US20190036102A1 - Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive - Google Patents
Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive Download PDFInfo
- Publication number
- US20190036102A1 US20190036102A1 US15/665,142 US201715665142A US2019036102A1 US 20190036102 A1 US20190036102 A1 US 20190036102A1 US 201715665142 A US201715665142 A US 201715665142A US 2019036102 A1 US2019036102 A1 US 2019036102A1
- Authority
- US
- United States
- Prior art keywords
- active material
- electrode active
- self
- electrode
- carbon nanotubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 66
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 66
- 239000011230 binding agent Substances 0.000 title abstract description 8
- 238000010924 continuous production Methods 0.000 title abstract description 4
- 239000000654 additive Substances 0.000 title description 7
- 229910001416 lithium ion Inorganic materials 0.000 title description 3
- 230000000996 additive effect Effects 0.000 title description 2
- 239000007772 electrode material Substances 0.000 claims abstract description 78
- 239000002131 composite material Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 57
- 239000002109 single walled nanotube Substances 0.000 claims description 23
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 239000012159 carrier gas Substances 0.000 claims description 18
- 239000011149 active material Substances 0.000 claims description 16
- 238000003786 synthesis reaction Methods 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims description 11
- 150000004706 metal oxides Chemical class 0.000 claims description 11
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 229910021450 lithium metal oxide Inorganic materials 0.000 claims description 5
- 229910021385 hard carbon Inorganic materials 0.000 claims description 4
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 239000002071 nanotube Substances 0.000 abstract description 34
- 238000011068 loading method Methods 0.000 abstract description 7
- 239000003054 catalyst Substances 0.000 description 32
- 239000007789 gas Substances 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 14
- 239000012018 catalyst precursor Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 229910052723 transition metal Inorganic materials 0.000 description 14
- 238000003825 pressing Methods 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- 150000003624 transition metals Chemical class 0.000 description 10
- 239000000843 powder Substances 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- -1 transition metal salts Chemical class 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- 229910017052 cobalt Inorganic materials 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000007833 carbon precursor Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000001069 Raman spectroscopy Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052768 actinide Inorganic materials 0.000 description 2
- 150000001255 actinides Chemical class 0.000 description 2
- 238000012387 aerosolization Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- VGYDTVNNDKLMHX-UHFFFAOYSA-N lithium;manganese;nickel;oxocobalt Chemical group [Li].[Mn].[Ni].[Co]=O VGYDTVNNDKLMHX-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910001317 nickel manganese cobalt oxide (NMC) Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229910001848 post-transition metal Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- IYWJIYWFPADQAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;ruthenium Chemical compound [Ru].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O IYWJIYWFPADQAN-LNTINUHCSA-N 0.000 description 1
- KMHSUNDEGHRBNV-UHFFFAOYSA-N 2,4-dichloropyrimidine-5-carbonitrile Chemical compound ClC1=NC=C(C#N)C(Cl)=N1 KMHSUNDEGHRBNV-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 229910052695 Americium Inorganic materials 0.000 description 1
- 229910052694 Berkelium Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052686 Californium Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910052685 Curium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052690 Einsteinium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052687 Fermium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910052766 Lawrencium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052764 Mendelevium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052781 Neptunium Inorganic materials 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- NVJHHSJKESILSZ-UHFFFAOYSA-N [Co].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical compound [Co].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 NVJHHSJKESILSZ-UHFFFAOYSA-N 0.000 description 1
- JQRLYSGCPHSLJI-UHFFFAOYSA-N [Fe].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical compound [Fe].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 JQRLYSGCPHSLJI-UHFFFAOYSA-N 0.000 description 1
- RNGSTWPRDROEIW-UHFFFAOYSA-N [Ni].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical compound [Ni].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 RNGSTWPRDROEIW-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 229910052767 actinium Inorganic materials 0.000 description 1
- QQINRWTZWGJFDB-UHFFFAOYSA-N actinium atom Chemical compound [Ac] QQINRWTZWGJFDB-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- LXQXZNRPTYVCNG-UHFFFAOYSA-N americium atom Chemical compound [Am] LXQXZNRPTYVCNG-UHFFFAOYSA-N 0.000 description 1
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- JKOSHCYVZPCHSJ-UHFFFAOYSA-N benzene;toluene Chemical compound C1=CC=CC=C1.C1=CC=CC=C1.CC1=CC=CC=C1 JKOSHCYVZPCHSJ-UHFFFAOYSA-N 0.000 description 1
- WDEQGLDWZMIMJM-UHFFFAOYSA-N benzyl 4-hydroxy-2-(hydroxymethyl)pyrrolidine-1-carboxylate Chemical compound OCC1CC(O)CN1C(=O)OCC1=CC=CC=C1 WDEQGLDWZMIMJM-UHFFFAOYSA-N 0.000 description 1
- PWVKJRSRVJTHTR-UHFFFAOYSA-N berkelium atom Chemical compound [Bk] PWVKJRSRVJTHTR-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- HGLDOAKPQXAFKI-UHFFFAOYSA-N californium atom Chemical compound [Cf] HGLDOAKPQXAFKI-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 description 1
- FJDJVBXSSLDNJB-LNTINUHCSA-N cobalt;(z)-4-hydroxypent-3-en-2-one Chemical compound [Co].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FJDJVBXSSLDNJB-LNTINUHCSA-N 0.000 description 1
- ILZSSCVGGYJLOG-UHFFFAOYSA-N cobaltocene Chemical compound [Co+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 ILZSSCVGGYJLOG-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- KZPXREABEBSAQM-UHFFFAOYSA-N cyclopenta-1,3-diene;nickel(2+) Chemical compound [Ni+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KZPXREABEBSAQM-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- CKBRQZNRCSJHFT-UHFFFAOYSA-N einsteinium atom Chemical compound [Es] CKBRQZNRCSJHFT-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- MIORUQGGZCBUGO-UHFFFAOYSA-N fermium Chemical compound [Fm] MIORUQGGZCBUGO-UHFFFAOYSA-N 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(III) nitrate Inorganic materials [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 1
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- MQVSLOYRCXQRPM-UHFFFAOYSA-N mendelevium atom Chemical compound [Md] MQVSLOYRCXQRPM-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- LFNLGNPSGWYGGD-UHFFFAOYSA-N neptunium atom Chemical compound [Np] LFNLGNPSGWYGGD-UHFFFAOYSA-N 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(II) nitrate Inorganic materials [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- FZHCFNGSGGGXEH-UHFFFAOYSA-N ruthenocene Chemical compound [Ru+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 FZHCFNGSGGGXEH-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910021558 transition metal bromide Inorganic materials 0.000 description 1
- 229910021381 transition metal chloride Inorganic materials 0.000 description 1
- 229910021561 transition metal fluoride Inorganic materials 0.000 description 1
- 229910021573 transition metal iodide Inorganic materials 0.000 description 1
- 229910002001 transition metal nitrate Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0419—Methods of deposition of the material involving spraying
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0428—Chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0433—Molding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
- Y10S977/75—Single-walled
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/948—Energy storage/generating using nanostructure, e.g. fuel cell, battery
Definitions
- the presently claimed invention was made by or on behalf of the below listed parties to a joint research agreement.
- the joint research agreement was in effect on or before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the joint research agreement.
- the parties to the joint research agreement are 1) Hyundai Research Institute USA, Inc.; and 2) NanoSynthesis Plus, Ltd.
- SWNTs Single-walled carbon nanotubes as additives in various matrices has become one of the most intensively studied areas for applications, owing to their excellent electrical and mechanical properties and high aspect ratio, which is crucial for composite materials.
- the core of mixing technologies is based on liquid process and includes five required steps: a) synthesis of nanotubes, b) dispersion of nanotubes in the proper solvent (de-aggregation), c) functionalization of the nanotube surfaces (protecting against aggregation), d) mixing with binder, and e) mixing with active material (preparing slurry).
- the present disclosure is directed to a method of making a self-standing electrode, the method comprising fluidizing an electrode active material; and co-depositing the fluidized electrode active material and single-walled carbon nanotubes onto a movable porous flexible substrate to form a self-standing electrode that is a composite of the electrode active material and the single-walled carbon nanotubes.
- the present disclosure is directed to an apparatus for producing a self-standing electrode, the apparatus comprising a carbon nanotube synthesis reactor configured to synthesize carbon nanotubes; an active material container configured to fluidize an electrode active material; a movable porous flexible substrate configured to collect the carbon nanotubes and the fluidized electrode active material and form the self-standing electrode comprising a composite of the carbon nanotubes and the electrode active material.
- FIG. 1 is a schematic block diagram illustrating an exemplary method of making a self-standing electrode according to an embodiment of the present disclosure.
- FIG. 2 is a flow diagram illustrating an exemplary apparatus for making a self-standing electrode according to an embodiment of the present disclosure.
- FIG. 3 is a schematic view illustrating a vessel according to an embodiment of the present disclosure.
- FIG. 4 shows an example of a schematic of an apparatus according to an embodiment of the present disclosure.
- FIG. 5 shows an example of an alternate schematic of an apparatus according to an embodiment of the present disclosure.
- FIG. 8 shows derivative thermogravimetric analysis (DTG) of carbon nanotubes synthesized according to an embodiment of the present disclosure.
- the present disclosure provides method and apparatus for the production of self-standing electrodes. Also provided are self-standing electrodes comprising a mixture of nanotube and electrode active materials.
- a self-standing electrode is prepared by separately providing aerosolized nanotubes and aerosolized electrode active material, and directing the aerosolized nanotubes and the aerosolized electrode active materials to a movable porous substrate to form a self-standing electrode thereon comprising the mixed carbon nanotubes and the electrode active material.
- the present disclosure is directed to a method and apparatus for continuous production of self-standing electrodes for Li-ion batteries by using a single step co-deposition of carbon nanotubes and electrode active material on a moving porous substrate.
- Carbon nanotubes from the synthesis reactor and the fluidized active material powder may be directly deposited from a container onto a porous flexible substrate that is attached to a roll-to-roll system ( FIGS. 4 and 5 ).
- the resulting deposited layer contains well dispersed nanotubes in an active electrode material. Independent control of the nanotube and active material deposition rate allows adjustment of the ratio of nanotube to active material (weight %).
- the thickness of the composite obtained can be controlled, for example by varying the substrate motion speed for a given deposition rate.
- the composite can be removed from the porous substrate, and the layer is self-supporting, flexible, and can be cut to any desirable size.
- the composite can be used as an electrode without any additional binder or collector (alumina or copper, depending on the electrode type). The exploitation of this electrode opens the opportunity to increase the energy and power densities of batteries.
- decoupled sources for nanotube and active material powder deposition may allow for control over nanotube loading (weight %) and composite thickness.
- the method of the present disclosure can be run continuously, and may provide cost efficiency.
- the present disclosure is directed to a method of making a self-standing electrode, the method comprising fluidizing an electrode active material; and co-depositing the fluidized electrode active material and single-walled carbon nanotubes onto a movable porous flexible substrate to form a self-standing electrode that is a composite of the electrode active material and the single-walled carbon nanotubes.
- electrode active material refers to the conductive material in an electrode.
- electrode refers to an electrical conductor where ions and electrons are exchanged with an electrolyte and an outer circuit.
- Electrositive electrode and “cathode” are used synonymously in the present description and refer to the electrode having the higher electrode potential in an electrochemical cell (i.e. higher than the negative electrode).
- Negative electrode and “anode” are used synonymously in the present description and refer to the electrode having the lower electrode potential in an electrochemical cell (i.e. lower than the positive electrode).
- Cathodic reduction refers to a gain of electron(s) of a chemical species
- anodic oxidation refers to the loss of electron(s) of a chemical species.
- self-standing electrodes for Li-ion batteries are prepared by separately providing aerosolized carbon nanotubes and aerosolized electrode active materials at step S 100 , and directing the aerosolized carbon nanotubes and the aerosolized electrode active materials to a porous substrate at step S 101 to form a composite self-standing electrode of a desired thickness thereon that comprises the mixed carbon nanotubes and the electrode active materials.
- the self-standing electrode can be treated at step S 102 to, for example, increase the density of the self-standing electrode.
- the self-standing electrode is self-supported, flexible, and can optionally be cut to the desired dimensions of a battery electrode.
- the self-standing electrode is optionally free of binder and optionally can be used without a metal-based current collector (typically alumina or copper depending on the electrode type).
- the apparatus of providing the aerosolized carbon nanotubes and the aerosolized electrode active materials is not limited in any way.
- an apparatus 5 for the production of self-standing electrodes is provided.
- the carbon nanotubes and the electrode active materials are added to separate vessels 10 A, 10 B.
- the carbon nanotubes and the electrode active materials may be individually collected from their respective manufacturing processes and directly or indirectly introduced from such processes into the vessels 10 A, 10 B at a desired ratio for the self-standing electrode.
- One or more carrier gases 20 A, 20 B may then be introduced to the vessels 10 A, 10 B to aerosolize the nanotubes and the electrode active materials.
- the resulting aerosolized streams 30 A, 30 B comprising the nanotubes and the electrode active materials (separately) entrained in the carrier gas are directed to a movable porous substrate 40 , such as a filter.
- the carrier gas passes through the movable porous substrate 40 as gas stream 50 while the mixture of the nanotubes and the electrode active material is captured on the surface of the movable porous substrate 40 to form the self-standing electrode 60 .
- the self-standing electrode 60 can be removed from the movable porous substrate 40 when it reaches the desired thickness.
- the apparatus 5 may include a plurality of movable porous substrates 40 , 41 to allow for the continuous production of self-standing electrodes 60 , 61 .
- movable porous substrates 40 , 41 may be included in the apparatus 5 .
- valves 33 A, 33 B may be adjusted to transfer the flow of the aerosolized streams 30 A, 30 B to a second movable porous substrate 41 .
- the self-standing electrode 60 may be removed from the first movable porous substrate 40 during formation of the self-standing electrode 61 on the movable porous substrate 41 .
- the valves 33 A, 33 B may be adjusted to transfer the flow of the aerosolized streams 30 A, 30 B back to the first movable porous substrate 40 .
- the thickness and/or cross-sectional area of the self-standing electrode 61 may be the same, or different, than the cross-sectional area of the self-standing electrode 60 .
- the self-standing electrode 61 may have a greater thickness and/or cross-sectional area than the self-standing electrode 60 .
- valves 33 A, 33 B may be used for automatically switching the valves 33 A, 33 B to redirect the flow of the aerosolized streams 30 A, 30 B from one movable porous substrate to the other.
- Illustrative examples of systems that may be used to adjust the valves 33 A, 33 B to redirect the flow of the aerosolized streams 30 A, 30 B include one or more sensors for detecting the thickness of the self-standing electrodes 60 and 61 , one or more pressure sensors for monitoring a pressure drop across the movable porous substrates 40 and 41 that corresponds to a desired thickness of the self-standing electrodes 60 and 61 , a timer that switches the valves 33 A, 33 B after a set time corresponding to a desired thickness of the self-standing electrodes 60 and 61 for a given flow rate of the aerosolized streams 30 A, 30 B, and any combination thereof; after the one or more pressure sensors measures a pressure drop associated with the desired thickness of the self-standing electrode 60 or 61 on porous substrate 40 or 41 , or after the
- the movable porous substrates 40 and/or 41 may have a cross-sectional area that matches the desired cross-sectional area required for use in the battery cell to be made with the self-standing electrode 60 and/or 61 . Accordingly, the self-standing electrodes 60 and/or 61 would require no further processing of the cross-sectional area, such as cutting, before assembly in the final battery cell.
- the configuration of the vessels 10 A, 10 B is not intended to be limited in any way.
- the vessel 10 A (and/or the vessel 10 B) may be a pneumatic powder feeder, such as a venturi feeder that includes a hopper 11 A for receiving the nanotubes 11 A (and/or a hopper 11 B for receiving the electrode active material 11 B) therein.
- the vessel 10 A (and/or the vessel 10 B) may also include a rotary valve 12 A (and/or 12 B) that feeds the nanotubes 12 A (and/or the electrode active material 12 B) into contact with the carrier gas 20 A that is introduced to the vessel 10 A (and/or the carrier gas 20 B that is introduced into the vessel 10 B) to form the aerosolized stream 30 A (and/or 30 B).
