US20110067270A1 - Hockey Foot Shield - Google Patents
Hockey Foot Shield Download PDFInfo
- Publication number
- US20110067270A1 US20110067270A1 US12/425,371 US42537109A US2011067270A1 US 20110067270 A1 US20110067270 A1 US 20110067270A1 US 42537109 A US42537109 A US 42537109A US 2011067270 A1 US2011067270 A1 US 2011067270A1
- Authority
- US
- United States
- Prior art keywords
- hockey
- foot
- layer
- foot shield
- shield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000035939 shock Effects 0.000 claims abstract description 15
- 229920001169 thermoplastic Polymers 0.000 claims description 25
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 23
- 239000008158 vegetable oil Substances 0.000 claims description 23
- -1 alkyl tin compound Chemical class 0.000 claims description 19
- 239000012190 activator Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- 239000012948 isocyanate Substances 0.000 claims description 10
- 150000002513 isocyanates Chemical class 0.000 claims description 10
- 239000004014 plasticizer Substances 0.000 claims description 9
- 239000003549 soybean oil Substances 0.000 claims description 8
- 235000012424 soybean oil Nutrition 0.000 claims description 8
- 239000000944 linseed oil Substances 0.000 claims description 6
- 235000021388 linseed oil Nutrition 0.000 claims description 5
- 239000004814 polyurethane Substances 0.000 claims description 5
- 229920002635 polyurethane Polymers 0.000 claims description 5
- 235000013311 vegetables Nutrition 0.000 claims description 5
- 239000005062 Polybutadiene Substances 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 229920002857 polybutadiene Polymers 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- 125000000623 heterocyclic group Chemical group 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 description 34
- 210000002683 foot Anatomy 0.000 description 31
- 239000000499 gel Substances 0.000 description 31
- 239000000203 mixture Substances 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000004416 thermosoftening plastic Substances 0.000 description 7
- 230000006378 damage Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000004604 Blowing Agent Substances 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 210000003423 ankle Anatomy 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 230000001012 protector Effects 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical class OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001447 alkali salts Chemical class 0.000 description 2
- 150000001336 alkenes Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000004872 foam stabilizing agent Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- KAKVFSYQVNHFBS-UHFFFAOYSA-N (5-hydroxycyclopenten-1-yl)-phenylmethanone Chemical compound OC1CCC=C1C(=O)C1=CC=CC=C1 KAKVFSYQVNHFBS-UHFFFAOYSA-N 0.000 description 1
- ZBBLRPRYYSJUCZ-GRHBHMESSA-L (z)-but-2-enedioate;dibutyltin(2+) Chemical compound [O-]C(=O)\C=C/C([O-])=O.CCCC[Sn+2]CCCC ZBBLRPRYYSJUCZ-GRHBHMESSA-L 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- ZMESHQOXZMOOQQ-UHFFFAOYSA-N 1-(naphthalen-1-ylmethyl)naphthalene Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 ZMESHQOXZMOOQQ-UHFFFAOYSA-N 0.000 description 1
- JIABEENURMZTTI-UHFFFAOYSA-N 1-isocyanato-2-[(2-isocyanatophenyl)methyl]benzene Chemical compound O=C=NC1=CC=CC=C1CC1=CC=CC=C1N=C=O JIABEENURMZTTI-UHFFFAOYSA-N 0.000 description 1
- AXFVIWBTKYFOCY-UHFFFAOYSA-N 1-n,1-n,3-n,3-n-tetramethylbutane-1,3-diamine Chemical compound CN(C)C(C)CCN(C)C AXFVIWBTKYFOCY-UHFFFAOYSA-N 0.000 description 1
- CVBUKMMMRLOKQR-UHFFFAOYSA-N 1-phenylbutane-1,3-dione Chemical compound CC(=O)CC(=O)C1=CC=CC=C1 CVBUKMMMRLOKQR-UHFFFAOYSA-N 0.000 description 1
- XUZIWKKCMYHORT-UHFFFAOYSA-N 2,4,6-tris(diaminomethyl)phenol Chemical compound NC(N)C1=CC(C(N)N)=C(O)C(C(N)N)=C1 XUZIWKKCMYHORT-UHFFFAOYSA-N 0.000 description 1
- GTEXIOINCJRBIO-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-n,n-dimethylethanamine Chemical compound CN(C)CCOCCN(C)C GTEXIOINCJRBIO-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- QISKERKMOGSCJB-UHFFFAOYSA-N 4-iminopentan-2-one Chemical compound CC(=N)CC(C)=O QISKERKMOGSCJB-UHFFFAOYSA-N 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000005997 Calcium carbide Substances 0.000 description 1
- 244000068645 Carya illinoensis Species 0.000 description 1
- 235000009025 Carya illinoensis Nutrition 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 208000017899 Foot injury Diseases 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 229920002121 Hydroxyl-terminated polybutadiene Polymers 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- GSCCALZHGUWNJW-UHFFFAOYSA-N N-Cyclohexyl-N-methylcyclohexanamine Chemical compound C1CCCCC1N(C)C1CCCCC1 GSCCALZHGUWNJW-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 235000004347 Perilla Nutrition 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- TUEIURIZJQRMQE-UHFFFAOYSA-N [2-(tert-butylsulfamoyl)phenyl]boronic acid Chemical compound CC(C)(C)NS(=O)(=O)C1=CC=CC=C1B(O)O TUEIURIZJQRMQE-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- CQQXCSFSYHAZOO-UHFFFAOYSA-L [acetyloxy(dioctyl)stannyl] acetate Chemical compound CCCCCCCC[Sn](OC(C)=O)(OC(C)=O)CCCCCCCC CQQXCSFSYHAZOO-UHFFFAOYSA-L 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000004808 allyl alcohols Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- DAMJCWMGELCIMI-UHFFFAOYSA-N benzyl n-(2-oxopyrrolidin-3-yl)carbamate Chemical compound C=1C=CC=CC=1COC(=O)NC1CCNC1=O DAMJCWMGELCIMI-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- BSJIICUVGMPYSD-UHFFFAOYSA-L calcium;hexanoate Chemical compound [Ca+2].CCCCCC([O-])=O.CCCCCC([O-])=O BSJIICUVGMPYSD-UHFFFAOYSA-L 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- CBFGPUOFLQMQAZ-UHFFFAOYSA-N dibutyl-di(propan-2-yloxy)stannane Chemical compound CC(C)[O-].CC(C)[O-].CCCC[Sn+2]CCCC CBFGPUOFLQMQAZ-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- QJVWZJMDKHIURK-UHFFFAOYSA-L dibutyltin(2+);4-(methylamino)benzoate Chemical compound CCCC[Sn+2]CCCC.CNC1=CC=C(C([O-])=O)C=C1.CNC1=CC=C(C([O-])=O)C=C1 QJVWZJMDKHIURK-UHFFFAOYSA-L 0.000 description 1
- IUUKFCJLQLNQHN-UHFFFAOYSA-L dibutyltin(2+);6-(methylamino)hexanoate Chemical compound CCCC[Sn+2]CCCC.CNCCCCCC([O-])=O.CNCCCCCC([O-])=O IUUKFCJLQLNQHN-UHFFFAOYSA-L 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- LQRUPWUPINJLMU-UHFFFAOYSA-N dioctyl(oxo)tin Chemical compound CCCCCCCC[Sn](=O)CCCCCCCC LQRUPWUPINJLMU-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- XXWXVINLCWROJQ-UHFFFAOYSA-N ethanol octadecanoic acid Chemical compound CCO.CCO.CCCCCCCCCCCCCCCCCC(O)=O XXWXVINLCWROJQ-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 230000001408 fungistatic effect Effects 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- VQPKAMAVKYTPLB-UHFFFAOYSA-N lead;octanoic acid Chemical compound [Pb].CCCCCCCC(O)=O VQPKAMAVKYTPLB-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002731 mercury compounds Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- HOKMYEORIPLLGI-KVVVOXFISA-N n-ethylethanamine;(z)-octadec-9-enoic acid Chemical compound CCNCC.CCCCCCCC\C=C/CCCCCCCC(O)=O HOKMYEORIPLLGI-KVVVOXFISA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 150000004707 phenolate Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- XEBWQGVWTUSTLN-UHFFFAOYSA-M phenylmercury acetate Chemical compound CC(=O)O[Hg]C1=CC=CC=C1 XEBWQGVWTUSTLN-UHFFFAOYSA-M 0.000 description 1
- 150000003003 phosphines Chemical group 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- BPELEZSCHIEMAE-UHFFFAOYSA-N salicylaldehyde imine Chemical compound OC1=CC=CC=C1C=N BPELEZSCHIEMAE-UHFFFAOYSA-N 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- LHHPEAQVCCPLBC-UHFFFAOYSA-N tributyltin;hydrate Chemical compound O.CCCC[Sn](CCCC)CCCC LHHPEAQVCCPLBC-UHFFFAOYSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- NEOBYMRDDZMBSE-UHFFFAOYSA-M trioctylstannanylium;hydroxide Chemical compound [OH-].CCCCCCCC[Sn+](CCCCCCCC)CCCCCCCC NEOBYMRDDZMBSE-UHFFFAOYSA-M 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B5/00—Footwear for sporting purposes
- A43B5/16—Skating boots
- A43B5/1666—Skating boots characterised by the upper
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B23/00—Uppers; Boot legs; Stiffeners; Other single parts of footwear
- A43B23/02—Uppers; Boot legs
- A43B23/0245—Uppers; Boot legs characterised by the constructive form
- A43B23/028—Resilient uppers, e.g. shock absorbing
- A43B23/0285—Resilient uppers, e.g. shock absorbing filled with a non-compressible fluid, e.g. gel or water
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43C—FASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
- A43C13/00—Wear-resisting attachments
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43C—FASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
- A43C9/00—Laces; Laces in general for garments made of textiles, leather, or plastics
- A43C9/02—Laces; Laces in general for garments made of textiles, leather, or plastics provided with tags, buttons, or decorative tufts
Definitions
- the present invention relates to safety gear for an athlete and in greater detail to safety gear for hockey player to be worn on a hockey skate.
- Ice hockey has been a competitive sport since the mid 1800's. Ice hockey is a game in which a frozen piece of hard rubber (i.e., a puck) is slapped about by players with a hockey stick in an attempt to put the puck in the opposing team's goal. By its very nature, ice hockey is a very fast paced, unpredictable and aggressive sport.
- a frozen piece of hard rubber i.e., a puck
- An ice hockey puck is made from rubber that is frozen prior to play.
- the puck is passed and shot by players at speeds in excess of 100 miles per hour.
- the puck is a very hard and dangerous instrument. While it has been known for some time that a hard hit puck can break bones in a player's foot, even though the player's skate is padded, very little has been proposed to prevent such an injury from occurring.
- Hockey sticks made of hardwood and aluminum, are swung by players in an attempt to hit the puck. They can hit the feet of a player resulting in impact injuries to the foot including, but not limited to, soft tissue bruising, bruising of the bone and fractures.
- the present invention comprises a guard or a hockey foot shield for protecting the foot of a hockey player.
- the guard is placed in a position by the laces of the skate. In one embodiment the guard is placed under the laces.
- FIGS. 1A and 1B show the guard in combination with the laces and skate
- FIGS. 2A and 2B show the a plan view of the guard or a hockey foot shield and the various layers of the guard or a hockey foot shield.
- a hockey foot shield 100 for covering at least in part the laced foot portion of a player wearing a hockey skate 110 , the hockey skate 110 having a front portion including a tongue and laced portion 105 .
- the hockey foot shield 100 covering includes a first and second layer ( 221 and 224 ) forming an envelope and the envelope including a shock absorbing polymeric gel 223 , wherein the hockey foot shield 100 is adapted to fit over the tongue portion of the skate 110 .
- FIG. 1 shows the guard 100 in combination with the laces 105 and skate 110 .
- FIG. 2 shows the guard 100 and the various layers 221 , 222 , 223 , and 224 of the guard.
- the guard 100 may be formed from a solid material or be layered as shown in FIG. 2 .
- the guard may be formed having a nylon front and back ( 221 and 224 ) sandwiching a substantially rigid material 222 such as a plastic or composite.
- a substantially impact resistant material 223 may also be sandwiched between the nylon layers ( 221 and 224 ) as shown in FIG. 2 as the gel layer, such as IMPACT GEL marketed by Impact Gel Corp. of Melrose, Wis.
- layer 223 is positioned beneath the layer 222 .
- the upper layer 221 includes a plurality of protrusions, which extend outwardly from a main body of the upper layer 221 .
- the lower layer 224 includes a plurality of protrusions, which extend outwardly from a main body of the lower layer 224 .
- the protrusions can include apertures therein.
- the apertures in the upper layer 221 and the lower layer 224 are aligned.
- the protrusions extend beneath the upper edges of the upper of the hockey skate 110 , see FIGS. 1B and 2A . Apertures can align with eyes in the hockey skate.
- Laces 105 extend through eyes in the hockey skate 110 and apertures in the protrusions.
- the gel may be that described in U.S. Pat. No. 7,041,719, the contents of which are hereby incorporated in their entirety.
- Embodiments of the gel layer can comprise both an energy absorbing compound and a method for making the same.
- the energy absorbing compound typically comprises an epoxidized vegetable oil combined with a prepolymer and a thermoplastic polymer.
- a catalyst or an accelerant may be added to the energy absorbing compound to aid in the formation of the compound.
- the activator or accelerant is a metal activator such as an alkyl tin compound.
- the compound may be described as a gel or having gel-like qualities.
- gel is not intended to be restrictive as to describing only a colloidal system but is used to describe any semi-solid substance that is both resilient and elastic.
- the elastomeric compound includes an epoxidized vegetable oil which can function as a plasticizer.
- epoxidized vegetable oils include epoxidized soybean oil, epoxidized linseed oil and epoxidized tall oil. Additional examples of epoxidized vegetable oils include epoxidized corn oil, epoxidized cottonseed oil, epoxidized perilla oil and epoxidized safflower oil.
- Epoxidized vegetable oils are typically obtained by the epoxidation of triglycerides of unsaturated fatty acid and are made by epoxidizing the reactive olefin groups of the naturally occurring triglyceride oils.
- the olefin groups are epoxidized using a peracid.
- a peracid is an acceptable epoxidized vegetable oil, Paraplex G-62, available from C. P. Hall Company of Chicago, Ill.
- Paraplex G-62 can function as both a plasticizer and a processing aid and is a high molecular weight epoxidized soybean oil on a carrier having an auxiliary stabilizer for a vinyl group.
- the gel composition comprises on weight percent basis an amount greater than 50% of the epoxidized vegetable (all percentages herein are by weight based on the total weight of the blended compound or gel). Additionally, the epoxidized vegetable oil may be included in an amount between about 55% to about 70%. In a further embodiment, the epoxidized vegetable oil may be included in an amount between about 55% and about 65% or include in an amount of about 60%.
- the elastomeric composition includes a prepolymer.
- Various prepolymers may be utilized in the present composition so long as they do not substantially hinder the desired viscoelastic, shock-attenuating attributes of the elastomeric compound.
- the prepolymer is an isocyanate.
- the isocyanates that are suitable for the reactions of the present invention include aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates.
- ethylene diisocyanate 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate and mixtures of these isomers; 1-isocyanato-3,3,5-trimethyl-5-isocyanato methyl cyclohexane; 2,4- and 2,6-hexahydrotolylene diisocyanate and mixtures of these isomers, perhydro-2,4′- and/or 4,4′-diphenylmethane diisocyanate, 1,3- and 1,4-phenylene diisocyanate, 2,4- and 2,6-tolylene diisocyanate and mixtures of these isomers, diphenylmethane-2,4′- and/or 4,4′-di
- Example isocyanates include prepolymers based on methylene diphenylisocyanate reacted with polyoxyethylene/polyoxypropylene diols of 1000 and 2000 MW to be acceptable. These materials are known by such tradenames as Isonate 2181® from Dow, Mondur MP210® from Bayer, Rubinate 1209® and Rubinate 1790® from Huntsmanlsonate.
- the isocyanate can comprise on weight percent basis in the gel composition an amount between about 5% and about 20%. Additionally, the isocyanate can be included in an amount between about 5% to about 15%. In a further embodiment the isocyanate can be included in an amount between about 7% and about 11% or in an amount of about 9%.
- thermoplastic component of the present elastomeric compound can comprise most any thermoplastic compound having elastomeric properties.
- thermoplastic compounds comprising polyurethane are excluded since such compounds tend to generally have the effect of limiting the elastomeric properties to the gel composition.
- an acceptable thermoplastic component includes polydienes.
- An example polydiene includes polybutadiene.
- the polybutadiene is a low molecular weight hydroxyl terminated polybutadiene resin such as Poly bd® available from Sartomer of Exton, Pa.
- Such resins or thermoplastics have primary allylic alcohol groups that exhibit high reactivity in condensation polymerization reactions.
- the thermoplastic can comprise on weight percent basis in the gel composition an amount between about 20% and about 40%. Additionally, the thermoplastic can be included in an amount between about 25% to about 35%. In a further embodiment the isocyanate can be included in an amount between about 26% and about 33% or in an amount of about 29%.
- Catalysts which are useful in producing the elastomeric composition in accordance with this invention include: (a) tertiary amines such as bis(dimethylaminoethyl)ether, trimethylamine, triethylamine, N-methylmorpholine, N-ethylmorpholine, N,N-dimethylbenzylamine, N,N-dimethylethanolamine, N,N,N′,N′-tetramethyl-1,3-butanediamine, triethanolamine, 1,4-diazabicyclo[2.2.-2]octane, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, 1,8-diazabicyclo[5,4,0]-undecene-7 and its salts such as phenol salt, hexanoate, and oleate; 2,4,6-tris(diaminomethyl)phenol, and the like; (b) tertiary phosphin
- the activator or catalyst is an alkyl tin compound such as dialkyltin salts of carboxylic acids, e.g., dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate, dilauryltin diacetate, dioctyltin diacetate, dibutyl-tin-bis(4-methylaminobenzoate), dibutyltin-bis(6-methylaminocaproate), and the like.
- Dialkyltin mercaptides in particular diakyltin dimercaptide carboxylic acid esters, can also be utilized.
- trialkyltin hydroxide dialkyltin oxide, dialkyltin dialkoxide or dialkyltin dichloride.
- these compounds include trimethyltin hydroxide, tributyltin hydroxide, trioctyltin hydroxide, dibutyltin oxide, dioctyltin oxide, dilauryltin oxide, dibutyltin-bis(isopropoxide), dibutyltin-bis-(2-dimethylaminopentylate), dibutyltin dichloride, dioctylin dichloride, and the like.
- an alkyl tin compound is a dioctyltin carboxylate, Cotin 430, available from Cambrex Co. of Itasca, Ill.
- Cotin 430 is a liquid organotin catalyst that is less sensitive to moisture and initiates relatively slower than other organotin catalysts.
- the catalyst is employed in small amounts, for example, from about 0.001 percent to about 5 percent or more, based on weight of the reaction mixture gel. In a further embodiment the catalyst may be added in amount between about 0.1% to about 2%. An additional embodiment includes the catalyst added in an amount or less than 1% or in an amount of about 0.3%.
- additives such as fillers, pigments, surfactants, plasticizers, organic blowing agents, as stabilizers, and the like, in the manufacture of the energy-attenuating viscoelastic elastomers, gels and foams of this invention.
- foams can be prepared by the use of conventional organic blowing agents. Typical representative examples are trichlorofluoromethane, methylene chloride, low boiling hydrocarbons, ethers and ketones, and the like. The use of water in combination with one or more organic blowing agent is also contemplated.
- emulsifiers include, for example, the sodium salts of castor oil sulfonates and salts of fatty acids with amines such as oleic acid diethylamine and stearic acid diethanol amine.
- Alkali or ammonium salts of sulfonic acids such as dodecyl benzene sulfonic acid, or dinaphthylmethane disulfonic acids can be used.
- the alkali or ammonium salts of fatty acids, such as ricinoleic acid, or of polymeric fatty acids can also be used as surface-active additives.
- Suitable foam stabilizers include polyether siloxanes, particularly water-soluble block copolymers of siloxanes and polyethers. These compounds generally are prepared by joining a copolymer of ethylene oxide and propylene oxide or a homopolymer of ethylene oxide to a polydimethylsiloxane radical.
- Suitable stabilizers against the effects of aging and weathering and substances having fungistatic and bacteriostatic effect can also be used.
- Typical additives of this type are phenolic and aromatic amine antioxidants, UV-stabilizers, hindered carbodiimides known to retard hydrolysis and oxidation, arsenic fungicidal compounds, tin and mercury bacteriocides, and the like.
- Fillers which can be used for the purpose of extension or reinforcement of the elastomers and foams of the present invention include, among others, amorphous silicone hydroxides, carbon black, walnut and pecan shells, cork, cellulose, starch, calcium carbide, zinc oxide, titanium dioxide, clays, calcium wallastonite, and the like.
- the method of forming the elastomeric compound includes combining the previously described components and letting such a mixture set to form the gel compound. The components once combined may then be stirred or mixed together such they can combine to form the gel.
- the method includes a two part mix which can be combined to form the gel compound.
- the first part of the mix includes the plasticizer and the prepolymer.
- the second part also includes the plasticizer along with the thermoplastic polymer and the catalyst. The two parts are then combined and mixed to form a gel mix that is allowed to set to form the semi-solid gel composition.
- the energy absorbing compound (gel) possesses good energy-attenuating properties and is capable of absorbing repeat shocks without structural damage.
- the gel and structures described herein can be used in many kinds of safety padding, such as knee protectors for contact sports such as wrestling, protective knee, shoulder and arm pads for football and soccer players, ice hockey and basketball players, and the like, and in the field of footwear, insoles, outsoles, and other footwear components exhibiting energy-moderating or attenuating properties.
- the present invention generally relates to an energy absorbing material such as a polymeric compound which exhibits low rebound velocity and high hysteresis, among other desirable characteristics which are conducive to the function of a good energy-attenuating material.
- the polymeric compound is capable of repeatedly absorbing shock without structural damage and without appreciable sag due to prolonged exposure to continuous dynamic loading. Additionally, the polymeric compound provides vibration dampening, sound attenuation, and various energy absorbing functions.
- the energy absorbing compound (gel layer 223 ) comprises an epoxidized vegetable oil, a thermoplastic polymer and a prepolymer.
- the epoxidized vegetable oil generally encompasses either an epoxidized soybean or linseed oil or combinations of the two.
- the epoxidized vegetable oil typically comprises more than 50% by weight of the energy absorbing compound.
- the energy absorbing compound may also include an activator such as a metal catalyst.
- the energy absorbing compound (gel layer 223 ) can comprise the epoxidized vegetable oil and a thermoplastic polymer which is substantially free of a polyurethane.
- the energy absorbing compound also includes a prepolymer and the metal activator.
- the metal activator is an alkyl tin compound and the prepolymer comprises an isocyanate.
- the energy absorbing compound (gel layer 223 ) comprises on a percent weight basis of compound at least greater than 50% of a vegetable based plasticizer.
- the vegetable based plasticizer includes epoxidized vegetable oils, such as linseed and soybean oils. Additionally, the energy absorbing compound includes between about 20% to about 40% of a thermoplastic polymer and between about 5% to about 20% of a prepolymer.
- the shock absorbing compound may include between about 0.1 to about 5% of an activator.
- An embodiment includes a method of forming the energy absorbing compound for the shield 100 .
- the method of forming the energy absorbing compound for the shield 100 includes combining and mixing an epoxidized vegetable oil and a thermoplastic polymer which is substantially free of a polyurethane and a prepolymer to form the energy absorbing compound, which is allowed to cure or set into a gel like state.
- the method for forming the energy absorbing compound for the shield 100 includes forming the compound using a two part polymer.
- the first part of the polymer mix includes an epoxidized vegetable oil and a prepolymer and the second component comprises a thermoplastic polymer, an epoxidized vegetable oil and an activator.
- the activator typically includes an alkyl tin compound and the vegetable oil is selected from soybean oil, linseed oil, and a combinations thereof.
- the energy absorbing compound for the shield 100 is formed into the layer 223 and inserted between layers 221 , 224 .
- the energy absorbing layer 223 is inserted into an envelope formed by the layers 221 , 224 .
- layer 223 is positioned beneath the layer 222 .
- a hockey foot shield 100 for covering at least in part the laced foot portion of a player wearing a hockey skate 110 .
- the hockey skate 100 having a front portion including a tongue and laced portion on the upper.
- the hockey foot shield 100 covering comprises a first and second layer forming an envelope and the envelope including a shock absorbing polymeric gel, wherein the hockey foot shield is adapted to fit over the tongue portion of the skate.
- the hockey foot shield 100 can include layers that are formed from a resilient polymeric material.
- the hockey foot shield 100 can include opposed layers that are sealed to form an envelope containing the shock absorbing polymeric gel.
- the hockey foot shield 100 can include layers that are formed from a woven material.
- the hockey foot shield 100 can include layers of the polymeric material that comprises at least greater than 50% by weight of an epoxidized vegetable oil, a thermoplastic polymer; and a prepolymer.
- the hockey foot shield 100 can further include an activator.
- the activator can be an alkyl tin compound.
- the epoxidized vegetable oil can be selected from the group consisting of soybean oil, linseed oil, and combinations thereof.
- the prepolymer can comprise an isocyanate selected from the group of aliphatic, cycloaliphatic, araliphatic, aromatic, heterocyclic polyisocyaniates and combinations thereof.
- the thermoplastic polymer can be substantially free of a polyurethane.
- the thermoplastic polymer can be a polydiene.
- the thermoplastic polymer is a polybutadiene.
- the polymeric gel can comprise, on a percent weight basis of the gel, at least greater than about 50% of a vegetable based plasticizer, between about 20% and about 40% of a thermoplastic polymer, and between about 5% and about 20% of a prepolymer.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
- This application relies upon U.S. Provisional Application Ser. No. 61/045,761 filed Apr. 17, 2008, the content of which is hereby incorporated in its entirety.
- The present invention relates to safety gear for an athlete and in greater detail to safety gear for hockey player to be worn on a hockey skate.
- Ice hockey has been a competitive sport since the mid 1800's. Ice hockey is a game in which a frozen piece of hard rubber (i.e., a puck) is slapped about by players with a hockey stick in an attempt to put the puck in the opposing team's goal. By its very nature, ice hockey is a very fast paced, unpredictable and aggressive sport.
- Before the advent of indoor ice arenas, it was only possible to skate outdoors where it was cold enough to make the necessary ice. Because it was cold enough to make ice, it was quite cold for the people ice skating. To compensate for the cold felt by the people skating, many devices were invented to keep a person's foot warm and protect it from the harsh cold weather. Many examples of such skate warmers exist. However, these prior art devices are designed solely to keep a skater's foot warm and not to protect it from contact by a potentially harmful object.
- The prior art devices provide little protection from a puck being shot into the side or front of the player's foot. These references completely fail to address the problems associated with protecting the foot from an impact type contact resulting in a bruised or broken bone.
- An ice hockey puck is made from rubber that is frozen prior to play. The puck is passed and shot by players at speeds in excess of 100 miles per hour. The puck is a very hard and dangerous instrument. While it has been known for some time that a hard hit puck can break bones in a player's foot, even though the player's skate is padded, very little has been proposed to prevent such an injury from occurring. Hockey sticks, made of hardwood and aluminum, are swung by players in an attempt to hit the puck. They can hit the feet of a player resulting in impact injuries to the foot including, but not limited to, soft tissue bruising, bruising of the bone and fractures.
- There have been some attempts in the prior art to help prevent injuries to an athlete's feet, because foot injuries are not entirely unique to ice hockey. One type of prior art device relates to baseball. Because of the propensity for a baseball to be fouled off toward the batter's feet, ball players have been known to wear protectors to prevent injury to their feet and ankles. For example, U.S. Pat. No. 5,566,476, to Bertrand et al., discloses a releasably attached, soft padded foot and ankle protector designed to cover the top of the player's foot and inside ankle. Other examples include U.S. Pat. No. 4,333,248, to Samuels; U.S. Pat. No. 4,967,493, to Mues and U.S. Pat. No. 4,991,318, to Cornell.
- While known to provide at least some protection to the player's feet, the prior art devices have proven to be insufficient and lacking in several aspects, in that they do not address the unique needs of hockey players.
- Thus, there continues to be a significant need for a device that will adequately protect a hockey player's feet during play.
- The present invention comprises a guard or a hockey foot shield for protecting the foot of a hockey player. The guard is placed in a position by the laces of the skate. In one embodiment the guard is placed under the laces.
- In the drawings:
-
FIGS. 1A and 1B show the guard in combination with the laces and skate; and -
FIGS. 2A and 2B show the a plan view of the guard or a hockey foot shield and the various layers of the guard or a hockey foot shield. - Disclosed is a
hockey foot shield 100 for covering at least in part the laced foot portion of a player wearing ahockey skate 110, thehockey skate 110 having a front portion including a tongue and lacedportion 105. Thehockey foot shield 100 covering includes a first and second layer (221 and 224) forming an envelope and the envelope including a shock absorbingpolymeric gel 223, wherein thehockey foot shield 100 is adapted to fit over the tongue portion of theskate 110. -
FIG. 1 shows theguard 100 in combination with thelaces 105 andskate 110.FIG. 2 shows theguard 100 and the 221, 222, 223, and 224 of the guard. Of course thevarious layers guard 100 may be formed from a solid material or be layered as shown inFIG. 2 . For example the guard may be formed having a nylon front and back (221 and 224) sandwiching a substantiallyrigid material 222 such as a plastic or composite. Furthermore, a substantially impactresistant material 223 may also be sandwiched between the nylon layers (221 and 224) as shown inFIG. 2 as the gel layer, such as IMPACT GEL marketed by Impact Gel Corp. of Melrose, Wis. In an embodiment,layer 223 is positioned beneath thelayer 222. In an embodiment, theupper layer 221 includes a plurality of protrusions, which extend outwardly from a main body of theupper layer 221. In an embodiment, thelower layer 224 includes a plurality of protrusions, which extend outwardly from a main body of thelower layer 224. The protrusions can include apertures therein. The apertures in theupper layer 221 and thelower layer 224 are aligned. The protrusions extend beneath the upper edges of the upper of thehockey skate 110, seeFIGS. 1B and 2A . Apertures can align with eyes in the hockey skate.Laces 105 extend through eyes in thehockey skate 110 and apertures in the protrusions. - The gel may be that described in U.S. Pat. No. 7,041,719, the contents of which are hereby incorporated in their entirety.
- Embodiments of the gel layer can comprise both an energy absorbing compound and a method for making the same. The energy absorbing compound typically comprises an epoxidized vegetable oil combined with a prepolymer and a thermoplastic polymer. Additionally, a catalyst or an accelerant may be added to the energy absorbing compound to aid in the formation of the compound. Typically the activator or accelerant is a metal activator such as an alkyl tin compound.
- The compound may be described as a gel or having gel-like qualities. The use of the term “gel” is not intended to be restrictive as to describing only a colloidal system but is used to describe any semi-solid substance that is both resilient and elastic.
- The elastomeric compound includes an epoxidized vegetable oil which can function as a plasticizer. By way of example, but not a limited example, epoxidized vegetable oils include epoxidized soybean oil, epoxidized linseed oil and epoxidized tall oil. Additional examples of epoxidized vegetable oils include epoxidized corn oil, epoxidized cottonseed oil, epoxidized perilla oil and epoxidized safflower oil. Epoxidized vegetable oils are typically obtained by the epoxidation of triglycerides of unsaturated fatty acid and are made by epoxidizing the reactive olefin groups of the naturally occurring triglyceride oils. Typically, the olefin groups are epoxidized using a peracid. One example of an acceptable epoxidized vegetable oil is an epoxidized soybean oil, Paraplex G-62, available from C. P. Hall Company of Chicago, Ill. Paraplex G-62 can function as both a plasticizer and a processing aid and is a high molecular weight epoxidized soybean oil on a carrier having an auxiliary stabilizer for a vinyl group.
- In one embodiment, the gel composition comprises on weight percent basis an amount greater than 50% of the epoxidized vegetable (all percentages herein are by weight based on the total weight of the blended compound or gel). Additionally, the epoxidized vegetable oil may be included in an amount between about 55% to about 70%. In a further embodiment, the epoxidized vegetable oil may be included in an amount between about 55% and about 65% or include in an amount of about 60%.
- The elastomeric composition includes a prepolymer. Various prepolymers may be utilized in the present composition so long as they do not substantially hinder the desired viscoelastic, shock-attenuating attributes of the elastomeric compound. Typically, the prepolymer is an isocyanate. The isocyanates that are suitable for the reactions of the present invention include aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates. While not intended to be limiting, specific examples include ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate and mixtures of these isomers; 1-isocyanato-3,3,5-trimethyl-5-isocyanato methyl cyclohexane; 2,4- and 2,6-hexahydrotolylene diisocyanate and mixtures of these isomers, perhydro-2,4′- and/or 4,4′-diphenylmethane diisocyanate, 1,3- and 1,4-phenylene diisocyanate, 2,4- and 2,6-tolylene diisocyanate and mixtures of these isomers, diphenylmethane-2,4′- and/or 4,4′-diisocyanate, naphthyl-ene-1,5-diisocyanate, triphenylmethane-4,4′,4″-triiso-cyanate, polyphenylpolymethylene polyisocyanates of the type obtained by condensing aniline with formaldehyde, followed by phosgenation.
- Example isocyanates include prepolymers based on methylene diphenylisocyanate reacted with polyoxyethylene/polyoxypropylene diols of 1000 and 2000 MW to be acceptable. These materials are known by such tradenames as Isonate 2181® from Dow, Mondur MP210® from Bayer, Rubinate 1209® and Rubinate 1790® from Huntsmanlsonate.
- In an embodiment, the isocyanate can comprise on weight percent basis in the gel composition an amount between about 5% and about 20%. Additionally, the isocyanate can be included in an amount between about 5% to about 15%. In a further embodiment the isocyanate can be included in an amount between about 7% and about 11% or in an amount of about 9%.
- The thermoplastic component of the present elastomeric compound can comprise most any thermoplastic compound having elastomeric properties. In one embodiment of the gel composition, thermoplastic compounds comprising polyurethane are excluded since such compounds tend to generally have the effect of limiting the elastomeric properties to the gel composition.
- In an embodiment, an acceptable thermoplastic component includes polydienes. An example polydiene includes polybutadiene. Typically, the polybutadiene is a low molecular weight hydroxyl terminated polybutadiene resin such as Poly bd® available from Sartomer of Exton, Pa. Such resins or thermoplastics have primary allylic alcohol groups that exhibit high reactivity in condensation polymerization reactions.
- The thermoplastic can comprise on weight percent basis in the gel composition an amount between about 20% and about 40%. Additionally, the thermoplastic can be included in an amount between about 25% to about 35%. In a further embodiment the isocyanate can be included in an amount between about 26% and about 33% or in an amount of about 29%.
- Catalysts which are useful in producing the elastomeric composition in accordance with this invention include: (a) tertiary amines such as bis(dimethylaminoethyl)ether, trimethylamine, triethylamine, N-methylmorpholine, N-ethylmorpholine, N,N-dimethylbenzylamine, N,N-dimethylethanolamine, N,N,N′,N′-tetramethyl-1,3-butanediamine, triethanolamine, 1,4-diazabicyclo[2.2.-2]octane, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, 1,8-diazabicyclo[5,4,0]-undecene-7 and its salts such as phenol salt, hexanoate, and oleate; 2,4,6-tris(diaminomethyl)phenol, and the like; (b) tertiary phosphines such as trialkylphosphines, dialkylbenzylphosphines, and the like; (c) strong bases such as alkali and alkaline earth metal hydroxides, alkoxides, and phenoxides; (d) acidic metal salts of strong acids such as ferric chloride, stannic chloride, stannous chloride, antimony trichloride, bismuth nitrate and chloride, and the like; (e) chelates of various metals such as those which can be obtained from acetylacetone, benzoylacetone, trifluoracetylacetone, ethyl acetoacetate, salicylaldehyde, cyclopentanone-2-carboxylate, acetylacetone-imine, bis-acetylacetonealkylenediimines, salicylaldehydeimine, and the like, with various metals such as Be, Mg, Zn, Cd, Pb, Ti, Zr, Sn, As, Bi, Cr, Mo, Mn, Fe, Co, Ni, or such ions as MoO++, UO++, and the like; (f) alcoholates and phenolates of various metals such as Ti(OR), Sn(OR), Al(OR), and the like, wherein R is alkyl or aryl and the reaction products of alcoholates with carboxylic acides, beta-diketones, and 2-(N,N-dialkylamino)alkanols, such as the well known chelates of titanium; (g) salts of organic acids with a variety of metals such as alkali metals, alkaline earth meals, Al, Sn, Pb, Mn, Co, Ni, and Cu, including, for example, sodium acetate, potassium laurate, calcium hexanoate, stannous acetate, stannous octoate, stannous oleate, lead octoate, metallic driers such as manganese and cobalt naphthenate, and the like; (h) organometallic derivates of tetravalent tin, trivalent and pentavalent As, Sb, and Bi and metal carbonyls of iron and cobalt, mercury compounds such as arylmercury carboxylates, phenylmercury acetate and propionate, and the like.
- Typically, the activator or catalyst is an alkyl tin compound such as dialkyltin salts of carboxylic acids, e.g., dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate, dilauryltin diacetate, dioctyltin diacetate, dibutyl-tin-bis(4-methylaminobenzoate), dibutyltin-bis(6-methylaminocaproate), and the like. Dialkyltin mercaptides, in particular diakyltin dimercaptide carboxylic acid esters, can also be utilized. Similarly, there can be used a trialkyltin hydroxide, dialkyltin oxide, dialkyltin dialkoxide or dialkyltin dichloride. Examples of these compounds include trimethyltin hydroxide, tributyltin hydroxide, trioctyltin hydroxide, dibutyltin oxide, dioctyltin oxide, dilauryltin oxide, dibutyltin-bis(isopropoxide), dibutyltin-bis-(2-dimethylaminopentylate), dibutyltin dichloride, dioctylin dichloride, and the like.
- A specific example of an alkyl tin compound is a dioctyltin carboxylate, Cotin 430, available from Cambrex Co. of Itasca, Ill. Cotin 430 is a liquid organotin catalyst that is less sensitive to moisture and initiates relatively slower than other organotin catalysts.
- The catalyst is employed in small amounts, for example, from about 0.001 percent to about 5 percent or more, based on weight of the reaction mixture gel. In a further embodiment the catalyst may be added in amount between about 0.1% to about 2%. An additional embodiment includes the catalyst added in an amount or less than 1% or in an amount of about 0.3%.
- It is within the scope of the present invention to incorporate other additives such as fillers, pigments, surfactants, plasticizers, organic blowing agents, as stabilizers, and the like, in the manufacture of the energy-attenuating viscoelastic elastomers, gels and foams of this invention.
- In addition to water, a chemically participating extender and carbon dioxide-producing blowing agent, foams can be prepared by the use of conventional organic blowing agents. Typical representative examples are trichlorofluoromethane, methylene chloride, low boiling hydrocarbons, ethers and ketones, and the like. The use of water in combination with one or more organic blowing agent is also contemplated.
- Particularly in the manufacture of foams, surface-active additives such as emulsifiers and foam stabilizers can be used. Suitable emulsifiers include, for example, the sodium salts of castor oil sulfonates and salts of fatty acids with amines such as oleic acid diethylamine and stearic acid diethanol amine. Alkali or ammonium salts of sulfonic acids, such as dodecyl benzene sulfonic acid, or dinaphthylmethane disulfonic acids can be used. The alkali or ammonium salts of fatty acids, such as ricinoleic acid, or of polymeric fatty acids can also be used as surface-active additives.
- Suitable foam stabilizers include polyether siloxanes, particularly water-soluble block copolymers of siloxanes and polyethers. These compounds generally are prepared by joining a copolymer of ethylene oxide and propylene oxide or a homopolymer of ethylene oxide to a polydimethylsiloxane radical.
- Suitable stabilizers against the effects of aging and weathering and substances having fungistatic and bacteriostatic effect can also be used. Typical additives of this type are phenolic and aromatic amine antioxidants, UV-stabilizers, hindered carbodiimides known to retard hydrolysis and oxidation, arsenic fungicidal compounds, tin and mercury bacteriocides, and the like.
- Fillers which can be used for the purpose of extension or reinforcement of the elastomers and foams of the present invention include, among others, amorphous silicone hydroxides, carbon black, walnut and pecan shells, cork, cellulose, starch, calcium carbide, zinc oxide, titanium dioxide, clays, calcium wallastonite, and the like.
- The method of forming the elastomeric compound includes combining the previously described components and letting such a mixture set to form the gel compound. The components once combined may then be stirred or mixed together such they can combine to form the gel. In an additional embodiment, the method includes a two part mix which can be combined to form the gel compound. The first part of the mix includes the plasticizer and the prepolymer. The second part also includes the plasticizer along with the thermoplastic polymer and the catalyst. The two parts are then combined and mixed to form a gel mix that is allowed to set to form the semi-solid gel composition.
- The energy absorbing compound (gel) possesses good energy-attenuating properties and is capable of absorbing repeat shocks without structural damage. The gel and structures described herein can be used in many kinds of safety padding, such as knee protectors for contact sports such as wrestling, protective knee, shoulder and arm pads for football and soccer players, ice hockey and basketball players, and the like, and in the field of footwear, insoles, outsoles, and other footwear components exhibiting energy-moderating or attenuating properties.
- The present invention generally relates to an energy absorbing material such as a polymeric compound which exhibits low rebound velocity and high hysteresis, among other desirable characteristics which are conducive to the function of a good energy-attenuating material. The polymeric compound is capable of repeatedly absorbing shock without structural damage and without appreciable sag due to prolonged exposure to continuous dynamic loading. Additionally, the polymeric compound provides vibration dampening, sound attenuation, and various energy absorbing functions.
- Generally the energy absorbing compound (gel layer 223) comprises an epoxidized vegetable oil, a thermoplastic polymer and a prepolymer. The epoxidized vegetable oil generally encompasses either an epoxidized soybean or linseed oil or combinations of the two. The epoxidized vegetable oil typically comprises more than 50% by weight of the energy absorbing compound. Furthermore, the energy absorbing compound may also include an activator such as a metal catalyst.
- In an embodiment, the energy absorbing compound (gel layer 223) can comprise the epoxidized vegetable oil and a thermoplastic polymer which is substantially free of a polyurethane. The energy absorbing compound also includes a prepolymer and the metal activator. Typically, the metal activator is an alkyl tin compound and the prepolymer comprises an isocyanate.
- In greater detail, the energy absorbing compound (gel layer 223) comprises on a percent weight basis of compound at least greater than 50% of a vegetable based plasticizer. The vegetable based plasticizer includes epoxidized vegetable oils, such as linseed and soybean oils. Additionally, the energy absorbing compound includes between about 20% to about 40% of a thermoplastic polymer and between about 5% to about 20% of a prepolymer. The shock absorbing compound may include between about 0.1 to about 5% of an activator.
- An embodiment includes a method of forming the energy absorbing compound for the
shield 100. The method of forming the energy absorbing compound for theshield 100 includes combining and mixing an epoxidized vegetable oil and a thermoplastic polymer which is substantially free of a polyurethane and a prepolymer to form the energy absorbing compound, which is allowed to cure or set into a gel like state. - In an embodiment, the method for forming the energy absorbing compound for the
shield 100 includes forming the compound using a two part polymer. The first part of the polymer mix includes an epoxidized vegetable oil and a prepolymer and the second component comprises a thermoplastic polymer, an epoxidized vegetable oil and an activator. The activator typically includes an alkyl tin compound and the vegetable oil is selected from soybean oil, linseed oil, and a combinations thereof. - The energy absorbing compound for the
shield 100 is formed into thelayer 223 and inserted between 221, 224. In an embodiment, thelayers energy absorbing layer 223 is inserted into an envelope formed by the 221, 224. In an embodiment,layers layer 223 is positioned beneath thelayer 222. - A
hockey foot shield 100 for covering at least in part the laced foot portion of a player wearing ahockey skate 110. Thehockey skate 100 having a front portion including a tongue and laced portion on the upper. Thehockey foot shield 100 covering comprises a first and second layer forming an envelope and the envelope including a shock absorbing polymeric gel, wherein the hockey foot shield is adapted to fit over the tongue portion of the skate. - The
hockey foot shield 100 can include layers that are formed from a resilient polymeric material. - The
hockey foot shield 100 can include opposed layers that are sealed to form an envelope containing the shock absorbing polymeric gel. - The
hockey foot shield 100 can include layers that are formed from a woven material. - The
hockey foot shield 100 can include layers of the polymeric material that comprises at least greater than 50% by weight of an epoxidized vegetable oil, a thermoplastic polymer; and a prepolymer. Thehockey foot shield 100 can further include an activator. The activator can be an alkyl tin compound. The epoxidized vegetable oil can be selected from the group consisting of soybean oil, linseed oil, and combinations thereof. The prepolymer can comprise an isocyanate selected from the group of aliphatic, cycloaliphatic, araliphatic, aromatic, heterocyclic polyisocyaniates and combinations thereof. The thermoplastic polymer can be substantially free of a polyurethane. The thermoplastic polymer can be a polydiene. The thermoplastic polymer is a polybutadiene. The polymeric gel can comprise, on a percent weight basis of the gel, at least greater than about 50% of a vegetable based plasticizer, between about 20% and about 40% of a thermoplastic polymer, and between about 5% and about 20% of a prepolymer. - While Applicant has set forth embodiments as illustrated and described above, it is recognized that variations may be made with respect to disclosed embodiments. Therefore, while the invention has been disclosed in various forms only, it will be obvious to those skilled in the art that many additions, deletions and modifications can be made without departing from the spirit and scope of this invention, and no undue limits should be imposed except as set forth in the following claims.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/425,371 US20110067270A1 (en) | 2008-04-17 | 2009-04-16 | Hockey Foot Shield |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US4576108P | 2008-04-17 | 2008-04-17 | |
| US12/425,371 US20110067270A1 (en) | 2008-04-17 | 2009-04-16 | Hockey Foot Shield |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110067270A1 true US20110067270A1 (en) | 2011-03-24 |
Family
ID=43755344
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/425,371 Abandoned US20110067270A1 (en) | 2008-04-17 | 2009-04-16 | Hockey Foot Shield |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20110067270A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120255203A1 (en) * | 2009-12-22 | 2012-10-11 | Bruce Roland Booth | Method and apparatus for protecting a foot |
Citations (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US75473A (en) * | 1868-03-10 | Composition cement for pavements | ||
| US371301A (en) * | 1887-10-11 | Geoegb buehans | ||
| US710999A (en) * | 1902-01-30 | 1902-10-14 | Elias W Powers | Hoof-pad. |
| US776767A (en) * | 1902-01-20 | 1904-12-06 | Israel Richmond Waters | Attachment for shoes. |
| US2244031A (en) * | 1939-09-08 | 1941-06-03 | John F Teehan | Shoemaking |
| US3049515A (en) * | 1959-03-26 | 1962-08-14 | Wyandotte Chemicals Corp | Hydroxy-terminated polyether-based urethane compositions |
| US3061556A (en) * | 1959-08-20 | 1962-10-30 | Mobay Chemical Corp | Preparation of cellular polyurethane plastics |
| US3067149A (en) * | 1960-05-04 | 1962-12-04 | Nopco Chem Co | Stabilization of polyurethane resin foams |
| US3072582A (en) * | 1955-10-20 | 1963-01-08 | Gen Tire & Rubber Co | Polyether-urethane foams and method of making same |
| US3747684A (en) * | 1971-01-04 | 1973-07-24 | B Wallen | Elastic sole insert for horse shoes |
| US3905925A (en) * | 1974-02-14 | 1975-09-16 | Shell Oil Co | Process for preparing polyurethane products |
| US4057595A (en) * | 1975-05-19 | 1977-11-08 | Dow Corning Corporation | Method of modifying the physical properties of urethane elastomers |
| US4282659A (en) * | 1979-08-21 | 1981-08-11 | Gamebridge, Inc. | Sports boot strap closure system |
| US4333248A (en) * | 1980-07-23 | 1982-06-08 | Samuel Samuels | Protective shoe |
| US4342122A (en) * | 1980-10-14 | 1982-08-03 | Alan H. Levine | Protective headgear |
| US4346205A (en) * | 1976-07-23 | 1982-08-24 | National Research Development Corporation | Energy absorbing elastomers and composites |
| US4504089A (en) * | 1982-01-25 | 1985-03-12 | Nathaniel Calvert | Liquid-cushioned bicycle seat |
| US4513825A (en) * | 1984-01-23 | 1985-04-30 | William Murphy | Horseshoe full pad |
| US4631758A (en) * | 1986-04-11 | 1986-12-30 | Athletic Safety Products, Inc. | Protective headgear |
| US4700403A (en) * | 1982-08-17 | 1987-10-20 | Sports Marketing, Inc. | Protective cushion |
| US4756949A (en) * | 1984-11-29 | 1988-07-12 | Kimberly-Clark Corporation | Method for producing pad structures with viscoelastic cores and article so made |
| US4761843A (en) * | 1985-05-20 | 1988-08-09 | Jay Medical, Ltd. | Hemorrhoid seat cushion |
| US4967493A (en) * | 1989-05-11 | 1990-11-06 | David Mues | Foul tip protector |
| US4991318A (en) * | 1989-12-20 | 1991-02-12 | Cornell Kevin S | Foot safety guard |
| US4999068A (en) * | 1986-02-24 | 1991-03-12 | Chiarella Michele A | Method for making an anatomical multilayer bicycle-type seat |
| US5112061A (en) * | 1991-05-23 | 1992-05-12 | Stuart Lamle | Court game set and projectile therefor |
| US5234230A (en) * | 1992-12-10 | 1993-08-10 | Crane Scott A | Ankle and foot protective device for attachment to a skate |
| US5252373A (en) * | 1991-03-22 | 1993-10-12 | Wrs Group, Inc. | Shock absorbing pad |
| US5509484A (en) * | 1995-01-10 | 1996-04-23 | Supracor Systems, Inc. | Horseshoe impact pad |
| US5566476A (en) * | 1995-06-06 | 1996-10-22 | Bertrand; Gregory F. | Athletic foot protector with toe and ankle impact absorbing protection |
| US5701688A (en) * | 1996-04-18 | 1997-12-30 | Fila U.S.A., Inc. | Protective shoelace cover |
| US6093468A (en) * | 1997-03-14 | 2000-07-25 | The Procter & Gamble Company | Flexible lightweight protective pad with energy absorbing inserts |
| US20010007180A1 (en) * | 2000-01-07 | 2001-07-12 | Salomon S.A. | Shoe with viscoelastic interior liner |
| US6343385B1 (en) * | 1996-12-02 | 2002-02-05 | Jeffrey P. Katz | Impact absorbing protective apparatus for the frontal, temporal and occipital basilar skull |
| US6497057B1 (en) * | 1999-11-01 | 2002-12-24 | Ariat International, Inc. | Heel cushion |
| US6588511B1 (en) * | 2002-03-07 | 2003-07-08 | Impact Gel Corporation | Hoofed animal pad |
| US7041719B2 (en) * | 2002-03-07 | 2006-05-09 | Impact Gel Holdings | Shock absorbing compound |
| US7523567B1 (en) * | 2006-11-14 | 2009-04-28 | Mcclelland Frank | Protective cover for hockey skate boot |
-
2009
- 2009-04-16 US US12/425,371 patent/US20110067270A1/en not_active Abandoned
Patent Citations (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US75473A (en) * | 1868-03-10 | Composition cement for pavements | ||
| US371301A (en) * | 1887-10-11 | Geoegb buehans | ||
| US776767A (en) * | 1902-01-20 | 1904-12-06 | Israel Richmond Waters | Attachment for shoes. |
| US710999A (en) * | 1902-01-30 | 1902-10-14 | Elias W Powers | Hoof-pad. |
| US2244031A (en) * | 1939-09-08 | 1941-06-03 | John F Teehan | Shoemaking |
| US3072582A (en) * | 1955-10-20 | 1963-01-08 | Gen Tire & Rubber Co | Polyether-urethane foams and method of making same |
| US3049515A (en) * | 1959-03-26 | 1962-08-14 | Wyandotte Chemicals Corp | Hydroxy-terminated polyether-based urethane compositions |
| US3061556A (en) * | 1959-08-20 | 1962-10-30 | Mobay Chemical Corp | Preparation of cellular polyurethane plastics |
| US3067149A (en) * | 1960-05-04 | 1962-12-04 | Nopco Chem Co | Stabilization of polyurethane resin foams |
| US3747684A (en) * | 1971-01-04 | 1973-07-24 | B Wallen | Elastic sole insert for horse shoes |
| US3905925A (en) * | 1974-02-14 | 1975-09-16 | Shell Oil Co | Process for preparing polyurethane products |
| US4057595A (en) * | 1975-05-19 | 1977-11-08 | Dow Corning Corporation | Method of modifying the physical properties of urethane elastomers |
| US4346205A (en) * | 1976-07-23 | 1982-08-24 | National Research Development Corporation | Energy absorbing elastomers and composites |
| US4282659A (en) * | 1979-08-21 | 1981-08-11 | Gamebridge, Inc. | Sports boot strap closure system |
| US4333248A (en) * | 1980-07-23 | 1982-06-08 | Samuel Samuels | Protective shoe |
| US4342122A (en) * | 1980-10-14 | 1982-08-03 | Alan H. Levine | Protective headgear |
| US4504089A (en) * | 1982-01-25 | 1985-03-12 | Nathaniel Calvert | Liquid-cushioned bicycle seat |
| US4700403A (en) * | 1982-08-17 | 1987-10-20 | Sports Marketing, Inc. | Protective cushion |
| US4513825A (en) * | 1984-01-23 | 1985-04-30 | William Murphy | Horseshoe full pad |
| US4756949A (en) * | 1984-11-29 | 1988-07-12 | Kimberly-Clark Corporation | Method for producing pad structures with viscoelastic cores and article so made |
| US4761843A (en) * | 1985-05-20 | 1988-08-09 | Jay Medical, Ltd. | Hemorrhoid seat cushion |
| US4999068A (en) * | 1986-02-24 | 1991-03-12 | Chiarella Michele A | Method for making an anatomical multilayer bicycle-type seat |
| US4631758A (en) * | 1986-04-11 | 1986-12-30 | Athletic Safety Products, Inc. | Protective headgear |
| US4967493A (en) * | 1989-05-11 | 1990-11-06 | David Mues | Foul tip protector |
| US4991318A (en) * | 1989-12-20 | 1991-02-12 | Cornell Kevin S | Foot safety guard |
| US5252373A (en) * | 1991-03-22 | 1993-10-12 | Wrs Group, Inc. | Shock absorbing pad |
| US5112061A (en) * | 1991-05-23 | 1992-05-12 | Stuart Lamle | Court game set and projectile therefor |
| US5234230A (en) * | 1992-12-10 | 1993-08-10 | Crane Scott A | Ankle and foot protective device for attachment to a skate |
| US5509484A (en) * | 1995-01-10 | 1996-04-23 | Supracor Systems, Inc. | Horseshoe impact pad |
| US5566476A (en) * | 1995-06-06 | 1996-10-22 | Bertrand; Gregory F. | Athletic foot protector with toe and ankle impact absorbing protection |
| US5701688A (en) * | 1996-04-18 | 1997-12-30 | Fila U.S.A., Inc. | Protective shoelace cover |
| US6343385B1 (en) * | 1996-12-02 | 2002-02-05 | Jeffrey P. Katz | Impact absorbing protective apparatus for the frontal, temporal and occipital basilar skull |
| US6093468A (en) * | 1997-03-14 | 2000-07-25 | The Procter & Gamble Company | Flexible lightweight protective pad with energy absorbing inserts |
| US6497057B1 (en) * | 1999-11-01 | 2002-12-24 | Ariat International, Inc. | Heel cushion |
| US20010007180A1 (en) * | 2000-01-07 | 2001-07-12 | Salomon S.A. | Shoe with viscoelastic interior liner |
| US6588511B1 (en) * | 2002-03-07 | 2003-07-08 | Impact Gel Corporation | Hoofed animal pad |
| US6896065B2 (en) * | 2002-03-07 | 2005-05-24 | Matt Kriesel | Hoofed animal pad |
| US7041719B2 (en) * | 2002-03-07 | 2006-05-09 | Impact Gel Holdings | Shock absorbing compound |
| US7523567B1 (en) * | 2006-11-14 | 2009-04-28 | Mcclelland Frank | Protective cover for hockey skate boot |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120255203A1 (en) * | 2009-12-22 | 2012-10-11 | Bruce Roland Booth | Method and apparatus for protecting a foot |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7041719B2 (en) | Shock absorbing compound | |
| US7867419B2 (en) | Method for preparing golf ball and golf ball | |
| US6123628A (en) | Solid golf balls and method of making | |
| JP5365021B2 (en) | Solid golf balls | |
| CN1978006A (en) | Solid golf ball | |
| US8561237B2 (en) | Weighted shoe insole and method for making the same | |
| EP3329971B1 (en) | Golf ball | |
| JP5750993B2 (en) | Golf balls for practice | |
| US9649537B2 (en) | Solid golf ball | |
| JP2013138839A (en) | Solid golf ball | |
| US8809415B2 (en) | Golf ball having a cover layer with a purposed hardness gradient | |
| JP2015519953A (en) | Golf ball comprising a core material containing rubber and polyurethane | |
| JP2009279409A (en) | Method for manufacturing shoe sole essentially consisting of natural latex | |
| JP2014069045A (en) | Solid golf ball | |
| US20110067270A1 (en) | Hockey Foot Shield | |
| EP2668976A1 (en) | Golf ball | |
| JP6197491B2 (en) | Golf ball | |
| US20130165268A1 (en) | Golf ball manufacturing method and golf ball | |
| CN108685269B (en) | A bicycle professional insole | |
| GB2416704A (en) | Golf ball | |
| KR102580257B1 (en) | Golf shoes with improved wearing comfort and manufacturing method thereof | |
| US20050079928A1 (en) | Rubber composition for golf ball and golf ball | |
| JP5754229B2 (en) | Golf balls for practice | |
| JP2012228452A (en) | Practice golf ball | |
| US6860492B2 (en) | Gliding device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: IG HOLDINGS, LLC, WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SALAMA, SAUL;HOLDEN, MIKE;KRIESEL, MATT;SIGNING DATES FROM 20080422 TO 20080423;REEL/FRAME:027411/0730 |
|
| AS | Assignment |
Owner name: IG HOLDINGS LLC, WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WEBER, DONALD;REEL/FRAME:027479/0636 Effective date: 20120104 Owner name: IMPACT GEL CORPORATION, WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WEBER, DONALD;REEL/FRAME:027479/0636 Effective date: 20120104 Owner name: IMPACT GEL HOLDINGS, L.L.C, WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WEBER, DONALD;REEL/FRAME:027479/0636 Effective date: 20120104 |
|
| AS | Assignment |
Owner name: DIVERSIFIED GEL PRODUCTS, LLC, MINNESOTA Free format text: ASSIGNMENT OF AN UNDIVIDED ONE-HALF OWNERSHIP;ASSIGNOR:IG HOLDINGS, LLC;REEL/FRAME:027483/0725 Effective date: 20120104 Owner name: DIVERSIFIED GEL PRODUCTS, LLC, MINNESOTA Free format text: LICENSE;ASSIGNOR:IG HOLDINGS, LLC;REEL/FRAME:027483/0989 Effective date: 20120104 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: ENCOMPASS MOBILE, LLC, NEVADA Free format text: LICENSE;ASSIGNOR:IG HOLDINGS, LLC;REEL/FRAME:043297/0394 Effective date: 20170810 Owner name: ENCOMPASS MOBILE, LLC, NEVADA Free format text: ASSIGNMENT OF AN UNDIVIDED ONE-TENTH (1/10TH) OWNERSHIP;ASSIGNOR:IG HOLDINGS, LLC;REEL/FRAME:043554/0179 Effective date: 20170810 |
|
| AS | Assignment |
Owner name: ICE TECHNOLOGIES LLC, ILLINOIS Free format text: ASSIGNMENT OF AN UNDIVIDED ONE-TENTH (1/10TH) OWNERSHIP;ASSIGNOR:ENCOMPASS MOBILE, LLC;REEL/FRAME:052131/0913 Effective date: 20200110 |