US20120065034A1 - Exercise machine - Google Patents
Exercise machine Download PDFInfo
- Publication number
- US20120065034A1 US20120065034A1 US13/295,799 US201113295799A US2012065034A1 US 20120065034 A1 US20120065034 A1 US 20120065034A1 US 201113295799 A US201113295799 A US 201113295799A US 2012065034 A1 US2012065034 A1 US 2012065034A1
- Authority
- US
- United States
- Prior art keywords
- pull
- flywheel
- cord
- exercise apparatus
- drum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000005540 biological transmission Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 6
- 230000008261 resistance mechanism Effects 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 229910001369 Brass Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000010951 brass Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 230000017525 heat dissipation Effects 0.000 claims description 3
- 238000004146 energy storage Methods 0.000 abstract description 12
- 230000033001 locomotion Effects 0.000 abstract description 11
- 230000008878 coupling Effects 0.000 description 19
- 238000010168 coupling process Methods 0.000 description 19
- 238000005859 coupling reaction Methods 0.000 description 19
- 238000003860 storage Methods 0.000 description 7
- 210000002414 leg Anatomy 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/005—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0076—Rowing machines for conditioning the cardio-vascular system
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/005—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
- A63B21/0053—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using alternators or dynamos
- A63B21/0055—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using alternators or dynamos the produced electric power used as a source for other equipment, e.g. for TVs
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/15—Arrangements for force transmissions
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/15—Arrangements for force transmissions
- A63B21/151—Using flexible elements for reciprocating movements, e.g. ropes or chains
- A63B21/153—Using flexible elements for reciprocating movements, e.g. ropes or chains wound-up and unwound during exercise, e.g. from a reel
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/15—Arrangements for force transmissions
- A63B21/151—Using flexible elements for reciprocating movements, e.g. ropes or chains
- A63B21/154—Using flexible elements for reciprocating movements, e.g. ropes or chains using special pulley-assemblies
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/15—Arrangements for force transmissions
- A63B21/157—Ratchet-wheel links; Overrunning clutches; One-way clutches
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/22—Resisting devices with rotary bodies
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/22—Resisting devices with rotary bodies
- A63B21/225—Resisting devices with rotary bodies with flywheels
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/40—Interfaces with the user related to strength training; Details thereof
- A63B21/4001—Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor
- A63B21/4011—Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the lower limbs
- A63B21/4015—Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the lower limbs to the foot
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/20—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/06—Training appliances or apparatus for special sports for rowing or sculling
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/06—Indicating or scoring devices for games or players, or for other sports activities
- A63B71/0619—Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
- A63B71/0622—Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0076—Rowing machines for conditioning the cardio-vascular system
- A63B2022/0079—Rowing machines for conditioning the cardio-vascular system with a pulling cable
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/16—Supports for anchoring force-resisters
- A63B21/1618—Supports for anchoring force-resisters on a door or a door frame
- A63B21/1636—Supports for anchoring force-resisters on a door or a door frame for anchoring on the horizontal part of a door frame
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2210/00—Space saving
- A63B2210/50—Size reducing arrangements for stowing or transport
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/30—Speed
- A63B2220/34—Angular speed
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2225/00—Miscellaneous features of sport apparatus, devices or equipment
- A63B2225/50—Wireless data transmission, e.g. by radio transmitters or telemetry
Definitions
- the present invention relates to an improved exercise machine, particularly but not exclusively to a portable exercise machine.
- an exercise apparatus comprising:
- an embodiment of the invention includes a high-speed flywheel driven by a high ratio gear arrangement.
- geared relationship it is meant any form of interaction between two objects in which variation of the speed of one object results in the variation in speed of the other.
- the interaction between the objects is not limited to engagement of teeth on the objects, the interaction can, for example, be through a frictional engagement.
- cylindrical element it is meant an element providing a surface around which a flexible element can be coiled.
- the energy storage device is a flywheel.
- flywheel it is meant an element that continues to rotate throughout periods of varying energy input to the system.
- exercise machines such as rowing machines include some form of energy storage device because it allows energy dissipation to occur throughout the exercise rather than in bursts and results in a smoother transition between pulling and return strokes.
- some form of flywheel is used to store the kinetic energy imparted on the system by the motions of the user while a resistance mechanism causes energy dissipation from the flywheel.
- a device with a high level of energy storage is desirable because it results in a smoother motion experienced by the user when compared with a similar device with a lower level of energy storage but the same level of energy dissipation.
- Vaccin exercise machines such as rowing machines and exercise cycles will typically include flywheels with a mass in excess of 6 kg and diameter in excess of 200 mm.
- the flywheel is typically driven by the cylindrical element via a one-way clutch means.
- Using a high ratio of gearing between the cylindrical element and the flywheel to greatly increase the speed of rotation of the flywheel allows a smaller flywheel, with a mass as low as 200 g, to be used to achieve the same level of energy storage in a lightweight and compact unit.
- This high gear ratio and high speed of rotation results in the additional advantage of a lower resisting torque being applied to the flywheel for equivalent energy dissipation-hence a lightweight resistance mechanism can be employed.
- the exercise apparatus includes a one-way clutch arrangement that decouples the flywheel from the cylindrical element during recoil.
- this decoupling is achieved by a simple arrangement of support elements and a spring. This is advantageous because the cost of manufacture of such an arrangement is less than that of typical devices.
- an exercise apparatus comprising:
- Such an arrangement is beneficial because, in one embodiment of the invention, it provides a compact apparatus that allows the user to perform both strength building and aerobic exercise while being lightweight and possible to arrange into a more compact form for storage or transport.
- This is in contrast to typical exercise machines in which relatively large and heavy structures are used to support the weight of the user.
- the frame positions part of the apparatus at a distance above the feet of the user. This allows the user to perform comfortable pulling and return strokes where the handle does not have to be lifted greatly during the stroke to avoid the user's knees.
- Typical rowing exercise machines comprise a relatively bulky and heavy frame that supports a sliding seat.
- the apparatus includes means for enabling the user to perform a rowing type exercise, as shown in FIG. 1 .
- a pull-cord unit 1 can be fixed to a wheeled frame 2 and a handle 3 can be attached to the end of the pull-cord 4 .
- the user may sit on the floor or a fixed seat, secure his/her feet to the frame and perform rowing strokes with the frame rolling on the floor to allow a smooth leg extension action.
- a handle may be fixed to the body of the pull-cord unit, with the end of the pull-cord being secured to the user's feet or a rolling frame.
- the body of the pull-cord unit is then pulled towards the user while the user's legs are extended.
- a number of rollers may be fitted to the user's feet to allow the feet to roll smoothly on the floor.
- an exercise apparatus comprising:
- a pull-cord unit 1 includes performance measuring means and a radio transmission means that can wirelessly transmit performance data to an external computing device with appropriate radio receiver means.
- processing, data storage and display capabilities of external devices complex computing and display functionality does not need to be incorporated into the exercise apparatus. This greatly reduces the cost of manufacture while not inconveniencing the typical user who is unlikely to be often without an appropriate external computing device such as his/her mobile phone.
- processing, data storage, and display capabilities of up-to-date mobile electronic devices and personal computers are typically well in excess of those capabilities of the performance monitors of even high-end exercise equipment.
- the external computing device could record and display heart-rate information in addition to exercise performance measures, the heart-rate signal being transmitted to the device from a heart-rate sensor module, such as those worn around the chest, by wireless means.
- Wireless protocols such as Bluetooth or Wifi may be used.
- an exercise apparatus comprising:
- Such an arrangement is beneficial because, in one embodiment of the invention, it enables the user to perform a variety of strength-building exercises such as arm-curls, as shown in FIG. 2 , shoulder pull-downs, as shown in FIG. 3 , and leg swings.
- strength-building exercises such as arm-curls, as shown in FIG. 2 , shoulder pull-downs, as shown in FIG. 3 , and leg swings.
- a secure fixing point such as a doorframe or a fixture on which the user stands.
- the user then pulls, using a handle means or foot-attachment means, the pull-cord from the pull-cord unit body.
- the end of the pull-cord may be fixed to a secure fixing point and a handle means fixed to the body of the pull-cord unit such that the user pulls on said handle means, this action causing the pull-cord to be unwound from the pull-cord unit.
- a recoil device for an exercise machine comprising
- This method of recoil wherein, in an embodiment of the invention, a flywheel is coupled to a drum in order to cause rotation of the drum that results in the winding of a pull-cord onto the drum once the pulling force is below a minimum level, is advantageous over the typical method of using a spring element to rewind the cylindrical element because it is potentially more compact and more reliable.
- a coil spring would be used. It is very difficult to produce coil springs in a suitably compact form that can store sufficient energy to recoil a pull-cord through many turns and survive many coiling and uncoiling cycles. Even the best examples of such springs typically fail after less than 200,000 cycles which could result in failure of an exercise machine after less than 100 hours of use. Coil springs are also relatively difficult to fit and are a potentially dangerous form of energy storage.
- a cable recoil device for an exercise machine comprising a cable that is wound around a drum, a rotating element fitted coaxially with the drum and being coupled to the drum by a torque transmission means such that it rotates in the opposite direction to the drum, a torque transmission means that couples the rotating element to a rotating element that acts as a flywheel with it being possible that rotating elements are combined such that they are the same part, a one directional coupling means being a component of the torque transmission means such that the torque transmission means can only transfer torque between the drum and rotating element in one direction of rotation of the drum, and a coupling means that provides a torsional coupling between the rotating element and the drum that results in an torque exerted on the drum that acts to rotate the drum in the direction necessary to rewind the cable onto the drum.
- FIG. 1 shows a general arrangement of the apparatus in a configuration that allows the user to perform a rowing type exercise.
- FIG. 2 shows a general arrangement of the apparatus in a configuration that allows the user to perform an arm curling or lifting exercise.
- FIG. 3 shows a general arrangement of the apparatus in a configuration that allows the user to perform a pull-down exercise beneath a door frame.
- FIG. 4 shows a preferred embodiment of the apparatus configured to allow the user to perform a rowing type exercise.
- FIG. 5 shows components of the apparatus disassembled and arranged in a compact form for storage or transport.
- FIG. 6 shows details of a mechanism that fixes the double roller assembly 10 to the base frame 8 and allows the double roller assembly to be mounted in two different orientations, one orientation being useful for operation of the apparatus and the other orientation being useful for storage and transportation of the apparatus.
- FIG. 7 shows the generic components that make up the foot-rest assembly 13 and the heel-rest assembly 11 .
- FIG. 8 shows a preferred embodiment of the apparatus configured to allow the user to perform an arm curling or lifting exercise.
- FIG. 9 shows a preferred embodiment of the apparatus configured to allow the user to perform a pull-down exercise beneath a door frame. Only a section of the top of the door frame is shown.
- FIGS. 10 and 11 show a preferred embodiment of the pull-cord unit 5 without external casing.
- FIG. 12 is a general schematic of the wireless interface circuit.
- FIGS. 13 and 14 show an alternative embodiment of the pull-cord unit 5 .
- FIG. 13 is a sectional view.
- FIG. 14 is an exploded view.
- FIG. 15 is a general schematic of a drum recoil system that is driven by a flywheel element. Positional relationships between components should not be inferred from this figure.
- FIG. 16 is a general schematic of an alternative embodiment of a wireless interface circuit.
- a pull-cord unit 5 shown in FIG. 4 , includes a pull-cord 6 that is wrapped around the inner circumference of a channel that is formed in a drum 7 .
- This pull-cord unit includes a resistance means that resists the pulling of the pull-cord from the drum, and a recoil means that causes the coiling of the pull-cord back on to the drum once the pulling force is reduced.
- the pull-cord unit can be used with various accessories to enable the user to perform a variety of strength building, toning, and aerobic exercises.
- An exercise frame shown in FIG. 4 , consists of a base frame 8 , a single roller 9 fixed at one end of the base frame, a double roller assembly 10 , a heel-rest assembly 11 , an extension bar 12 , a foot-rest assembly 13 , and an attachment fixture 14 for mounting the pull-cord unit 5 .
- a handle 15 can be fitted to the end of the pull-cord.
- the exercise frame enables the user to perform a rowing simulation exercise, as shown in FIG. 1 , whereby the user sits on the floor or a cushion or static seat, rests his/her heels on the heel rest and fixes his/her feet to the foot-rest assembly using foot straps 16 . The user then pulls the handle 15 away from the pull-cord unit while pushing the exercise frame away from his/her body using his/her legs.
- the exercise frame supports the pull-cord unit at a distance above the feet of the user. This allows the user to perform a comfortable rowing stroke where the handle does not have to be lifted greatly during the pulling stroke to avoid the user's knees.
- the rollers allow the exercise frame to roll smoothly along the floor while supporting the feet of the user.
- the pull force that the user exerts on the pull-cord produces a moment acting about the mounting position of the foot-rest assembly 13 that acts to rotate the exercise frame.
- the single roller 9 is positioned a suitable distance away from the mounting position of the foot-rest assembly such that this rotation is resisted by the moment resulting from the reaction of the single roller 9 with the floor acting about the mounting position of the foot-rest assembly. If this distance were too small then the exercise frame could tip over during exercise.
- the handle 15 may be fixed to the body of the pull-cord unit 5 , with the end of the pull-cord 6 being secured to the user's feet or a fixture, such as the rolling frame 8 .
- the handle 15 may be fixed to the attachment feature 14 . The body of the pull-cord unit 5 is then pulled towards the user while the user's legs are extended.
- the exercise frame can be disassembled for storage and transport, as shown in FIG. 5 .
- the handle 15 can be easily fitted and removed from the pull-cord 6 by passing the handle through a loop 17 in the end of the pull-cord.
- the exercise frame can be disassembled by removing a fixing pin 18 and pulling the extension bar 12 away from the base frame 8 . This allows the exercise frame to be arranged into a compact form.
- the double roller assembly 10 is fitted to the exercise frame such that it may rotate about a pivot pin 19 fixed to the base frame 8 .
- FIG. 6 shows this arrangement. Rollers 20 are fixed to a mounting block 21 .
- the pivot pin is fitted through a bore in the mounting block and fixed to the base frame.
- a compression spring 22 fitted around the pivot pin ensures that the mounting block stays in contact with the base frame.
- Fixing pins 23 fitted to the base frame can locate in two of four locating bores 24 in the mounting block.
- the mounting block to be orientated in one of two positions, one position being a position suitable for operation of the apparatus such that the axis of the rollers is parallel to the axis of the single roller 9 and the other position being a position suitable for storage and transport of the apparatus such that the axis of the rollers is perpendicular to the axis of the single roller. It is possible for the user to move the mounting block and rollers between the two positions by pulling the mounting block away from the base frame such that the fixing pin is withdrawn from the locating bores.
- the compression spring ensures that the mounting block is pushed back over the fixing pin once the fixing pins are aligned with the locating bores corresponding to the new position.
- the heel-rest assembly 11 and foot-rest assembly 13 can be assembled and disassembled as shown in FIG. 7 . This allows these assemblies to be easily demounted from the exercise frame to allow storage or transport of the apparatus in a more compact form.
- Each assembly consists of a first block 25 , a support bar 26 , and a second block 27 .
- One end of the support bar is permanently fixed within the first block.
- the second block can be fitted to the other end of the support bar.
- a spring clip 28 is fitted in an external groove formed near the end of the support bar.
- a bore within the second block includes an internal groove. The internal groove accepts the spring clip when the support bar is pushed into the bore of the second block. This results in the second block being held in position on the support bar by the spring clip.
- the user can remove the second block from the support bar by pulling the second block away from the support bar with sufficient force to deform the spring clip.
- Both the heel-rest and foot-rest assemblies are fitted to the exercise frame by fitting the support bar through holes in the exercise frame and then pushing the second block onto the support bar until the spring clip engages the internal groove of the second block.
- FIG. 8 shows the apparatus in an arrangement that enables strength building exercises whereby the user stands on the foot-rest assembly 13 and pulls the handle 15 upwards away from the pull-cord unit 5 .
- FIG. 2 shows this arrangement in use with a user performing an arm-curl exercise.
- the handle 15 may be fixed to the body of the pull-cord unit 5 , with the end of the pull-cord 6 being secured to the user's feet or a fixture, such as the foot rest assembly 13 .
- the handle 15 may be fixed to the attachment feature 14 . The body of the pull-cord unit 5 is then pulled towards the user while the user's legs are extended.
- FIG. 9 shows the apparatus in an arrangement that enables strength building exercises whereby the user stands, sits or kneels below a doorframe and pulls the handle 15 downwards away from the pull-cord unit 5 , as shown in FIG. 3 .
- the pull-cord unit is fixed to a cross bar 28 .
- a fixed hook 29 is fitted to one end of the cross bar and an adjustable hook 30 is fitted to the opposite end of the cross bar.
- the cross bar fits through a slot in the adjustable hook such that the hook may slide along the length of the cross bar.
- the fixed hook and adjustable hook can be fitted over the top ledges 31 of a doorframe 32 . Moving the adjustable hook along the length of the cross bar allows the apparatus to be fitted to doorframes of various thicknesses. Rubber pads 33 fitted to the ends of the fixed hook and the adjustable hook protect the doorframe from damage at the points of contact.
- the end of the pull-cord 6 may be fixed to a secure fixing point, such as the cross bar 28 .
- the handle 15 is fixed to the body of the pull-cord unit 5 such that as the user pulls on the handle 15 , this action causes the pull-cord 6 to be unwound from the pull-cord unit 5 .
- FIGS. 10 and 11 show the pull-cord unit 5 with the external case removed.
- the pull-cord 6 is fitted at one end with a length of hook-type fastening tape such that said length of tape can wrap once around the circumference of the channel of the drum 7 .
- the drum is fitted with corresponding loop-type fastening tape.
- This arrangement allows easy attachment and detachment of the pull-cord from the drum. This is useful both for initial manufacture and for replacement of a worn pull-cord by the user.
- This fastening tape arrangement also limits the force that may be applied to the drum by the pull-cord if the user pulls the pull-cord until it is fully unwound from the drum.
- the pull-cord can be wrapped around the drum several times while being contained within the channel.
- the drum 7 is supported by a bearing that runs on a shaft 34 .
- the shaft is supported by two support arms 35 .
- the support arms are supported by a pin 36 that allows the support arms to pivot about the axis of the pin.
- the pin is supported by a chassis 37 .
- a flywheel 38 is fixed to a driveshaft 39 that is supported by a bearing 40 that is fixed in the chassis 37 .
- Application of a pulling force on the pull-cord 6 causes the drum 7 to be pulled towards and into contact with the driveshaft 39 .
- the outer rims 41 of the drum make tangential contact with the driveshaft.
- the positions of the support arms 35 ensure that while the pulling force is great enough to hold the drum in contact with the driveshaft and the pull-cord remains within a certain angular range relative to the long edges of the support arms, the centre position of this range being the position where the pull-cord is perpendicular to the long edges of the support arms, the reaction force between the outer rims of the drum and the drive shaft will always be great enough to ensure that the contact friction is great enough such that no slipping occurs at this contact.
- rotation of the drum results in rotation of the driveshaft and the flywheel. While no slipping occurs at the contact, the ratio of the angular speed of the flywheel to the angular speed of the drum is the same as the ratio of the radius of the drum to the radius of the driveshaft at the point of contact.
- a high effective gear ratio is desirable because it results in a high angular speed of the flywheel. This results in the kinetic energy stored in the flywheel being equal to the kinetic energy stored in a heavier or larger flywheel that is part of a system with a lower effective gear ratio.
- a small pulley wheel 42 is fitted at the opposite end of the driveshaft 39 to the flywheel 38 .
- a large pulley wheel 43 is fitted to run freely on the shaft 34 .
- the large pulley wheel is coupled to the small pulley wheel by an elastic drive-band 44 .
- the large pulley wheel is fitted with a number of magnets 45 at equal radii from the centre of the large pulley wheel.
- the tension in the drive-band is sufficient such that the drive-band will not slip on either pulley wheel while the torque acting on the large pulley wheel is at or below this maximum coupling torque.
- This coupling between the drum and the large pulley wheel is mostly elastic in that relative rotation between the large pulley wheel and the drum does not result in a significant net dissipation of energy when the effect is averaged over a number of full rotations of one body relative to the other.
- the coupling has the effect of applying a torque to the drum in a direction that acts to rotate the drum in the direction necessary to recoil the pull-cord 6 onto the drum.
- a torsion spring 46 is fitted such that it acts to move the support arms 35 such that the drum 7 moves away from contact with the driveshaft. Hence when the pulling force applied to the pull-cord 6 drops below a certain level, the drum will move away from contact with the driveshaft 39 .
- the only significant coupling that acts between the driveshaft and the drum is that due to the magnetic coupling between the magnets 45 fixed to the large pulley wheel 43 and said magnetic steel plates fixed to the drum. This results in the rotation of the drum in a direction that will recoil the pull-cord onto the drum while the flywheel 38 continues to rotate.
- the ratio of the diameter of the large pulley wheel 43 to the diameter of the small pulley wheel 42 is less than the ratio of the radius of the drum rims 41 to the radius of the drive shaft 39 at the point of contact. This helps to ensure that the large pulley wheel will not turn so fast that it is unable to accelerate the drum in the recoil direction.
- a braking magnet 47 is a permanent magnet magnetized such that opposite poles are formed on the opposite flat parallel sides, one such side being parallel to the flat face of the flywheel 38 .
- the flywheel is made of a conductive metal such as copper or brass. Rotation of the flywheel results in eddy currents being set up within the flywheel. These eddy currents produce magnetic fields that act to oppose the motion that caused them, hence a braking force is exerted on the flywheel. This braking force increases with the speed of the flywheel and therefore provides a convenient speed-dependent resistance to the pulling of the pull-cord 6 .
- the eddy currents produce Ohmic heating within the flywheel. Channels 48 within the flywheel force air to move radially over the outer surface of the flywheel and hence result in a greater rate of heat dissipation from the flywheel.
- the fly wheel is designed to be light weight and operate at high speed in order to have the desire energy storage capacity.
- the flywheel will have a mass of less than 1 kg, a diameter of less than 200 mm and be capable of operating at speeds of over 1000 RPM in normal use.
- the pull-cord unit 5 is fitted with a case. This can be seen in FIG. 4 .
- Air intake vents 49 are positioned close to the centre of the flywheel and air exhaust vents 50 are located around the perimeter of the case. This arrangement allows air to be drawn in through the air intake vents and then accelerated within the channels of the rotating flywheel 38 before exiting through the air exhaust vents.
- the braking magnet 47 is mounted on an adjustment pin 51 .
- the adjustment pin passes through a hole in the braking magnet and features a threaded end that screws into a threaded hole 52 in the chassis 37 .
- the braking magnet rests against a flat surface 53 of the chassis such that it cannot rotate.
- a compression spring 54 is fitted between the braking magnet and the chassis such that the braking magnet is pushed against a shoulder of the adjustment pin.
- This adjustment mechanism allows the user to change the level of damping that the braking magnet applies to the flywheel and hence change the intensity of the exercise.
- the pull-cord unit 5 is fitted with a wireless transmission unit that transmits information to an external computing device 110 .
- the external computing device 110 is a mobile phone, according to one embodiment (as shown in FIG. 2 ). Components of this wireless transmission unit are shown in FIGS. 10 and 11 .
- FIG. 12 shows a general circuit schematic.
- the wireless transmission unit comprises a power supply circuit, a sensing circuit, and a radio transmission module 60 .
- a coil 55 is fitted to a circuit board 56 .
- Magnets 57 are fitted to the flywheel 38 at a radius such that they pass close to the coil during rotation of the flywheel. Movement of the magnets past the coil induces an electric current in the coil.
- the power supply circuit connects the coil to the input terminals of a bridge rectifier 58 .
- a large capacitance storage capacitor 59 is connected across the output terminals of the bridge rectifier to smooth the rectified output and provide energy storage for operation of the radio transmission module and the sensing circuit.
- a voltage regulator module 65 provides a regulated voltage output to the radio transmission module and the sensing circuit.
- the sensing circuit provides a voltage pulse to the radio transmission module 60 every time one of the magnets 57 passes the coil 55 .
- a capacitor 61 couples one end of the coil to one input of an operational amplifier 62 .
- a potentiometer 63 provides a threshold voltage at the other input of the operational amplifier.
- the operational amplifier acts as a comparator such that a voltage occurs at the output once the voltage produced by the coupling to the coil rises above the threshold voltage.
- a resistor 64 ensures that charge from the coupling capacitor can drain between pulses.
- the radio transmission module 60 is an integrated module that includes a radio transceiver and a microprocessor.
- the module allows radio transmission using the Bluetooth protocol. This protocol allows information to be sent to any device with a suitable Bluetooth interface fitted. Bluetooth interfaces are commonly fitted in mobiles phones, personal-digital-assistants (PDAs), and personal computers.
- the output from the operational amplifier 62 of the sensing circuit is connected to a digital input of the radio transmission module.
- the radio transmission module is powered by the power supply circuit.
- the radio transmission module is programmed to record the time periods between pulses from the sensing circuit. These time period data are transmitted in a radio signal using the Bluetooth protocol.
- a suitable receiving device can be programmed to receive and process the data such that exercise parameters such as speed, distance, and power can be displayed to the user.
- FIGS. 13 and 14 show an alternative embodiment of a pull-cord unit for the apparatus.
- a pull-cord 66 is fitted at one end with a length of hook-type fastening tape such that said length of tape can wrap once around the circumference of a channel formed in a drum 67 .
- the drum is fitted with corresponding loop-type fastening tape. This arrangement allows easy attachment and detachment of the pull-cord from the drum.
- the pull-cord can be wrapped around the drum several times while being contained within the channel.
- the drum 67 is mounted on a bearing 68 that is fitted to a driveshaft 69 .
- the inner race of a spragg type one-way bearing 70 is fitted to the drum such that the rotation axes of the one-way bearing and the drum are collinear.
- the one way bearing only allows transmission of torque from the inner race to the outer race in one direction of relative rotation between the races.
- the outer race of the one-way bearing is fixed to an internal gear 71 .
- the internal gear forms the annulus of an epicyclic gear arrangement that provides a high ratio torque transmission between the drum and the driveshaft.
- the planet gear assemblies 72 of this epicyclic gear arrangement are mounted on bearings 73 that are fitted to shafts 74 . These shafts are fixed to an endplate 75 of the pull-cord unit.
- Each planet gear assembly consists of a double spur gear with a small diameter gear, that meshes with the internal gear, being fixed and concentric to a larger gear that meshes with a sun gear 76 .
- Use of double spur gears allows for a larger gear ratio than would be possible by only using single planetary gears.
- the sun gear is fixed to the driveshaft.
- a flywheel 77 is also fixed to the driveshaft. Hence rotation of the drum in one direction results in the rotation of the driveshaft and flywheel in the opposite direction at a much greater speed.
- the driveshaft is supported within the casework of the pull-cord unit by bearings 78 fitted at each end of the driveshaft.
- Rod magnets 79 are fixed to the drum 67 such that they face the flywheel 77 and are arranged in a regular circular pattern about the rotation axis of the drum. Rotation of the drum results in a counter-rotation of the flywheel at a higher speed.
- the flywheel is made of an electrically conductive metal such as copper or brass.
- the rotation of the flywheel relative to the rod magnets results in eddy currents being set up in the flywheel. These eddy currents produce magnetic fields that act to oppose the motion that generated them. Hence the motion of the flywheel is damped by eddy current action.
- the size of the eddy currents is proportional to the relative speed of rotation of the flywheel and the rod magnets.
- a suitable pull-cord unit may include braking pads that produce a frictional coupling between the drum and the flywheel. It is however advantageous to use a magnetic coupling because a frictional coupling will result in wear of the braking pads that necessitates periodic replacement of the braking pads, and a higher noise level during operation.
- the eddy currents produce Ohmic heating within the flywheel 77 .
- Channels 80 within the flywheel force air to move radially over the internal surfaces of the flywheel and hence result in a greater rate of heat dissipation from the flywheel.
- the flywheel 77 and rod magnets 79 remain coupled by eddy currents while there continues to be relative rotation between the flywheel and drum 67 .
- This coupling acts to move the drum in a direction that recoils the pull-cord 66 onto the drum and will result in the recoiling of the pull-cord once the pulling force on the pull-cord is reduced to a low enough level.
- the size of the coupling torque, due to eddy currents between the flywheel and the rod magnets will no longer be sufficient to move the drum in the recoil direction.
- a number of steel pins 81 are fitted to the flywheel such that they pass close to the rod magnets during rotation of the flywheel. This results in an additional magnetic coupling between the flywheel and rod magnets that is sufficient, even at low speeds of flywheel rotation, to cause the drum to rotate in the recoil direction.
- FIG. 16 shows a general schematic of an alternative circuit for a wireless transmission unit.
- the circuit is powered by a battery 101 .
- a switch 102 connects the battery to the rest of the circuit.
- a Hall-sensor module 103 is fitted such that the magnets 57 , shown in FIG. 11 , pass close to it during rotation of the flywheel 38 .
- the Hall sensor module is an integrated circuit that produces a voltage output that is dependent upon the magnetic flux passing through the Hall sensor module. Hence as the magnets move past the Hall sensor module the voltage output changes.
- the voltage output from the Hall sensor is connected to one input of an operational amplifier 104 .
- the other input of the operational amplifier is connected to a potentiometer 105 that produces a threshold voltage.
- the Bluetooth transceiver module is an integrated module that includes a radio transceiver and a microprocessor.
- the Bluetooth transceiver module is programmed to record the time periods between pulses from the operational amplifier output. These time period data are transmitted in a radio signal using the Bluetooth protocol.
- a suitable receiving device can be programmed to receive and process the data such that exercise parameters such as speed, distance, and power can be displayed to the user.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- Rehabilitation Tools (AREA)
Abstract
An improved exercise apparatus is described. The apparatus comprises a cylindrical element and a flexible member associated with the cylindrical element. The flexible member is movable between a wound configuration, in which the member is wound around the cylindrical element, and an unwound configuration, in which the member is unwound from the cylindrical element. The apparatus further comprises a recoil means biased to move the flexible member to the wound configuration and a resistance means that resists movement of the flexible member from the wound to the unwound configurations. The resistance means comprises an energy storage device, which is in a geared relationship with the cylindrical element. In a preferred embodiment the energy storage device is a flywheel.
Description
- This application is a continuation of U.S. patent application Ser. No. 12/281,122, filed on Oct. 8, 2010, which claims priority from PCT Application No. PCT/GB2007/000363, filed on Feb. 2, 2007, which claims priority from United Kingdom Application No. GB0603869.9, filed on Feb. 28, 2006, the disclosures of which are incorporated herein in their entireties.
- The present invention relates to an improved exercise machine, particularly but not exclusively to a portable exercise machine.
- Most existing forms of exercise apparatus are too large or heavy to be easily transported or stowed. Examples include weight lifting equipment, rowing machines, and exercise cycles. Some portable strength-building equipment is available, such as elastic cords, but there is little portable equipment available that allows convenient indoor aerobic exercise.
- It is advantageous to monitor and record the performance of the user during exercises. This is commonplace in gym equipment where performance monitors are fitted to most forms of aerobic exercise apparatus. Such a facility is uncommon in low cost portable exercise equipment.
- According to a first aspect of the present invention there is provided an exercise apparatus comprising:
-
- a cylindrical element;
- a flexible member associated with the cylindrical element, the flexible member movable between a wound configuration in which the member is wound around the cylindrical element and an unwound configuration in which the member is unwound from the cylindrical element;
- a recoil means biased to move the flexible member to the wound configuration; and
- a resistance means that resists movement of the flexible member from the wound to the unwound configurations, the resistance means comprising an energy storage device, the energy storage device being in a geared relationship with the cylindrical element.
- There is a need for compact and lightweight exercise apparatus that allows the user to perform a variety of strength-building and aerobic exercises. Such apparatus would be convenient to carry in hand-baggage during travel, and also easy to store in a cupboard or drawer in the home.
- In order to achieve an apparatus of low weight and compact size an embodiment of the invention includes a high-speed flywheel driven by a high ratio gear arrangement. For the avoidance of doubt, by “geared relationship” it is meant any form of interaction between two objects in which variation of the speed of one object results in the variation in speed of the other. The interaction between the objects is not limited to engagement of teeth on the objects, the interaction can, for example, be through a frictional engagement. By “cylindrical element” it is meant an element providing a surface around which a flexible element can be coiled.
- Preferably, the energy storage device is a flywheel. For the avoidance of doubt, by “flywheel” it is meant an element that continues to rotate throughout periods of varying energy input to the system.
- It is desirable that exercise machines such as rowing machines include some form of energy storage device because it allows energy dissipation to occur throughout the exercise rather than in bursts and results in a smoother transition between pulling and return strokes. Typically, some form of flywheel is used to store the kinetic energy imparted on the system by the motions of the user while a resistance mechanism causes energy dissipation from the flywheel. A device with a high level of energy storage is desirable because it results in a smoother motion experienced by the user when compared with a similar device with a lower level of energy storage but the same level of energy dissipation.
- Gymnasium exercise machines such as rowing machines and exercise cycles will typically include flywheels with a mass in excess of 6 kg and diameter in excess of 200 mm. The flywheel is typically driven by the cylindrical element via a one-way clutch means. Using a high ratio of gearing between the cylindrical element and the flywheel to greatly increase the speed of rotation of the flywheel allows a smaller flywheel, with a mass as low as 200 g, to be used to achieve the same level of energy storage in a lightweight and compact unit. This high gear ratio and high speed of rotation results in the additional advantage of a lower resisting torque being applied to the flywheel for equivalent energy dissipation-hence a lightweight resistance mechanism can be employed.
- Preferably the exercise apparatus includes a one-way clutch arrangement that decouples the flywheel from the cylindrical element during recoil. In a preferred embodiment of the invention, this decoupling is achieved by a simple arrangement of support elements and a spring. This is advantageous because the cost of manufacture of such an arrangement is less than that of typical devices.
- According to a second aspect of the present invention there is provided an exercise apparatus comprising:
-
- a frame;
- a cylindrical element;
- a flexible member associated with the cylindrical element, the flexible member movable between a wound configuration in which the member is wound around the cylindrical element and an unwound configuration in which the member is unwound from the cylindrical element;
- a recoil means biased to move the flexible member to the wound configuration;
- a resistance means that resists movement of the flexible member from the wound to the unwound configurations; and
- attachment means adapted to receive a user's feet
- wherein said frame further comprises at least one rolling element adapted to permit said frame to roll on a floor while supporting the user's feet.
- Such an arrangement is beneficial because, in one embodiment of the invention, it provides a compact apparatus that allows the user to perform both strength building and aerobic exercise while being lightweight and possible to arrange into a more compact form for storage or transport. This is in contrast to typical exercise machines in which relatively large and heavy structures are used to support the weight of the user. The frame positions part of the apparatus at a distance above the feet of the user. This allows the user to perform comfortable pulling and return strokes where the handle does not have to be lifted greatly during the stroke to avoid the user's knees. Typical rowing exercise machines comprise a relatively bulky and heavy frame that supports a sliding seat.
- Preferably, the apparatus includes means for enabling the user to perform a rowing type exercise, as shown in
FIG. 1 . A pull-cord unit 1 can be fixed to awheeled frame 2 and ahandle 3 can be attached to the end of the pull-cord 4. The user may sit on the floor or a fixed seat, secure his/her feet to the frame and perform rowing strokes with the frame rolling on the floor to allow a smooth leg extension action. Alternatively a handle may be fixed to the body of the pull-cord unit, with the end of the pull-cord being secured to the user's feet or a rolling frame. The body of the pull-cord unit is then pulled towards the user while the user's legs are extended. Optionally, a number of rollers may be fitted to the user's feet to allow the feet to roll smoothly on the floor. - According to a third aspect of the present invention there is provided an exercise apparatus comprising:
-
- a cylindrical element;
- a flexible member associated with the cylindrical element, the flexible member movable between a wound configuration in which the member is wound around the cylindrical element and an unwound configuration in which the member is unwound from the cylindrical element;
- a recoil means biased to move the flexible member to the wound configuration;
- a resistance means that resists movement of the flexible member from the wound to the unwound configurations; and
- wireless transmission means that is adapted to transmit exercise data to an external computing device such as, but not limited to, a mobile phone, a PDA, an MP3 player, a games console, or a personal computer.
- Such an arrangement is beneficial because, in one embodiment of the invention, a pull-
cord unit 1 includes performance measuring means and a radio transmission means that can wirelessly transmit performance data to an external computing device with appropriate radio receiver means. By using the processing, data storage and display capabilities of external devices, complex computing and display functionality does not need to be incorporated into the exercise apparatus. This greatly reduces the cost of manufacture while not inconveniencing the typical user who is unlikely to be often without an appropriate external computing device such as his/her mobile phone. Additionally, the processing, data storage, and display capabilities of up-to-date mobile electronic devices and personal computers are typically well in excess of those capabilities of the performance monitors of even high-end exercise equipment. It is also possible that the external computing device could record and display heart-rate information in addition to exercise performance measures, the heart-rate signal being transmitted to the device from a heart-rate sensor module, such as those worn around the chest, by wireless means. - Wireless protocols such as Bluetooth or Wifi may be used.
- According to a fourth aspect of the present invention there is provided an exercise apparatus comprising:
-
- a cylindrical element;
- a flexible member associated with the cylindrical element, the flexible member movable between a wound configuration in which the member is wound around the cylindrical element and an unwound configuration in which the member is unwound from the cylindrical element;
- a recoil means biased to move the flexible member to the wound configuration; a resistance means that resists movement of the flexible member from the wound to the unwound configurations;
- mounting means to enable the user to arrange the apparatus such that arm-curl or pull-down exercises can be performed.
- Such an arrangement is beneficial because, in one embodiment of the invention, it enables the user to perform a variety of strength-building exercises such as arm-curls, as shown in
FIG. 2 , shoulder pull-downs, as shown inFIG. 3 , and leg swings. These are enabled by fixing the pull-cord unit to a secure fixing point such as a doorframe or a fixture on which the user stands. The user then pulls, using a handle means or foot-attachment means, the pull-cord from the pull-cord unit body. Alternatively, the end of the pull-cord may be fixed to a secure fixing point and a handle means fixed to the body of the pull-cord unit such that the user pulls on said handle means, this action causing the pull-cord to be unwound from the pull-cord unit. - According to a fifth aspect of the present invention there is provided a recoil device for an exercise machine comprising
-
- a cylindrical element;
- a flexible member associated with the cylindrical element, the flexible member movable between a wound configuration in which the member is wound around the cylindrical element and an unwound configuration in which the member is unwound from the cylindrical element;
- a first rotating element being coupled to the cylindrical element by a torque transmission means such that said first rotating element rotates in the opposite direction to the cylindrical element; and
- a coupling means adapted to provide a torsional coupling between the first rotating element and the cylindrical element that results in an torque exerted on the cylindrical element that acts to rotate the cylindrical element in the direction necessary to wind the flexible member onto the cylindrical element.
- This method of recoil, wherein, in an embodiment of the invention, a flywheel is coupled to a drum in order to cause rotation of the drum that results in the winding of a pull-cord onto the drum once the pulling force is below a minimum level, is advantageous over the typical method of using a spring element to rewind the cylindrical element because it is potentially more compact and more reliable. Typically, a coil spring would be used. It is very difficult to produce coil springs in a suitably compact form that can store sufficient energy to recoil a pull-cord through many turns and survive many coiling and uncoiling cycles. Even the best examples of such springs typically fail after less than 200,000 cycles which could result in failure of an exercise machine after less than 100 hours of use. Coil springs are also relatively difficult to fit and are a potentially dangerous form of energy storage.
- According to a sixth aspect of the present invention there is provided a cable recoil device for an exercise machine comprising a cable that is wound around a drum, a rotating element fitted coaxially with the drum and being coupled to the drum by a torque transmission means such that it rotates in the opposite direction to the drum, a torque transmission means that couples the rotating element to a rotating element that acts as a flywheel with it being possible that rotating elements are combined such that they are the same part, a one directional coupling means being a component of the torque transmission means such that the torque transmission means can only transfer torque between the drum and rotating element in one direction of rotation of the drum, and a coupling means that provides a torsional coupling between the rotating element and the drum that results in an torque exerted on the drum that acts to rotate the drum in the direction necessary to rewind the cable onto the drum.
- Other preferred features are set out in the subsidiary claims.
- Embodiments of the invention will now be described with reference to accompanying drawings, wherein:
-
FIG. 1 shows a general arrangement of the apparatus in a configuration that allows the user to perform a rowing type exercise. -
FIG. 2 shows a general arrangement of the apparatus in a configuration that allows the user to perform an arm curling or lifting exercise. -
FIG. 3 shows a general arrangement of the apparatus in a configuration that allows the user to perform a pull-down exercise beneath a door frame. -
FIG. 4 shows a preferred embodiment of the apparatus configured to allow the user to perform a rowing type exercise. -
FIG. 5 shows components of the apparatus disassembled and arranged in a compact form for storage or transport. -
FIG. 6 shows details of a mechanism that fixes thedouble roller assembly 10 to thebase frame 8 and allows the double roller assembly to be mounted in two different orientations, one orientation being useful for operation of the apparatus and the other orientation being useful for storage and transportation of the apparatus. -
FIG. 7 shows the generic components that make up the foot-rest assembly 13 and the heel-rest assembly 11. -
FIG. 8 shows a preferred embodiment of the apparatus configured to allow the user to perform an arm curling or lifting exercise. -
FIG. 9 shows a preferred embodiment of the apparatus configured to allow the user to perform a pull-down exercise beneath a door frame. Only a section of the top of the door frame is shown. -
FIGS. 10 and 11 show a preferred embodiment of the pull-cord unit 5 without external casing. -
FIG. 12 is a general schematic of the wireless interface circuit. -
FIGS. 13 and 14 show an alternative embodiment of the pull-cord unit 5.FIG. 13 is a sectional view. -
FIG. 14 is an exploded view. -
FIG. 15 is a general schematic of a drum recoil system that is driven by a flywheel element. Positional relationships between components should not be inferred from this figure. -
FIG. 16 is a general schematic of an alternative embodiment of a wireless interface circuit. - A pull-
cord unit 5, shown inFIG. 4 , includes a pull-cord 6 that is wrapped around the inner circumference of a channel that is formed in adrum 7. This pull-cord unit includes a resistance means that resists the pulling of the pull-cord from the drum, and a recoil means that causes the coiling of the pull-cord back on to the drum once the pulling force is reduced. - The pull-cord unit can be used with various accessories to enable the user to perform a variety of strength building, toning, and aerobic exercises.
- An exercise frame, shown in
FIG. 4 , consists of abase frame 8, asingle roller 9 fixed at one end of the base frame, adouble roller assembly 10, a heel-rest assembly 11, anextension bar 12, a foot-rest assembly 13, and anattachment fixture 14 for mounting the pull-cord unit 5. Ahandle 15 can be fitted to the end of the pull-cord. - The exercise frame enables the user to perform a rowing simulation exercise, as shown in
FIG. 1 , whereby the user sits on the floor or a cushion or static seat, rests his/her heels on the heel rest and fixes his/her feet to the foot-rest assembly using foot straps 16. The user then pulls thehandle 15 away from the pull-cord unit while pushing the exercise frame away from his/her body using his/her legs. - The exercise frame supports the pull-cord unit at a distance above the feet of the user. This allows the user to perform a comfortable rowing stroke where the handle does not have to be lifted greatly during the pulling stroke to avoid the user's knees.
- The rollers allow the exercise frame to roll smoothly along the floor while supporting the feet of the user. The pull force that the user exerts on the pull-cord produces a moment acting about the mounting position of the foot-
rest assembly 13 that acts to rotate the exercise frame. Thesingle roller 9 is positioned a suitable distance away from the mounting position of the foot-rest assembly such that this rotation is resisted by the moment resulting from the reaction of thesingle roller 9 with the floor acting about the mounting position of the foot-rest assembly. If this distance were too small then the exercise frame could tip over during exercise. - Alternatively, the
handle 15 may be fixed to the body of the pull-cord unit 5, with the end of the pull-cord 6 being secured to the user's feet or a fixture, such as the rollingframe 8. For example, thehandle 15 may be fixed to theattachment feature 14. The body of the pull-cord unit 5 is then pulled towards the user while the user's legs are extended. - The exercise frame can be disassembled for storage and transport, as shown in
FIG. 5 . Thehandle 15 can be easily fitted and removed from the pull-cord 6 by passing the handle through aloop 17 in the end of the pull-cord. The exercise frame can be disassembled by removing a fixingpin 18 and pulling theextension bar 12 away from thebase frame 8. This allows the exercise frame to be arranged into a compact form. - The
double roller assembly 10 is fitted to the exercise frame such that it may rotate about apivot pin 19 fixed to thebase frame 8.FIG. 6 shows this arrangement.Rollers 20 are fixed to a mountingblock 21. The pivot pin is fitted through a bore in the mounting block and fixed to the base frame. Acompression spring 22 fitted around the pivot pin ensures that the mounting block stays in contact with the base frame. Fixing pins 23 fitted to the base frame can locate in two of four locating bores 24 in the mounting block. This allows the mounting block to be orientated in one of two positions, one position being a position suitable for operation of the apparatus such that the axis of the rollers is parallel to the axis of thesingle roller 9 and the other position being a position suitable for storage and transport of the apparatus such that the axis of the rollers is perpendicular to the axis of the single roller. It is possible for the user to move the mounting block and rollers between the two positions by pulling the mounting block away from the base frame such that the fixing pin is withdrawn from the locating bores. The compression spring ensures that the mounting block is pushed back over the fixing pin once the fixing pins are aligned with the locating bores corresponding to the new position. - The heel-
rest assembly 11 and foot-rest assembly 13 can be assembled and disassembled as shown inFIG. 7 . This allows these assemblies to be easily demounted from the exercise frame to allow storage or transport of the apparatus in a more compact form. Each assembly consists of afirst block 25, asupport bar 26, and asecond block 27. One end of the support bar is permanently fixed within the first block. The second block can be fitted to the other end of the support bar. Aspring clip 28 is fitted in an external groove formed near the end of the support bar. A bore within the second block includes an internal groove. The internal groove accepts the spring clip when the support bar is pushed into the bore of the second block. This results in the second block being held in position on the support bar by the spring clip. The user can remove the second block from the support bar by pulling the second block away from the support bar with sufficient force to deform the spring clip. Both the heel-rest and foot-rest assemblies are fitted to the exercise frame by fitting the support bar through holes in the exercise frame and then pushing the second block onto the support bar until the spring clip engages the internal groove of the second block. - The
extension bar 12 may be detached from thebase frame 8 by removing the fixingpin 18.FIG. 8 shows the apparatus in an arrangement that enables strength building exercises whereby the user stands on the foot-rest assembly 13 and pulls thehandle 15 upwards away from the pull-cord unit 5.FIG. 2 shows this arrangement in use with a user performing an arm-curl exercise. Alternatively, thehandle 15 may be fixed to the body of the pull-cord unit 5, with the end of the pull-cord 6 being secured to the user's feet or a fixture, such as thefoot rest assembly 13. For example, thehandle 15 may be fixed to theattachment feature 14. The body of the pull-cord unit 5 is then pulled towards the user while the user's legs are extended. -
FIG. 9 shows the apparatus in an arrangement that enables strength building exercises whereby the user stands, sits or kneels below a doorframe and pulls thehandle 15 downwards away from the pull-cord unit 5, as shown inFIG. 3 . The pull-cord unit is fixed to across bar 28. A fixedhook 29 is fitted to one end of the cross bar and anadjustable hook 30 is fitted to the opposite end of the cross bar. The cross bar fits through a slot in the adjustable hook such that the hook may slide along the length of the cross bar. The fixed hook and adjustable hook can be fitted over thetop ledges 31 of adoorframe 32. Moving the adjustable hook along the length of the cross bar allows the apparatus to be fitted to doorframes of various thicknesses.Rubber pads 33 fitted to the ends of the fixed hook and the adjustable hook protect the doorframe from damage at the points of contact. - Alternatively, the end of the pull-
cord 6 may be fixed to a secure fixing point, such as thecross bar 28. Thehandle 15 is fixed to the body of the pull-cord unit 5 such that as the user pulls on thehandle 15, this action causes the pull-cord 6 to be unwound from the pull-cord unit 5. -
FIGS. 10 and 11 show the pull-cord unit 5 with the external case removed. The pull-cord 6 is fitted at one end with a length of hook-type fastening tape such that said length of tape can wrap once around the circumference of the channel of thedrum 7. The drum is fitted with corresponding loop-type fastening tape. This arrangement allows easy attachment and detachment of the pull-cord from the drum. This is useful both for initial manufacture and for replacement of a worn pull-cord by the user. This fastening tape arrangement also limits the force that may be applied to the drum by the pull-cord if the user pulls the pull-cord until it is fully unwound from the drum. The pull-cord can be wrapped around the drum several times while being contained within the channel. - The
drum 7 is supported by a bearing that runs on ashaft 34. The shaft is supported by twosupport arms 35. The support arms are supported by apin 36 that allows the support arms to pivot about the axis of the pin. The pin is supported by achassis 37. - A
flywheel 38 is fixed to adriveshaft 39 that is supported by abearing 40 that is fixed in thechassis 37. Application of a pulling force on the pull-cord 6 causes thedrum 7 to be pulled towards and into contact with thedriveshaft 39. Theouter rims 41 of the drum make tangential contact with the driveshaft. The positions of thesupport arms 35 ensure that while the pulling force is great enough to hold the drum in contact with the driveshaft and the pull-cord remains within a certain angular range relative to the long edges of the support arms, the centre position of this range being the position where the pull-cord is perpendicular to the long edges of the support arms, the reaction force between the outer rims of the drum and the drive shaft will always be great enough to ensure that the contact friction is great enough such that no slipping occurs at this contact. Hence rotation of the drum results in rotation of the driveshaft and the flywheel. While no slipping occurs at the contact, the ratio of the angular speed of the flywheel to the angular speed of the drum is the same as the ratio of the radius of the drum to the radius of the driveshaft at the point of contact. Hence a high effective gear ratio is possible. A high effective gear ratio is desirable because it results in a high angular speed of the flywheel. This results in the kinetic energy stored in the flywheel being equal to the kinetic energy stored in a heavier or larger flywheel that is part of a system with a lower effective gear ratio. - At the opposite end of the
driveshaft 39 to theflywheel 38, asmall pulley wheel 42 is fitted. Alarge pulley wheel 43 is fitted to run freely on theshaft 34. The large pulley wheel is coupled to the small pulley wheel by an elastic drive-band 44. The large pulley wheel is fitted with a number ofmagnets 45 at equal radii from the centre of the large pulley wheel. There is a corresponding number and positioning of magnetic steel plates fitted to thedrum 7 such that they face the magnets with a small gap separating them. This arrangement results in a limited maximum coupling torque between the large pulley wheel and the drum. The tension in the drive-band is sufficient such that the drive-band will not slip on either pulley wheel while the torque acting on the large pulley wheel is at or below this maximum coupling torque. This coupling between the drum and the large pulley wheel is mostly elastic in that relative rotation between the large pulley wheel and the drum does not result in a significant net dissipation of energy when the effect is averaged over a number of full rotations of one body relative to the other. The coupling has the effect of applying a torque to the drum in a direction that acts to rotate the drum in the direction necessary to recoil the pull-cord 6 onto the drum. - A
torsion spring 46 is fitted such that it acts to move thesupport arms 35 such that thedrum 7 moves away from contact with the driveshaft. Hence when the pulling force applied to the pull-cord 6 drops below a certain level, the drum will move away from contact with thedriveshaft 39. In this case the only significant coupling that acts between the driveshaft and the drum is that due to the magnetic coupling between themagnets 45 fixed to thelarge pulley wheel 43 and said magnetic steel plates fixed to the drum. This results in the rotation of the drum in a direction that will recoil the pull-cord onto the drum while theflywheel 38 continues to rotate. - It is advantageous that the ratio of the diameter of the
large pulley wheel 43 to the diameter of thesmall pulley wheel 42 is less than the ratio of the radius of the drum rims 41 to the radius of thedrive shaft 39 at the point of contact. This helps to ensure that the large pulley wheel will not turn so fast that it is unable to accelerate the drum in the recoil direction. - A
braking magnet 47 is a permanent magnet magnetized such that opposite poles are formed on the opposite flat parallel sides, one such side being parallel to the flat face of theflywheel 38. The flywheel is made of a conductive metal such as copper or brass. Rotation of the flywheel results in eddy currents being set up within the flywheel. These eddy currents produce magnetic fields that act to oppose the motion that caused them, hence a braking force is exerted on the flywheel. This braking force increases with the speed of the flywheel and therefore provides a convenient speed-dependent resistance to the pulling of the pull-cord 6. The eddy currents produce Ohmic heating within the flywheel.Channels 48 within the flywheel force air to move radially over the outer surface of the flywheel and hence result in a greater rate of heat dissipation from the flywheel. - The fly wheel is designed to be light weight and operate at high speed in order to have the desire energy storage capacity. Preferably the flywheel will have a mass of less than 1 kg, a diameter of less than 200 mm and be capable of operating at speeds of over 1000 RPM in normal use.
- The pull-
cord unit 5 is fitted with a case. This can be seen inFIG. 4 . Air intake vents 49 are positioned close to the centre of the flywheel and air exhaust vents 50 are located around the perimeter of the case. This arrangement allows air to be drawn in through the air intake vents and then accelerated within the channels of therotating flywheel 38 before exiting through the air exhaust vents. - The
braking magnet 47 is mounted on anadjustment pin 51. The adjustment pin passes through a hole in the braking magnet and features a threaded end that screws into a threadedhole 52 in thechassis 37. The braking magnet rests against aflat surface 53 of the chassis such that it cannot rotate. Acompression spring 54 is fitted between the braking magnet and the chassis such that the braking magnet is pushed against a shoulder of the adjustment pin. Thus the radial position of the braking magnet relative to theflywheel 38 may be adjusted by rotation of the adjustment pin. This adjustment mechanism allows the user to change the level of damping that the braking magnet applies to the flywheel and hence change the intensity of the exercise. - The pull-
cord unit 5 is fitted with a wireless transmission unit that transmits information to an external computing device 110. The external computing device 110 is a mobile phone, according to one embodiment (as shown inFIG. 2 ). Components of this wireless transmission unit are shown inFIGS. 10 and 11 .FIG. 12 shows a general circuit schematic. The wireless transmission unit comprises a power supply circuit, a sensing circuit, and aradio transmission module 60. Acoil 55 is fitted to acircuit board 56.Magnets 57 are fitted to theflywheel 38 at a radius such that they pass close to the coil during rotation of the flywheel. Movement of the magnets past the coil induces an electric current in the coil. The power supply circuit connects the coil to the input terminals of abridge rectifier 58. A largecapacitance storage capacitor 59 is connected across the output terminals of the bridge rectifier to smooth the rectified output and provide energy storage for operation of the radio transmission module and the sensing circuit. Avoltage regulator module 65 provides a regulated voltage output to the radio transmission module and the sensing circuit. - The sensing circuit provides a voltage pulse to the
radio transmission module 60 every time one of themagnets 57 passes thecoil 55. Acapacitor 61 couples one end of the coil to one input of anoperational amplifier 62. Apotentiometer 63 provides a threshold voltage at the other input of the operational amplifier. The operational amplifier acts as a comparator such that a voltage occurs at the output once the voltage produced by the coupling to the coil rises above the threshold voltage. Aresistor 64 ensures that charge from the coupling capacitor can drain between pulses. - The
radio transmission module 60 is an integrated module that includes a radio transceiver and a microprocessor. The module allows radio transmission using the Bluetooth protocol. This protocol allows information to be sent to any device with a suitable Bluetooth interface fitted. Bluetooth interfaces are commonly fitted in mobiles phones, personal-digital-assistants (PDAs), and personal computers. The output from theoperational amplifier 62 of the sensing circuit is connected to a digital input of the radio transmission module. The radio transmission module is powered by the power supply circuit. The radio transmission module is programmed to record the time periods between pulses from the sensing circuit. These time period data are transmitted in a radio signal using the Bluetooth protocol. A suitable receiving device can be programmed to receive and process the data such that exercise parameters such as speed, distance, and power can be displayed to the user. -
FIGS. 13 and 14 show an alternative embodiment of a pull-cord unit for the apparatus. A pull-cord 66 is fitted at one end with a length of hook-type fastening tape such that said length of tape can wrap once around the circumference of a channel formed in adrum 67. The drum is fitted with corresponding loop-type fastening tape. This arrangement allows easy attachment and detachment of the pull-cord from the drum. The pull-cord can be wrapped around the drum several times while being contained within the channel. - The
drum 67 is mounted on abearing 68 that is fitted to adriveshaft 69. The inner race of a spragg type one-way bearing 70 is fitted to the drum such that the rotation axes of the one-way bearing and the drum are collinear. The one way bearing only allows transmission of torque from the inner race to the outer race in one direction of relative rotation between the races. The outer race of the one-way bearing is fixed to aninternal gear 71. The internal gear forms the annulus of an epicyclic gear arrangement that provides a high ratio torque transmission between the drum and the driveshaft. Theplanet gear assemblies 72 of this epicyclic gear arrangement are mounted onbearings 73 that are fitted toshafts 74. These shafts are fixed to anendplate 75 of the pull-cord unit. This endplate is part of the external casework of the pull-cord unit and does not rotate. Each planet gear assembly consists of a double spur gear with a small diameter gear, that meshes with the internal gear, being fixed and concentric to a larger gear that meshes with asun gear 76. Use of double spur gears allows for a larger gear ratio than would be possible by only using single planetary gears. The sun gear is fixed to the driveshaft. Aflywheel 77 is also fixed to the driveshaft. Hence rotation of the drum in one direction results in the rotation of the driveshaft and flywheel in the opposite direction at a much greater speed. The driveshaft is supported within the casework of the pull-cord unit bybearings 78 fitted at each end of the driveshaft. -
Rod magnets 79 are fixed to thedrum 67 such that they face theflywheel 77 and are arranged in a regular circular pattern about the rotation axis of the drum. Rotation of the drum results in a counter-rotation of the flywheel at a higher speed. The flywheel is made of an electrically conductive metal such as copper or brass. The rotation of the flywheel relative to the rod magnets results in eddy currents being set up in the flywheel. These eddy currents produce magnetic fields that act to oppose the motion that generated them. Hence the motion of the flywheel is damped by eddy current action. The size of the eddy currents is proportional to the relative speed of rotation of the flywheel and the rod magnets. The user therefore experiences a speed-dependent resistance to the pulling of the pull-cord 66 from the pull-cord unit. The torque reaction between the flywheel and the rod magnets is low relative to the torque reaction in the magnetic resistance mechanisms used in typical exercise machines because the gear ratio produced by the epicyclic arrangement is so high. For this reason, smaller or less powerful magnets can be used. It should also be noted that a suitable pull-cord unit may include braking pads that produce a frictional coupling between the drum and the flywheel. It is however advantageous to use a magnetic coupling because a frictional coupling will result in wear of the braking pads that necessitates periodic replacement of the braking pads, and a higher noise level during operation. - The eddy currents produce Ohmic heating within the
flywheel 77.Channels 80 within the flywheel force air to move radially over the internal surfaces of the flywheel and hence result in a greater rate of heat dissipation from the flywheel. - The
flywheel 77 androd magnets 79 remain coupled by eddy currents while there continues to be relative rotation between the flywheel anddrum 67. This coupling acts to move the drum in a direction that recoils the pull-cord 66 onto the drum and will result in the recoiling of the pull-cord once the pulling force on the pull-cord is reduced to a low enough level. Once the rotation speed of the flywheel drops below a certain level, the size of the coupling torque, due to eddy currents between the flywheel and the rod magnets will no longer be sufficient to move the drum in the recoil direction. For this reason, a number of steel pins 81 are fitted to the flywheel such that they pass close to the rod magnets during rotation of the flywheel. This results in an additional magnetic coupling between the flywheel and rod magnets that is sufficient, even at low speeds of flywheel rotation, to cause the drum to rotate in the recoil direction. -
FIG. 16 shows a general schematic of an alternative circuit for a wireless transmission unit. The circuit is powered by abattery 101. Aswitch 102 connects the battery to the rest of the circuit. A Hall-sensor module 103 is fitted such that themagnets 57, shown inFIG. 11 , pass close to it during rotation of theflywheel 38. The Hall sensor module is an integrated circuit that produces a voltage output that is dependent upon the magnetic flux passing through the Hall sensor module. Hence as the magnets move past the Hall sensor module the voltage output changes. The voltage output from the Hall sensor is connected to one input of anoperational amplifier 104. The other input of the operational amplifier is connected to apotentiometer 105 that produces a threshold voltage. When the output voltage from the Hall sensor module rises above this threshold voltage the output of the operational amplifier switches. The output of the operational amplifier is connected to an input of aBluetooth transceiver module 106. The Bluetooth transceiver module is an integrated module that includes a radio transceiver and a microprocessor. The Bluetooth transceiver module is programmed to record the time periods between pulses from the operational amplifier output. These time period data are transmitted in a radio signal using the Bluetooth protocol. A suitable receiving device can be programmed to receive and process the data such that exercise parameters such as speed, distance, and power can be displayed to the user. - The invention is not limited to the precise details of the embodiments described above.
Claims (19)
1. A portable exercise apparatus comprising a pull-cord unit and a pull cord, the pull-cord unit comprising:
a chassis;
a drum mounted to rotate relative to the chassis, the pull-cord being movable between a wound configuration in which it is substantially wound around the drum and an unwound configuration in which it is at least partially unwound from the drum, the pull cord unit further comprising:
a recoil means cooperating with the chassis and the drum to rotationally bias the drum to move the pull-cord towards the wound configuration;
a flywheel mounted to rotate relative to the chassis, the flywheel being coupled to the drum by a one-way transmission such that the flywheel rotates in a constant direction at a rotational speed greater than that of the drum as the pull-cord is unwound;
a resistance mechanism adapted to apply a resisting torque to the flywheel, wherein the portable exercise apparatus further comprises:
a first handle connectable to the pull cord unit and means for affixing the pull-cord to a second handle or fixture at, or towards, a free end of the pull cord, wherein, in use, a user grips said first handle and moves the pull-cord unit such that the pull-cord unwinds against the action of the resisting torque.
2. The portable exercise apparatus as claimed in claim 1 , wherein the first and second handles are detachably affixable to the chassis and pull cord, respectively.
3. The portable exercise apparatus according to claim 1 , wherein the pull-cord unit further comprises a performance measuring means.
4. The portable exercise apparatus according to claim 3 , wherein the performance measuring means comprises a speed sensor that senses the rotational speed of the flywheel.
5. The portable exercise apparatus according to claim 4 , wherein the speed sensor comprises a Hall sensor.
6. The portable exercise apparatus according to claim 4 , wherein the speed sensor provides a speed sensor output corresponding to the speed of the flywheel, and the pull-cord unit further comprises a processor for calculating exercise data based on the speed sensor output.
7. The portable exercise apparatus as claimed in claim 1 , further comprising:
a radio or wireless data transmitter.
8. The portable exercise apparatus as claimed in claim 7 , wherein the radio or wireless data transmitter transmits the exercise data to an external device.
9. The portable exercise apparatus as claimed in claim 8 , wherein exercise data is transmitted to a mobile phone, the mobile phone being programmed to receive and process the data such that exercise parameters are displayed to the user.
10. The portable exercise apparatus as claimed in claim 8 , further comprising:
a receiving device programmed to receive and process the data such that exercise parameters such as speed, distance, and power can be displayed to a user.
11. The portable exercise apparatus as claimed in claim 8 , wherein the radio or wireless data transmitter comprises a Bluetooth transceiver.
12. The portable exercise apparatus as claimed in claim 1 , wherein the one-way transmission comprises a one-way clutch.
13. The portable exercise apparatus as claimed in claim 1 , wherein the resistance mechanism comprises an eddy current resistance mechanism comprising a magnet adapted to interact with the flywheel, wherein rotation of the flywheel relative to the magnet causes eddy currents to be set up.
14. The portable exercise apparatus as claimed in claim 13 , wherein the flywheel comprises at least one electrically conductive element, such as copper or brass.
15. The portable exercise apparatus as claimed in claim 13 , wherein the position of the magnet relative to the flywheel is adjustable.
16. The portable exercise apparatus as claimed in claim 1 , wherein the flywheel is operatively coupled to the drum via a gear assembly.
17. The portable exercise apparatus as claimed in claim 1 , wherein the flywheel is operatively coupled to the drum via an epicyclical gearbox.
18. The portable exercise apparatus as claimed to claim 1 , wherein the flywheel comprises radially extending features such that upon rotation of the flywheel air is forced radially outwards, resulting in an increased rate of heat dissipation from the flywheel.
19. The portable exercise apparatus as claimed in claim 1 , wherein the portable exercise apparatus is of a size and shape so as to be convenient to carry in hand-baggage during travel and easy to store in a cupboard or drawer in the home.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/295,799 US20120065034A1 (en) | 2006-02-28 | 2011-11-14 | Exercise machine |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB0603869.9A GB0603869D0 (en) | 2006-02-28 | 2006-02-28 | Cable recoil system for an exercise machine |
| GB06038699 | 2006-02-28 | ||
| PCT/GB2007/000363 WO2007099283A2 (en) | 2006-02-28 | 2007-02-02 | Improved exercise machine |
| US28112208A | 2008-08-28 | 2008-08-28 | |
| US13/295,799 US20120065034A1 (en) | 2006-02-28 | 2011-11-14 | Exercise machine |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/281,122 Continuation US8070657B2 (en) | 2006-02-28 | 2007-02-02 | Exercise machine |
| PCT/GB2007/000363 Continuation WO2007099283A2 (en) | 2006-02-28 | 2007-02-02 | Improved exercise machine |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120065034A1 true US20120065034A1 (en) | 2012-03-15 |
Family
ID=36178823
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/281,122 Expired - Fee Related US8070657B2 (en) | 2006-02-28 | 2007-02-02 | Exercise machine |
| US13/295,799 Abandoned US20120065034A1 (en) | 2006-02-28 | 2011-11-14 | Exercise machine |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/281,122 Expired - Fee Related US8070657B2 (en) | 2006-02-28 | 2007-02-02 | Exercise machine |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US8070657B2 (en) |
| EP (1) | EP1991325A2 (en) |
| JP (1) | JP2009528109A (en) |
| GB (2) | GB0603869D0 (en) |
| WO (1) | WO2007099283A2 (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110082014A1 (en) * | 2009-10-02 | 2011-04-07 | Christoph Leonhard | Fully adjustable integrated exercise workstation |
| US20120108398A1 (en) * | 2010-10-29 | 2012-05-03 | Chiu Hsiang Lo | Treadmill |
| US9403047B2 (en) | 2013-12-26 | 2016-08-02 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
| US20180236290A1 (en) * | 2015-08-25 | 2018-08-23 | Virtureal Development Gmbh | Stationary exercise apparatus for indoor cycling |
| US10065067B2 (en) | 2009-04-20 | 2018-09-04 | Joseph Turner | Exercise machine for providing resistance to ambulatory motion of the user |
| US10279212B2 (en) | 2013-03-14 | 2019-05-07 | Icon Health & Fitness, Inc. | Strength training apparatus with flywheel and related methods |
| US10426989B2 (en) | 2014-06-09 | 2019-10-01 | Icon Health & Fitness, Inc. | Cable system incorporated into a treadmill |
| US10449409B2 (en) | 2016-11-04 | 2019-10-22 | Nautilus, Inc. | Stowable rowing machine |
| US10569121B2 (en) | 2016-12-05 | 2020-02-25 | Icon Health & Fitness, Inc. | Pull cable resistance mechanism in a treadmill |
| US10668320B2 (en) | 2016-12-05 | 2020-06-02 | Icon Health & Fitness, Inc. | Tread belt locking mechanism |
| US11013952B2 (en) | 2018-07-20 | 2021-05-25 | Nautilus, Inc. | Rowing machine |
| US20210353994A1 (en) * | 2018-10-26 | 2021-11-18 | Micaton Ergonomics, S.L. | Compact inertial muscle training device |
| US11298577B2 (en) | 2019-02-11 | 2022-04-12 | Ifit Inc. | Cable and power rack exercise machine |
| IT202200007718A1 (en) * | 2022-04-19 | 2023-10-19 | Desmotec S R L | SPORTS EQUIPMENT FOR PERFORMING REHABILITATION EXERCISES AND SPORTS TRAINING OR WARM-UP |
| US12311214B2 (en) | 2021-10-21 | 2025-05-27 | Speede Fitness, Llc | Resistance training machine and methods of use |
Families Citing this family (73)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AT502956B1 (en) * | 2005-11-30 | 2007-09-15 | Graditech Entwicklungs Gmbh | MUSKELKRAFTBETRENBENES VEHICLE, ESPECIALLY STEPPROLLER |
| WO2008137841A1 (en) * | 2007-05-04 | 2008-11-13 | Medina Rafael R | Bilaterally actuated sculling trainer |
| US20110313331A1 (en) * | 2009-02-10 | 2011-12-22 | Bruno Marc Florent Victore Dehez | Rehabilitation Robot |
| US20100233664A1 (en) * | 2009-03-10 | 2010-09-16 | Sol Wroclawsky | Speed indicating apparatus |
| US9050486B2 (en) * | 2009-06-22 | 2015-06-09 | Power Stretch, Llc | Anatomical stretching device and methods of use |
| US8337372B1 (en) | 2009-09-08 | 2012-12-25 | BeachFit, LLC | Exercise device and methods of use |
| US20110152045A1 (en) * | 2009-12-23 | 2011-06-23 | Horne Edward F | Apparatus and method for counter-resistance exercise |
| USD650451S1 (en) * | 2010-01-19 | 2011-12-13 | Icon Ip, Inc. | Cable and pulley device for exercise |
| US8840075B2 (en) * | 2010-01-19 | 2014-09-23 | Icon Ip, Inc. | Door mounted exercise devices and systems |
| US9302148B1 (en) * | 2010-05-13 | 2016-04-05 | Shinn Fu Corporation | Epicyclic gear system for use in exercise equipment |
| ES2872124T3 (en) | 2010-05-13 | 2021-11-02 | Shinn Fu Corp | Exercise bike with the planetary gear system and rolling reverse lateral movement system |
| US10080919B1 (en) | 2010-05-13 | 2018-09-25 | Shinn Fu Corporation | Epicyclic gear system for use in exercise equipment |
| US8562495B2 (en) * | 2010-05-21 | 2013-10-22 | HD Enterprises, LLC | Upper body exercise apparatus for stationary bike |
| JP4730676B1 (en) * | 2010-10-18 | 2011-07-20 | 豊実 野原 | Power generation unit and power generation type health appliance |
| US8994198B2 (en) * | 2010-12-16 | 2015-03-31 | Haralambos S. Tsivicos | Apparatus and method for efficiently generating power when a door is acted upon by an outside force |
| US20130296137A1 (en) * | 2011-01-21 | 2013-11-07 | Shenzhen Antuoshan Special Machine & Electrical Co., Ltd. | Exercise rowing machine with power generation |
| GB201108398D0 (en) | 2011-05-19 | 2011-07-06 | Loach Andrew | Hand-held exercise apparatus and resistance mechanism for exercise apparatus |
| US9168418B2 (en) * | 2011-12-30 | 2015-10-27 | Lawrence G. Adamchick | Portable physical therapy/rehabilitation/exercise device, system and method |
| US20150011368A1 (en) * | 2012-01-25 | 2015-01-08 | Kinvestix Ltd. | Magnetic pulley resistance exerciser |
| US8708867B2 (en) * | 2012-02-27 | 2014-04-29 | Season 4, Llc | Exercise methods and apparatus simulating stand-up paddle boarding |
| US9415257B2 (en) * | 2012-06-18 | 2016-08-16 | Douglas John Habing | Hybrid resistance system |
| US9112390B2 (en) * | 2013-02-10 | 2015-08-18 | Omnitek Partners Llc | Dynamo-type lanyard operated event detection and power generators |
| WO2014166463A1 (en) * | 2013-04-09 | 2014-10-16 | Aerobis Ltd. | Device for carrying out strength exercises using a continuous flexible pulling means |
| GB2515092A (en) * | 2013-06-14 | 2014-12-17 | Duncan Gakuna Muchira | Over Door Exercise Cable Station |
| US20150148199A1 (en) * | 2013-11-27 | 2015-05-28 | Roger Nicholas Strickland | Handheld Extremity Inflexibility Treatment Device |
| US9692276B2 (en) * | 2014-02-05 | 2017-06-27 | Strength Companion, LLC | Systems and methods related to coupling an energy harvester to exercise equipment |
| US10433612B2 (en) | 2014-03-10 | 2019-10-08 | Icon Health & Fitness, Inc. | Pressure sensor to quantify work |
| US10279210B2 (en) * | 2014-05-09 | 2019-05-07 | Albert Ky | Magnetic friction and viscous cylinder-piston resistance portable exercise equipment |
| GB2526093A (en) * | 2014-05-10 | 2015-11-18 | Alan Newton | Personal exercise tablet |
| US10258828B2 (en) | 2015-01-16 | 2019-04-16 | Icon Health & Fitness, Inc. | Controls for an exercise device |
| US9687689B2 (en) * | 2015-07-14 | 2017-06-27 | Global Win Technology Co., Ltd. | Damping device |
| CN105031878A (en) * | 2015-07-23 | 2015-11-11 | 罗美柏 | Fitness rowing device provided with corollary equipment |
| US10940360B2 (en) | 2015-08-26 | 2021-03-09 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
| TWI644702B (en) | 2015-08-26 | 2018-12-21 | 美商愛康運動與健康公司 | Strength exercise mechanisms |
| US10953305B2 (en) | 2015-08-26 | 2021-03-23 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
| US10561894B2 (en) | 2016-03-18 | 2020-02-18 | Icon Health & Fitness, Inc. | Treadmill with removable supports |
| US10272317B2 (en) | 2016-03-18 | 2019-04-30 | Icon Health & Fitness, Inc. | Lighted pace feature in a treadmill |
| US10441840B2 (en) | 2016-03-18 | 2019-10-15 | Icon Health & Fitness, Inc. | Collapsible strength exercise machine |
| US10625137B2 (en) | 2016-03-18 | 2020-04-21 | Icon Health & Fitness, Inc. | Coordinated displays in an exercise device |
| US10293211B2 (en) | 2016-03-18 | 2019-05-21 | Icon Health & Fitness, Inc. | Coordinated weight selection |
| US10493349B2 (en) | 2016-03-18 | 2019-12-03 | Icon Health & Fitness, Inc. | Display on exercise device |
| US9662534B1 (en) * | 2016-04-22 | 2017-05-30 | Chi Hua Fitness Co., Ltd. | Pull exercise training device |
| ITUA20163168A1 (en) * | 2016-05-05 | 2017-11-05 | Technogym Spa | Perfected rower. |
| US10252109B2 (en) | 2016-05-13 | 2019-04-09 | Icon Health & Fitness, Inc. | Weight platform treadmill |
| US10441844B2 (en) | 2016-07-01 | 2019-10-15 | Icon Health & Fitness, Inc. | Cooling systems and methods for exercise equipment |
| US10471299B2 (en) | 2016-07-01 | 2019-11-12 | Icon Health & Fitness, Inc. | Systems and methods for cooling internal exercise equipment components |
| DE202016105102U1 (en) * | 2016-09-14 | 2016-11-03 | Ergo-Fit Gmbh & Co. Kg | Device for adjusting the resistance of training devices with internally ventilated braking device |
| US10500473B2 (en) | 2016-10-10 | 2019-12-10 | Icon Health & Fitness, Inc. | Console positioning |
| US10376736B2 (en) | 2016-10-12 | 2019-08-13 | Icon Health & Fitness, Inc. | Cooling an exercise device during a dive motor runway condition |
| TWI646997B (en) | 2016-11-01 | 2019-01-11 | 美商愛康運動與健康公司 | Distance sensor for console positioning |
| US10661114B2 (en) | 2016-11-01 | 2020-05-26 | Icon Health & Fitness, Inc. | Body weight lift mechanism on treadmill |
| GB201620092D0 (en) * | 2016-11-28 | 2017-01-11 | Blackmoor Dev Ltd | Exercise device |
| KR101837186B1 (en) * | 2016-11-30 | 2018-04-19 | 주식회사 펀키 | Exercise Apparatus for Infants |
| TWI680782B (en) | 2016-12-05 | 2020-01-01 | 美商愛康運動與健康公司 | Offsetting treadmill deck weight during operation |
| TWI782424B (en) | 2017-08-16 | 2022-11-01 | 美商愛康有限公司 | System for opposing axial impact loading in a motor |
| US9962310B1 (en) * | 2017-10-06 | 2018-05-08 | Warren J Wright | Stretching apparatus |
| EP3743171B8 (en) * | 2017-11-17 | 2025-08-13 | AD Kinetics GmbH | Weight machine |
| US10729965B2 (en) | 2017-12-22 | 2020-08-04 | Icon Health & Fitness, Inc. | Audible belt guide in a treadmill |
| US10561878B2 (en) * | 2018-02-22 | 2020-02-18 | Mu-Chuan Wu | Resistance adjusting apparatus with wind resistance and magnetic resistance |
| WO2020101483A1 (en) * | 2018-11-15 | 2020-05-22 | Viccolo B.V. | Physical training apparatus |
| KR102066270B1 (en) * | 2019-02-07 | 2020-01-14 | 우석대학교 산학협력단 | Excercise device having small electric power generator |
| MX2022013162A (en) * | 2020-04-23 | 2023-01-18 | Dynamic Accession LLC | Dynamic motion resistance module. |
| US11213718B1 (en) * | 2020-06-29 | 2022-01-04 | Luke Tipple | Portable rowing machine |
| US11298579B2 (en) * | 2020-08-26 | 2022-04-12 | Chien-Ping Kao | Resistance supplier for weight training |
| CN112402894B (en) * | 2020-11-20 | 2021-10-26 | 上海润米科技有限公司 | Unidirectional and bidirectional flywheel and adjusting system thereof |
| CN112569566A (en) * | 2020-12-16 | 2021-03-30 | 杭州迪健健康科技有限公司 | Bluetooth counter for tensioner and counting method |
| KR102578236B1 (en) * | 2021-03-24 | 2023-09-20 | 김광연 | Strength training device |
| US12186612B2 (en) * | 2021-08-02 | 2025-01-07 | Shanghai Yinsheng Technology Co., Ltd. | Tension force stepless adjustment counterweight power generating mechanism and fitness equipment with the same |
| CN113757057A (en) * | 2021-08-02 | 2021-12-07 | 上海寅生科技有限公司 | Tension stepless-adjustment counterweight power generation mechanism and body builder with same |
| US11759667B2 (en) * | 2021-08-23 | 2023-09-19 | Yen-Chao LIN | Reciprocating unidirectional electromagnetic resistance device |
| WO2023061573A1 (en) | 2021-10-13 | 2023-04-20 | Dfk Ag | Portable exercise apparatus |
| US12151137B2 (en) * | 2021-12-23 | 2024-11-26 | Sculpted Partners LLC | Exercise apparatus |
| US12017107B2 (en) * | 2021-12-29 | 2024-06-25 | Hydrow, Inc. | Exercise machine brake system |
Family Cites Families (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1867642A (en) * | 1930-06-06 | 1932-07-19 | Charles G Woods | Exercising apparatus |
| US1916660A (en) * | 1932-12-03 | 1933-07-04 | Charles L Duff | Exercising machine |
| US2131570A (en) * | 1935-07-27 | 1938-09-27 | Herbert E Riley | Exercise device |
| US2951702A (en) * | 1958-05-06 | 1960-09-06 | Goodwin Walter | Exercising device |
| US3785657A (en) * | 1971-11-22 | 1974-01-15 | B Moller | Golf club swing training device |
| US3841627A (en) * | 1972-03-03 | 1974-10-15 | Heimsport Gmbh | Push pull rotatable wheel type exercising device |
| US3995853A (en) * | 1974-06-21 | 1976-12-07 | Deluty Michael E | Exercising device |
| US3885789A (en) * | 1974-06-21 | 1975-05-27 | Michael E Deluty | Exercising device |
| US4010948A (en) * | 1975-05-21 | 1977-03-08 | Deluty Michael E | Pull type friction exercising device |
| US4135714A (en) * | 1976-02-03 | 1979-01-23 | Hughes Ralph L | Golf swing muscle developer |
| US4114875A (en) * | 1977-03-29 | 1978-09-19 | Deluty Michael E | Friction type exercising device |
| US4253663A (en) * | 1978-06-05 | 1981-03-03 | Hughes Ralph L | Golf swing muscle developer |
| US4470597A (en) * | 1982-04-20 | 1984-09-11 | Mcfee Richard | Exerciser with flywheel |
| US4557480A (en) * | 1983-10-13 | 1985-12-10 | In-Door Gym | Portable exercise device |
| US4647035A (en) * | 1984-07-16 | 1987-03-03 | Robert Yellen | Rowing exercise device |
| US4611805A (en) * | 1985-08-02 | 1986-09-16 | Franklin Sports Industries, Inc. | Exercise device |
| US4674741A (en) * | 1985-08-05 | 1987-06-23 | Bally Manufacturing Corporation | Rowing machine with video display |
| US4746112A (en) | 1986-10-02 | 1988-05-24 | Fayal James E | Exercise rowing machine |
| US4875674A (en) * | 1987-02-12 | 1989-10-24 | Concept Ii, Inc. | Energy absorbing means with self calibrating monitor |
| GB2219410B (en) * | 1988-05-20 | 1992-07-29 | R A T | Exercise machines |
| US4880224A (en) * | 1988-10-19 | 1989-11-14 | Werner Jonas | Rowing machine |
| US5067709A (en) * | 1989-11-29 | 1991-11-26 | Tarrenn Corporation | Unassisted lower torso strengthening and stretching device |
| US5048825A (en) * | 1990-09-14 | 1991-09-17 | Kelly Peggy L | Portable doorway and floor stand excerciser for use by wheelchair occupants. |
| US5199931A (en) * | 1991-11-27 | 1993-04-06 | Fitness Master, Inc. | Exercise machine for simulating stair climbing |
| US5226867A (en) * | 1992-06-24 | 1993-07-13 | Daniel Beal | Exercise machine utilizing torsion resistance |
| FR2713841B3 (en) * | 1993-12-15 | 1996-05-03 | Hong Chi Wu | Adjustable magnetic braking device. |
| US5480375A (en) * | 1994-06-14 | 1996-01-02 | La Fosse; Hector M. | Pain relieving adjustable leg support |
| US5580338A (en) | 1995-03-06 | 1996-12-03 | Scelta; Anthony | Portable, upper body, exercise machine |
| USD372507S (en) * | 1995-05-26 | 1996-08-06 | Chin Taan K | Sit-up exerciser |
| US5499960A (en) * | 1995-06-15 | 1996-03-19 | Chen; Ping | Multi-functional exercise device |
| US5916069A (en) * | 1997-03-12 | 1999-06-29 | Wang; Leao | Rowing exerciser with magnetic resistance |
| US6283899B1 (en) * | 1997-07-24 | 2001-09-04 | Richard D. Charnitski | Inertial resistance exercise apparatus and method |
| US6210348B1 (en) * | 1998-03-19 | 2001-04-03 | Stretch Power, Llc | Power operated stretching apparatus |
| TW375957U (en) * | 1999-04-14 | 1999-12-01 | Yu Huei Nan | Push exercising tool |
| US6174269B1 (en) * | 1999-11-15 | 2001-01-16 | Paul William Eschenbach | Push-pull tractor exercise apparatus |
| US6514182B1 (en) * | 2000-03-17 | 2003-02-04 | Vuthy Chhloeum | Doorframe mountable exercise system |
| US6328677B1 (en) * | 2000-04-05 | 2001-12-11 | Raoul East Drapeau | Simulated-kayak, upper-body aerobic exercise machine |
| US6368259B1 (en) * | 2000-12-18 | 2002-04-09 | Lung-An Liao | Damping assembly for an exerciser |
| US6494817B2 (en) * | 2001-02-20 | 2002-12-17 | Victoria Jo Whited Lake | Portable exercising device |
| US6634995B1 (en) * | 2001-06-28 | 2003-10-21 | Stretch Power Llc | Manually operated stretching apparatus |
| US7048638B2 (en) * | 2001-12-07 | 2006-05-23 | Novotny Milo R | Constant force golf swing training device, method of swing plane training and internet operation thereof |
| US20050227827A1 (en) * | 2004-03-30 | 2005-10-13 | Liester Arvin F | Frictional resistance exercise apparatus |
| US20060148622A1 (en) * | 2005-01-03 | 2006-07-06 | Ping Chen | Multi-functional exercising device |
| US7614984B1 (en) | 2005-09-14 | 2009-11-10 | Krull Mark A | Exercise methods and apparatus |
| US7534197B1 (en) * | 2007-06-07 | 2009-05-19 | Atoll Holdings Inc. | Structural mode door support of exercise equipment |
| JP5022794B2 (en) * | 2007-07-04 | 2012-09-12 | 株式会社日立ハイテクノロジーズ | Nucleic acid extraction method and nucleic acid extraction apparatus |
| US8105214B2 (en) * | 2007-10-04 | 2012-01-31 | Henner Jahns | Compact and light exercise machine providing variable resistance and variable range of motion |
| US7621856B1 (en) * | 2008-09-23 | 2009-11-24 | Keith Gary S | Reel mechanism |
-
2006
- 2006-02-28 GB GBGB0603869.9A patent/GB0603869D0/en not_active Ceased
-
2007
- 2007-02-02 JP JP2008556836A patent/JP2009528109A/en active Pending
- 2007-02-02 EP EP07712666A patent/EP1991325A2/en not_active Withdrawn
- 2007-02-02 WO PCT/GB2007/000363 patent/WO2007099283A2/en not_active Ceased
- 2007-02-02 US US12/281,122 patent/US8070657B2/en not_active Expired - Fee Related
- 2007-02-02 GB GB0802471A patent/GB2443761B/en not_active Expired - Fee Related
-
2011
- 2011-11-14 US US13/295,799 patent/US20120065034A1/en not_active Abandoned
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10065067B2 (en) | 2009-04-20 | 2018-09-04 | Joseph Turner | Exercise machine for providing resistance to ambulatory motion of the user |
| US8485945B2 (en) * | 2009-10-02 | 2013-07-16 | Duodesk Llc | Fully adjustable integrated exercise workstation |
| US20110082014A1 (en) * | 2009-10-02 | 2011-04-07 | Christoph Leonhard | Fully adjustable integrated exercise workstation |
| US20120108398A1 (en) * | 2010-10-29 | 2012-05-03 | Chiu Hsiang Lo | Treadmill |
| US10279212B2 (en) | 2013-03-14 | 2019-05-07 | Icon Health & Fitness, Inc. | Strength training apparatus with flywheel and related methods |
| US11338169B2 (en) | 2013-03-14 | 2022-05-24 | IFIT, Inc. | Strength training apparatus |
| US10953268B1 (en) | 2013-03-14 | 2021-03-23 | Icon Health & Fitness, Inc. | Strength training apparatus |
| US10709925B2 (en) | 2013-03-14 | 2020-07-14 | Icon Health & Fitness, Inc. | Strength training apparatus |
| US10188890B2 (en) | 2013-12-26 | 2019-01-29 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
| US10967214B1 (en) | 2013-12-26 | 2021-04-06 | Icon Health & Fitness, Inc. | Cable exercise machine |
| US11794052B2 (en) | 2013-12-26 | 2023-10-24 | Ifit Inc. | Cable exercise machine |
| US9403047B2 (en) | 2013-12-26 | 2016-08-02 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
| EP3623020A1 (en) | 2013-12-26 | 2020-03-18 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
| EP3974036A1 (en) | 2013-12-26 | 2022-03-30 | iFIT Inc. | Magnetic resistance mechanism in a cable machine |
| US10758767B2 (en) | 2013-12-26 | 2020-09-01 | Icon Health & Fitness, Inc. | Resistance mechanism in a cable exercise machine |
| US9757605B2 (en) | 2013-12-26 | 2017-09-12 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
| US10426989B2 (en) | 2014-06-09 | 2019-10-01 | Icon Health & Fitness, Inc. | Cable system incorporated into a treadmill |
| US12128269B2 (en) | 2015-08-25 | 2024-10-29 | wotamiq GmbH | Stationary exercise apparatus for indoor cycling |
| US20180236290A1 (en) * | 2015-08-25 | 2018-08-23 | Virtureal Development Gmbh | Stationary exercise apparatus for indoor cycling |
| US11633639B2 (en) | 2015-08-25 | 2023-04-25 | Virtureal Development Gmbh | Stationary exercise apparatus for indoor cycling |
| US10449409B2 (en) | 2016-11-04 | 2019-10-22 | Nautilus, Inc. | Stowable rowing machine |
| US10668320B2 (en) | 2016-12-05 | 2020-06-02 | Icon Health & Fitness, Inc. | Tread belt locking mechanism |
| US10569121B2 (en) | 2016-12-05 | 2020-02-25 | Icon Health & Fitness, Inc. | Pull cable resistance mechanism in a treadmill |
| US11013952B2 (en) | 2018-07-20 | 2021-05-25 | Nautilus, Inc. | Rowing machine |
| US11724152B2 (en) | 2018-07-20 | 2023-08-15 | Nautilus, Inc. | Stationary exercise machine with four-bar linkage transmission |
| US20210353994A1 (en) * | 2018-10-26 | 2021-11-18 | Micaton Ergonomics, S.L. | Compact inertial muscle training device |
| EP3871741A4 (en) * | 2018-10-26 | 2022-08-03 | Micaton Ergonomics, S.L. | COMPACT INERTIA STRENGTH TRAINING DEVICE |
| US11452903B2 (en) | 2019-02-11 | 2022-09-27 | Ifit Inc. | Exercise machine |
| US11298577B2 (en) | 2019-02-11 | 2022-04-12 | Ifit Inc. | Cable and power rack exercise machine |
| US12311214B2 (en) | 2021-10-21 | 2025-05-27 | Speede Fitness, Llc | Resistance training machine and methods of use |
| IT202200007718A1 (en) * | 2022-04-19 | 2023-10-19 | Desmotec S R L | SPORTS EQUIPMENT FOR PERFORMING REHABILITATION EXERCISES AND SPORTS TRAINING OR WARM-UP |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1991325A2 (en) | 2008-11-19 |
| US8070657B2 (en) | 2011-12-06 |
| JP2009528109A (en) | 2009-08-06 |
| GB0603869D0 (en) | 2006-04-05 |
| GB2443761B (en) | 2011-10-19 |
| WO2007099283A2 (en) | 2007-09-07 |
| GB2443761A (en) | 2008-05-14 |
| WO2007099283A3 (en) | 2008-02-07 |
| GB0802471D0 (en) | 2008-03-19 |
| US20090036276A1 (en) | 2009-02-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8070657B2 (en) | Exercise machine | |
| US9731157B2 (en) | Hand-held exercise apparatus and resistance mechanism for exercise apparatus | |
| US9700753B1 (en) | Personal force resistance cable exercise device, force resistance assembly, and method of exercising | |
| US7524272B2 (en) | Exercise machine with semi-dependent retraction system | |
| US6857993B2 (en) | Magnetic tension control weight training machine | |
| AU2020345648A1 (en) | Fitness training apparatus and system | |
| US20180333602A1 (en) | Recumbent step exerciser with self-centering mechanism | |
| US10220261B1 (en) | Mountable resistance exercise device | |
| US20040102292A1 (en) | Dual-function treading exerciser | |
| US20190168053A1 (en) | Mountable resistance exercise device | |
| US20250161735A1 (en) | Exercising device for developing, strengthening and/or rehabilitating the muscles or joints of the body | |
| US20040142799A1 (en) | Muscular training apparatus | |
| US20220161088A1 (en) | Exercise device having a power rewind | |
| US11806575B2 (en) | Portable resistance machine | |
| CN112439158A (en) | Control method of strength type fitness equipment | |
| CN212854442U (en) | Strength training machine | |
| CN220175962U (en) | Body-building device and supporting mechanism thereof | |
| CN219290520U (en) | Chest expander | |
| CN219570676U (en) | Clutch type change-over switch and body-building device with same | |
| CN220588830U (en) | Body-building device | |
| KR102578236B1 (en) | Strength training device | |
| US20030224909A1 (en) | Dual-function treading exerciser | |
| CN117159975A (en) | Chest expander with electromagnetic damper and elastic rope rebound mechanism | |
| US20250032843A1 (en) | Modular cable-based resistance workout device | |
| CN209967527U (en) | A kind of sports fitness roulette equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |