | DE3800476A1 (en) |
| WO (1) | WO1989006117A1 (en) |
Cited By (73)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1991003222A1 (en) * | 1989-08-28 | 1991-03-21 | William Barry Kilburn | Transport apparatus |
| DE4305592A1 (en) * | 1992-02-29 | 1993-09-16 | Sasse Maschinen Und Apparateba | Tractor coupled to wheelchair - has pair of wheels with differential driven by battery-powered motor with coupling to second pair of wheels |
| WO1996023478A1 (en) * | 1995-02-03 | 1996-08-08 | Deka Products Limited Partnership | Transportation vehicules and methods |
| WO1997022511A1 (en) * | 1995-12-19 | 1997-06-26 | Defez Schmidt Jose Luis | Vehicle with two parallel wheels |
| US5701965A (en) * | 1993-02-24 | 1997-12-30 | Deka Products Limited Partnership | Human transporter |
| WO1998002122A1 (en) * | 1996-07-17 | 1998-01-22 | Deka Products Limited Partnership | Anti-tipping mechanism |
| WO1998018669A1 (en) * | 1996-10-26 | 1998-05-07 | Imtec Limited | Vehicle |
| WO1999038756A1 (en) * | 1998-01-28 | 1999-08-05 | Franz Hueber | Mobile apparatus |
| US5971091A (en) * | 1993-02-24 | 1999-10-26 | Deka Products Limited Partnership | Transportation vehicles and methods |
| US6003624A (en) * | 1995-06-06 | 1999-12-21 | University Of Washington | Stabilizing wheeled passenger carrier capable of traversing stairs |
| WO2000028931A1 (en) * | 1998-11-17 | 2000-05-25 | Saul Manashe | Wheel chairs |
| AU726250B2 (en) * | 1995-02-03 | 2000-11-02 | Deka Research And Development Corporation | Control method for balancing vehicle |
| WO2001001914A1 (en) * | 1999-07-02 | 2001-01-11 | Invacare Corporation | Mid-wheel drive wheelchair with rigid front wheel anti-tip stabilizer |
| US6311794B1 (en) | 1994-05-27 | 2001-11-06 | Deka Products Limited Partneship | System and method for stair climbing in a cluster-wheel vehicle |
| US6357544B1 (en) * | 1999-04-08 | 2002-03-19 | Deka Products Limited Partnership | Balancing vehicle with camber and toe-in |
| US6435535B1 (en) | 2000-03-01 | 2002-08-20 | Deka Products Limited Partnership | Trailer for balancing vehicle |
| US6443250B1 (en) | 1993-02-24 | 2002-09-03 | Deka Products Limited Partnership | Control of a balancing personal vehicle |
| US6543564B1 (en) | 1994-05-27 | 2003-04-08 | Deka Products Limited Partnership | Balancing personal vehicle |
| DE10209093A1 (en) * | 2002-03-01 | 2003-09-18 | Ms Handelsvertretung Consultin | Powered scooter for standing user has pair of front wheels driven by motor and tread board with single rear wheel |
| US6799649B2 (en) | 1999-03-15 | 2004-10-05 | Deka Products Limited Partnership | Control of a balancing personal vehicle |
| US6866107B2 (en) | 2000-10-13 | 2005-03-15 | Deka Products Limited Partnership | Method and device for battery load sharing |
| US6868931B2 (en) | 1994-05-27 | 2005-03-22 | Deka Products Limited Partnership | Speed limiting for a balancing transporter accounting for variations in system capability |
| US6874591B2 (en) | 1994-05-27 | 2005-04-05 | Deka Products Limited Partnership | Speed limiting for a balancing transporter |
| US6915878B2 (en) | 1994-05-27 | 2005-07-12 | Deka Products Limited Partnership | Self-balancing ladder and camera dolly |
| US6965206B2 (en) | 2000-10-13 | 2005-11-15 | Deka Products Limited Partnership | Method and system for fail-safe motor operation |
| DE102004033820A1 (en) * | 2004-04-22 | 2005-11-17 | Ortwin Heckl | Narrow one-person motor vehicle has substantial part of vehicle with driver and energy source within radius of one or several rim wheels that roll on road |
| US6969079B2 (en) | 2002-06-05 | 2005-11-29 | Deka Products Limited Partnership | Multiple-passenger transporter |
| US7000933B2 (en) | 2000-03-01 | 2006-02-21 | Deka Products Limited Partnership | Method for attaching a carrier to a balancing transporter |
| US7004271B1 (en) | 1999-08-31 | 2006-02-28 | Deka Products Limited Partnership | Dynamic balancing vehicle with a seat |
| US7023330B2 (en) | 1999-06-04 | 2006-04-04 | Deka Products Limited Partnership | Transporter oscillating alarm |
| US7090040B2 (en) | 1993-02-24 | 2006-08-15 | Deka Products Limited Partnership | Motion control of a transporter |
| US7174976B2 (en) | 2002-07-12 | 2007-02-13 | Deka Products Limited Partnership | Dynamically stable transporter controlled by lean |
| US7182166B2 (en) | 2004-03-23 | 2007-02-27 | Deka Products Limited Partnership | Footrest tuck mechanism |
| US7210544B2 (en) | 2002-07-12 | 2007-05-01 | Deka Products Limited Partnership | Control of a transporter based on attitude |
| US7275607B2 (en) | 1999-06-04 | 2007-10-02 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US7317293B2 (en) | 2002-10-29 | 2008-01-08 | Seiko Epson Corporation | Displacement control system for a vehicle axle |
| US7370713B1 (en) | 1993-02-24 | 2008-05-13 | Deka Products Limited Partnership | Personal mobility vehicles and methods |
| US7407175B2 (en) | 2000-03-01 | 2008-08-05 | Deka Products Limited Partnership | Multiple-passenger transporter |
| RU2333862C1 (en) * | 2007-01-17 | 2008-09-20 | Александр Исаевич Черноморский | Single-axle wheel-mounted vehicle |
| US7546889B2 (en) | 1993-02-24 | 2009-06-16 | Deka Products Limited Partnership | Guided control of a transporter |
| WO2010053740A1 (en) * | 2008-11-06 | 2010-05-14 | Segway, Inc. | Apparatus and method for control of a dynamically self-balancing vehicle |
| EP2017172A4 (en) * | 2006-05-09 | 2011-11-02 | Equos Res Co Ltd | VEHICLE, CHARACTERISTIC VALUE ESTIMATING DEVICE AND DEVICE FOR DETERMINING A LOADED ARTICLE |
| US8219308B2 (en) | 2010-02-02 | 2012-07-10 | Leeser Karl F | Monowheel type vehicle |
| US8490723B2 (en) | 2010-02-26 | 2013-07-23 | Segway, Inc. | Apparatus and methods for control of a vehicle |
| US8910975B2 (en) | 2007-02-14 | 2014-12-16 | Invacare Corporation | Wheelchair with suspension |
| US8925943B2 (en) | 2001-10-10 | 2015-01-06 | Invacare Corp. | Wheelchair suspension |
| US9010470B2 (en) | 2009-10-09 | 2015-04-21 | Invacare Corporation | Wheelchair suspension |
| US9149398B2 (en) | 2000-10-27 | 2015-10-06 | Invacare Corporation | Obstacle traversing wheelchair |
| US9308143B2 (en) | 2012-02-15 | 2016-04-12 | Invacare Corporation | Wheelchair suspension |
| US9364377B2 (en) | 2002-10-25 | 2016-06-14 | Invacare Corporation | Suspension for wheeled vehicles |
| RU2601485C2 (en) * | 2014-08-25 | 2016-11-10 | Александр Поликарпович Лялин | Single-axle vehicle |
| US9603762B2 (en) | 2007-02-08 | 2017-03-28 | Invacare Corporation | Wheelchair suspension |
| USD803963S1 (en) | 2016-07-20 | 2017-11-28 | Razor Usa Llc | Two wheeled board |
| USD807457S1 (en) | 2016-07-20 | 2018-01-09 | Razor Usa Llc | Two wheeled board |
| WO2018031533A1 (en) * | 2016-08-10 | 2018-02-15 | Max Mobility, Llc | Self-balancing wheelchair |
| DE102017100963A1 (en) * | 2017-01-19 | 2018-07-19 | Wilfried Santo | working machine |
| USD837323S1 (en) | 2018-01-03 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
| USD840872S1 (en) | 2016-07-20 | 2019-02-19 | Razor Usa Llc | Two wheeled board |
| US10220843B2 (en) | 2016-02-23 | 2019-03-05 | Deka Products Limited Partnership | Mobility device control system |
| US10252724B2 (en) | 2015-09-24 | 2019-04-09 | P&N Phc, Llc | Portable two-wheeled self-balancing personal transport vehicle |
| USD846452S1 (en) | 2017-05-20 | 2019-04-23 | Deka Products Limited Partnership | Display housing |
| US10802495B2 (en) | 2016-04-14 | 2020-10-13 | Deka Products Limited Partnership | User control device for a transporter |
| US10908045B2 (en) | 2016-02-23 | 2021-02-02 | Deka Products Limited Partnership | Mobility device |
| US10926756B2 (en) | 2016-02-23 | 2021-02-23 | Deka Products Limited Partnership | Mobility device |
| CN112996685A (en) * | 2018-10-22 | 2021-06-18 | 皮亚吉奥科技有限公司 | Shifting assembly and mobile carrier comprising same |
| US11213441B2 (en) | 2002-10-25 | 2022-01-04 | Invacare Corporation | Suspension for wheeled vehicles |
| USD941948S1 (en) | 2016-07-20 | 2022-01-25 | Razor Usa Llc | Two wheeled board |
| DE102020125036B3 (en) | 2020-09-25 | 2022-02-24 | Jonas HEINZLER | working machine |
| US11399995B2 (en) | 2016-02-23 | 2022-08-02 | Deka Products Limited Partnership | Mobility device |
| US11654995B2 (en) | 2017-12-22 | 2023-05-23 | Razor Usa Llc | Electric balance vehicles |
| US11681293B2 (en) | 2018-06-07 | 2023-06-20 | Deka Products Limited Partnership | System and method for distributed utility service execution |
| US11903887B2 (en) | 2020-02-25 | 2024-02-20 | Invacare Corporation | Wheelchair and suspension systems |
| US12227257B2 (en) | 2017-04-01 | 2025-02-18 | Razor Usa Llc | Electric balance vehicles |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10009924B4 (en) * | 2000-03-01 | 2005-11-17 | Sauer-Danfoss Holding Aps | Device for damping pitching vibrations of a motor vehicle |
| DE10027466A1 (en) * | 2000-06-02 | 2002-07-25 | Klaus Hofer | Electric unicycle |
| SE0004466D0 (en) * | 2000-12-04 | 2000-12-04 | Abb Ab | Mobile Robot |
| DE102004022892A1 (en) * | 2004-05-10 | 2005-12-08 | Adam Opel Ag | Method for compensating a dynamic axle load shift |
| KR100789906B1 (en) * | 2006-05-03 | 2008-01-02 | 안 데이비드 | Personal mobile vehicles |
| WO2008117602A1 (en) * | 2007-03-27 | 2008-10-02 | Equos Research Co., Ltd. | Vehicle |
| DE202012008151U1 (en) | 2012-08-27 | 2012-11-29 | Klaus Hofer | One-wheeled electric vehicle with a wide pneumatic tire |
| DE102023104135A1 (en) * | 2023-02-20 | 2024-08-22 | Dematic Gmbh | Warehouse system |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US880823A (en) * | 1904-11-14 | 1908-03-03 | Casper L Redfield | Motor-vehicle. |
| US2224411A (en) * | 1938-10-17 | 1940-12-10 | Homer P Smith | Motor driven wheel chair |
| US2415056A (en) * | 1943-08-26 | 1947-01-28 | Wellington B Wheeler | Gyroscopically controlled motor vehicle |
| US3145797A (en) * | 1960-09-21 | 1964-08-25 | Charles F Taylor | Vehicle |
| US3399742A (en) * | 1966-06-23 | 1968-09-03 | Franklin S. Malick | Powered unicycle |
| DE3103961A1 (en) * | 1981-02-02 | 1982-09-02 | Navid 8700 Würzburg Bastani Hessari | Two-wheeled car |
-
1988
- 1988-01-11 DE DE3800476A patent/DE3800476A1/en not_active Withdrawn
-
1989
- 1989-01-11 WO PCT/EP1989/000018 patent/WO1989006117A1/en not_active Ceased
- 1989-01-11 EP EP89901849A patent/EP0378588A1/en not_active Withdrawn
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US880823A (en) * | 1904-11-14 | 1908-03-03 | Casper L Redfield | Motor-vehicle. |
| US2224411A (en) * | 1938-10-17 | 1940-12-10 | Homer P Smith | Motor driven wheel chair |
| US2415056A (en) * | 1943-08-26 | 1947-01-28 | Wellington B Wheeler | Gyroscopically controlled motor vehicle |
| US3145797A (en) * | 1960-09-21 | 1964-08-25 | Charles F Taylor | Vehicle |
| US3399742A (en) * | 1966-06-23 | 1968-09-03 | Franklin S. Malick | Powered unicycle |
| DE3103961A1 (en) * | 1981-02-02 | 1982-09-02 | Navid 8700 Würzburg Bastani Hessari | Two-wheeled car |
Cited By (150)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1991003222A1 (en) * | 1989-08-28 | 1991-03-21 | William Barry Kilburn | Transport apparatus |
| DE4305592A1 (en) * | 1992-02-29 | 1993-09-16 | Sasse Maschinen Und Apparateba | Tractor coupled to wheelchair - has pair of wheels with differential driven by battery-powered motor with coupling to second pair of wheels |
| US7090040B2 (en) | 1993-02-24 | 2006-08-15 | Deka Products Limited Partnership | Motion control of a transporter |
| US7546889B2 (en) | 1993-02-24 | 2009-06-16 | Deka Products Limited Partnership | Guided control of a transporter |
| US5701965A (en) * | 1993-02-24 | 1997-12-30 | Deka Products Limited Partnership | Human transporter |
| US20130092461A1 (en) * | 1993-02-24 | 2013-04-18 | Dean L. Kamen | Motion control of a transporter |
| US7370713B1 (en) | 1993-02-24 | 2008-05-13 | Deka Products Limited Partnership | Personal mobility vehicles and methods |
| US5791425A (en) * | 1993-02-24 | 1998-08-11 | Deka Products Limited Partnership | Control loop for transportation vehicles |
| US6443250B1 (en) | 1993-02-24 | 2002-09-03 | Deka Products Limited Partnership | Control of a balancing personal vehicle |
| US5971091A (en) * | 1993-02-24 | 1999-10-26 | Deka Products Limited Partnership | Transportation vehicles and methods |
| US6915878B2 (en) | 1994-05-27 | 2005-07-12 | Deka Products Limited Partnership | Self-balancing ladder and camera dolly |
| US6929080B2 (en) | 1994-05-27 | 2005-08-16 | Deka Products Limited Partnership | Balancing personal vehicle |
| US6868931B2 (en) | 1994-05-27 | 2005-03-22 | Deka Products Limited Partnership | Speed limiting for a balancing transporter accounting for variations in system capability |
| US6543564B1 (en) | 1994-05-27 | 2003-04-08 | Deka Products Limited Partnership | Balancing personal vehicle |
| US6874591B2 (en) | 1994-05-27 | 2005-04-05 | Deka Products Limited Partnership | Speed limiting for a balancing transporter |
| US6311794B1 (en) | 1994-05-27 | 2001-11-06 | Deka Products Limited Partneship | System and method for stair climbing in a cluster-wheel vehicle |
| AU705704B2 (en) * | 1995-02-03 | 1999-05-27 | Deka Research And Development Corporation | Transportation vehicules and methods |
| AU726250B2 (en) * | 1995-02-03 | 2000-11-02 | Deka Research And Development Corporation | Control method for balancing vehicle |
| AU726253B2 (en) * | 1995-02-03 | 2000-11-02 | Deka Research And Development Corporation | Human transporter controlled by leaning |
| WO1996023478A1 (en) * | 1995-02-03 | 1996-08-08 | Deka Products Limited Partnership | Transportation vehicules and methods |
| AU728453B2 (en) * | 1995-02-03 | 2001-01-11 | Deka Research And Development Corporation | Indication system for a vehicle |
| AU729781B2 (en) * | 1995-02-03 | 2001-02-08 | Deka Research And Development Corporation | Balancing human transporter |
| US6003624A (en) * | 1995-06-06 | 1999-12-21 | University Of Washington | Stabilizing wheeled passenger carrier capable of traversing stairs |
| ES2121678A1 (en) * | 1995-12-19 | 1998-12-01 | Schmidt Jose Luis Defez | Vehicle with two parallel wheels |
| WO1997022511A1 (en) * | 1995-12-19 | 1997-06-26 | Defez Schmidt Jose Luis | Vehicle with two parallel wheels |
| JP2000514680A (en) * | 1996-07-17 | 2000-11-07 | デカ・プロダクツ・リミテッド・パートナーシップ | Fall prevention mechanism |
| AU710104B2 (en) * | 1996-07-17 | 1999-09-16 | Deka Products Limited Partnership | Anti-tipping mechanism |
| WO1998002122A1 (en) * | 1996-07-17 | 1998-01-22 | Deka Products Limited Partnership | Anti-tipping mechanism |
| WO1998018669A1 (en) * | 1996-10-26 | 1998-05-07 | Imtec Limited | Vehicle |
| US6601863B1 (en) | 1997-10-06 | 2003-08-05 | Invacare Corporation | Mid-wheel drive wheelchair with rigid front wheel anti-tip stabilizer |
| US6345675B1 (en) | 1998-01-28 | 2002-02-12 | Franz Hueber | Mobile apparatus |
| EP0958997A1 (en) * | 1998-01-28 | 1999-11-24 | Franz Hueber | Mobile device |
| WO1999038756A1 (en) * | 1998-01-28 | 1999-08-05 | Franz Hueber | Mobile apparatus |
| WO2000028931A1 (en) * | 1998-11-17 | 2000-05-25 | Saul Manashe | Wheel chairs |
| US6799649B2 (en) | 1999-03-15 | 2004-10-05 | Deka Products Limited Partnership | Control of a balancing personal vehicle |
| US6343664B2 (en) | 1999-03-15 | 2002-02-05 | Deka Products Limited Partnership | Operating modes for stair climbing in a cluster-wheel vehicle |
| US6443251B1 (en) | 1999-03-15 | 2002-09-03 | Deka Products Limited Partnership | Methods for stair climbing in a cluster-wheel vehicle |
| US6357544B1 (en) * | 1999-04-08 | 2002-03-19 | Deka Products Limited Partnership | Balancing vehicle with camber and toe-in |
| US7275607B2 (en) | 1999-06-04 | 2007-10-02 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US9188984B2 (en) | 1999-06-04 | 2015-11-17 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US9411336B2 (en) | 1999-06-04 | 2016-08-09 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US9442491B2 (en) | 1999-06-04 | 2016-09-13 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US9442492B2 (en) | 1999-06-04 | 2016-09-13 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US7023330B2 (en) | 1999-06-04 | 2006-04-04 | Deka Products Limited Partnership | Transporter oscillating alarm |
| WO2001001914A1 (en) * | 1999-07-02 | 2001-01-11 | Invacare Corporation | Mid-wheel drive wheelchair with rigid front wheel anti-tip stabilizer |
| AU757335B2 (en) * | 1999-07-02 | 2003-02-13 | Invacare Corporation | Mid-wheel drive wheelchair with rigid front wheel anti-tip stabilizer |
| US7004271B1 (en) | 1999-08-31 | 2006-02-28 | Deka Products Limited Partnership | Dynamic balancing vehicle with a seat |
| US6435535B1 (en) | 2000-03-01 | 2002-08-20 | Deka Products Limited Partnership | Trailer for balancing vehicle |
| US7000933B2 (en) | 2000-03-01 | 2006-02-21 | Deka Products Limited Partnership | Method for attaching a carrier to a balancing transporter |
| US7407175B2 (en) | 2000-03-01 | 2008-08-05 | Deka Products Limited Partnership | Multiple-passenger transporter |
| US6866107B2 (en) | 2000-10-13 | 2005-03-15 | Deka Products Limited Partnership | Method and device for battery load sharing |
| US7157875B2 (en) | 2000-10-13 | 2007-01-02 | Deka Products Limited Partnership | Method and system for fail-safe motor operation |
| US6965206B2 (en) | 2000-10-13 | 2005-11-15 | Deka Products Limited Partnership | Method and system for fail-safe motor operation |
| US9149398B2 (en) | 2000-10-27 | 2015-10-06 | Invacare Corporation | Obstacle traversing wheelchair |
| US9987177B2 (en) | 2000-10-27 | 2018-06-05 | Invacare Corporation | Obstacle traversing wheelchair |
| US8925943B2 (en) | 2001-10-10 | 2015-01-06 | Invacare Corp. | Wheelchair suspension |
| US9370455B2 (en) | 2001-10-10 | 2016-06-21 | Invacare Corporation | Wheelchair suspension |
| DE10209093A1 (en) * | 2002-03-01 | 2003-09-18 | Ms Handelsvertretung Consultin | Powered scooter for standing user has pair of front wheels driven by motor and tread board with single rear wheel |
| US6969079B2 (en) | 2002-06-05 | 2005-11-29 | Deka Products Limited Partnership | Multiple-passenger transporter |
| US7210544B2 (en) | 2002-07-12 | 2007-05-01 | Deka Products Limited Partnership | Control of a transporter based on attitude |
| US7174976B2 (en) | 2002-07-12 | 2007-02-13 | Deka Products Limited Partnership | Dynamically stable transporter controlled by lean |
| US9545963B2 (en) | 2002-07-12 | 2017-01-17 | DEKA Products Limited Partnership LLP | Control of a transporter based on attitude |
| US10512572B2 (en) | 2002-10-25 | 2019-12-24 | Invacare Corporation | Suspension for wheeled vehicles |
| US9925100B2 (en) | 2002-10-25 | 2018-03-27 | Invacare Corporation | Suspension for wheeled vehicles |
| US11213441B2 (en) | 2002-10-25 | 2022-01-04 | Invacare Corporation | Suspension for wheeled vehicles |
| US9364377B2 (en) | 2002-10-25 | 2016-06-14 | Invacare Corporation | Suspension for wheeled vehicles |
| US7317293B2 (en) | 2002-10-29 | 2008-01-08 | Seiko Epson Corporation | Displacement control system for a vehicle axle |
| US7182166B2 (en) | 2004-03-23 | 2007-02-27 | Deka Products Limited Partnership | Footrest tuck mechanism |
| DE102004033820A1 (en) * | 2004-04-22 | 2005-11-17 | Ortwin Heckl | Narrow one-person motor vehicle has substantial part of vehicle with driver and energy source within radius of one or several rim wheels that roll on road |
| DE102004033820B4 (en) * | 2004-04-22 | 2007-08-30 | Ortwin Heckl | Two-track motor vehicles |
| US9400502B2 (en) | 2004-09-13 | 2016-07-26 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US9442486B2 (en) | 2004-09-13 | 2016-09-13 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US9529365B2 (en) | 2004-09-13 | 2016-12-27 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US9411339B2 (en) | 2004-09-13 | 2016-08-09 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| US9459627B2 (en) | 2004-09-13 | 2016-10-04 | Deka Products Limited Partership | Control of a personal transporter based on user position |
| US9429955B2 (en) | 2004-09-13 | 2016-08-30 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
| EP2017172A4 (en) * | 2006-05-09 | 2011-11-02 | Equos Res Co Ltd | VEHICLE, CHARACTERISTIC VALUE ESTIMATING DEVICE AND DEVICE FOR DETERMINING A LOADED ARTICLE |
| RU2333862C1 (en) * | 2007-01-17 | 2008-09-20 | Александр Исаевич Черноморский | Single-axle wheel-mounted vehicle |
| US11819464B2 (en) | 2007-02-08 | 2023-11-21 | Invacare Corporation | Wheelchair suspension |
| US11464687B2 (en) | 2007-02-08 | 2022-10-11 | Invacare Coporation | Wheelchair suspension |
| US10912690B2 (en) | 2007-02-08 | 2021-02-09 | Invacare Corporation | Wheelchair suspension |
| US9603762B2 (en) | 2007-02-08 | 2017-03-28 | Invacare Corporation | Wheelchair suspension |
| US10265229B2 (en) | 2007-02-08 | 2019-04-23 | Invacare Corporation | Wheelchair suspension |
| US10532626B2 (en) | 2007-02-14 | 2020-01-14 | Invacare Corporation | Stability control system |
| US8910975B2 (en) | 2007-02-14 | 2014-12-16 | Invacare Corporation | Wheelchair with suspension |
| US11535078B2 (en) | 2007-02-14 | 2022-12-27 | Invacare Corporation | Stability control system |
| US9346335B2 (en) | 2007-02-14 | 2016-05-24 | Invacare Corporation | Stability control system |
| US11850906B2 (en) | 2007-02-14 | 2023-12-26 | Invacare Corporation | Stability control system |
| US11097589B2 (en) | 2007-02-14 | 2021-08-24 | Invacare Corporation | Stability control system |
| US9827823B2 (en) | 2007-02-14 | 2017-11-28 | Invacare Corporation | Stability control system |
| WO2010053740A1 (en) * | 2008-11-06 | 2010-05-14 | Segway, Inc. | Apparatus and method for control of a dynamically self-balancing vehicle |
| US9168966B2 (en) | 2008-11-06 | 2015-10-27 | Segway, Inc. | Apparatus and method for control of a vehicle |
| US9477228B2 (en) | 2008-11-06 | 2016-10-25 | Segway, Inc. | Apparatus and method for control of a vehicle |
| US9913768B2 (en) | 2009-10-09 | 2018-03-13 | Invacare Corporation | Wheelchair suspension |
| US12453665B2 (en) | 2009-10-09 | 2025-10-28 | Invacare Corporation | Wheelchair suspension |
| US9010470B2 (en) | 2009-10-09 | 2015-04-21 | Invacare Corporation | Wheelchair suspension |
| US11096845B2 (en) | 2009-10-09 | 2021-08-24 | Invacare Corporation | Wheelchair suspension |
| US11857470B2 (en) | 2009-10-09 | 2024-01-02 | Invacare Corporation | Wheelchair suspension |
| US8219308B2 (en) | 2010-02-02 | 2012-07-10 | Leeser Karl F | Monowheel type vehicle |
| US8490723B2 (en) | 2010-02-26 | 2013-07-23 | Segway, Inc. | Apparatus and methods for control of a vehicle |
| US8688303B2 (en) | 2010-02-26 | 2014-04-01 | Segway, Inc. | Apparatus and methods for control of a vehicle |
| US9126497B2 (en) | 2010-02-26 | 2015-09-08 | Segway, Inc. | Apparatus and methods for control of a vehicle |
| US9308143B2 (en) | 2012-02-15 | 2016-04-12 | Invacare Corporation | Wheelchair suspension |
| US10434019B2 (en) | 2012-02-15 | 2019-10-08 | Invacare Corporation | Wheelchair suspension |
| US9700470B2 (en) | 2012-02-15 | 2017-07-11 | Invacare Corporation | Wheelchair suspension |
| US11234875B2 (en) | 2012-02-15 | 2022-02-01 | Invacare Corporation | Wheelchair suspension |
| RU2601485C2 (en) * | 2014-08-25 | 2016-11-10 | Александр Поликарпович Лялин | Single-axle vehicle |
| US10252724B2 (en) | 2015-09-24 | 2019-04-09 | P&N Phc, Llc | Portable two-wheeled self-balancing personal transport vehicle |
| US11794722B2 (en) | 2016-02-23 | 2023-10-24 | Deka Products Limited Partnership | Mobility device |
| US11679044B2 (en) | 2016-02-23 | 2023-06-20 | Deka Products Limited Partnership | Mobility device |
| US10752243B2 (en) | 2016-02-23 | 2020-08-25 | Deka Products Limited Partnership | Mobility device control system |
| US12440401B2 (en) | 2016-02-23 | 2025-10-14 | Deka Products Limited Partnership | Mobility device |
| US11399995B2 (en) | 2016-02-23 | 2022-08-02 | Deka Products Limited Partnership | Mobility device |
| US10908045B2 (en) | 2016-02-23 | 2021-02-02 | Deka Products Limited Partnership | Mobility device |
| US10220843B2 (en) | 2016-02-23 | 2019-03-05 | Deka Products Limited Partnership | Mobility device control system |
| US10926756B2 (en) | 2016-02-23 | 2021-02-23 | Deka Products Limited Partnership | Mobility device |
| US12023285B2 (en) | 2016-02-23 | 2024-07-02 | Deka Products Limited Partnership | Mobility device |
| US12240440B2 (en) | 2016-02-23 | 2025-03-04 | Deka Products Limited Partnership | Mobility device |
| US11720115B2 (en) | 2016-04-14 | 2023-08-08 | Deka Products Limited Partnership | User control device for a transporter |
| US10802495B2 (en) | 2016-04-14 | 2020-10-13 | Deka Products Limited Partnership | User control device for a transporter |
| US12117842B2 (en) | 2016-04-14 | 2024-10-15 | Deka Products Limited Partnership | User control device for a transporter |
| USD807457S1 (en) | 2016-07-20 | 2018-01-09 | Razor Usa Llc | Two wheeled board |
| USD899541S1 (en) | 2016-07-20 | 2020-10-20 | Razor Usa Llc | Two wheeled board |
| USD803963S1 (en) | 2016-07-20 | 2017-11-28 | Razor Usa Llc | Two wheeled board |
| USD1088156S1 (en) | 2016-07-20 | 2025-08-12 | Razor Usa Llc | Two wheeled board |
| USD958278S1 (en) | 2016-07-20 | 2022-07-19 | Razor Usa Llc | Two wheeled board |
| USD899540S1 (en) | 2016-07-20 | 2020-10-20 | Razor Usa Llc | Two wheeled board |
| USD960043S1 (en) | 2016-07-20 | 2022-08-09 | Razor Usa Llc | Two wheeled board |
| USD865095S1 (en) | 2016-07-20 | 2019-10-29 | Razor Usa Llc | Two wheeled board |
| USD941948S1 (en) | 2016-07-20 | 2022-01-25 | Razor Usa Llc | Two wheeled board |
| USD1068552S1 (en) | 2016-07-20 | 2025-04-01 | Razor Usa Llc | Two wheeled board |
| USD837322S1 (en) | 2016-07-20 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
| USD1013080S1 (en) | 2016-07-20 | 2024-01-30 | Razor Usa Llc | Two wheeled board |
| USD840872S1 (en) | 2016-07-20 | 2019-02-19 | Razor Usa Llc | Two wheeled board |
| USD1002764S1 (en) | 2016-07-20 | 2023-10-24 | Razor Usa Llc | Two wheeled board |
| USD865890S1 (en) | 2016-07-20 | 2019-11-05 | Razor Usa Llc | Two wheeled board |
| US10772774B2 (en) | 2016-08-10 | 2020-09-15 | Max Mobility, Llc | Self-balancing wheelchair |
| WO2018031533A1 (en) * | 2016-08-10 | 2018-02-15 | Max Mobility, Llc | Self-balancing wheelchair |
| DE102017100963B4 (en) * | 2017-01-19 | 2020-03-19 | Jonas HEINZLER | Work machine |
| DE102017100963A1 (en) * | 2017-01-19 | 2018-07-19 | Wilfried Santo | working machine |
| US12227257B2 (en) | 2017-04-01 | 2025-02-18 | Razor Usa Llc | Electric balance vehicles |
| USD876994S1 (en) | 2017-05-20 | 2020-03-03 | Deka Products Limited Partnership | Display housing |
| USD846452S1 (en) | 2017-05-20 | 2019-04-23 | Deka Products Limited Partnership | Display housing |
| US11654995B2 (en) | 2017-12-22 | 2023-05-23 | Razor Usa Llc | Electric balance vehicles |
| US12214841B2 (en) | 2017-12-22 | 2025-02-04 | Razor Usa Llc | Electric balance vehicles |
| USD837323S1 (en) | 2018-01-03 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
| US11681293B2 (en) | 2018-06-07 | 2023-06-20 | Deka Products Limited Partnership | System and method for distributed utility service execution |
| CN112996685A (en) * | 2018-10-22 | 2021-06-18 | 皮亚吉奥科技有限公司 | Shifting assembly and mobile carrier comprising same |
| US11903887B2 (en) | 2020-02-25 | 2024-02-20 | Invacare Corporation | Wheelchair and suspension systems |
| DE102020125036B3 (en) | 2020-09-25 | 2022-02-24 | Jonas HEINZLER | working machine |
Also Published As
| Publication number | Publication date |
|---|---|
| DE3800476A1 (en) | 1989-07-20 |
| EP0378588A1 (en) | 1990-07-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO1989006117A1 (en) | Process for stabilizing a single-axle wheeled vehicle and vehicle so stabilized | |
| EP1713651B1 (en) | Multitrack curve-tilting vehicle, and method for tilting a vehicle | |
| DE60023273T2 (en) | SYSTEM AND METHOD FOR STAIRLIFTING IN A VEHICLE WITH GROUPED WHEELS | |
| DE2922983C2 (en) | ||
| DE4237558A1 (en) | ||
| DE202019003072U1 (en) | Driving platform and modular driving unit | |
| DE102014202230A1 (en) | Method and apparatus for preventing tipping of a steerable vehicle | |
| DE19511629C2 (en) | Recumbent tricycle | |
| EP1640311B1 (en) | Method for preventing tipping over of rear wheel steered vehicles, in particular of industrial trucks | |
| EP2733036B1 (en) | Mobile machine with loading system | |
| EP0850822B1 (en) | Disabled person's automotive shopping cart | |
| DE10031024B4 (en) | Combination transport train for the transport of long or short material | |
| EP3110740B1 (en) | Industrial truck with differential drive axle and pivot plate steering | |
| DE19820059A1 (en) | Position regulation using a guide wheel | |
| EP0960613A2 (en) | Vehicle for invalids | |
| WO2024126005A1 (en) | Steering method for operating an industrial truck, and industrial truck | |
| DE102017008042A1 (en) | vehicle | |
| EP2669153A1 (en) | Device for stabilising a manoeuvring system for a trailer | |
| DE102017215399B4 (en) | Self balancing vehicle | |
| DE102020101335A1 (en) | Safety mode for self-balancing vehicles | |
| EP2774889B1 (en) | Mobile machine with loading system | |
| DE102020101334A1 (en) | Safety mode for self-balancing vehicles | |
| EP3416878B1 (en) | Two-wheeler | |
| DE10352324B4 (en) | Two-wheeled transport cart | |
| EP1710148B1 (en) | Steering system for a floor conveyor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1989901849 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1989901849 Country of ref document: EP |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1989901849 Country of ref document: EP |