- a rotary valve 12 A and/or 12 B
- the nanotubes may be provided in an aerosolized stream 30 A directly from the vessel 10 A that is configured as a nanotube synthesis reactor, in parallel with an aerosolized stream 30 B of the electrode active material from the source 106 .
- the aerosolized stream 30 A may be a product stream exiting the nanotube synthesis reactor.
- a carbon source or carbon precursor 130 may be introduced to the vessel 10 A in the presence of one or more carrier gases 20 A to form carbon nanotubes.
- the aerosolized stream 30 A of carbon nanotubes exits the reactor outlet 175 and travels down a pipe or tube 412 to a hood 27 where the aerosolized carbon nanotubes are co-deposited with the aerosolized stream 30 B of the electrode active materials as a self-standing layer 60 onto a porous flexible substrate 40 .
- the pipes leading into the hood 27 are shown to bend at 90 degree angles ‘ ⁇ 1 , ⁇ 2 ’ before reaching hood 27 , other angles ⁇ 1 , ⁇ 2 may be formed.
- one or more of the angles ⁇ 1 , ⁇ 2 may be a 180° angle that facilitates flow of the aerosolized streams 30 A, 30 B from the hood 27 to the porous substrate 40 , e.g., as shown in FIG. 5 .
- more than one porous substrate 40 may be provided as described with respect to FIG. 2 .
- Carrier and fluidizing gases suitable for use with the present disclosure include, but are not limited to, argon, hydrogen, nitrogen, and combinations thereof.
- Carrier gases may be used at any suitable pressure and at any suitable flow rate to aerosolize the nanotubes and the electrode active materials and transport the aerosolized nanotubes and the aerosolized electrode active materials to the movable porous substrate at a sufficient velocity to form the self-standing electrode on the surface thereof.
- the carrier gas may be argon, hydrogen, helium, or mixtures thereof.
- the carrier gas may comprise argon at a flow rate of 850 standard cubic centimeters per minute (sccm) and hydrogen at a flow rate of 300 sccm.
- nanotubes used in the present disclosure are not limited.
- the nanotubes may be entirely carbon, or they made be substituted, that it is, have non-carbon lattice atoms.
- Carbon nanotubes may be externally derivatized to include one or more functional moieties at a side and/or an end location.
- carbon and inorganic nanotubes include additional components such as metals or metalloids, incorporated into the structure of the nanotube.
- the additional components are a dopant, a surface coating, or are a combination thereof.
- Nanotubes may be metallic, semimetallic, or semi-conducting depending on their chirality.
- a carbon nanotube's chirality is indicated by the double index (n,m), where n and m are integers that describe the cut and wrapping of hexagonal graphite when formed into a tubular structure, as is well known in the art.
- a nanotube of an (m,n) configuration is insulating.
- a nanotube of an (n,n), or “arm-chair”, configuration is metallic, and hence highly valued for its electric and thermal conductivity.
- Carbon nanotubes may have diameters ranging from about 0.6 nm for single-wall carbon nanotubes up to 500 nm or greater for single-wall or multi-wall nanotubes. The nanotubes may range in length from about 50 nm to about 10 cm or greater.
- the movable porous substrate may be rendered movable by any suitable means known to those of ordinary skill in the art.
- the movable porous substrate may be a porous flexible substrate attached to a conveyor belt or a roll-to-roll system, such as roll-to-roll system 45 shown in FIGS. 4 and 5 .
- the rate of motion of the movable porous substrate may be controllable, such as by a computer or manually by an operator. Control of the rate of motion may enable or facilitate control of the thickness of the composite obtained.
- Suitable porous flexible substrates including but not limited to a filter or a frit, have pores appropriately sized so as to not permit passage of the composite. In some embodiments, the pores may be sized to permit passage of carrier gases and/or fluidizing gases.
- carbon nanotubes may be synthesized in a reactor or furnace from a carbon source or carbon precursor in the presence of a catalyst or catalyst precursor, at a temperature of about 1000 to about 1500° C., such as about 1300° C.
- the present disclosure is not limited to the type or form of catalysts used for the production of carbon nanotubes.
- the catalyst particles are present as an aerosol.
- the catalyst materials are supplied as nanoparticles, including but not limited to colloidal metallic nanoparticles, comprising a transition metal, a lanthanide metal, or an actinide metal.
- the catalyst may comprise a Group VI transition metal such as chromium (Cr), molybdenum (Mo), and tungsten (W), or a Group VIII transition metal such as iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), Iridium (Ir), and platinum (Pt).
- a Group VI transition metal such as chromium (Cr), molybdenum (Mo), and tungsten (W)
- a Group VIII transition metal such as iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), Iridium (Ir), and platinum (Pt).
- a combination of two or more metals are used, for example an iron, nickel, and cobalt mixture or more specifically a 50:50 mixture (by weight) of nickel and co
- the catalyst may comprise a pure metal, a metal oxide, a metal carbide, a nitrate salt of a metal, and/or other compounds containing one or more of the metals described herein.
- the catalyst may be added to the reactor at about 0.1 atom % to about 10 atom %, where atom % indicates the percentage of the number of catalyst atoms with respect to the total number of atoms in the reactor (catalyst and carbon precursor atoms).
- a catalyst precursor may be introduced, wherein the catalyst precursor can be converted to an active catalyst under the reactor's conditions.
- the catalyst precursor may comprise one or more transition metal salts such as a transition metal nitrate, a transition metal acetate, a transition metal citrate, a transition metal chloride, a transition metal fluoride, a transition metal bromide, a transition metal iodide, or hydrates thereof.
- the catalyst precursor may be a metallocene, a metal acetylacetonate, a metal phthalocyanine, a metal porphyrin, a metal salt, a metalorganic compound, or a combination thereof.
- the catalyst precursor may be a ferrocene, nickelocene, cobaltocene, molybdenocene, ruthenocene, iron acetylacetonate, nickel acetylacetonate, cobalt acetylacetonate, molybdenum acetylacetonate, ruthenium acetylacetonate, iron phthalocyanine, nickel phthalocyanine, cobalt phthalocyanine, iron porphyrin, nickel porphyrin, cobalt porphyrin, an iron salt, a nickel salt, cobalt salt, molybdenum salt, ruthenium salt, or a combination thereof.
- the catalyst precursor may comprise a soluble salt such as Fe(NO3)3, Ni(NO3)2 or Co(NO3)2 dissolved in a liquid such as water.
- the catalyst precursor may achieve an intermediate catalyst state in the catalyst particle growth zone of the reactor, and subsequently become converted to an active catalyst upon exposure to the nanostructure growth conditions in the nanostructure growth zone of the reactor.
- the catalyst precursor may be a transition metal salt that is converted into a transition metal oxide in the catalyst particle growth zone, then converted into active catalytic nanoparticles in the nanostructure growth zone.
- the catalyst particles may comprise a transition metal, such as a d-block transition metal, an f-block transition metal, or a combination thereof.
- the catalyst particles may comprise a d-block transition metal such as an iron, nickel, cobalt, gold, silver, or a combination thereof.
- the catalyst particles may be supported on a catalyst support, wherein the catalyst support may be selected from alumina, silica, zirconia, magnesia, or zeolites.
- the catalyst support may be a nanoporous magnesium oxide support.
- the catalyst support may be the same or different from the material selected for the matrix. In order to have catalyst particles on a catalyst support, the catalyst support material may be introduced into the catalyst material prior to adding the catalyst to the reactor.
- a solution of the catalyst material such as a molybdenum/cobalt mixture
- a solution of magnesium nitrate may be combined with a solution of magnesium nitrate, heated together, and then cooled to produce a catalyst on a nanoporous MgO support.
- a silica support may be impregnated with cobalt nitrate and ammonium heptamolybdate and dried for several hours to produce a cobalt/molybdenum catalyst on a porous silica support.
- the present disclosure is not limited to the type of carbon precursors or carbon sources used to form carbon nanotubes such as one or more carbon-containing gases, one or more hydrocarbon solvents, and mixtures thereof.
- carbon precursors include, but are not limited to hydrocarbon gases, such as methane, acetylene, and ethylene; alcohols, such as ethanol and methanol; benzene; toluene; CO; and CO 2 .
- a fuel for carbon nanotube synthesis and growth comprises a mixture of one or more carbon precursors or carbon sources and one or more catalysts or catalyst precursors.
- the fuel or precursor may be injected at a range of about 0.05 to about 1 ml/min, such as about 0.1 ml/min or about 0.3 ml/min, per injector. In some embodiments, more than one injector may be used, for example at large scale.
- the gas flow rate may be about 0.1 to about 5 L/min of hydrogen and/or about 0.2 to about 2 L/min helium or argon, such as about 5 L/min hydrogen, or about 0.3 L/min hydrogen and about 1 L/min argon.
- helium or argon may be included in the carrier gas to dilute the hydrogen concentration, for example to keep the hydrogen concentration below the explosive limit.
- a fuel injection rate and/or a gas flow rate may depend, for example, on the reactor volume, as will be apparent to those of ordinary skill in the art.
- more than one reactor may be used in conjunction.
- the reactor temperature profile consists of a starting low temperature, an increase to a peak or a maximum, and then a decrease, preferably to the starting low temperature.
- the injector position inside the reactor should be correlated with the precursor temperature so that the precursor evaporates from the point of injection, without droplet formation or decomposition, as can be determined by those of ordinary skill in the art, considering for example the boiling point and decomposition.
- the injector tip may be inserted into the reactor, for example, by about 8 inches.
- the injection temperature, at the tip of the injector may depend on the reactor or furnace temperature and upon the depth of insertion of the injector into the reactor or furnace. In some embodiments, the injection temperature at the tip of the injector is about 750° C. In some embodiments, the injector tip is inserted about 8 inches inside the reactor.
- the carbon nanotube reactor may be run for any suitable length of time to obtain the product composition and thickness desired, as can be determined by those of ordinary skill in the art, for example as long as there are starting materials.
- Carbon nanotubes synthesized according to the present disclosure may be characterized using any suitable means known in the art, including but not limited to derivative thermogravimetric analysis (DTG) and Raman spectroscopy, such as for calculation of the G/D ratio, as is disclosed in U.S. Patent Application Publication No. 2009/0274609, which is incorporated herein by reference in its entirety.
- the Raman spectra of SWNTs has three major peaks, which are the G-band at about 1590 cm ⁇ 1 , D-band at about 1350 cm ⁇ 1 , and the Radial breathing mode (RBM) at about 100-300 cm ⁇ 1 .
- RBM frequency is proportional to an inverse of the diameter of SWNTs and can thus be used to calculate the diameter of the SWNT.
- a red shift in RBM peak corresponds to an increase in the mean diameter of SWNTs.
- the tangential mode G-band related to the Raman-allowed phonon mode E 2g can be a superposition of two peaks.
- the double peak at about 1593 and 1568 cm ⁇ 1 has been assigned to semiconductor SWNTs, while the broad Breit-Wigner-Fano line at about 1550 cm ⁇ 1 has been assigned to metallic SWNTs.
- G-band offers a method for distinguishing between metallic and semiconducting SWNTs.
- the D-band structure is related to disordered carbon, the presence of amorphous carbon, and other defects due to the sp 2 -carbon network.
- the ratio of the G-band to D-band in the Raman spectra (I G :I D or G/D ratio) of SWNTs can be used as an index to determine the purity and quality of the SWNTs produced.
- I G :I D is about 1 to about 500, preferably about 5 to about 400, more preferably greater than about 7.
- Representative, non-limiting examples of Raman characterization of carbon nanotubes synthesized according to the present disclosure are shown in FIGS. 6 and 7 .
- a representative, non-limiting example of DTG of carbon nanotubes synthesized according to the present disclosure is shown in FIG. 8 .
- co-depositing of two or more substances refers to the simultaneous deposition of two or more substances, which were not previously in contact with one another. Co-depositing may be carried out by any suitable means known to those in the art, including but not limited to chemical vapor deposition. Co-depositing may be carried out in a fume hood or with other suitable apparatus, as will be known to those of ordinary skill in the art. In some embodiments, the carbon nanotubes and the electrode active material do not contact each other until they are co-deposited onto the substrate.
- the collecting surface of the porous substrate 40 , 41 may be a porous surface, including but not limited to a filter or a frit, where the pores are appropriately sized to retain the mixture of carbon nanotubes and the electrode active material thereon to form the self-standing electrode while permitting passage of the carrier and fluidizing gases.
- the carrier and fluidizing gases may be removed after passing through the surface and by way of an outlet. In some embodiments, removal of the carrier gas may be facilitated by a vacuum source.
- the filters may be in the form of a sheet and may comprise a variety of different materials including woven and non-woven fabrics.
- Illustrative filter materials include, but are not limited to, cotton, polyolefins, nylons, acrylics, polyesters, fiberglass, and polytetrafluoroethylene (PTFE).
- PTFE polytetrafluoroethylene
- one or more of the streams 30 A and 30 B may be precooled with dilution gases comprising a lower temperature and/or by directing one or more of the streams 30 A and 30 B through a heat exchanger prior to contacting the movable porous substrate.
- fluidizing refers to the conversion of a granular material from a static-like solid state to a dynamic fluid-like state, characterized by a tendency to flow. Fluidization may be achieved by passing a fluid, such as a liquid or a gas, up through the granular material, as will be known to those of ordinary skill in the art.
- fluidizing the electrode active material comprises aerosolizing the electrode active material.
- the aerosolizing of the electrode active material comprises distributing an aerosolizing gas through a first porous frit and a bed of an electrode active material, in an aerosolizing chamber, to produce the aerosolized electrode active material powder.
- the aerosolizing chamber may be constructed with an appropriately sized porous material such that gas can pass through to enable aerosolization but that does not permit the active material to fall through the pores.
- the aerosolizing chamber is not limited to any particular configuration. Suitable aerosolizing gases include, but are not limited to, argon, helium, or nitrogen. In some embodiments, the aerosolizing gas may be the same as the carrier gas.
- the method further comprises synthesizing the single-walled carbon nanotubes in a carbon nanotube synthesis reactor.
- the reactor may comprise a catalyst or catalyst precursor, a carbon source, one or more gas inlets, one or more outlets, and a carbon nanotube growth zone.
- the one or more gas inlets may be configured to let in one or more carrier gases.
- the carbon nanotube synthesis reactor may include a quartz tube of 25 mm OD ⁇ 22 mm ID ⁇ 760 mm length and may be operated at atmospheric pressure.
- the carbon nanotube synthesis reactor may be designed as described in U.S. patent application Ser. No. 15/452,509, filed Mar. 7, 2017, and Ser. No. 15/452,500, filed Mar. 7, 2017, both of which are incorporated herein by reference.
- the carbon nanotube synthesis reactor may be arranged at a variety of angles with respect to the other equipment.
- the electrode active material is selected from graphite, hard carbon, lithium metal oxides, lithium iron phosphate, and metal oxides.
- the electrode active material for the anode may be graphite or hard carbon.
- the electrode active material for the cathode may be lithium metal oxide or lithium iron phosphate.
- the electrode active material may be selected from electrode active materials described in U.S. patent application Ser. No. 15/452,509, filed Mar. 7, 2017, and Ser. No. 15/452,500, filed Mar. 7, 2017, both of which are incorporated herein by reference.
- the electrode active material may be any solid, metal oxide powder that is capable of being aerosolized.
- the metal oxide is a material for use in the cathode of the battery.
- Non-limiting examples of metal oxides include oxides of Ni, Mn, Co, Al, Mg, Ti and any mixture thereof.
- the metal oxide may be lithiated.
- the metal oxide is lithium nickel manganese cobalt oxide (LiNiMnCoO 2 ).
- the metal oxide powders can have a particle size defined within a range between about 1 nanometer and about 100 microns. In a non-limiting example, the metal oxide particles have an average particle size of about 1 nanometer to about 10 nanometers.
- Metals in lithium metal oxides according to the present disclosure may include but are not limited to one or more alkali metals, alkaline earth metals, transition metals, aluminum, or post-transition metals, and hydrates thereof.
- the electrode active material is lithium nickel manganese cobalt oxide (LiNiMnCoO 2 ).
- Alkali metals are metals in Group I of the periodic table of the elements, such as lithium, sodium, potassium, rubidium, cesium, or francium.
- Alkaline earth metals are metals in Group II of the periodic table of the elements, such as beryllium, magnesium, calcium, strontium, barium, or radium.
- Transition metals are metals in the d-block of the periodic table of the elements, including the lanthanide and actinide series. Transition metals include, but are not limited to, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, actinium, thorium, protactinium,
- Post-transition metals include, but are not limited to, aluminum, gallium, indium, tin, thallium, lead, bismuth, or polonium.
- the method further comprises allowing the mixture of single-walled carbon nanotubes and electrode active material in the carrier gas to flow through one or more tubes connecting the aerosolizing reactor, the carbon nanotube synthesis reactor, and the collection chamber.
- the one or more tubes are at least about 0.5′′ O.D. stainless tubing.
- the loading or weight % of carbon nanotubes in the composite self-standing electrode product is based on the relative amounts of the nanotubes (or carbon source used to form the nanotubes) and the electrode active material. It is within the level of ordinary skill in the art to determine the relative starting amounts of carbon source, catalyst/catalyst precursor, and electrode active material that will afford a given loading or weight % of carbon nanotubes in the composite self-standing electrode product.
- the self-standing electrode may comprise from 0.1% to 4% by weight carbon nanotubes, and the balance the electrode active material and optionally one or more additives.
- the self-standing electrode may comprise from 0.2% to 3% by weight carbon nanotubes, and the balance the electrode active material and optionally one or more additives.
- the self-standing electrode may comprise from 0.75% to 2% by weight carbon nanotubes, and the balance the electrode active material and optionally one or more additives. Additives and/or dopants may be present for each range in an amount of 0 to 5% by weight.
- the self-standing electrode consists essentially of the carbon nanotubes and the electrode active material powder.
- the self-standing electrode consists of the carbon nanotubes and the electrode active material powder.
- the self-standing electrode may be free of any binders. The lack of a binder results in a self-standing electrode with improved flexibility. Further, it has been discovered that a higher carbon nanotube content increases the flexibility of the self-standing electrode. Without being bound to any particular theory, this is likely due to the webbed morphology of the self-standing electrode in which there is a webbed arrangement of carbon nanotubes with the electrode active material contained or embedded within the web.
- the self-standing electrode may comprise a density of 0.9 to 1.75 g/cc.
- the self-standing electrode may comprise a density of 0.95 to 1.25 g/cc.
- the self-standing electrode may comprise a density of 0.75 to 2.0 g/cc.
- the self-standing electrode may comprise a density of 0.95 to 1.60 g/cc.
- the self-standing electrode may comprise a thickness of up to 750 ⁇ m following collection on the porous substrate.
- the self-standing electrode may comprise a thickness of 50 ⁇ m to 500 ⁇ m following collection on the porous substrate.
- the self-standing electrode may comprise a thickness of from 100 ⁇ m to 450 ⁇ m following collection on the porous substrate.
- the self-standing electrode may comprise a thickness of from 175 ⁇ m to 250 ⁇ m following collection on the porous substrate.
- the method of the present disclosure may further comprise treating the composite or self-standing electrode, including but not limited to pressing the composite or self-standing electrode.
- pressing may increase the density and/or lower the thickness of the self-standing electrode, which may improve such properties as rate performance, energy density, and battery life.
- Pressing of the self-standing electrodes may be carried out by applying a force to achieve a desired thickness and/or density, such as by using a rolling press or calendaring machine, platen press, or other suitable means, as will be known to those of ordinary skill in the art.
- Any suitable force may be applied, to achieve a desired thickness, and/or density, and/or impedance, such as but not limited to a force of about 1 ton, about 2 tons, about 3 tons, about 4 tons, about 5 tons, about 6 tons, about 7 tons, about 8 tons, about 9 tons, about 10 tons, about 15 tons, or any integer or range in between, such as between about 7 tons and about 10 tons.
- pressing may be limited to pressing to a thickness of about 20 microns, about 30 microns, about 40 microns, about 50 microns, about 60 microns, about 70 microns, about 80 microns, about 90 microns, about 100 microns, about 150 microns, about 200 microns, about 250 microns, about 300 microns, about 350 microns, about 400 microns, or any integer or range in between.
- too thick of an electrode may be slow to produce energy or may not be suitably flexible.
- the electrode is too thin, energy production may be rapid but it may be the case that not enough energy is produced.
- it may be desirable to regulate the distance between the rolls or rollers in a rolling press or calendaring machine, or between the plates of a platen press, by any suitable means known to those of ordinary skill in the art.
- the thickness of the self-standing electrode following pressing may be from 40% to 75% of the thickness of the untreated self-standing electrode, or the self-standing electrode following collection on the porous substrate.
- the thickness of the self-standing electrode following pressing may be from 45% to 60% of the thickness of the untreated self-standing electrode, or the self-standing electrode following collection on the porous substrate.
- the density of the self-standing electrode following pressing is increased by 40% to 125% of the density of the untreated self-standing electrode, or the self-standing electrode following collection on the porous substrate.
- the density of the self-standing electrode following pressing is increased by 45% to 90% of the density of the untreated self-standing electrode, or the self-standing electrode following collection on the porous substrate.
- Electrodes pressed to thinner thicknesses may be unsuitably brittle.
- Non-limiting examples of electrode thickness and density, with and without pressing, are shown in the table below:
- the fluidizing of the electrode active material comprises distributing an aerosolizing gas through, sequentially, a porous frit and a bed of the electrode active material, in an active material container, to form an aerosolized electrode active material.
- the pores of the porous frit may be sized to permit passage of the aerosolizing gas through to enable aerosolization but not permit the active material to fall through the pores.
- the active material container may be any container capable of fluidizing, such as aerosolizing, the electrode active material, including but not limited to a modified gas washing bottle.
- Aerosolizing gases suitable for use with the present disclosure include but are not limited to an inert gas, such as argon gas or helium gas; hydrogen gas; nitrogen gas; or a combination thereof.
- the aerosolizing gas is the same as the carrier gas.
- the present disclosure is directed to an apparatus for producing a self-standing electrode, the apparatus comprising a carbon nanotube synthesis reactor configured to synthesize carbon nanotubes; an active material container configured to fluidize an electrode active material; a movable porous flexible substrate configured to collect the carbon nanotubes and the fluidized electrode active material to form the self-standing electrode comprising a composite of the carbon nanotubes and the electrode active material. All embodiments described for the method apply to the apparatus with equal force, and vice versa.
- the carbon nanotube synthesis reactor comprises one or more gas inlets, one or more gas outlets, and a carbon nanotube growth zone where a catalyst or catalyst precursor and a carbon source are used to grow the carbon nanotubes.
- the active material container comprises a porous frit; and a vertical shaker.
- the active material container may further contain one or more gas Inlets and one or more gas outlets, and the one or more gas inlets may be configured to take in one or more fluidizing gases, such as one or more aerosolizing gases.
- the movable porous flexible substrate is connected to a roll-to-roll system.
- the present disclosure is directed to a self-standing electrode, comprising a composite of an electrode active material and single-walled carbon nanotubes; wherein the self-standing electrode does not contain binder material or a metal-based current collector material.
- the electrode is characterized by a webbed morphology or a net.
- a webbed morphology or a net is a webbed arrangement of carbon nanotubes with the electrode active material contained or embedded within the carbon nanotube web or net.
- Composites or self-standing electrodes prepared according to the present disclosure may be of any desired thickness and may be cut according to requirements. Thickness may be controlled by factors including, but not limited to, the rate of motion of the movable substrate, the rate of deposition of the carbon nanotubes and/or the electrode active material, and the carbon nanotube loading (weight %).
- example is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “example” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more.
- Combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
- combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Dispersion Chemistry (AREA)
Abstract
Description
- The presently claimed invention was made by or on behalf of the below listed parties to a joint research agreement. The joint research agreement was in effect on or before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the joint research agreement. The parties to the joint research agreement are 1) Honda Research Institute USA, Inc.; and 2) NanoSynthesis Plus, Ltd.
- Single-walled carbon nanotubes (SWNTs) as additives in various matrices has become one of the most intensively studied areas for applications, owing to their excellent electrical and mechanical properties and high aspect ratio, which is crucial for composite materials. Among various applications, the exploitation of SWNTs as an additive material for performance enhancement of battery electrodes is very promising. The core of mixing technologies is based on liquid process and includes five required steps: a) synthesis of nanotubes, b) dispersion of nanotubes in the proper solvent (de-aggregation), c) functionalization of the nanotube surfaces (protecting against aggregation), d) mixing with binder, and e) mixing with active material (preparing slurry). These preferences are not only expensive, but they also degrade nanotube properties; for example, dispersion by ball milling, sonication, etc. leads to the inevitable reduction of aspect ratio and the introduction of defects, and as a result, more nanotube loading (weight %) is required for improved performance.
- In some embodiments, the present disclosure is directed to a method of making a self-standing electrode, the method comprising fluidizing an electrode active material; and co-depositing the fluidized electrode active material and single-walled carbon nanotubes onto a movable porous flexible substrate to form a self-standing electrode that is a composite of the electrode active material and the single-walled carbon nanotubes.
- In some embodiments, the present disclosure is directed to an apparatus for producing a self-standing electrode, the apparatus comprising a carbon nanotube synthesis reactor configured to synthesize carbon nanotubes; an active material container configured to fluidize an electrode active material; a movable porous flexible substrate configured to collect the carbon nanotubes and the fluidized electrode active material and form the self-standing electrode comprising a composite of the carbon nanotubes and the electrode active material.
-
FIG. 1 is a schematic block diagram illustrating an exemplary method of making a self-standing electrode according to an embodiment of the present disclosure. -
FIG. 2 is a flow diagram illustrating an exemplary apparatus for making a self-standing electrode according to an embodiment of the present disclosure. -
FIG. 3 is a schematic view illustrating a vessel according to an embodiment of the present disclosure. -
FIG. 4 shows an example of a schematic of an apparatus according to an embodiment of the present disclosure. -
FIG. 5 shows an example of an alternate schematic of an apparatus according to an embodiment of the present disclosure. -
FIG. 6 shows Raman characterization (λ=633 nm) of carbon nanotubes synthesized according to an embodiment of the present disclosure. -
FIG. 7 shows Raman characterization (λ=532 nm) of carbon nanotubes synthesized according to an embodiment of the present disclosure. -
FIG. 8 shows derivative thermogravimetric analysis (DTG) of carbon nanotubes synthesized according to an embodiment of the present disclosure. - The present disclosure provides method and apparatus for the production of self-standing electrodes. Also provided are self-standing electrodes comprising a mixture of nanotube and electrode active materials.
- In an embodiment, a self-standing electrode is prepared by separately providing aerosolized nanotubes and aerosolized electrode active material, and directing the aerosolized nanotubes and the aerosolized electrode active materials to a movable porous substrate to form a self-standing electrode thereon comprising the mixed carbon nanotubes and the electrode active material.
- The present disclosure is directed to a method and apparatus for continuous production of self-standing electrodes for Li-ion batteries by using a single step co-deposition of carbon nanotubes and electrode active material on a moving porous substrate. Carbon nanotubes from the synthesis reactor and the fluidized active material powder may be directly deposited from a container onto a porous flexible substrate that is attached to a roll-to-roll system (
FIGS. 4 and 5 ). - The resulting deposited layer contains well dispersed nanotubes in an active electrode material. Independent control of the nanotube and active material deposition rate allows adjustment of the ratio of nanotube to active material (weight %). The thickness of the composite obtained can be controlled, for example by varying the substrate motion speed for a given deposition rate. The composite can be removed from the porous substrate, and the layer is self-supporting, flexible, and can be cut to any desirable size. The composite can be used as an electrode without any additional binder or collector (alumina or copper, depending on the electrode type). The exploitation of this electrode opens the opportunity to increase the energy and power densities of batteries. In addition, using decoupled sources for nanotube and active material powder deposition, as well as implementing a roll-to-roll system, may allow for control over nanotube loading (weight %) and composite thickness. Moreover, the method of the present disclosure can be run continuously, and may provide cost efficiency.
- In some embodiments, the present disclosure is directed to a method of making a self-standing electrode, the method comprising fluidizing an electrode active material; and co-depositing the fluidized electrode active material and single-walled carbon nanotubes onto a movable porous flexible substrate to form a self-standing electrode that is a composite of the electrode active material and the single-walled carbon nanotubes.
- As used herein, “electrode active material” refers to the conductive material in an electrode. The term “electrode” refers to an electrical conductor where ions and electrons are exchanged with an electrolyte and an outer circuit. “Positive electrode” and “cathode” are used synonymously in the present description and refer to the electrode having the higher electrode potential in an electrochemical cell (i.e. higher than the negative electrode). “Negative electrode” and “anode” are used synonymously in the present description and refer to the electrode having the lower electrode potential in an electrochemical cell (i.e. lower than the positive electrode). Cathodic reduction refers to a gain of electron(s) of a chemical species, and anodic oxidation refers to the loss of electron(s) of a chemical species.
- In a non-limiting example as shown in
FIG. 1 , self-standing electrodes for Li-ion batteries are prepared by separately providing aerosolized carbon nanotubes and aerosolized electrode active materials at step S100, and directing the aerosolized carbon nanotubes and the aerosolized electrode active materials to a porous substrate at step S101 to form a composite self-standing electrode of a desired thickness thereon that comprises the mixed carbon nanotubes and the electrode active materials. Optionally, the self-standing electrode can be treated at step S102 to, for example, increase the density of the self-standing electrode. The self-standing electrode is self-supported, flexible, and can optionally be cut to the desired dimensions of a battery electrode. The self-standing electrode is optionally free of binder and optionally can be used without a metal-based current collector (typically alumina or copper depending on the electrode type). - The apparatus of providing the aerosolized carbon nanotubes and the aerosolized electrode active materials is not limited in any way. In an illustrative example as shown in
FIG. 2 , anapparatus 5 for the production of self-standing electrodes is provided. The carbon nanotubes and the electrode active materials are added to 10A, 10B. The carbon nanotubes and the electrode active materials may be individually collected from their respective manufacturing processes and directly or indirectly introduced from such processes into theseparate vessels 10A, 10B at a desired ratio for the self-standing electrode. One orvessels 20A, 20B may then be introduced to themore carrier gases 10A, 10B to aerosolize the nanotubes and the electrode active materials. The resultingvessels 30A, 30B comprising the nanotubes and the electrode active materials (separately) entrained in the carrier gas are directed to a movableaerosolized streams porous substrate 40, such as a filter. The carrier gas passes through the movableporous substrate 40 asgas stream 50 while the mixture of the nanotubes and the electrode active material is captured on the surface of the movableporous substrate 40 to form the self-standingelectrode 60. The self-standingelectrode 60 can be removed from the movableporous substrate 40 when it reaches the desired thickness. - Optionally, the
apparatus 5 may include a plurality of movable 40, 41 to allow for the continuous production of self-standingporous substrates 60, 61. Although only two porous substrates are shown, it is to be understood that any number of porous substrates may be included in theelectrodes apparatus 5. In a non-limiting example, when the flow of the 30A, 30B across the movableaerosolized streams porous substrate 40 produces the self-standingelectrode 60 of the desired thickness, 33A, 33B may be adjusted to transfer the flow of thevalves 30A, 30B to a second movableaerosolized streams porous substrate 41. The self-standingelectrode 60 may be removed from the first movableporous substrate 40 during formation of the self-standingelectrode 61 on the movableporous substrate 41. When the flow of the 30A, 30B across the second movableaerosolized streams porous substrate 41 produces the self-standingelectrode 61 of a desired thickness, the 33A, 33B may be adjusted to transfer the flow of thevalves 30A, 30B back to the first movableaerosolized streams porous substrate 40. The thickness and/or cross-sectional area of the self-standingelectrode 61 may be the same, or different, than the cross-sectional area of the self-standingelectrode 60. For example, the self-standingelectrode 61 may have a greater thickness and/or cross-sectional area than the self-standingelectrode 60. - It is to be understood that a variety of different methods may be used for automatically switching the
33A, 33B to redirect the flow of thevalves 30A, 30B from one movable porous substrate to the other. Illustrative examples of systems that may be used to adjust theaerosolized streams 33A, 33B to redirect the flow of thevalves 30A, 30B include one or more sensors for detecting the thickness of the self-standingaerosolized streams 60 and 61, one or more pressure sensors for monitoring a pressure drop across the movableelectrodes 40 and 41 that corresponds to a desired thickness of the self-standingporous substrates 60 and 61, a timer that switches theelectrodes 33A, 33B after a set time corresponding to a desired thickness of the self-standingvalves 60 and 61 for a given flow rate of theelectrodes 30A, 30B, and any combination thereof; after the one or more pressure sensors measures a pressure drop associated with the desired thickness of the self-standingaerosolized streams 60 or 61 onelectrode 40 or 41, or after the one or more thickness sensors detect the desired thickness of the self-standingporous substrate 60 or 61 onelectrode 40 or 41, or after the timer measures the set time corresponding to the desired thickness of self-standingporous substrate 60 or 61 onelectrode 40 or 41, the mixture is redirected from one porous substrate to the other. It is also to be understood that the movableporous substrate porous substrates 40 and/or 41 may have a cross-sectional area that matches the desired cross-sectional area required for use in the battery cell to be made with the self-standingelectrode 60 and/or 61. Accordingly, the self-standingelectrodes 60 and/or 61 would require no further processing of the cross-sectional area, such as cutting, before assembly in the final battery cell. - It is to be understood that the configuration of the
10A, 10B is not intended to be limited in any way. In an illustrative example as shown invessels FIG. 3 , thevessel 10A (and/or thevessel 10B) may be a pneumatic powder feeder, such as a venturi feeder that includes ahopper 11A for receiving thenanotubes 11A (and/or a hopper 11B for receiving the electrode active material 11B) therein. Thevessel 10A (and/or thevessel 10B) may also include arotary valve 12A (and/or 12B) that feeds thenanotubes 12A (and/or the electrode active material 12B) into contact with thecarrier gas 20A that is introduced to thevessel 10A (and/or thecarrier gas 20B that is introduced into thevessel 10B) to form theaerosolized stream 30A (and/or 30B). - As shown in
FIG. 4 , the nanotubes may be provided in anaerosolized stream 30A directly from thevessel 10A that is configured as a nanotube synthesis reactor, in parallel with anaerosolized stream 30B of the electrode active material from thesource 106. Accordingly, theaerosolized stream 30A may be a product stream exiting the nanotube synthesis reactor. For example, a carbon source orcarbon precursor 130 may be introduced to thevessel 10A in the presence of one ormore carrier gases 20A to form carbon nanotubes. Theaerosolized stream 30A of carbon nanotubes exits thereactor outlet 175 and travels down a pipe ortube 412 to ahood 27 where the aerosolized carbon nanotubes are co-deposited with theaerosolized stream 30B of the electrode active materials as a self-standinglayer 60 onto a porousflexible substrate 40. Although the pipes leading into thehood 27 are shown to bend at 90 degree angles ‘α1, α2’ before reachinghood 27, other angles α1, α2 may be formed. In a non-limiting example, one or more of the angles α1, α2 may be a 180° angle that facilitates flow of the 30A, 30B from theaerosolized streams hood 27 to theporous substrate 40, e.g., as shown inFIG. 5 . Although not shown, it is to be understood that more than oneporous substrate 40 may be provided as described with respect toFIG. 2 . - Carrier and fluidizing gases suitable for use with the present disclosure include, but are not limited to, argon, hydrogen, nitrogen, and combinations thereof. Carrier gases may be used at any suitable pressure and at any suitable flow rate to aerosolize the nanotubes and the electrode active materials and transport the aerosolized nanotubes and the aerosolized electrode active materials to the movable porous substrate at a sufficient velocity to form the self-standing electrode on the surface thereof. In some embodiments, the carrier gas may be argon, hydrogen, helium, or mixtures thereof. In some embodiments, the carrier gas may comprise argon at a flow rate of 850 standard cubic centimeters per minute (sccm) and hydrogen at a flow rate of 300 sccm.
- The type of nanotubes used in the present disclosure are not limited. The nanotubes may be entirely carbon, or they made be substituted, that it is, have non-carbon lattice atoms. Carbon nanotubes may be externally derivatized to include one or more functional moieties at a side and/or an end location. In some aspects, carbon and inorganic nanotubes include additional components such as metals or metalloids, incorporated into the structure of the nanotube. In certain aspects, the additional components are a dopant, a surface coating, or are a combination thereof.
- Nanotubes may be metallic, semimetallic, or semi-conducting depending on their chirality. A carbon nanotube's chirality is indicated by the double index (n,m), where n and m are integers that describe the cut and wrapping of hexagonal graphite when formed into a tubular structure, as is well known in the art. A nanotube of an (m,n) configuration is insulating. A nanotube of an (n,n), or “arm-chair”, configuration is metallic, and hence highly valued for its electric and thermal conductivity. Carbon nanotubes may have diameters ranging from about 0.6 nm for single-wall carbon nanotubes up to 500 nm or greater for single-wall or multi-wall nanotubes. The nanotubes may range in length from about 50 nm to about 10 cm or greater.
- The movable porous substrate may be rendered movable by any suitable means known to those of ordinary skill in the art. In some embodiments, the movable porous substrate may be a porous flexible substrate attached to a conveyor belt or a roll-to-roll system, such as roll-to-
roll system 45 shown inFIGS. 4 and 5 . The rate of motion of the movable porous substrate may be controllable, such as by a computer or manually by an operator. Control of the rate of motion may enable or facilitate control of the thickness of the composite obtained. Suitable porous flexible substrates, including but not limited to a filter or a frit, have pores appropriately sized so as to not permit passage of the composite. In some embodiments, the pores may be sized to permit passage of carrier gases and/or fluidizing gases. - In a non-limiting example, carbon nanotubes may be synthesized in a reactor or furnace from a carbon source or carbon precursor in the presence of a catalyst or catalyst precursor, at a temperature of about 1000 to about 1500° C., such as about 1300° C.
- The present disclosure is not limited to the type or form of catalysts used for the production of carbon nanotubes. In various aspects, the catalyst particles are present as an aerosol. In some aspects, the catalyst materials are supplied as nanoparticles, including but not limited to colloidal metallic nanoparticles, comprising a transition metal, a lanthanide metal, or an actinide metal. For example, the catalyst may comprise a Group VI transition metal such as chromium (Cr), molybdenum (Mo), and tungsten (W), or a Group VIII transition metal such as iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), Iridium (Ir), and platinum (Pt). In some aspects, a combination of two or more metals are used, for example an iron, nickel, and cobalt mixture or more specifically a 50:50 mixture (by weight) of nickel and cobalt. The catalyst may comprise a pure metal, a metal oxide, a metal carbide, a nitrate salt of a metal, and/or other compounds containing one or more of the metals described herein. The catalyst may be added to the reactor at about 0.1 atom % to about 10 atom %, where atom % indicates the percentage of the number of catalyst atoms with respect to the total number of atoms in the reactor (catalyst and carbon precursor atoms).
- Alternatively or in combination, a catalyst precursor may be introduced, wherein the catalyst precursor can be converted to an active catalyst under the reactor's conditions. The catalyst precursor may comprise one or more transition metal salts such as a transition metal nitrate, a transition metal acetate, a transition metal citrate, a transition metal chloride, a transition metal fluoride, a transition metal bromide, a transition metal iodide, or hydrates thereof. For example, the catalyst precursor may be a metallocene, a metal acetylacetonate, a metal phthalocyanine, a metal porphyrin, a metal salt, a metalorganic compound, or a combination thereof. For example, the catalyst precursor may be a ferrocene, nickelocene, cobaltocene, molybdenocene, ruthenocene, iron acetylacetonate, nickel acetylacetonate, cobalt acetylacetonate, molybdenum acetylacetonate, ruthenium acetylacetonate, iron phthalocyanine, nickel phthalocyanine, cobalt phthalocyanine, iron porphyrin, nickel porphyrin, cobalt porphyrin, an iron salt, a nickel salt, cobalt salt, molybdenum salt, ruthenium salt, or a combination thereof. The catalyst precursor may comprise a soluble salt such as Fe(NO3)3, Ni(NO3)2 or Co(NO3)2 dissolved in a liquid such as water. The catalyst precursor may achieve an intermediate catalyst state in the catalyst particle growth zone of the reactor, and subsequently become converted to an active catalyst upon exposure to the nanostructure growth conditions in the nanostructure growth zone of the reactor. For example, the catalyst precursor may be a transition metal salt that is converted into a transition metal oxide in the catalyst particle growth zone, then converted into active catalytic nanoparticles in the nanostructure growth zone.
- The catalyst particles may comprise a transition metal, such as a d-block transition metal, an f-block transition metal, or a combination thereof. For example, the catalyst particles may comprise a d-block transition metal such as an iron, nickel, cobalt, gold, silver, or a combination thereof. The catalyst particles may be supported on a catalyst support, wherein the catalyst support may be selected from alumina, silica, zirconia, magnesia, or zeolites. For example, the catalyst support may be a nanoporous magnesium oxide support. The catalyst support may be the same or different from the material selected for the matrix. In order to have catalyst particles on a catalyst support, the catalyst support material may be introduced into the catalyst material prior to adding the catalyst to the reactor. For example, a solution of the catalyst material, such as a molybdenum/cobalt mixture, may be combined with a solution of magnesium nitrate, heated together, and then cooled to produce a catalyst on a nanoporous MgO support. Alternately, a silica support may be impregnated with cobalt nitrate and ammonium heptamolybdate and dried for several hours to produce a cobalt/molybdenum catalyst on a porous silica support.
- The present disclosure is not limited to the type of carbon precursors or carbon sources used to form carbon nanotubes such as one or more carbon-containing gases, one or more hydrocarbon solvents, and mixtures thereof. Examples of carbon precursors include, but are not limited to hydrocarbon gases, such as methane, acetylene, and ethylene; alcohols, such as ethanol and methanol; benzene; toluene; CO; and CO2. A fuel for carbon nanotube synthesis and growth comprises a mixture of one or more carbon precursors or carbon sources and one or more catalysts or catalyst precursors.
- The fuel or precursor may be injected at a range of about 0.05 to about 1 ml/min, such as about 0.1 ml/min or about 0.3 ml/min, per injector. In some embodiments, more than one injector may be used, for example at large scale. The gas flow rate may be about 0.1 to about 5 L/min of hydrogen and/or about 0.2 to about 2 L/min helium or argon, such as about 5 L/min hydrogen, or about 0.3 L/min hydrogen and about 1 L/min argon. Without wishing to be bound to any particular theory, helium or argon may be included in the carrier gas to dilute the hydrogen concentration, for example to keep the hydrogen concentration below the explosive limit. Selection of a fuel injection rate and/or a gas flow rate may depend, for example, on the reactor volume, as will be apparent to those of ordinary skill in the art. In some embodiments, more than one reactor may be used in conjunction. In some embodiments, the reactor temperature profile consists of a starting low temperature, an increase to a peak or a maximum, and then a decrease, preferably to the starting low temperature. Without wishing to be bound by any particular theory, for a given reactor temperature profile, the injector position inside the reactor should be correlated with the precursor temperature so that the precursor evaporates from the point of injection, without droplet formation or decomposition, as can be determined by those of ordinary skill in the art, considering for example the boiling point and decomposition. In some embodiments, the injector tip may be inserted into the reactor, for example, by about 8 inches. The injection temperature, at the tip of the injector, may depend on the reactor or furnace temperature and upon the depth of insertion of the injector into the reactor or furnace. In some embodiments, the injection temperature at the tip of the injector is about 750° C. In some embodiments, the injector tip is inserted about 8 inches inside the reactor. The carbon nanotube reactor may be run for any suitable length of time to obtain the product composition and thickness desired, as can be determined by those of ordinary skill in the art, for example as long as there are starting materials.
- Carbon nanotubes synthesized according to the present disclosure may be characterized using any suitable means known in the art, including but not limited to derivative thermogravimetric analysis (DTG) and Raman spectroscopy, such as for calculation of the G/D ratio, as is disclosed in U.S. Patent Application Publication No. 2009/0274609, which is incorporated herein by reference in its entirety. The Raman spectra of SWNTs has three major peaks, which are the G-band at about 1590 cm−1, D-band at about 1350 cm−1, and the Radial breathing mode (RBM) at about 100-300 cm−1. RBM frequency is proportional to an inverse of the diameter of SWNTs and can thus be used to calculate the diameter of the SWNT. Normally, a red shift in RBM peak corresponds to an increase in the mean diameter of SWNTs. The tangential mode G-band related to the Raman-allowed phonon mode E2g can be a superposition of two peaks. The double peak at about 1593 and 1568 cm−1 has been assigned to semiconductor SWNTs, while the broad Breit-Wigner-Fano line at about 1550 cm−1 has been assigned to metallic SWNTs. Thus, G-band offers a method for distinguishing between metallic and semiconducting SWNTs. The D-band structure is related to disordered carbon, the presence of amorphous carbon, and other defects due to the sp2-carbon network. The ratio of the G-band to D-band in the Raman spectra (IG:ID or G/D ratio) of SWNTs can be used as an index to determine the purity and quality of the SWNTs produced. Preferably, IG:ID is about 1 to about 500, preferably about 5 to about 400, more preferably greater than about 7. Representative, non-limiting examples of Raman characterization of carbon nanotubes synthesized according to the present disclosure are shown in
FIGS. 6 and 7 . A representative, non-limiting example of DTG of carbon nanotubes synthesized according to the present disclosure is shown inFIG. 8 . - As used herein, “co-depositing” of two or more substances refers to the simultaneous deposition of two or more substances, which were not previously in contact with one another. Co-depositing may be carried out by any suitable means known to those in the art, including but not limited to chemical vapor deposition. Co-depositing may be carried out in a fume hood or with other suitable apparatus, as will be known to those of ordinary skill in the art. In some embodiments, the carbon nanotubes and the electrode active material do not contact each other until they are co-deposited onto the substrate.
- Collecting the mixture of single-walled carbon nanotubes and aerosolized electrode active material powder on a surface and removing the carrier gas may be carried out by any suitable means. The collecting surface of the
40, 41 may be a porous surface, including but not limited to a filter or a frit, where the pores are appropriately sized to retain the mixture of carbon nanotubes and the electrode active material thereon to form the self-standing electrode while permitting passage of the carrier and fluidizing gases. The carrier and fluidizing gases may be removed after passing through the surface and by way of an outlet. In some embodiments, removal of the carrier gas may be facilitated by a vacuum source. With respect to filters, the filters may be in the form of a sheet and may comprise a variety of different materials including woven and non-woven fabrics. Illustrative filter materials include, but are not limited to, cotton, polyolefins, nylons, acrylics, polyesters, fiberglass, and polytetrafluoroethylene (PTFE). To the extent the porous substrate is sensitive to high temperatures, one or more of theporous substrate 30A and 30B may be precooled with dilution gases comprising a lower temperature and/or by directing one or more of thestreams 30A and 30B through a heat exchanger prior to contacting the movable porous substrate.streams - As used herein, “fluidizing” refers to the conversion of a granular material from a static-like solid state to a dynamic fluid-like state, characterized by a tendency to flow. Fluidization may be achieved by passing a fluid, such as a liquid or a gas, up through the granular material, as will be known to those of ordinary skill in the art. In some embodiments, fluidizing the electrode active material comprises aerosolizing the electrode active material.
- In some embodiments, the aerosolizing of the electrode active material comprises distributing an aerosolizing gas through a first porous frit and a bed of an electrode active material, in an aerosolizing chamber, to produce the aerosolized electrode active material powder. The aerosolizing chamber may be constructed with an appropriately sized porous material such that gas can pass through to enable aerosolization but that does not permit the active material to fall through the pores. The aerosolizing chamber is not limited to any particular configuration. Suitable aerosolizing gases include, but are not limited to, argon, helium, or nitrogen. In some embodiments, the aerosolizing gas may be the same as the carrier gas.
- In some embodiments, the method further comprises synthesizing the single-walled carbon nanotubes in a carbon nanotube synthesis reactor. The reactor may comprise a catalyst or catalyst precursor, a carbon source, one or more gas inlets, one or more outlets, and a carbon nanotube growth zone. The one or more gas inlets may be configured to let in one or more carrier gases.
- In some embodiments, the carbon nanotube synthesis reactor may include a quartz tube of 25 mm OD×22 mm ID×760 mm length and may be operated at atmospheric pressure. Alternatively, the carbon nanotube synthesis reactor may be designed as described in U.S. patent application Ser. No. 15/452,509, filed Mar. 7, 2017, and Ser. No. 15/452,500, filed Mar. 7, 2017, both of which are incorporated herein by reference. The carbon nanotube synthesis reactor may be arranged at a variety of angles with respect to the other equipment.
- In some embodiments, the electrode active material is selected from graphite, hard carbon, lithium metal oxides, lithium iron phosphate, and metal oxides. In some embodiments, the electrode active material for the anode may be graphite or hard carbon. In some embodiments, the electrode active material for the cathode may be lithium metal oxide or lithium iron phosphate.
- Alternatively, the electrode active material may be selected from electrode active materials described in U.S. patent application Ser. No. 15/452,509, filed Mar. 7, 2017, and Ser. No. 15/452,500, filed Mar. 7, 2017, both of which are incorporated herein by reference.
- In a non-limiting example, the electrode active material may be any solid, metal oxide powder that is capable of being aerosolized. In an illustrative example, the metal oxide is a material for use in the cathode of the battery. Non-limiting examples of metal oxides include oxides of Ni, Mn, Co, Al, Mg, Ti and any mixture thereof. The metal oxide may be lithiated. In an illustrative example, the metal oxide is lithium nickel manganese cobalt oxide (LiNiMnCoO2). The metal oxide powders can have a particle size defined within a range between about 1 nanometer and about 100 microns. In a non-limiting example, the metal oxide particles have an average particle size of about 1 nanometer to about 10 nanometers.
- Metals in lithium metal oxides according to the present disclosure may include but are not limited to one or more alkali metals, alkaline earth metals, transition metals, aluminum, or post-transition metals, and hydrates thereof. In some embodiments, the electrode active material is lithium nickel manganese cobalt oxide (LiNiMnCoO2).
- “Alkali metals” are metals in Group I of the periodic table of the elements, such as lithium, sodium, potassium, rubidium, cesium, or francium.
- “Alkaline earth metals” are metals in Group II of the periodic table of the elements, such as beryllium, magnesium, calcium, strontium, barium, or radium.
- “Transition metals” are metals in the d-block of the periodic table of the elements, including the lanthanide and actinide series. Transition metals include, but are not limited to, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and lawrencium.
- “Post-transition metals” include, but are not limited to, aluminum, gallium, indium, tin, thallium, lead, bismuth, or polonium.
- In some embodiments, the method further comprises allowing the mixture of single-walled carbon nanotubes and electrode active material in the carrier gas to flow through one or more tubes connecting the aerosolizing reactor, the carbon nanotube synthesis reactor, and the collection chamber. In some embodiments, the one or more tubes are at least about 0.5″ O.D. stainless tubing.
- The loading or weight % of carbon nanotubes in the composite self-standing electrode product is based on the relative amounts of the nanotubes (or carbon source used to form the nanotubes) and the electrode active material. It is within the level of ordinary skill in the art to determine the relative starting amounts of carbon source, catalyst/catalyst precursor, and electrode active material that will afford a given loading or weight % of carbon nanotubes in the composite self-standing electrode product. In a non-limiting example, the self-standing electrode may comprise from 0.1% to 4% by weight carbon nanotubes, and the balance the electrode active material and optionally one or more additives. Optionally, the self-standing electrode may comprise from 0.2% to 3% by weight carbon nanotubes, and the balance the electrode active material and optionally one or more additives. Optionally, the self-standing electrode may comprise from 0.75% to 2% by weight carbon nanotubes, and the balance the electrode active material and optionally one or more additives. Additives and/or dopants may be present for each range in an amount of 0 to 5% by weight. In a non-limiting example, the self-standing electrode consists essentially of the carbon nanotubes and the electrode active material powder. In a non-limiting example, the self-standing electrode consists of the carbon nanotubes and the electrode active material powder. For each of the ranges, the self-standing electrode may be free of any binders. The lack of a binder results in a self-standing electrode with improved flexibility. Further, it has been discovered that a higher carbon nanotube content increases the flexibility of the self-standing electrode. Without being bound to any particular theory, this is likely due to the webbed morphology of the self-standing electrode in which there is a webbed arrangement of carbon nanotubes with the electrode active material contained or embedded within the web.
- In a non-limiting example, the self-standing electrode may comprise a density of 0.9 to 1.75 g/cc. Optionally, the self-standing electrode may comprise a density of 0.95 to 1.25 g/cc. Optionally, the self-standing electrode may comprise a density of 0.75 to 2.0 g/cc. Optionally, the self-standing electrode may comprise a density of 0.95 to 1.60 g/cc.
- In a non-limiting example, the self-standing electrode may comprise a thickness of up to 750 μm following collection on the porous substrate. Optionally, the self-standing electrode may comprise a thickness of 50 μm to 500 μm following collection on the porous substrate. Optionally, the self-standing electrode may comprise a thickness of from 100 μm to 450 μm following collection on the porous substrate. Optionally, the self-standing electrode may comprise a thickness of from 175 μm to 250 μm following collection on the porous substrate.
- In some embodiments, the method of the present disclosure may further comprise treating the composite or self-standing electrode, including but not limited to pressing the composite or self-standing electrode. Without wishing to be bound to any particular theory, pressing may increase the density and/or lower the thickness of the self-standing electrode, which may improve such properties as rate performance, energy density, and battery life. Pressing of the self-standing electrodes may be carried out by applying a force to achieve a desired thickness and/or density, such as by using a rolling press or calendaring machine, platen press, or other suitable means, as will be known to those of ordinary skill in the art. Any suitable force may be applied, to achieve a desired thickness, and/or density, and/or impedance, such as but not limited to a force of about 1 ton, about 2 tons, about 3 tons, about 4 tons, about 5 tons, about 6 tons, about 7 tons, about 8 tons, about 9 tons, about 10 tons, about 15 tons, or any integer or range in between, such as between about 7 tons and about 10 tons. In some embodiments, pressing may be limited to pressing to a thickness of about 20 microns, about 30 microns, about 40 microns, about 50 microns, about 60 microns, about 70 microns, about 80 microns, about 90 microns, about 100 microns, about 150 microns, about 200 microns, about 250 microns, about 300 microns, about 350 microns, about 400 microns, or any integer or range in between. Without wishing to be bound by any particular theory, too thick of an electrode may be slow to produce energy or may not be suitably flexible. In some embodiments, it may be desirable to obtain an electrode foil that is flexible without formation of oxide or cracks. If the electrode is too thin, energy production may be rapid but it may be the case that not enough energy is produced. In addition, it may be desirable to regulate the distance between the rolls or rollers in a rolling press or calendaring machine, or between the plates of a platen press, by any suitable means known to those of ordinary skill in the art.
- Determination of a suitable amount of pressing is within the level of ordinary skill in the art. As will be known to those of ordinary skill in the art, excessive pressing may cause the electrolyte to penetrate the electrode too much, as determined by measuring impedance and/or resistance to diffusion. As will be evident to those of ordinary skill in the art, it may be of interest to minimize the electrolyte diffusion resistance or coefficient for a given electrolyte, as measured by impedance. In a non-limiting example, the thickness of the self-standing electrode following pressing may be from 40% to 75% of the thickness of the untreated self-standing electrode, or the self-standing electrode following collection on the porous substrate. Optionally, the thickness of the self-standing electrode following pressing may be from 45% to 60% of the thickness of the untreated self-standing electrode, or the self-standing electrode following collection on the porous substrate.
- In a non-limiting example, the density of the self-standing electrode following pressing is increased by 40% to 125% of the density of the untreated self-standing electrode, or the self-standing electrode following collection on the porous substrate. Optionally, the density of the self-standing electrode following pressing is increased by 45% to 90% of the density of the untreated self-standing electrode, or the self-standing electrode following collection on the porous substrate.
- Electrodes pressed to thinner thicknesses may be unsuitably brittle. Non-limiting examples of electrode thickness and density, with and without pressing, are shown in the table below:
-
Single- walled nanotube Thickness loading Original Original after Pressed (weight thickness density pressing density Sample No. Weight (mg) %) (μm) (g/cc) (mm) (g/cc) 1 417 1.2 125 1.20 unknown unknown 2 612 1.1 200 1.11 unknown unknown 3 572 1.1 200 1.03 unknown unknown 4 318 1.9 unknown unknown unknown unknown 5 138 1.5 unknown unknown unknown unknown 6 151 1.6 unknown unknown unknown unknown 7 293 0.46 196 1.25 112 2.14 8 265 0.73 211 1.05 148 1.49 9 339 0.41 244 1.16 128 2.20 10 811 0.21 434 1.56 220 2.28 11 266 0.63 231 0.96 109 2.03 - In some embodiments, the fluidizing of the electrode active material comprises distributing an aerosolizing gas through, sequentially, a porous frit and a bed of the electrode active material, in an active material container, to form an aerosolized electrode active material. The pores of the porous frit may be sized to permit passage of the aerosolizing gas through to enable aerosolization but not permit the active material to fall through the pores. The active material container may be any container capable of fluidizing, such as aerosolizing, the electrode active material, including but not limited to a modified gas washing bottle. Aerosolizing gases suitable for use with the present disclosure include but are not limited to an inert gas, such as argon gas or helium gas; hydrogen gas; nitrogen gas; or a combination thereof. In some embodiments, the aerosolizing gas is the same as the carrier gas.
- In some embodiments, the present disclosure is directed to an apparatus for producing a self-standing electrode, the apparatus comprising a carbon nanotube synthesis reactor configured to synthesize carbon nanotubes; an active material container configured to fluidize an electrode active material; a movable porous flexible substrate configured to collect the carbon nanotubes and the fluidized electrode active material to form the self-standing electrode comprising a composite of the carbon nanotubes and the electrode active material. All embodiments described for the method apply to the apparatus with equal force, and vice versa.
- In some embodiments, the carbon nanotube synthesis reactor comprises one or more gas inlets, one or more gas outlets, and a carbon nanotube growth zone where a catalyst or catalyst precursor and a carbon source are used to grow the carbon nanotubes.
- In some embodiments, the active material container comprises a porous frit; and a vertical shaker. The active material container may further contain one or more gas Inlets and one or more gas outlets, and the one or more gas inlets may be configured to take in one or more fluidizing gases, such as one or more aerosolizing gases.
- In some embodiments, the movable porous flexible substrate is connected to a roll-to-roll system.
- In some embodiments, the present disclosure is directed to a self-standing electrode, comprising a composite of an electrode active material and single-walled carbon nanotubes; wherein the self-standing electrode does not contain binder material or a metal-based current collector material.
- In some embodiments, the electrode is characterized by a webbed morphology or a net. In some embodiments, a webbed morphology or a net is a webbed arrangement of carbon nanotubes with the electrode active material contained or embedded within the carbon nanotube web or net.
- Composites or self-standing electrodes prepared according to the present disclosure may be of any desired thickness and may be cut according to requirements. Thickness may be controlled by factors including, but not limited to, the rate of motion of the movable substrate, the rate of deposition of the carbon nanotubes and/or the electrode active material, and the carbon nanotube loading (weight %).
- While the aspects described herein have been described in conjunction with the example aspects outlined above, various alternatives, modifications, variations, improvements, and/or substantial equivalents, whether known or that are or may be presently unforeseen, may become apparent to those having at least ordinary skill in the art. Accordingly, the example aspects, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the disclosure. Therefore, the disclosure is intended to embrace all known or later-developed alternatives, modifications, variations, improvements, and/or substantial equivalents.
- Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”
- Further, the word “example” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “example” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. Nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.
- Moreover, all references throughout this application, for example patent documents including issued or granted patents or equivalents; patent application publications; and non-patent literature documents or other source material; are hereby incorporated by reference herein in their entireties, as though individually incorporated by reference.
Claims (9)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/665,142 US20190036102A1 (en) | 2017-07-31 | 2017-07-31 | Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive |
| EP18184002.6A EP3439078A1 (en) | 2017-07-31 | 2018-07-17 | Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive |
| CN201810841549.1A CN109326769B (en) | 2017-07-31 | 2018-07-27 | Continuous production of binder- and current-collector-free self-standing electrodes for lithium batteries |
| KR1020180088457A KR20190013641A (en) | 2017-07-31 | 2018-07-30 | Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive |
| JP2018142338A JP7071896B2 (en) | 2017-07-31 | 2018-07-30 | A method for continuously producing a self-supporting electrode for a Li-ion battery that does not contain a binder and a current collector by using carbon nanotubes as an additive. |
| US17/334,647 US11569490B2 (en) | 2017-07-31 | 2021-05-28 | Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/665,142 US20190036102A1 (en) | 2017-07-31 | 2017-07-31 | Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/334,647 Continuation US11569490B2 (en) | 2017-07-31 | 2021-05-28 | Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190036102A1 true US20190036102A1 (en) | 2019-01-31 |
Family
ID=62981113
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/665,142 Abandoned US20190036102A1 (en) | 2017-07-31 | 2017-07-31 | Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive |
| US17/334,647 Active 2037-08-25 US11569490B2 (en) | 2017-07-31 | 2021-05-28 | Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/334,647 Active 2037-08-25 US11569490B2 (en) | 2017-07-31 | 2021-05-28 | Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US20190036102A1 (en) |
| EP (1) | EP3439078A1 (en) |
| JP (1) | JP7071896B2 (en) |
| KR (1) | KR20190013641A (en) |
| CN (1) | CN109326769B (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220021024A1 (en) * | 2019-03-26 | 2022-01-20 | Murata Manufacturing Co., Ltd. | Solid-state battery |
| CN115136344A (en) * | 2021-01-27 | 2022-09-30 | 株式会社Lg新能源 | Self-supporting film for dry electrode, method for manufacturing the self-supporting film, dry electrode including the self-supporting film, and secondary battery |
| US20230026114A1 (en) * | 2021-07-23 | 2023-01-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods for dry printing carbon nanotube membranes |
| US12347864B2 (en) | 2022-08-05 | 2025-07-01 | Honda Motor Co., Ltd. | Additives for self-standing electrodes |
| US12346765B2 (en) | 2021-09-20 | 2025-07-01 | Honda Motor Co., Ltd | Energy storage device with wireless operando monitoring |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11539042B2 (en) * | 2019-07-19 | 2022-12-27 | Honda Motor Co., Ltd. | Flexible packaging with embedded electrode and method of making |
| JP7439834B2 (en) * | 2019-10-28 | 2024-02-28 | 株式会社村田製作所 | Negative electrode for secondary batteries and secondary batteries |
| KR102171410B1 (en) * | 2019-11-19 | 2020-10-28 | (주)산과들 | Thermal Conductive filler inculding carbon nanotube and Polymer compositions inculding thereof |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5985175A (en) * | 1998-08-19 | 1999-11-16 | Osram Sylvania Inc. | Boron oxide coated phosphor and method of making same |
| US20080210550A1 (en) * | 2004-07-26 | 2008-09-04 | Schott Ag | Vacuum Coating System and Method for Vacuum Coating |
| US20100140560A1 (en) * | 2008-12-08 | 2010-06-10 | Tisol, Llc | Multicomponent nanoparticle materials and process and apparatus therefor |
| US20110111279A1 (en) * | 2009-11-09 | 2011-05-12 | Florida State University Research Foundation Inc. | Binder-free nanocomposite material and method of manufacture |
| US20120315539A1 (en) * | 2008-05-07 | 2012-12-13 | Nanocomp Technologies, Inc. | Nanostructure composite batteries and methods of making same from nanostructure composite sheets |
| US20130040229A1 (en) * | 2011-08-12 | 2013-02-14 | Leonid Grigorian | Method of making cohesive carbon assembly and its applications |
| US8435676B2 (en) * | 2008-01-09 | 2013-05-07 | Nanotek Instruments, Inc. | Mixed nano-filament electrode materials for lithium ion batteries |
| US20160082404A1 (en) * | 2014-09-19 | 2016-03-24 | NanoSynthesis Plus, Ltd. | Methods and apparatuses for producing dispersed nanostructures |
Family Cites Families (267)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3513034A (en) | 1956-04-06 | 1970-05-19 | Us Army | Terminal for thermal cells |
| US3772084A (en) | 1972-02-11 | 1973-11-13 | Scholle Corp | Method of making negative battery plates |
| DE2524774C3 (en) | 1975-06-04 | 1979-01-04 | Volkswagenwerk Ag, 3180 Wolfsburg | Negative cobalt electrode for alkaline batteries and process for their manufacture |
| JPH06267515A (en) | 1993-03-15 | 1994-09-22 | Ricoh Co Ltd | Sheet-like secondary battery and electronic element using it |
| JPH1187875A (en) | 1997-09-12 | 1999-03-30 | Seiko Epson Corp | Manufacturing method of sheet-like electronic equipment |
| JP4226126B2 (en) | 1998-01-21 | 2009-02-18 | アース製薬株式会社 | Screen door spray |
| EP2239794A3 (en) | 1999-07-02 | 2011-03-23 | President and Fellows of Harvard College | Nanoscopic wire-based devices, arrays, and methods of their manufacture |
| US6919064B2 (en) | 2000-06-02 | 2005-07-19 | The Board Of Regents Of The University Of Oklahoma | Process and apparatus for producing single-walled carbon nanotubes |
| US20090286675A1 (en) | 2001-05-25 | 2009-11-19 | Tsinghua University | Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor |
| FR2826646B1 (en) | 2001-06-28 | 2004-05-21 | Toulouse Inst Nat Polytech | PROCESS FOR THE SELECTIVE MANUFACTURE OF ORDINATED CARBON NANOTUBES IN FLUIDIZED BED |
| US20030099883A1 (en) | 2001-10-10 | 2003-05-29 | Rosibel Ochoa | Lithium-ion battery with electrodes including single wall carbon nanotubes |
| US6623562B2 (en) | 2001-11-07 | 2003-09-23 | Ovonic Battery Company, Inc. | Apparatus for fabricating pasted electrodes |
| JP4336869B2 (en) | 2001-11-27 | 2009-09-30 | 日本電気株式会社 | Vacuum film forming apparatus, vacuum film forming method, and battery electrode manufacturing method |
| US6673489B2 (en) | 2001-12-28 | 2004-01-06 | Quallion Llc | Electric battery assembly and method of manufacture |
| CA2374848A1 (en) | 2002-03-06 | 2003-09-06 | Centre National De La Recherche Scientifique | A process for the mass production of multiwalled carbon nanotubes |
| AU2003206094A1 (en) | 2002-03-29 | 2003-10-13 | Koninklijke Philips Electronics N.V. | A detection and alarm system |
| KR100759547B1 (en) | 2002-07-29 | 2007-09-18 | 삼성에스디아이 주식회사 | Carbon Nanotubes for Fuel Cell, Manufacturing Method and Fuel Cell Employing the Same |
| DE10253399A1 (en) | 2002-11-15 | 2004-05-27 | Eramet & Comilog Chemicals S.A. | Metal-coated carbon black, useful as ferromagnetic material or in e.g. medical valve applications, involve use of nickel, iron, cobalt, yttrium, copper or iridium as the metal |
| JP4062171B2 (en) | 2003-05-28 | 2008-03-19 | ソニー株式会社 | Manufacturing method of laminated structure |
| GB0312871D0 (en) | 2003-06-05 | 2003-07-09 | Rolls Royce Plc | A stator core |
| US20050063891A1 (en) | 2003-09-02 | 2005-03-24 | Cambridge University Technical Services Limited | Method of producing carbon nanoparticles |
| WO2005052053A1 (en) | 2003-11-27 | 2005-06-09 | National Institute Of Advanced Industrial Science And Technology | Polar organic solvent containing dispersed carbon nanotube and process for producing the same |
| JP2007513760A (en) | 2003-12-15 | 2007-05-31 | ダニエル イー. リサスコ, | Rhenium catalyst and method for the production of single-walled carbon nanotubes |
| US20050209392A1 (en) | 2003-12-17 | 2005-09-22 | Jiazhong Luo | Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes |
| CN1972739A (en) | 2004-01-09 | 2007-05-30 | 奥尔加·马塔雷多纳 | Carbon nanotube paste and methods of use |
| JP2005290292A (en) | 2004-04-02 | 2005-10-20 | National Institute Of Advanced Industrial & Technology | Carbon nanotube-dispersed polyimide saturable absorber |
| CA2851994C (en) | 2004-02-06 | 2018-05-15 | A123 Systems, Inc. | Lithium secondary cell with high charge and discharge rate capability |
| FI121334B (en) | 2004-03-09 | 2010-10-15 | Canatu Oy | Method and apparatus for making carbon nanotubes |
| JP4410010B2 (en) | 2004-03-26 | 2010-02-03 | 東邦瓦斯株式会社 | Method for producing nanocarbon material |
| JP4625296B2 (en) | 2004-03-31 | 2011-02-02 | 日立マクセル株式会社 | Non-aqueous secondary battery and electronic device using the same |
| US20060078489A1 (en) | 2004-09-09 | 2006-04-13 | Avetik Harutyunyan | Synthesis of small and narrow diameter distributed carbon single walled nanotubes |
| KR100682862B1 (en) | 2005-01-11 | 2007-02-15 | 삼성에스디아이 주식회사 | Electrochemical Battery Electrode, Manufacturing Method thereof And Electrochemical Battery Using The Same |
| US20060245996A1 (en) | 2005-04-27 | 2006-11-02 | Peking University | Method of synthesizing single walled carbon nanotubes |
| TW200700312A (en) | 2005-06-23 | 2007-01-01 | Univ Nat Chunghsing | Method for dispersing carbon nanotube in water and detection agent thereof |
| WO2008054349A2 (en) | 2005-07-07 | 2008-05-08 | The University Of Maryland | Carbon nanotube structures formed on large free floating substrates |
| JP2007049789A (en) | 2005-08-08 | 2007-02-22 | Nec Corp | Information processing apparatus |
| US8084158B2 (en) | 2005-09-02 | 2011-12-27 | A123 Systems, Inc. | Battery tab location design and method of construction |
| WO2008057070A2 (en) | 2005-09-15 | 2008-05-15 | University Of Florida Research Foundation, Inc. | Type separation of single-walled carbon nanotubes via phase transfer |
| FI120195B (en) | 2005-11-16 | 2009-07-31 | Canatu Oy | Carbon nanotubes functionalized with covalently bonded fullerenes, process and apparatus for producing them, and composites thereof |
| US20120105370A1 (en) | 2005-12-12 | 2012-05-03 | Nupix, LLC | Electroded Sheet for a Multitude of Products |
| FR2895393B1 (en) | 2005-12-23 | 2008-03-07 | Arkema Sa | PROCESS FOR THE SYNTHESIS OF CARBON NANOTUBES |
| DE102006024550A1 (en) | 2006-05-23 | 2007-11-29 | Bayer Materialscience Ag | Temperature stable catalyst for the gas phase oxidation |
| TW200801223A (en) | 2006-06-01 | 2008-01-01 | Ritek Corp | Method of preparing single wall carbon nanotubes |
| US20080233402A1 (en) | 2006-06-08 | 2008-09-25 | Sid Richardson Carbon & Gasoline Co. | Carbon black with attached carbon nanotubes and method of manufacture |
| WO2008028169A2 (en) | 2006-08-31 | 2008-03-06 | Nano-C, Inc. | Direct liquid-phase collection and processing of fullerenic materials |
| JP5135746B2 (en) | 2006-09-21 | 2013-02-06 | トヨタ自動車株式会社 | Lithium ion secondary battery and manufacturing method thereof |
| CN100450922C (en) | 2006-11-10 | 2009-01-14 | 清华大学 | Ultralong orientational carbon nano-tube filament/film and its preparation method |
| WO2008064368A2 (en) | 2006-11-24 | 2008-05-29 | Honda Motor Co., Ltd. | Injector for large amount of aerosol powder for synthesis of carbon nanotubes |
| FR2909989A1 (en) | 2006-12-18 | 2008-06-20 | Arkema France | Catalyst material for production of multi-shell carbon fibrils and nanotubes for use e.g. as reinforcing material, contains multivalent transition metal and a solid organic substrate |
| FR2914634B1 (en) | 2007-04-06 | 2011-08-05 | Arkema France | PROCESS FOR PRODUCING CARBON NANOTUBES FROM RENEWABLE RAW MATERIALS |
| WO2008124167A1 (en) | 2007-04-10 | 2008-10-16 | The Regents Of The University Of California | Charge storage devices containing carbon nanotube films as electrodes and charge collectors |
| JP5152743B2 (en) | 2007-06-06 | 2013-02-27 | 本城金属株式会社 | ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME |
| DE102007044031A1 (en) | 2007-09-14 | 2009-03-19 | Bayer Materialscience Ag | Carbon nanotube powder, carbon nanotubes and methods of making same |
| US20090117026A1 (en) | 2007-10-01 | 2009-05-07 | Denso Corporation | Method for manufacturing carbon nano-tube |
| KR101213787B1 (en) | 2007-11-14 | 2012-12-18 | 성균관대학교산학협력단 | Conductivity enhanced transparent conductive film and fabrication method thereof |
| CN201122624Y (en) | 2007-11-30 | 2008-09-24 | 比亚迪股份有限公司 | An electrode lead-out structure and a battery comprising the electrode lead-out structure |
| DE102007062421A1 (en) | 2007-12-20 | 2009-06-25 | Bayer Technology Services Gmbh | Process for the preparation of nitrogen-doped carbon nanotubes |
| KR101601992B1 (en) | 2008-01-08 | 2016-03-09 | 시온 파워 코퍼레이션 | Porous electrodes and associated methods |
| WO2009111744A2 (en) | 2008-03-07 | 2009-09-11 | Mobius Power, Inc. | Electrochemical cells with tabs |
| US9174847B2 (en) | 2008-05-01 | 2015-11-03 | Honda Motor Co., Ltd. | Synthesis of high quality carbon single-walled nanotubes |
| US20130189565A1 (en) | 2008-05-07 | 2013-07-25 | Nanocomp Technologies, Inc. | Batteries Having Nanostructured Composite Cathode |
| US20110171398A1 (en) | 2010-01-12 | 2011-07-14 | Oladeji Isaiah O | Apparatus and method for depositing alkali metals |
| CA2723486A1 (en) | 2008-05-07 | 2010-04-01 | Nanocomp Technologies, Inc. | Nanostructure composite sheets and methods of use |
| WO2009145281A1 (en) | 2008-05-30 | 2009-12-03 | 三菱重工業株式会社 | Apparatus and process for the production of nanocarbon material |
| US20110158892A1 (en) | 2008-06-30 | 2011-06-30 | Showa Denko K.K. | Process for producing carbon nanomaterial and system for producing carbon nanomaterial |
| US20100000441A1 (en) | 2008-07-01 | 2010-01-07 | Jang Bor Z | Nano graphene platelet-based conductive inks |
| US9099738B2 (en) | 2008-11-03 | 2015-08-04 | Basvah Llc | Lithium secondary batteries with positive electrode compositions and their methods of manufacturing |
| US9406985B2 (en) | 2009-01-13 | 2016-08-02 | Nokia Technologies Oy | High efficiency energy conversion and storage systems using carbon nanostructured materials |
| EP2213369B1 (en) | 2009-01-15 | 2015-07-01 | Carlo Vittorio Mazzocchia | A process for the preparation of a catalyst, a catalyst obtained thereby, and its use in the production of nanotubes |
| US20100221606A1 (en) | 2009-03-02 | 2010-09-02 | Omkaram Nalamasu | Energy storage device with porous electrode |
| JP2010212309A (en) | 2009-03-06 | 2010-09-24 | Nippon Chemicon Corp | Electrode material, and electrode containing the same |
| MX349170B (en) | 2009-04-17 | 2017-07-17 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides. |
| US20100285358A1 (en) | 2009-05-07 | 2010-11-11 | Amprius, Inc. | Electrode Including Nanostructures for Rechargeable Cells |
| JP2010277925A (en) | 2009-05-29 | 2010-12-09 | Sanyo Electric Co Ltd | Paper battery and manufacturing method thereof |
| JP5819819B2 (en) | 2009-07-06 | 2015-11-24 | ゼプター コーポレイションZeptor Corporation | Carbon nanotube composite material structure and manufacturing method thereof |
| EP2284933A1 (en) | 2009-07-22 | 2011-02-16 | Bayer MaterialScience AG | Method for producing extendable electrodes |
| DE102009038464A1 (en) | 2009-08-21 | 2011-02-24 | Bayer Materialscience Ag | Carbon nanotubes agglomerate |
| CN102482098A (en) | 2009-09-10 | 2012-05-30 | 国立大学法人东京大学 | Method For Simultaneously Producing Carbon Nanotubes And Hydrogen, And Device For Simultaneously Producing Carbon Nanotubes And Hydrogen |
| US20110070495A1 (en) | 2009-09-23 | 2011-03-24 | Alliance For Sustainable Energy, Llc | Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries |
| US8246860B2 (en) | 2009-10-23 | 2012-08-21 | Tsinghua University | Carbon nanotube composite, method for making the same, and electrochemical capacitor using the same |
| US20120032191A1 (en) | 2009-10-30 | 2012-02-09 | Sumitomo Electric Industries, Ltd. | Method for manufacturing silicon carbide substrate and silicon carbide substrate |
| EP2509143A4 (en) | 2009-12-04 | 2015-09-02 | Route Jj Co Ltd | Anode active material precursor and active material for a rechargeable lithium battery comprising hollow nanofibrous carbon, and a production method therefor |
| US8293204B2 (en) | 2009-12-19 | 2012-10-23 | Abbas Ali Khodadadi | Carbon nanotubes continuous synthesis process using iron floating catalysts and MgO particles for CVD of methane in a fluidized bed reactor |
| US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
| EP2526581B1 (en) | 2010-01-18 | 2018-11-28 | Enevate Corporation | Composite materials for electrochemical storage |
| US8894963B2 (en) | 2010-01-25 | 2014-11-25 | The Texas A&M University System | Dispersion and retrieval of de-bundled nanotubes |
| EP2543052B1 (en) | 2010-03-02 | 2019-11-27 | Applied NanoStructured Solutions, LLC | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
| WO2011137448A2 (en) * | 2010-04-30 | 2011-11-03 | University Of Southern California | Silicon-carbon nanostructured electrodes |
| US20110281156A1 (en) | 2010-05-17 | 2011-11-17 | Arthur Douglas Boren | Vertically Aligned Carbon Nanotube Augmented lithium Ion Anode for Batteries |
| JP5459398B2 (en) | 2010-05-19 | 2014-04-02 | 日産自動車株式会社 | Bipolar secondary battery |
| CA2808632A1 (en) | 2010-09-01 | 2012-03-08 | Dow Global Technologies Llc | Method for applying discriminating layer onto porous ceramic filters via gas-borne prefabricated porous assemblies |
| KR101113976B1 (en) | 2010-10-27 | 2012-03-13 | 한국과학기술연구원 | Composites of self-assembled electrode active material-carbon nanotube, their method of fabrication and secondary battery comprising the same |
| US8568099B2 (en) | 2010-12-17 | 2013-10-29 | Vestas Wind Systems A/S | Apparatus for harvesting energy from a gearbox to power an electrical device and related methods |
| US9001495B2 (en) | 2011-02-23 | 2015-04-07 | Fastcap Systems Corporation | High power and high energy electrodes using carbon nanotubes |
| WO2012151297A1 (en) | 2011-05-02 | 2012-11-08 | Washington University | Spray pyrolysis synthesis of mesoporous positive electrode materials for high energy lithium-ion batteries |
| ITPD20110153A1 (en) | 2011-05-13 | 2012-11-14 | Univ Padova | METHOD OF SYNTHESIS OF CARBON NANOTUBES FUNCTIONALIZED BY CYCLE ADDS IN CONTINUOUS FLOW AND APPARATUS FOR THE SAME |
| KR20140051860A (en) | 2011-05-19 | 2014-05-02 | 노스이스턴 유니버시티 | Carbon nanotube-based electrode and rechargeable battery |
| KR101370673B1 (en) | 2011-09-13 | 2014-03-04 | 가부시키가이샤 히타치세이사쿠쇼 | Electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery |
| FR2981206B1 (en) | 2011-10-06 | 2013-11-29 | Inst Polytechnique Grenoble | PROCESS FOR THE PREPARATION OF SELF-SUPPORTED FLEXIBLE ELECTRODES |
| KR20140079426A (en) | 2011-10-07 | 2014-06-26 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Hybrid capacitor-battery and supercapacitor with active bi-functional electrolyte |
| CN103093857B (en) | 2011-10-28 | 2016-04-13 | 清华大学 | Electrode wires and apply the pacemaker of this electrode wires |
| CN103094526B (en) | 2011-10-28 | 2015-07-29 | 清华大学 | The preparation method of lithium ion cell positive |
| US8758931B2 (en) | 2011-12-02 | 2014-06-24 | Lenovo (Singapore) Pte. Ltd. | Electrochemical cell package |
| US8974960B2 (en) | 2011-12-22 | 2015-03-10 | Board Of Regents, The University Of Texas System | Binder-free sulfur—carbon nanotube composite cathodes for rechargeable lithium—sulfur batteries and methods of making the same |
| CN103187572B (en) | 2011-12-28 | 2016-01-20 | 清华大学 | Film lithium ion battery |
| CN103187575B (en) | 2011-12-28 | 2015-11-25 | 清华大学 | The preparation method of film lithium ion battery |
| JP5514230B2 (en) | 2012-01-04 | 2014-06-04 | 株式会社日立製作所 | Battery module and manufacturing method thereof |
| US8986872B2 (en) | 2012-02-15 | 2015-03-24 | GM Global Technology Operations LLC | Battery design |
| CN102593436A (en) | 2012-02-27 | 2012-07-18 | 清华大学 | Self-supporting flexible carbon nano-tube paper composite electrode material for lithium ion battery |
| US20130224551A1 (en) | 2012-02-29 | 2013-08-29 | Nokia Corporation | Apparatus and Associated Methods |
| FR2988225B1 (en) | 2012-03-13 | 2014-03-28 | Hutchinson | ANODE FOR LITHIUM-ION BATTERY CELL, METHOD FOR MANUFACTURING SAME, AND BATTERY INCORPORATING SAME |
| JP5591280B2 (en) | 2012-04-13 | 2014-09-17 | トヨタ自動車株式会社 | Battery, battery pack |
| US9692056B1 (en) | 2012-04-13 | 2017-06-27 | Amprius, Inc. | Dual current collectors for battery electrodes |
| TWI627130B (en) | 2012-04-18 | 2018-06-21 | 美商艾克頌美孚上游研究公司 | Removing carbon nanotubes from a continuous reactor effluent |
| CN102674316B (en) | 2012-05-09 | 2014-05-07 | 清华大学 | Method for preparing composition of carbon nano tube and graphene by using sheet material |
| DE102012207999A1 (en) | 2012-05-14 | 2013-11-14 | Robert Bosch Gmbh | Sheath foil for a galvanic cell, electrochemical storage, electrochemical storage system, flexible foil for a sheath of a galvanic cell and method for determining a state quantity of an electrochemical storage |
| GB2502305B (en) | 2012-05-22 | 2015-07-29 | Plastic Logic Ltd | Electronic reading devices |
| CN108321353B (en) | 2012-05-31 | 2021-03-09 | 龙腾能源公司 | Process for manufacturing conductive particle thin films for lithium ion batteries |
| JP5906261B2 (en) | 2012-06-13 | 2016-04-20 | 株式会社三五 | Method for producing negative electrode for lithium secondary battery |
| US9528629B2 (en) | 2012-06-27 | 2016-12-27 | Fisher Controls International Llc | Methods and apparatus to use vibration data to determine a condition of a process control device |
| CN103545556B (en) | 2012-07-13 | 2016-01-20 | 清华大学 | The preparation method of film lithium ion battery |
| KR20140011683A (en) | 2012-07-18 | 2014-01-29 | 삼성전자주식회사 | Carbon nanotube composite and manufacturing mrthod of the same |
| CN103633292B (en) | 2012-08-22 | 2016-06-15 | 清华大学 | Lithium ion battery negative |
| KR101759806B1 (en) | 2012-11-01 | 2017-07-19 | 블루 스파크 테크놀러지스, 인크. | Body temperature logging patch |
| KR101336286B1 (en) | 2012-11-13 | 2013-12-03 | 재단법인대구경북과학기술원 | Manufacturing method for carbon nano fiber complex and carbon nano fiber complex |
| US20150349325A1 (en) | 2012-12-20 | 2015-12-03 | Zhongwei Chen | Bi-functional electrode for metal-air batteries and method for producing same |
| DE102012224377A1 (en) * | 2012-12-27 | 2014-07-03 | Robert Bosch Gmbh | Method for producing a galvanic element and galvanic element |
| WO2014111862A1 (en) | 2013-01-17 | 2014-07-24 | Saudi Basic Industries Coporation | Carbon nano-tube production from carbon dioxide |
| JP5725054B2 (en) | 2013-02-08 | 2015-05-27 | トヨタ自動車株式会社 | Composite active material and method for producing the same |
| US10553853B2 (en) | 2013-03-20 | 2020-02-04 | Kansas State University Research Foundation | Flexible composite electrode high-rate performance lithium-ion batteries |
| DE102013204872A1 (en) | 2013-03-20 | 2014-09-25 | Robert Bosch Gmbh | Electrode and method of making the same |
| CN103219467B (en) | 2013-03-27 | 2015-11-11 | 北京大学 | Flexible polymer solar battery of corrugated structures and preparation method thereof |
| CN103280846B (en) | 2013-03-27 | 2016-08-03 | 上海空间电源研究所 | A kind of flexible photovoltaic integration power-supply system |
| JP6098878B2 (en) | 2013-04-17 | 2017-03-22 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
| KR102111020B1 (en) | 2013-05-02 | 2020-05-15 | 삼성디스플레이 주식회사 | Deposition apparatus |
| CN103204492A (en) | 2013-05-03 | 2013-07-17 | 苏州汉纳材料科技有限公司 | New method for improving yield of single-walled carbon nanotube |
| JP6071763B2 (en) | 2013-06-05 | 2017-02-01 | 日立造船株式会社 | Carbon nanotube sheet manufacturing method and carbon nanotube sheet |
| US20140370347A1 (en) | 2013-06-14 | 2014-12-18 | Samsung Sdi Co., Ltd. | Flexible battery |
| FR3007582B1 (en) | 2013-06-24 | 2015-06-26 | Inst Polytechnique Grenoble | METHOD OF PRINTING OR DEPOSITING BY ATOMIZATION FOR PREPARING A SUPPORTED FLEXIBLE ELECTRODE AND MANUFACTURING A LITHIUM-ION BATTERY |
| CN105393396A (en) | 2013-07-03 | 2016-03-09 | 加州理工学院 | Carbon nanotube-graphene hybrid structures for separator-free silicon-sulfur batteries |
| US20160166837A1 (en) | 2013-07-11 | 2016-06-16 | Newpace Ltd. | Battery and electronics integration in an implantable medical device |
| WO2015016465A1 (en) | 2013-07-31 | 2015-02-05 | 주식회사 엘지화학 | Curved electrode stack and battery pack comprising same |
| EP2835177A1 (en) | 2013-08-06 | 2015-02-11 | Bayer Technology Services GmbH | Method for preparing Co-Mn on carbon catalysts and their use in carbon nanotube synthesis |
| US8940446B1 (en) | 2013-08-06 | 2015-01-27 | Quantumscape Corporation | Solid state lithium-air based battery cell |
| KR102189784B1 (en) | 2013-08-30 | 2020-12-11 | 삼성전자주식회사 | Flexible electronic device |
| US20150087858A1 (en) | 2013-09-25 | 2015-03-26 | Samsung Sdi Co., Ltd. | Carbon nanotube suspensions and methods of making the same |
| US20150133569A1 (en) | 2013-11-08 | 2015-05-14 | Samsung Sdi Co., Ltd. | Carbon nanotube suspensions and methods of making the same |
| JP2015105208A (en) | 2013-11-29 | 2015-06-08 | 日本ゼオン株式会社 | Carbon nanotubes and dispersions thereof, and free-standing films and composite materials |
| KR102161290B1 (en) | 2013-12-03 | 2020-09-29 | 삼성에스디아이 주식회사 | Flexible secondary battery |
| KR102306495B1 (en) | 2013-12-04 | 2021-09-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Power storage unit and electronic device |
| KR102152887B1 (en) | 2013-12-16 | 2020-09-07 | 삼성에스디아이 주식회사 | Flexible secondary battery |
| CN103715394B (en) | 2013-12-17 | 2016-01-13 | 江西理工大学 | A kind of positive electrode of lithium ion battery and preparation method thereof |
| US9343722B2 (en) | 2013-12-27 | 2016-05-17 | Intel Corporation | Battery pack having a spring to connect at least two battery cells |
| KR101897217B1 (en) | 2013-12-27 | 2018-09-10 | 주식회사 아모그린텍 | Wearable device having flexible battery |
| CN103715380B (en) | 2013-12-30 | 2017-05-17 | 深圳市格瑞普电池有限公司 | Flexible wearable lithium battery |
| CN104752651A (en) | 2014-01-01 | 2015-07-01 | 许振宇 | Bendable and foldable battery structure |
| KR20150084242A (en) | 2014-01-13 | 2015-07-22 | 삼성에스디아이 주식회사 | Flexible secondary battery, and method of manufacturing the flexible secondary battery |
| KR20150086730A (en) | 2014-01-20 | 2015-07-29 | 삼성전자주식회사 | Flexible secondary battery |
| CN104810524B (en) | 2014-01-23 | 2018-04-03 | 清华大学 | Lithium ion battery |
| US20150233010A1 (en) | 2014-02-14 | 2015-08-20 | The Board Of Trustees Of The University Of Alabama | Nanostructured electrodes and methods for the fabrication and use |
| KR20150096219A (en) | 2014-02-14 | 2015-08-24 | 서울대학교산학협력단 | Flexible fuel cell and method of fabricating thereof |
| KR101632109B1 (en) | 2014-02-24 | 2016-06-20 | 한국과학기술원 | Flexible textile battery |
| US20150255828A1 (en) | 2014-03-07 | 2015-09-10 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery |
| CN204072059U (en) | 2014-03-24 | 2015-01-07 | 上海电机学院 | A kind of intelligent human temperature humidity measuring apparatus |
| US9502734B1 (en) | 2014-03-24 | 2016-11-22 | Amazon Technologies, Inc. | Flexible battery |
| KR101676641B1 (en) | 2014-03-31 | 2016-11-17 | 한국과학기술원 | Method for Manufacturing Carbon Fiber Woven Fabric/Carbon Nanotube Electrode of Structural Batteries by Using Block Copolymer Nanotemplate |
| KR101606898B1 (en) | 2014-04-03 | 2016-03-28 | 숭실대학교산학협력단 | Flexible secondary lithium battery |
| KR102211368B1 (en) | 2014-05-09 | 2021-02-03 | 삼성에스디아이 주식회사 | Flexible secondary battery |
| WO2015175927A1 (en) | 2014-05-15 | 2015-11-19 | Pebble Technology Corp. | Flexible band with integrated battery |
| JP6269310B2 (en) | 2014-05-15 | 2018-01-31 | 株式会社村田製作所 | Batteries and electronic devices |
| KR101558775B1 (en) | 2014-05-26 | 2015-10-07 | 현대자동차주식회사 | A method for manufacturing all solid electrode comprising solid electrolyte with concentration gradient |
| JP2016004786A (en) | 2014-06-12 | 2016-01-12 | カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ | Carbon nanotube-metal nanocomposites as flexible and self-supporting binder-free high performance anodes for Li-ion batteries |
| CN107074534A (en) | 2014-06-30 | 2017-08-18 | 南加州大学 | Self-supporting active material/carbon nanomaterial network |
| KR102221804B1 (en) | 2014-07-02 | 2021-03-02 | 삼성에스디아이 주식회사 | Flexible secondary battery |
| US10195668B2 (en) | 2014-07-09 | 2019-02-05 | Honda Motor Co., Ltd. | Method for continuous and controllable production of single walled carbon nanotubes |
| US10122010B2 (en) | 2014-07-11 | 2018-11-06 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and electronic device including the same |
| KR102256294B1 (en) | 2014-07-14 | 2021-05-26 | 삼성에스디아이 주식회사 | Flexible secondary battery |
| KR102222113B1 (en) | 2014-07-14 | 2021-03-03 | 삼성에스디아이 주식회사 | Flexible secondary battery |
| KR102222118B1 (en) | 2014-07-14 | 2021-03-03 | 삼성에스디아이 주식회사 | Flexible secondary battery |
| KR102222112B1 (en) | 2014-07-16 | 2021-03-03 | 삼성에스디아이 주식회사 | Flexible secondary battery |
| KR102305509B1 (en) | 2014-07-22 | 2021-09-28 | 씨-나노 테크놀로지 리미티드 | Electrode Composition for Battery |
| US9979225B2 (en) | 2014-07-28 | 2018-05-22 | Christophe & Albrecht, Inc. | Energy generation system for wearable communication device |
| US9887644B2 (en) | 2014-07-30 | 2018-02-06 | Seoul National University R&Db Foundation | Stretchable triboelectric generator, stretchable electricity storage device, and wearable electronic device |
| JP2016031922A (en) | 2014-07-30 | 2016-03-07 | 本田技研工業株式会社 | Battery electrode doubling as current collector, and battery having the same |
| US20160040780A1 (en) | 2014-08-05 | 2016-02-11 | General Electric Company | Piston assembly for a reciprocating engine |
| US20160049569A1 (en) | 2014-08-13 | 2016-02-18 | Barry E. Negrin | Thermoelectric power source for personal electronics and wearable electronic devices having same |
| JP2016051614A (en) | 2014-08-29 | 2016-04-11 | 日東電工株式会社 | Lithium metal secondary battery |
| KR101548465B1 (en) | 2014-08-29 | 2015-08-28 | 김성준 | Battery Device For Smart Watch |
| KR101666714B1 (en) | 2014-08-30 | 2016-10-14 | 주식회사 제낙스 | Flexible rechargeable battery and method of fabricating the same |
| JP2016054113A (en) | 2014-09-04 | 2016-04-14 | 日本ゼオン株式会社 | Method of manufacturing composite body for secondary battery electrode, composite body for secondary battery electrode, electrode for secondary battery, and secondary battery |
| US10090556B2 (en) | 2014-09-04 | 2018-10-02 | Amogreentech Co., Ltd. | Flexible battery, manufacturing method therefor, and auxiliary battery comprising flexible battery |
| KR101680592B1 (en) | 2014-09-05 | 2016-11-29 | 주식회사 아모그린텍 | Flexible battery, method for manufacturing thereof and supplementary battery comprising the same |
| JP2016073196A (en) | 2014-09-26 | 2016-05-09 | 株式会社半導体エネルギー研究所 | Secondary battery module and power supply system |
| CN104392845B (en) | 2014-10-17 | 2017-03-29 | 复旦大学 | A kind of stretchable linear supercapacitor and preparation method of lithium ion battery |
| KR101650782B1 (en) | 2014-10-22 | 2016-08-26 | 인하대학교 산학협력단 | Mesh-type carbon support for lithium-air battery cathode |
| CN104362326B (en) | 2014-10-29 | 2017-08-29 | 华南师范大学 | A kind of preparation method of flexible electrode material |
| KR101795541B1 (en) | 2014-11-17 | 2017-11-08 | 주식회사 아모그린텍 | Flexible battery and auxiliary battery including the same |
| KR102394689B1 (en) | 2014-11-24 | 2022-05-06 | 삼성에스디아이 주식회사 | Flexible secondary battery |
| KR102314081B1 (en) | 2014-11-26 | 2021-10-15 | 삼성에스디아이 주식회사 | Rechargeable battery having tap |
| JP6484800B2 (en) | 2015-02-24 | 2019-03-20 | パナソニックIpマネジメント株式会社 | Flexible battery |
| KR102320437B1 (en) | 2015-03-03 | 2021-11-01 | 삼성에스디아이 주식회사 | Flexible rechargeable battery |
| CN115956747A (en) | 2015-03-03 | 2023-04-14 | 阿莫绿色技术有限公司 | Portable terminal casing with built-in battery |
| KR101795544B1 (en) | 2015-03-10 | 2017-11-08 | 주식회사 아모그린텍 | bag having battery |
| KR101765459B1 (en) | 2015-03-10 | 2017-08-07 | 주식회사 아모그린텍 | wallet having flexible battery |
| KR102350516B1 (en) | 2015-03-24 | 2022-01-12 | 주식회사 아모그린텍 | Bracelet type Flexible Battery |
| KR101848417B1 (en) | 2015-04-27 | 2018-04-12 | 주식회사 아모그린텍 | Wearable apparatus |
| KR102376184B1 (en) | 2015-04-30 | 2022-03-18 | 주식회사 아모그린텍 | Molding imbedded flexible battery and manufacturing method thereof |
| KR102348407B1 (en) | 2015-04-30 | 2022-01-10 | 주식회사 아모그린텍 | diary having flexible battery |
| WO2016178117A1 (en) | 2015-05-06 | 2016-11-10 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and electronic device |
| EP3292230B1 (en) * | 2015-05-07 | 2019-06-12 | Phosfan Ltd. | Method for applying ultrafine phosphate conversion crystal coatings |
| KR20160146304A (en) | 2015-06-12 | 2016-12-21 | 삼성에스디아이 주식회사 | Secondary battery |
| CN107925016B (en) | 2015-06-16 | 2021-03-16 | 株式会社半导体能源研究所 | Power storage device and electronic apparatus |
| US10686167B2 (en) | 2015-07-31 | 2020-06-16 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device, battery management unit, and electronic device |
| KR102415749B1 (en) | 2015-08-05 | 2022-07-01 | 삼성에스디아이 주식회사 | Flexible battery |
| KR102422935B1 (en) | 2015-09-24 | 2022-07-20 | 주식회사 아모그린텍 | Helmet |
| WO2017052248A1 (en) | 2015-09-24 | 2017-03-30 | 코오롱인더스트리 주식회사 | Membrane-electrode assembly for fuel cell, method for manufacturing same, and fuel cell system comprising same |
| CN108370037B (en) | 2015-09-25 | 2021-02-23 | Lg化学株式会社 | Carbon nanotube dispersion and method for producing same |
| KR102688308B1 (en) | 2015-11-12 | 2024-07-25 | 주식회사 동진쎄미켐 | High performance electrodes |
| CN106024969A (en) | 2015-11-27 | 2016-10-12 | 上海空间电源研究所 | Flexible substrate silicon-based thin-film solar cell periphery laser insulation preparation method |
| KR102555973B1 (en) | 2015-11-30 | 2023-07-13 | 삼성에스디아이 주식회사 | Flexible rechargeable battery |
| KR102593581B1 (en) | 2015-11-30 | 2023-10-23 | 삼성에스디아이 주식회사 | Flexible rechargeable battery |
| KR20170063241A (en) | 2015-11-30 | 2017-06-08 | 삼성에스디아이 주식회사 | Flexible rechargeable battery |
| KR101703516B1 (en) | 2015-12-29 | 2017-02-07 | 국방과학연구소 | Method for manufacturing carbon fiber woven fabric/carbon nanotube electrode |
| CN205375473U (en) | 2015-12-30 | 2016-07-06 | 苏州博众精工科技有限公司 | Electronic business card based on LED dot matrix |
| US10950886B2 (en) | 2016-01-08 | 2021-03-16 | The Texas A&M University System | Large energy density batteries and methods of manufacture |
| KR101919069B1 (en) | 2016-01-12 | 2018-11-15 | 주식회사 아모그린텍 | wearable device |
| JP2017130274A (en) * | 2016-01-18 | 2017-07-27 | 東ソー株式会社 | Negative electrode material for lithium secondary battery and method for producing the same, lithium secondary battery |
| CA3012191C (en) | 2016-01-20 | 2022-12-06 | Cornell University | Multi-domained sulfur electrodes, and manufacturing therefor |
| US20170214052A1 (en) | 2016-01-25 | 2017-07-27 | Ford Cheer International Limited | Electrode having nanocrystal assembled active clusters embodied in conductive network structures, and battery having same, and fabrication method of same |
| KR101916151B1 (en) | 2016-01-26 | 2018-11-07 | 주식회사 아모그린텍 | unmanned aerial vehicle |
| JP6978207B2 (en) | 2016-02-12 | 2021-12-08 | 三洋化成工業株式会社 | Lithium ion battery |
| CN205697720U (en) | 2016-02-18 | 2016-11-23 | 武汉伟龙思博特工程信息技术有限公司 | A kind of Wearable inner wear capable of monitoring temperature |
| JP2017162637A (en) | 2016-03-09 | 2017-09-14 | パナソニックIpマネジメント株式会社 | Flexible battery |
| US10680242B2 (en) | 2016-05-18 | 2020-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and lithium ion battery |
| KR102245618B1 (en) | 2016-07-20 | 2021-04-27 | 삼성에스디아이 주식회사 | Flexible rechargeable battery |
| KR102582688B1 (en) | 2016-08-09 | 2023-09-26 | 삼성전자주식회사 | Electronic device with pressure sensor |
| KR101729702B1 (en) | 2016-08-10 | 2017-04-24 | 한국기계연구원 | Flexible energy storage device and flexible electronic device having three-dimensional array structure |
| CN106129536B (en) | 2016-08-12 | 2019-07-05 | 复旦大学 | A kind of stretchable lithium-air battery and preparation method thereof |
| CN106299237B (en) | 2016-09-27 | 2019-06-28 | 武汉艾特米克超能新材料科技有限公司 | Self-supporting pole piece and preparation method thereof, battery and its battery core |
| US20180115026A1 (en) | 2016-10-25 | 2018-04-26 | Arubixs, Inc. | Flexible impregnated battery array |
| KR101926626B1 (en) | 2016-12-16 | 2018-12-11 | 주식회사 아모그린텍 | Wireless headphone having flexible battery |
| US20180240609A1 (en) | 2017-02-17 | 2018-08-23 | Aict | High performance nano/micro composite fiber capable of storing electrical energy and method for fabricating thereof |
| US20180241081A1 (en) | 2017-02-21 | 2018-08-23 | National Synchrotron Radiation Research Center | Electrolyte, flexible electrode and flexible electronic device |
| KR102122296B1 (en) | 2017-04-20 | 2020-06-12 | 주식회사 아모그린텍 | Battery and mobile electro device including the same |
| CN110537394B (en) | 2017-04-21 | 2023-01-31 | 阿莫绿色技术有限公司 | Printed circuit nanoweb manufacturing method and printed circuit nanoweb |
| CN108735969B (en) | 2017-04-24 | 2020-09-29 | 清华大学 | Lithium ion battery cathode and flexible lithium ion battery |
| CN107086306A (en) | 2017-05-08 | 2017-08-22 | 厦门大学 | A kind of micro-thin-film lithium battery using graphene film as negative electrode |
| JP6652111B2 (en) | 2017-07-18 | 2020-02-19 | トヨタ自動車株式会社 | Solar cell manufacturing method |
| US10658651B2 (en) | 2017-07-31 | 2020-05-19 | Honda Motor Co., Ltd. | Self standing electrodes and methods for making thereof |
| KR102364159B1 (en) | 2017-08-01 | 2022-02-18 | 주식회사 엘지에너지솔루션 | Pouch-Type Secondary Battery Having Cutting Device of Electrode Tab |
| CN107611340B (en) | 2017-08-23 | 2020-06-12 | 柔电(武汉)科技有限公司 | Flexible all-solid-state battery and preparation method thereof |
| US20200264663A1 (en) | 2017-09-15 | 2020-08-20 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | An all-in-one integrated, inter-convertible fold-able cell phone, tablet and personal computer |
| US11201318B2 (en) | 2017-09-15 | 2021-12-14 | Honda Motor Co., Ltd. | Method for battery tab attachment to a self-standing electrode |
| WO2019071019A1 (en) | 2017-10-04 | 2019-04-11 | Align Technology, Inc. | Intraoral appliances for sampling soft-tissue |
| KR102508466B1 (en) | 2017-10-11 | 2023-03-08 | 한양대학교 산학협력단 | Ag-Zn cell and method of fabricating of the same |
| DE102017123752B3 (en) | 2017-10-12 | 2019-03-07 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Motor vehicle body part |
| JP2019075306A (en) | 2017-10-17 | 2019-05-16 | トヨタ自動車株式会社 | Charger of lithium ion secondary battery, and method for charging/discharging lithium ion secondary battery |
| US10475267B2 (en) | 2017-10-24 | 2019-11-12 | Ford Global Technologies, Llc | Vehicle finder card with a thin film battery |
| US10446840B2 (en) | 2017-11-07 | 2019-10-15 | City University Of Hong Kong | Rechargeable zinc-ion batteries having flexible shape memory |
| US10957939B2 (en) | 2017-11-07 | 2021-03-23 | City University Of Hong Kong | Rechargeable polyacrylamide based polymer electrolyte zinc-ion batteries |
| US20190237748A1 (en) | 2017-11-22 | 2019-08-01 | Maxwell Technologies, Inc. | Compositions and methods for energy storage devices having improved performance |
| US20190393486A1 (en) | 2018-06-21 | 2019-12-26 | Nanotek Instruments, Inc. | Method of improving anode stability in a lithium metal secondary battery |
| CN108878717A (en) | 2018-06-29 | 2018-11-23 | 歌尔科技有限公司 | Wearable device and its bandage type battery |
| CN110660964B (en) | 2018-06-29 | 2021-06-25 | 清华大学 | Stretchable composite electrodes and stretchable lithium-ion batteries |
| CN208690415U (en) | 2018-07-24 | 2019-04-02 | 安普瑞斯(无锡)有限公司 | A kind of flexible lithium ion battery |
| CN109088071B (en) | 2018-08-17 | 2020-07-28 | 深圳新源柔性科技有限公司 | A composite layer and its application |
| EP3654413A1 (en) | 2018-11-14 | 2020-05-20 | Université de Liège | Silicon-carbon composite anode material |
-
2017
- 2017-07-31 US US15/665,142 patent/US20190036102A1/en not_active Abandoned
-
2018
- 2018-07-17 EP EP18184002.6A patent/EP3439078A1/en not_active Withdrawn
- 2018-07-27 CN CN201810841549.1A patent/CN109326769B/en active Active
- 2018-07-30 KR KR1020180088457A patent/KR20190013641A/en not_active Ceased
- 2018-07-30 JP JP2018142338A patent/JP7071896B2/en active Active
-
2021
- 2021-05-28 US US17/334,647 patent/US11569490B2/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5985175A (en) * | 1998-08-19 | 1999-11-16 | Osram Sylvania Inc. | Boron oxide coated phosphor and method of making same |
| US20080210550A1 (en) * | 2004-07-26 | 2008-09-04 | Schott Ag | Vacuum Coating System and Method for Vacuum Coating |
| US8435676B2 (en) * | 2008-01-09 | 2013-05-07 | Nanotek Instruments, Inc. | Mixed nano-filament electrode materials for lithium ion batteries |
| US20120315539A1 (en) * | 2008-05-07 | 2012-12-13 | Nanocomp Technologies, Inc. | Nanostructure composite batteries and methods of making same from nanostructure composite sheets |
| US20100140560A1 (en) * | 2008-12-08 | 2010-06-10 | Tisol, Llc | Multicomponent nanoparticle materials and process and apparatus therefor |
| US20110111279A1 (en) * | 2009-11-09 | 2011-05-12 | Florida State University Research Foundation Inc. | Binder-free nanocomposite material and method of manufacture |
| US20130040229A1 (en) * | 2011-08-12 | 2013-02-14 | Leonid Grigorian | Method of making cohesive carbon assembly and its applications |
| US20160082404A1 (en) * | 2014-09-19 | 2016-03-24 | NanoSynthesis Plus, Ltd. | Methods and apparatuses for producing dispersed nanostructures |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220021024A1 (en) * | 2019-03-26 | 2022-01-20 | Murata Manufacturing Co., Ltd. | Solid-state battery |
| CN115136344A (en) * | 2021-01-27 | 2022-09-30 | 株式会社Lg新能源 | Self-supporting film for dry electrode, method for manufacturing the self-supporting film, dry electrode including the self-supporting film, and secondary battery |
| US20230026114A1 (en) * | 2021-07-23 | 2023-01-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods for dry printing carbon nanotube membranes |
| US12346765B2 (en) | 2021-09-20 | 2025-07-01 | Honda Motor Co., Ltd | Energy storage device with wireless operando monitoring |
| US12347864B2 (en) | 2022-08-05 | 2025-07-01 | Honda Motor Co., Ltd. | Additives for self-standing electrodes |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109326769A (en) | 2019-02-12 |
| KR20190013641A (en) | 2019-02-11 |
| US20210296629A1 (en) | 2021-09-23 |
| JP2019050185A (en) | 2019-03-28 |
| US11569490B2 (en) | 2023-01-31 |
| US20220140306A9 (en) | 2022-05-05 |
| EP3439078A1 (en) | 2019-02-06 |
| CN109326769B (en) | 2023-05-16 |
| JP7071896B2 (en) | 2022-05-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11374214B2 (en) | Self standing electrodes and methods for making thereof | |
| US11569490B2 (en) | Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive | |
| US11535517B2 (en) | Method of making self-standing electrodes supported by carbon nanostructured filaments | |
| Wu et al. | Metal organic framework derived NiFe@ N-doped graphene microtube composites for hydrogen evolution catalyst | |
| JP6056904B2 (en) | Simultaneous production method of carbon nanotube and hydrogen, and simultaneous production apparatus of carbon nanotube and hydrogen | |
| KR101328294B1 (en) | Process for producing carbon nanotube and catalyst for carbon nanotube production | |
| US11539042B2 (en) | Flexible packaging with embedded electrode and method of making | |
| KR102875202B1 (en) | Formation of catalytic PT nanodots by pulsed/sequential CVD or atomic layer deposition | |
| US12347864B2 (en) | Additives for self-standing electrodes | |
| US11325833B2 (en) | Composite yarn and method of making a carbon nanotube composite yarn | |
| Kharisov et al. | Student Zone: Overview, Training, Practices, and Exercises | |
| CN119998232A (en) | Catalytic electrode for fuel cell or electrolytic cell and method for producing the same | |
| Gauquelin et al. | Shuhui Sun, Xiangbo Meng, Gaixia Zhang, Dongsheng Geng, Ruying Li, Xueliang Sun* Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 Canada |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| AS | Assignment |
Owner name: HONDA MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PIERCE, NEAL;HARUTYUNYAN, AVETIK;SIGNING DATES FROM 20170728 TO 20190430;REEL/FRAME:049052/0994 Owner name: NANOSYNTHESIS PLUS, LTD., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PIGOS, ELENA;REEL/FRAME:049052/0957 Effective date: 20170731 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
| STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: TC RETURN OF APPEAL |
|
| STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |