US20080246235A1 - Shock absorbing tandem roller skate - Google Patents
Shock absorbing tandem roller skate Download PDFInfo
- Publication number
- US20080246235A1 US20080246235A1 US11/784,397 US78439707A US2008246235A1 US 20080246235 A1 US20080246235 A1 US 20080246235A1 US 78439707 A US78439707 A US 78439707A US 2008246235 A1 US2008246235 A1 US 2008246235A1
- Authority
- US
- United States
- Prior art keywords
- shock absorbing
- pair
- wheels
- shoe plate
- secured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000035939 shock Effects 0.000 title claims abstract description 141
- 230000007246 mechanism Effects 0.000 claims abstract description 34
- 230000006835 compression Effects 0.000 claims description 20
- 238000007906 compression Methods 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 abstract description 3
- 210000002683 foot Anatomy 0.000 description 9
- 238000000034 method Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000013410 fast food Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000007407 health benefit Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011359 shock absorbing material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C17/00—Roller skates; Skate-boards
- A63C17/02—Roller skates; Skate-boards with wheels arranged in two pairs
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C17/00—Roller skates; Skate-boards
- A63C17/0046—Roller skates; Skate-boards with shock absorption or suspension system
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C2203/00—Special features of skates, skis, roller-skates, snowboards and courts
- A63C2203/42—Details of chassis of ice or roller skates, of decks of skateboards
Definitions
- the present invention is directed to roller skates and other industries involving carrying products that require wheel assembly mechanisms. More specifically, the invention is directed to a shock absorbing tandem roller skate. The invention is also directed to the skateboard and scooter industries, as well as other industries involving carrying products that require tandem wheel assembly mechanisms.
- Roller skates have been around for many years and have provided enjoyment and health benefits to many people around the world.
- roller skates are used for recreation, freestyle and/or exercise wherein each skater can roller skate at his or her own speed or pace, from a leisure pace to a fast competition pace, depending on that skater's desire and physical health.
- Some skaters also use roller skates in their profession, such as food deliverers or runners at certain fast food restaurants.
- Roller skates can be used on many different types of surfaces, such as wood, cement, or asphalt, and the parts or components, such as the wheels and brake system, of a roller skate may vary according to the surface that the roller skate will generally be used on.
- the present invention is an improved tandem roller skate that allow skaters to turn with better control for skates that may travel at a high rate of speed and on rough surfaces.
- this improved control ability for skaters should also provide the skaters with improved safety when the present invention is used appropriately.
- the present invention works by incorporating shock absorbing means that enable a skater to instantly turn at will by shifting the weight of the skater wherein the shifting of the weight makes the shock absorbing mechanism flex according to the skater's motion and direction of the skater's lean.
- the innovation in the present invention is that the parts or components of the improved roller skate may be assembled in a building block system for high strength assembly to handle moderate to extreme treatment from the skater.
- the shock absorbing mechanism of the roller skate of the present invention flex and absorb shock horizontally and diagonally in a simultaneous manner to create an automatic steering mechanism for improved safety and skating enjoyment.
- shock absorbing technology of the present invention can be used in the skateboard and scooter industries, as well as other industries involving carrying products that require tandem wheel assembly mechanisms.
- the present invention is directed to a shock absorbing tandem roller skate comprising a roller skate shoe, a shoe plate secured to the shoe, a first shock absorbing unit and a second shock absorbing unit secured downward from the shoe plate, at least a first pair of wheels adapted for being secured to and being in communication with the first shock absorbing unit, at least a second pair of wheels adapted for being secured to and being in communication with the second shock absorbing unit, a first brake means or unit for providing braking to the at least a first pair of wheels, and a second brake means or unit for providing braking to the at least a second pair of wheels.
- the shock absorbing mechanism of each of the first and second shock absorbing units flex and absorb shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism to the user for improved safety and skating enjoyment.
- the present invention may also be a skateboard comprising some or all of the above-described components, excluding the shoe, of the shock absorbing tandem roller skate.
- the present invention may additionally be a scooter comprising some or all of the above-described components, excluding the shoe, of the shock absorbing tandem roller skate.
- FIG. 1 is a side elevational view of a shock absorbing tandem roller skate according to the present invention.
- FIG. 2 is a perspective view of the roller skate of FIG. 1 , excluding a shoe or boot of the roller skate.
- FIG. 3 is a partial, exploded view of a rear end of the roller skate of FIG. 1 , excluding a shoe or boot of the roller skate.
- FIG. 4 is a bottom view of the roller skate of FIG. 1 , excluding a shoe or boot of the roller skate.
- FIG. 5 is a rear end view of the roller skate of FIG. 1 , excluding a shoe or boot of the roller skate.
- FIG. 6 is a rear end view of the roller skate of FIG. 1 , excluding a shoe or boot of the roller skate, wherein two arm attachments of the roller skate perform a cam action that shifts in opposite directions at the same time when is use.
- FIG. 7 is a bottom view of a shock absorbing unit and a pair of wheels of the roller skate of FIG. 1 .
- FIG. 8 is a side view of a shock absorbing unit of the roller skate of FIG. 1 .
- FIG. 9 is a partial, exploded view of a second shoe or boot plate relative to a first shoe or boot plate according to the present invention.
- FIG. 10 is a rear end view of an off-road skateboard according to the present invention, having street wheels.
- FIG. 11 is a rear end view of an off-road skateboard according to the present invention, having larger wheels than street wheels.
- FIG. 12 is a side elevational view of the off-road skateboard of FIG. 11 .
- FIG. 13 is a top view of the off-road skateboard of FIG. 11 .
- FIG. 14 is a rear end view of a standard skateboard according to the present invention.
- FIG. 15 is a front end view of a scooter according to the present invention, having street wheels.
- FIG. 16 is a top view of a scooter according to the present invention, having wheels larger than street wheels.
- FIG. 17 is a side elevational view of the scooter of FIG. 16 .
- the present invention is a shock absorbing tandem roller skate 100 comprising a roller skate shoe or boot 120 , a shoe plate 140 secured to the shoe 120 , a first shock absorbing unit 180 F and a second shock absorbing unit 180 R secured to the shoe plate 140 , at least a first pair of wheels 260 F secured to the first shock absorbing unit 180 F, at least a second pair of wheels 260 R secured to the second shock absorbing unit 180 R, a first brake means or unit 320 F providing braking to the at least a first pair of wheels 260 F, and a second brake means or unit 320 R providing braking to the at least a second pair of wheels 260 R.
- the roller skate shoe or boot 120 is adapted for receiving a foot of a user or skater.
- the shoe 120 includes a front end 122 , a rear end 124 , an upper portion 126 , and a bottom 128 having a bottom side 129 .
- the shoe 120 may be a standard roller skate shoe, a shoe having greater flexibility, comfort, support and/or breathability than a standard roller skate shoe, or any roller skate shoe known in the art.
- the shoe plate 140 is secured to the bottom 128 of the shoe 120 by rivets or fasteners 58 and supports the shoe 120 .
- the shoe 120 and shoe plate 140 may be secured to one another by other fastening means or any other means known in the art.
- the shoe plate 140 has a generally elongated, rectangular frame, which defines a top side 142 , a bottom side 144 , a front end 146 , a rear end 148 , a body portion 152 extending between the front and rear ends 146 , 148 , a pair of opposite sidewalls 154 , 155 , and a plurality of fastener apertures 156 located at predetermined locations along the shoe plate 140 .
- the shoe plate 140 defines a longitudinal axis from the front end 146 to the rear end 148 .
- the top side 142 of the shoe plate 140 is adjacent to the bottom side 129 of the bottom 128 of the shoe 120 , and the front and rear ends of the shoe respectively align with the front and rear ends of the shoe plate.
- Each of the opposite sidewalls 154 , 155 has a front end cutout 156 , 157 about the front end 146 and a rear end cutout 158 , 159 about the rear end 148 of the shoe plate 140 for accommodating the configuration of the corresponding shock absorbing units 180 F, 180 R.
- the first, or front, shock absorbing unit 180 F is secured to the shoe plate 140 at about the front end 146 of the shoe plate 140 by means of four vertical fasteners 182 F
- the second, or rear, shock absorbing unit 180 R is secured to the shoe plate 140 at about the rear end 148 of the shoe plate 140 by means of four vertical fasteners 182 R.
- the front and rear shock absorbing units 180 F, 180 R are secured to the shoe plate 140 , the front and rear shock absorbing units 180 F, 180 R are generally positioned downward from the bottom side 144 of the shoe plate 140 at the corresponding cutouts 156 , 157 , 158 , 159 about the front and rear ends 146 , 148 of the shoe plate 140 .
- Each of the front and rear shock absorbing units 180 F, 180 R correspondingly includes a bracket 184 F, 184 R having a plurality of fastener apertures 186 F, 186 R and a plurality of spring apertures 188 F, 188 R located at predetermined positions, a shoulder member 190 F, 190 R having a plurality of fastener apertures 192 F, 192 R and a plurality of spring apertures 194 F, 194 R located at predetermined positions, and other corresponding components described below.
- Each bracket 184 F, 184 R functions as a two-way shock absorbing housing. As shown in FIGS.
- the cutouts 156 , 157 , 158 , 159 of the shoe plate 140 and the brackets 184 F, 184 R have corresponding angular shapes for a solid stationary assembly under extreme usage from a skater, wherein the bracket 184 F, 184 R supports the shoulder member 190 F, 190 R adapted for moving horizontally under pressure with a shock absorbing means or system, such as a system including a plurality of horizontally-mounted compression springs 196 R and a plurality of horizontal alien plugs 198 F, 198 R, or a shock absorbing material comprised of rubber and/or urethane (not shown).
- a shock absorbing means or system such as a system including a plurality of horizontally-mounted compression springs 196 R and a plurality of horizontal alien plugs 198 F, 198 R, or a shock absorbing material comprised of rubber and/or urethane (not shown).
- Each shoulder member 190 F, 190 R has two arm attachments 200 a F, 200 b F, 200 a R, 200 b R, wherein each arm attachment 200 a F, 200 b F, 200 a R, 200 b R accommodates one wheel pin 202 a F, 202 b F, 202 a R, 202 b R that is secured by means of a small alien plug 204 a F, 204 b F, 204 a R, 204 b R and a wheel 260 a F, 260 b F, 260 a R, 260 b R.
- Each arm attachment 200 a F, 2 D 0 b F, 200 a R, 200 b R is mounted to the bottom of the corresponding shoulder member 190 F, 190 R by means of a fastener 206 a F, 206 b F, 206 a R, 206 b R and is secured by a lock nut 208 a F, 208 b F, 208 a R, 208 b R.
- Each arm attachment 200 a F, 200 b F, 200 a R, 200 b R has two small allen plugs 210 a F, 210 b F, 210 a R, 210 b R mounted diagonally.
- the two allen plugs 210 a F, 210 b F, 210 a R, 210 b R accommodate two diagonally mounted compression springs 212 a F, 212 b F, 212 a R, 212 b R, wherein one end of the diagonally mounted compression spring 212 a F, 212 b F, 212 a R, 212 b R rests over the allen plug 210 a F, 210 b F, 210 a R, 210 b R and the other end rests in the angled hole 214 a F, 214 b F, 214 a R, 214 b R in the corresponding shoulder member 190 F, 190 R.
- Each diagonally mounted compression spring 212 a F, 212 b F, 212 a R, 212 b R is to be evenly adjusted by means of two allen plugs 216 a F, 216 b F, 216 a R, 216 b R mounted from the top of the corresponding shoulder member 190 F, 190 R for each of the assemblies of the arm attachments 200 a F, 200 b F, 200 a R, 200 b R.
- Two of the arm attachments 200 a F, 200 b F, 200 a R, 200 b R are synchronized by means of the arm attachments' parts that will force the two arm attachments 200 a F, 200 b F, 200 a R, 200 b R to perform a cam action that shifts in opposite directions at the same time; this function is shown in FIG. 6 .
- the cam performance is assisted by a bushing 218 a F, 218 b F, 218 a R, 218 b R for smooth assemblage and precision movement of the two arm attachments assembly.
- Each of the front and rear shock absorbing units 180 F, 180 R may be secured to the shoe plate 140 by means of a high density titanium clevis pin 220 F, 220 R mounted from the top of the shoe plate 140 in the assembly order thereof.
- Each clevis pin 220 F, 220 R is assembled through the corresponding bracket 184 F, 184 R, through two large washers 199 F, 199 R, through the shoulder member 190 F, 190 R, through thrust bearing member 222 F, 222 R, through a brace 224 , and through disc spring 226 F, 226 R, and then secured by means of an allen plug 228 F, 228 R. As shown in FIGS.
- the first and second shock absorbing units 180 F, 180 R are stabilized by means of the brace 224 that is mounted through both of the shock absorbing units 180 F, 180 R and secured directly to each underportion of the shock absorbing units 180 F, 180 R with two vertically mounted allen fasteners 230 F, 230 R.
- the first, or front, brake means or unit 320 F is comprised of a front brake body 322 and a front brake pad 324 .
- the front brake unit 320 F is mounted about the front end 146 of the shoe plate 140 and is secured or fastened primarily by four horizontal fasteners 326 F mounted through the shoe plate 140 and into the threaded portion of the front brake body 322 .
- Secondary means of securing the front brake unit 320 is two diagonal fasteners 328 F mounted through the shoe plate 140 , through the front brake body 322 and into the threaded portion of the bracket 184 F.
- the front brake pad 324 may be a cube style cut of an automobile tire that have steel belted or high density fiber construction for firm stable mounting to the front brake body 322 by means of three fasteners (not shown) mounted at an angle.
- the second, or rear, brake means or unit 320 R is comprised of a rear brake body 332 and a rear brake pad 334 .
- the rear brake unit 320 R is mounted about the rear end 148 of the shoe plate 140 and is secured or fastened primarily by four horizontal fasteners 326 R fastened through the shoe plate 140 and into the threaded portion of the rear brake body 332 .
- Secondary means of securing the rear brake unit 320 R is two diagonal fasteners 328 R mounted through the shoe plate 140 through the rear brake body 332 and into the threaded portion of the bracket 184 R.
- the rear brake pad 334 may be a cube style cut of an automobile tire that have steel belted or high density fiber construction for firm stable mounting to the rear brake body 332 by means of three fasteners 330 R mounted on an angle.
- the main purpose of the mentioned two means and methods of securing the front and rear brake units 320 F, 320 R is to transfer the high tension points created by the front brake unit 320 F and rear brake unit 320 R when the brake units 320 F, 320 R are engaged under heavy weight and high vibration.
- the two angled fasteners 328 F, 328 R are respectively assembled through the top of the front and rear ends 146 , 148 of the shoe plate 140 through the brake bodies 322 , 332 and fastened into the angled threaded portion of the bracket 184 F, 184 R.
- the totality of parts that make up the full assembly has a final stabilizing means and method to achieve a power tying mechanism that bring all mentioned parts together to function as one multi-flexing unit under extreme skating usage by way of the brace block 380 that is firmly secured to the shoe plate 140 by way of four horizontal fasteners 382 assembled through the shoe plate 140 and mounted into the brace block 380 to complete the parts power tying function.
- the brace block 380 is secured to the brace 224 by means of two vertical fasteners 384 that are assembled through the bottom of the brace 224 into the brace block 380 .
- the front end and rear end of the brace 224 make up the link assembly that is a major part in the front and rear shock absorbing units 180 F, 180 R.
- This power tie will also assist in minimizing vibration that makes its way up through the skates through the feet into the shins and up to the knees of the skater.
- the power tie means and method creates a grounding effect through the uniting of mentioned parts all to become one connected assembly that will assist the health, well-being and safety of the skater.
- fastener apertures are adapted for receiving, or allowing passage of, fasteners that secure components of the shock absorbing tandem roller skate 100 to one another.
- some fastener apertures are threaded vertically, horizontally or in an angled direction to accommodate corresponding threaded fasteners. It is obvious to one of ordinary skill in the art that the apertures may not be threaded, and thus other types of fasteners, such as nuts and bolts, may be alternatively implemented in the present invention. It is also obvious to one of ordinary skill in the art that the components of the shock absorbing tandem roller skate 100 may be secured to one another by alternative means, such as injection molding.
- an additional front boot plate 57 provides capability for different types or styles of shoes or boots 120 , in many configurations relating to fitness, performance or racing, being mounted to the shoe plate 140 .
- the front boot plate 57 can be mounted using either small vertical plate fasteners 59 or plate rivets 60 to give the rider or skater more boot options.
- shock absorbing technology of the present invention can be used in the skateboard industry and scooter industry, as well as various industries involving carrying products that require wheel assembly mechanisms.
- an off-road skateboard 400 utilizes all the same parts for the front and rear shock absorbing units 420 F, 420 R, in comparison with front and rear shock absorbing units 180 F, 180 R, with the exception of a longer arm 437 F, 437 R and an off-road skateboard brace 444 F, 444 R secured to the board 446 by means of two vertical fasteners 448 R. As shown in FIG.
- the off-road skateboard 400 includes 4-inch street wheel 438 a F, 438 b F, 438 a R, 438 b R with the same wheel pin 202 a F, 202 b F, 202 a R, 202 b R as previously described above for the shock absorbing units 180 F, 180 R.
- an off-road skateboard block 440 F, 440 R attaches to the bracket 184 F, 184 R by means of four long vertical fasteners 441 F, 441 R through the board 446 and through the block 440 F, 440 R and fastens into bracket 184 F, 184 R.
- Extra support is provided by four additional smaller vertical fasteners 442 F, 442 R being inserted through the board 446 into the block 440 F, 440 R to maintain extra stability for extreme off-road riding conditions.
- a front foot strap device 460 F and a rear foot strap device 460 R are provided for maneuvering and guiding of the skateboard 400 by safely securing the feet of the rider for lifting the off-road skateboard 400 , with the strap 443 F, 443 R being flexible and adjustable for total attachment to the feet of the rider.
- Each of the front and rear foot strap devices 460 F, 460 R includes the foot strap 443 F, 443 R, comfort pad 445 F, 445 R, and a swiveling securing fastener 447 F, 447 R.
- the off-road skateboard 400 utilizes all the same parts as the off-road skateboard shown in FIG. 10 with the exception of larger wheels 439 a F, 439 b F, 439 a R, 439 b R for dirt or grass.
- a standard skateboard 500 utilizes all the same parts as the off-road skateboard 400 with the exception of a traditional board 549 , smaller skateboard block 550 F, 550 R and smaller traditional skateboard wheel 551 a F, 551 b F, 551 a R, 551 b R.
- a scooter 600 utilizes all the same part as the off-road skateboard 400 with the exception of a scooter board 655 with an additional neck 652 , a handle bar 653 and reinforced support 654 .
- the front shock absorbing unit 660 has different configuration to be steered by the scooter handle bar 653 and neck 652 assembly.
Landscapes
- Motorcycle And Bicycle Frame (AREA)
Abstract
The present invention is a shock absorbing tandem roller skate including a shoe or boot, a shoe plate secured to the shoe, at least one shock absorbing unit secured to the shoe plate, at least a first pair of wheels secured to the at least one shock absorbing unit, at least a second pair of wheels, a first brake unit for providing braking to the at least a first pair of wheels, and a second brake unit for providing braking to the at least a second pair of wheels. The shock absorbing mechanism of the at least one shock absorbing unit flex and absorb shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism for the user. The present invention is also directed to skateboards and scooters that may utilize the shock absorbing technology of the present invention.
Description
- The present invention is directed to roller skates and other industries involving carrying products that require wheel assembly mechanisms. More specifically, the invention is directed to a shock absorbing tandem roller skate. The invention is also directed to the skateboard and scooter industries, as well as other industries involving carrying products that require tandem wheel assembly mechanisms.
- Roller skates have been around for many years and have provided enjoyment and health benefits to many people around the world. Generally, roller skates are used for recreation, freestyle and/or exercise wherein each skater can roller skate at his or her own speed or pace, from a leisure pace to a fast competition pace, depending on that skater's desire and physical health. Some skaters also use roller skates in their profession, such as food deliverers or runners at certain fast food restaurants. Roller skates can be used on many different types of surfaces, such as wood, cement, or asphalt, and the parts or components, such as the wheels and brake system, of a roller skate may vary according to the surface that the roller skate will generally be used on.
- The present invention is an improved tandem roller skate that allow skaters to turn with better control for skates that may travel at a high rate of speed and on rough surfaces. Thus, this improved control ability for skaters should also provide the skaters with improved safety when the present invention is used appropriately.
- The present invention works by incorporating shock absorbing means that enable a skater to instantly turn at will by shifting the weight of the skater wherein the shifting of the weight makes the shock absorbing mechanism flex according to the skater's motion and direction of the skater's lean. The innovation in the present invention is that the parts or components of the improved roller skate may be assembled in a building block system for high strength assembly to handle moderate to extreme treatment from the skater. The shock absorbing mechanism of the roller skate of the present invention flex and absorb shock horizontally and diagonally in a simultaneous manner to create an automatic steering mechanism for improved safety and skating enjoyment.
- Applying universal shock absorption to a roller skate will alleviate tension, bruising and strain directed to the knees, ankles, shins and feet of skaters. Also, this factor allows skaters to handle rough surfaces and roads with added comfort. Additional safety is provided by the braking mechanism that may be long lasting for constant braking abilities at all times. The added braking is enhanced by being assisted from the shocking function of the rear wheels while engaging the brake. Certain braking materials are specifically designed for asphalt and road conditions.
- The shock absorbing technology of the present invention can be used in the skateboard and scooter industries, as well as other industries involving carrying products that require tandem wheel assembly mechanisms.
- The present invention is directed to a shock absorbing tandem roller skate comprising a roller skate shoe, a shoe plate secured to the shoe, a first shock absorbing unit and a second shock absorbing unit secured downward from the shoe plate, at least a first pair of wheels adapted for being secured to and being in communication with the first shock absorbing unit, at least a second pair of wheels adapted for being secured to and being in communication with the second shock absorbing unit, a first brake means or unit for providing braking to the at least a first pair of wheels, and a second brake means or unit for providing braking to the at least a second pair of wheels. The shock absorbing mechanism of each of the first and second shock absorbing units flex and absorb shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism to the user for improved safety and skating enjoyment. The present invention may also be a skateboard comprising some or all of the above-described components, excluding the shoe, of the shock absorbing tandem roller skate. The present invention may additionally be a scooter comprising some or all of the above-described components, excluding the shoe, of the shock absorbing tandem roller skate.
-
FIG. 1 is a side elevational view of a shock absorbing tandem roller skate according to the present invention. -
FIG. 2 is a perspective view of the roller skate ofFIG. 1 , excluding a shoe or boot of the roller skate. -
FIG. 3 is a partial, exploded view of a rear end of the roller skate ofFIG. 1 , excluding a shoe or boot of the roller skate. -
FIG. 4 is a bottom view of the roller skate ofFIG. 1 , excluding a shoe or boot of the roller skate. -
FIG. 5 is a rear end view of the roller skate ofFIG. 1 , excluding a shoe or boot of the roller skate. -
FIG. 6 is a rear end view of the roller skate ofFIG. 1 , excluding a shoe or boot of the roller skate, wherein two arm attachments of the roller skate perform a cam action that shifts in opposite directions at the same time when is use. -
FIG. 7 is a bottom view of a shock absorbing unit and a pair of wheels of the roller skate ofFIG. 1 . -
FIG. 8 is a side view of a shock absorbing unit of the roller skate ofFIG. 1 . -
FIG. 9 is a partial, exploded view of a second shoe or boot plate relative to a first shoe or boot plate according to the present invention. -
FIG. 10 is a rear end view of an off-road skateboard according to the present invention, having street wheels. -
FIG. 11 is a rear end view of an off-road skateboard according to the present invention, having larger wheels than street wheels. -
FIG. 12 is a side elevational view of the off-road skateboard ofFIG. 11 . -
FIG. 13 is a top view of the off-road skateboard ofFIG. 11 . -
FIG. 14 is a rear end view of a standard skateboard according to the present invention. -
FIG. 15 is a front end view of a scooter according to the present invention, having street wheels. -
FIG. 16 is a top view of a scooter according to the present invention, having wheels larger than street wheels. -
FIG. 17 is a side elevational view of the scooter ofFIG. 16 . - It should be understood that the above-attached figures are not intended to limit the scope of the present invention in any way.
- Referring to
FIGS. 1-9 , the present invention is a shock absorbingtandem roller skate 100 comprising a roller skate shoe orboot 120, ashoe plate 140 secured to theshoe 120, a firstshock absorbing unit 180F and a secondshock absorbing unit 180R secured to theshoe plate 140, at least a first pair ofwheels 260F secured to the firstshock absorbing unit 180F, at least a second pair ofwheels 260R secured to the secondshock absorbing unit 180R, a first brake means orunit 320F providing braking to the at least a first pair ofwheels 260F, and a second brake means orunit 320R providing braking to the at least a second pair ofwheels 260R. - The roller skate shoe or
boot 120 is adapted for receiving a foot of a user or skater. As a non-limiting example and as shown inFIG. 1 , theshoe 120 includes afront end 122, arear end 124, anupper portion 126, and abottom 128 having abottom side 129. Theshoe 120 may be a standard roller skate shoe, a shoe having greater flexibility, comfort, support and/or breathability than a standard roller skate shoe, or any roller skate shoe known in the art. - As a non-limiting example and as shown in
FIGS. 1-4 , theshoe plate 140 is secured to thebottom 128 of theshoe 120 by rivets orfasteners 58 and supports theshoe 120. Theshoe 120 andshoe plate 140 may be secured to one another by other fastening means or any other means known in the art. Theshoe plate 140 has a generally elongated, rectangular frame, which defines atop side 142, abottom side 144, afront end 146, arear end 148, abody portion 152 extending between the front and 146,148, a pair ofrear ends 154,155, and a plurality ofopposite sidewalls fastener apertures 156 located at predetermined locations along theshoe plate 140. Theshoe plate 140 defines a longitudinal axis from thefront end 146 to therear end 148. When theshoe 120 andshoe plate 140 are secured to one another, thetop side 142 of theshoe plate 140 is adjacent to thebottom side 129 of thebottom 128 of theshoe 120, and the front and rear ends of the shoe respectively align with the front and rear ends of the shoe plate. Each of the 154,155 has aopposite sidewalls front end cutout 156,157 about thefront end 146 and arear end cutout 158,159 about therear end 148 of theshoe plate 140 for accommodating the configuration of the corresponding 180F,180R.shock absorbing units - As a non-limiting example and as shown in
FIGS. 2-8 , the first, or front,shock absorbing unit 180F is secured to theshoe plate 140 at about thefront end 146 of theshoe plate 140 by means of fourvertical fasteners 182F, while the second, or rear,shock absorbing unit 180R is secured to theshoe plate 140 at about therear end 148 of theshoe plate 140 by means of fourvertical fasteners 182R. When the front and rear 180F,180R are secured to theshock absorbing units shoe plate 140, the front and rear 180F,180R are generally positioned downward from theshock absorbing units bottom side 144 of theshoe plate 140 at the 156,157,158,159 about the front andcorresponding cutouts 146,148 of therear ends shoe plate 140. - Each of the front and rear
180F,180R correspondingly includes ashock absorbing units 184F,184R having a plurality ofbracket fastener apertures 186F,186R and a plurality ofspring apertures 188F,188R located at predetermined positions, a 190F,190R having a plurality ofshoulder member fastener apertures 192F,192R and a plurality ofspring apertures 194F,194R located at predetermined positions, and other corresponding components described below. Each 184F,184R functions as a two-way shock absorbing housing. As shown inbracket FIGS. 1-3 and 9, the 156,157,158,159 of thecutouts shoe plate 140 and the 184F,184R have corresponding angular shapes for a solid stationary assembly under extreme usage from a skater, wherein thebrackets 184F,184R supports thebracket 190F,190R adapted for moving horizontally under pressure with a shock absorbing means or system, such as a system including a plurality of horizontally-mountedshoulder member compression springs 196R and a plurality of horizontalalien plugs 198F,198R, or a shock absorbing material comprised of rubber and/or urethane (not shown). - When a system including four horizontally-mounted
196F,196R is employed as the shock absorbing means or system, two of the four corresponding horizontally-mountedcompression springs 196F,196R compress while the other twocompression springs 196F,196R extend, wherein thecorresponding compression springs 196F,196R keep thecompression springs 190F,190R in a centered position under pressure that is evenly adjusted by means of fourshoulder member horizontal allen plugs 198F,198R. This assembly will function from the skater shifting weight from left to right, or vice versa, and for the 190F,190R to rotate accordingly from the distribution of pressure that is transferred to the skate mechanisms from the skater for exact desired directional turning. Two largeshoulder member 199F,199R separate thethin washers 184F,184R from thebracket 190F,190R to ensure smooth rotation of theshoulder member 190F,190R. Eachshoulder member 190F,190R has two arm attachments 200 aF,200 bF,200 aR,200 bR, wherein each arm attachment 200 aF,200 bF,200 aR,200 bR accommodates one wheel pin 202 aF,202 bF,202 aR,202 bR that is secured by means of a small alien plug 204 aF,204 bF,204 aR,204 bR and a wheel 260 aF,260 bF,260 aR,260 bR. Each arm attachment 200 aF,2D0 bF,200 aR, 200 bR is mounted to the bottom of theshoulder member 190F,190R by means of a fastener 206 aF,206 bF,206 aR,206 bR and is secured by a lock nut 208 aF,208 bF,208 aR,208 bR. Each arm attachment 200 aF,200 bF,200 aR,200 bR has two small allen plugs 210 aF,210 bF,210 aR,210 bR mounted diagonally. The two allen plugs 210 aF,210 bF,210 aR,210 bR accommodate two diagonally mounted compression springs 212 aF,212 bF,212 aR,212 bR, wherein one end of the diagonally mounted compression spring 212 aF,212 bF,212 aR,212 bR rests over the allen plug 210 aF,210 bF,210 aR,210 bR and the other end rests in the angled hole 214 aF,214 bF,214 aR,214 bR in thecorresponding shoulder member 190F,190R. Each diagonally mounted compression spring 212 aF,212 bF,212 aR,212 bR is to be evenly adjusted by means of two allen plugs 216 aF,216 bF,216 aR,216 bR mounted from the top of thecorresponding shoulder member 190F,190R for each of the assemblies of the arm attachments 200 aF,200 bF,200 aR,200 bR. Two of the arm attachments 200 aF,200 bF, 200 aR,200 bR are synchronized by means of the arm attachments' parts that will force the two arm attachments 200 aF,200 bF, 200 aR,200 bR to perform a cam action that shifts in opposite directions at the same time; this function is shown incorresponding shoulder member FIG. 6 . The cam performance is assisted by a bushing 218 aF,218 bF, 218 aR,218 bR for smooth assemblage and precision movement of the two arm attachments assembly. - Each of the front and rear
180F,180R may be secured to theshock absorbing units shoe plate 140 by means of a high density titanium clevis pin 220F,220R mounted from the top of theshoe plate 140 in the assembly order thereof. Each clevis pin 220F,220R is assembled through the 184F,184R, through twocorresponding bracket 199F,199R, through thelarge washers 190F,190R, throughshoulder member thrust bearing member 222F,222R, through abrace 224, and throughdisc spring 226F,226R, and then secured by means of an 228F,228R. As shown inallen plug FIGS. 3 and 4 , the first and second 180F,180R are stabilized by means of theshock absorbing units brace 224 that is mounted through both of the 180F,180R and secured directly to each underportion of theshock absorbing units 180F,180R with two vertically mountedshock absorbing units 230F,230R.allen fasteners - As a non-limiting example and as shown in
FIGS. 1-4 , the first, or front, brake means orunit 320F is comprised of afront brake body 322 and afront brake pad 324. Thefront brake unit 320F is mounted about thefront end 146 of theshoe plate 140 and is secured or fastened primarily by fourhorizontal fasteners 326F mounted through theshoe plate 140 and into the threaded portion of thefront brake body 322. Secondary means of securing the front brake unit 320 is twodiagonal fasteners 328F mounted through theshoe plate 140, through thefront brake body 322 and into the threaded portion of thebracket 184F. As a non-limiting example, thefront brake pad 324 may be a cube style cut of an automobile tire that have steel belted or high density fiber construction for firm stable mounting to thefront brake body 322 by means of three fasteners (not shown) mounted at an angle. - Also as a non-limiting example and as shown in
FIGS. 1-4 , the second, or rear, brake means orunit 320R is comprised of arear brake body 332 and arear brake pad 334. Therear brake unit 320R is mounted about therear end 148 of theshoe plate 140 and is secured or fastened primarily by fourhorizontal fasteners 326R fastened through theshoe plate 140 and into the threaded portion of therear brake body 332. Secondary means of securing therear brake unit 320R is twodiagonal fasteners 328R mounted through theshoe plate 140 through therear brake body 332 and into the threaded portion of thebracket 184R. As a non-limiting example, therear brake pad 334 may be a cube style cut of an automobile tire that have steel belted or high density fiber construction for firm stable mounting to therear brake body 332 by means of threefasteners 330R mounted on an angle. - The main purpose of the mentioned two means and methods of securing the front and
320F,320R is to transfer the high tension points created by therear brake units front brake unit 320F andrear brake unit 320R when the 320F,320R are engaged under heavy weight and high vibration. The twobrake units 328F,328R are respectively assembled through the top of the front andangled fasteners 146,148 of therear ends shoe plate 140 through the 322,332 and fastened into the angled threaded portion of thebrake bodies 184F,184R. This is to counter the high tension put on thebracket front brake unit 320F andrear brake unit 320R, moving the pressure from the upper corner of the 184F,184R and thebracket shoe plate 140 and transferring it to the reinforced 328F,328R located at the top of theangled fasteners front end 146 andrear end 148 of theshoe plate 140. This is to insure firm stable assemblage. - The totality of parts that make up the full assembly has a final stabilizing means and method to achieve a power tying mechanism that bring all mentioned parts together to function as one multi-flexing unit under extreme skating usage by way of the
brace block 380 that is firmly secured to theshoe plate 140 by way of fourhorizontal fasteners 382 assembled through theshoe plate 140 and mounted into thebrace block 380 to complete the parts power tying function. Thebrace block 380 is secured to thebrace 224 by means of twovertical fasteners 384 that are assembled through the bottom of thebrace 224 into thebrace block 380. The front end and rear end of thebrace 224 make up the link assembly that is a major part in the front and rear 180F,180R. This power tie will also assist in minimizing vibration that makes its way up through the skates through the feet into the shins and up to the knees of the skater. The power tie means and method creates a grounding effect through the uniting of mentioned parts all to become one connected assembly that will assist the health, well-being and safety of the skater.shock absorbing units - Some or all of the fastener apertures are adapted for receiving, or allowing passage of, fasteners that secure components of the shock absorbing
tandem roller skate 100 to one another. As non-limiting examples, some fastener apertures are threaded vertically, horizontally or in an angled direction to accommodate corresponding threaded fasteners. It is obvious to one of ordinary skill in the art that the apertures may not be threaded, and thus other types of fasteners, such as nuts and bolts, may be alternatively implemented in the present invention. It is also obvious to one of ordinary skill in the art that the components of the shock absorbingtandem roller skate 100 may be secured to one another by alternative means, such as injection molding. - In another aspect of the shock absorbing
roller skate 100 and as shown inFIG. 9 , an additionalfront boot plate 57 provides capability for different types or styles of shoes orboots 120, in many configurations relating to fitness, performance or racing, being mounted to theshoe plate 140. Thefront boot plate 57 can be mounted using either smallvertical plate fasteners 59 or plate rivets 60 to give the rider or skater more boot options. There is one large rearvertical fastener 56 to be fastened from beneath the shoe plate into the rear of the heal of theboot 120. - The shock absorbing technology of the present invention can be used in the skateboard industry and scooter industry, as well as various industries involving carrying products that require wheel assembly mechanisms.
- As a non-limiting example and as shown in
FIGS. 10-13 , an off-road skateboard 400 utilizes all the same parts for the front and rear 420F,420R, in comparison with front and rearshock absorbing units 180F,180R, with the exception of ashock absorbing units 437F,437R and an off-longer arm 444F,444R secured to theroad skateboard brace board 446 by means of twovertical fasteners 448R. As shown inFIG. 10 , the off-road skateboard 400 includes 4-inch street wheel 438 aF,438 bF,438 aR,438 bR with the same wheel pin 202 aF,202 bF,202 aR,202 bR as previously described above for the 180F,180R. To give clearance for the 4-inch wheel 438 aF,438 bF,438 aR,438 bR, an off-shock absorbing units 440F,440R attaches to theroad skateboard block 184F,184R by means of four longbracket 441F,441R through thevertical fasteners board 446 and through the 440F,440R and fastens intoblock 184F,184R. Extra support is provided by four additional smallerbracket 442F,442R being inserted through thevertical fasteners board 446 into the 440F,440R to maintain extra stability for extreme off-road riding conditions. A frontblock foot strap device 460F and a rearfoot strap device 460R are provided for maneuvering and guiding of theskateboard 400 by safely securing the feet of the rider for lifting the off-road skateboard 400, with the 443F,443R being flexible and adjustable for total attachment to the feet of the rider. Each of the front and rearstrap 460F,460R includes thefoot strap devices 443F,443R,foot strap 445F,445R, and a swiveling securingcomfort pad 447F,447R. As shown infastener FIG. 11 , the off-road skateboard 400 utilizes all the same parts as the off-road skateboard shown inFIG. 10 with the exception of larger wheels 439 aF,439 bF,439 aR,439 bR for dirt or grass. - As a non-limiting example and as shown in
FIG. 14 , astandard skateboard 500 utilizes all the same parts as the off-road skateboard 400 with the exception of atraditional board 549,smaller skateboard block 550F,550R and smaller traditional skateboard wheel 551 aF,551 bF,551 aR,551 bR. - As a non-limiting example and as shown in
FIGS. 15-17 , ascooter 600 utilizes all the same part as the off-road skateboard 400 with the exception of ascooter board 655 with anadditional neck 652, ahandle bar 653 and reinforcedsupport 654. The front shock absorbing unit 660 has different configuration to be steered by thescooter handle bar 653 andneck 652 assembly. - It is to be understood that the present invention is not limited to the embodiments described above or as shown in the attached figures, but encompasses any and all embodiments within the spirit of the invention.
Claims (23)
1. A shock absorbing tandem roller skate comprising:
a shoe adapted for receiving a foot of a user;
a shoe plate adapted for being secured to said shoe, said shoe plate comprising a top side, a bottom side, a front end, and a rear end, said shoe plate defining a longitudinal axis from said front end to said rear end, wherein said shoe plate is positioned below said shoe, and wherein said shoe and said shoe plate are in longitudinal alignment with respect to one another;
a first shock absorbing unit adapted for being secured to said shoe plate, said first shock absorbing unit having a shock absorbing mechanism that flexes and absorbs shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism for the user and that flexes according to the motion of the user and to the direction of lean of the user when the weight of the user shifts;
a second shock absorbing unit adapted for being secured to said shoe plate, said second shock absorbing unit having a shock absorbing mechanism that flexes and absorbs shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism for the user and that flexes according to the motion of the user and to the direction of lean of the user when the weight of the user shifts;
at least a first pair of wheels adapted for being secured to and being in communication with said first shock absorbing unit, said at least a first pair of wheels defining a longitudinal axis from a first wheel to a second wheel of said at least a first pair of wheels, wherein said longitudinal axis of said at least a first pair of wheels is generally perpendicular to said longitudinal axis of said shoe plate;
at least a second pair of wheels adapted for being secured to and being in communication with said second shock absorbing unit, said at least a second pair of wheels defining a longitudinal axis from a first wheel to a second wheel of said at least a second pair of wheels, wherein said longitudinal axis of said at least a second pair of wheels is generally perpendicular to said longitudinal axis of said shoe plate and is generally parallel to said longitudinal axis of said at least a first pair of wheels;
means for providing braking to said at least a first pair of wheels; and
means for providing braking to said at least a second pair of wheels.
2. The shock absorbing tandem roller skate according to claim 1 , wherein said shoe plate further comprising a body portion extending between said front end and said rear end of said shoe plate, a pair of opposite sidewalls, and a plurality of fastener apertures located at predetermined locations along said shoe plate, wherein each of said opposite sidewalls has a front end cutout about said front end and a rear end cutout about said rear end for accommodating the shapes of said first and second shock absorbing units, and wherein said front end cutouts are aligned opposite one another and said rear end cutouts are aligned opposite one another.
3. The shock absorbing tandem roller skate according to claim 1 , wherein said first shock absorbing unit is positioned generally downward from said bottom side of said shoe plate about said front end of said shoe plate, and wherein said second shock absorbing unit is positioned generally downward from said bottom side of said shoe plate about said rear end of said shoe plate.
4. The shock absorbing tandem roller skate according to claim 1 , wherein said shock absorbing mechanism of each of said first and second shock absorbing units comprises a plurality of horizontally-mounted compression springs wherein at least two of said horizontally-mounted compression springs correspondingly compress while at least two of said horizontally-mounted compression springs correspondingly extend.
5. The shock absorbing tandem roller skate according to claim 1 , wherein said means for providing braking to said at least a first pair of wheels is secured about said front end of said shoe plate and said means for providing braking to said at least a second pair of wheels is secured about said rear end of said shoe plate.
6. The shock absorbing tandem roller skate according to claim 1 , further comprising a brace block and a brace having a first end and a second end, wherein said brace block is adapted for being secured to said shoe plate and said brace is adapted for being secured to said brace block, wherein said first end of said brace is secured about said first shock absorbing unit and said second end of said brace is secured about said second shock absorbing unit, and wherein said brace block and said brace are adapted for mechanically communicating with said first and second shock absorbing units to function as one multi-flexing unit.
7. The shock absorbing tandem roller skate according to claim 1 , further comprising a second shoe plate, wherein said second shoe plate is secured above said top side of said shoe plate about said front end of said shoe plate.
8. A shock absorbing tandem roller skate comprising:
a roller skate shoe adapted for receiving a foot of a user, said shoe having a front end, a rear end, an upper portion, and a bottom having a bottom side;
a shoe plate adapted for being secured to said shoe, said shoe plate having a top side, a bottom side, a front end, a rear end, a body portion extending between said front end and said rear end of said shoe plate, a pair of opposite sidewalls, and a plurality of fastener apertures located at predetermined locations along said shoe plate, wherein each of said opposite sidewalls has a front end cutout about said front end and a rear end cutout about said rear end wherein said front end cutouts are aligned opposite one another and said rear end cutouts are aligned opposite one another, said shoe plate defining a longitudinal axis from said front end to said rear end, wherein said shoe plate is positioned below said shoe, and wherein said shoe and said shoe plate are in longitudinal alignment with respect to one another;
a first shock absorbing unit adapted for being secured to said shoe plate, wherein said first shock absorbing unit is positioned generally downward from said bottom side of said shoe plate about said front end of said shoe plate, said first shock absorbing unit having a shock absorbing mechanism that flexes and absorbs shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism for the user and that flexes according to the motion of the user and to the direction of lean of the user when the weight of the user shifts;
a second shock absorbing unit adapted for being secured to said shoe plate, wherein said second shock absorbing unit is positioned generally downward from said bottom side of said shoe plate about said rear end of said shoe plate, said second shock absorbing unit having a shock absorbing mechanism that flexes and absorbs shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism for the user and that flexes according to the motion of the user and to the direction of lean of the user when the weight of the user shifts;
at least a first pair of wheels adapted for being secured to and being in communication with said first shock absorbing unit, said at least a first pair of wheels defining a longitudinal axis from a first wheel to a second wheel of said at least a first pair of wheels, wherein said longitudinal axis of said at least a first pair of wheels is generally perpendicular to said longitudinal axis of said shoe plate;
at least a second pair of wheels adapted for being secured to and being in communication with said second shock absorbing unit, said at least a second pair of wheels defining a longitudinal axis from a first wheel to a second wheel of said at least a second pair of wheels, wherein said longitudinal axis of said at least a second pair of wheels is generally perpendicular to said longitudinal axis of said shoe plate and is generally parallel to said longitudinal axis of said at least a first pair of wheels;
means for providing braking to said at least a first pair of wheels; and
means for providing braking to said at least a second pair of wheels.
9. The shock absorbing tandem roller skate according to claim 8 , wherein said shock absorbing mechanism of each of said first and second shock absorbing units comprises a plurality of horizontally-mounted compression springs wherein at least two of said horizontally-mounted compression springs correspondingly compress while at least two of said horizontally-mounted compression springs correspondingly extend.
10. The shock absorbing tandem roller skate according to claim 8 , wherein said means for providing braking to said at least a first pair of wheels is secured about said front end of said shoe plate and said means for providing braking to said at least a second pair of wheels is secured about said rear end of said shoe plate.
11. The shock absorbing tandem roller skate according to claim 8 , further comprising a brace block and a brace having a first end and a second end, wherein said brace block is adapted for being secured to said shoe plate and said brace is adapted for being secured to said brace block, wherein said first end of said brace is secured about said first shock absorbing unit and said second end of said brace is secured about said second shock absorbing unit, and wherein said brace block and said brace are adapted for mechanically communicating with said first and second shock absorbing units to function as one multi-flexing unit.
12. The shock absorbing tandem roller skate according to claim 8 , further comprising a second shoe plate, wherein said second shoe plate is secured above said top side of said shoe plate about said front end of said shoe plate.
13. A shock absorbing skateboard comprising:
a board comprising a top side, a bottom side, a front end, a rear end, and a body portion extending between said front end and said rear end, said board defining a longitudinal axis from said front end to said rear end;
a first shock absorbing unit adapted for being secured to said board, said first shock absorbing unit having a shock absorbing mechanism that flexes and absorbs shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism for the user and that flexes according to the motion of the user and to the direction of lean of the user when the weight of the user shifts;
a second shock absorbing unit adapted for being secured to said board, said second shock absorbing unit having a shock absorbing mechanism that flexes and absorbs shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism for the user and that flexes according to the motion of the user and to the direction of lean of the user when the weight of the user shifts;
at least a first pair of wheels adapted for being secured to and being in communication with said first shock absorbing unit, said at least a first pair of wheels defining a longitudinal axis from a first wheel to a second wheel of said at least a first pair of wheels, wherein said longitudinal axis of said at least a first pair of wheels is generally perpendicular to said longitudinal axis of said board; and
at least a second pair of wheels adapted for being secured to and being in communication with said second shock absorbing unit, said at least a second pair of wheels defining a longitudinal axis from a first wheel to a second wheel of said at least a second pair of wheels, wherein said longitudinal axis of said at least a second pair of wheels is generally perpendicular to said longitudinal axis of said board and is generally parallel to said longitudinal axis of said at least a first pair of wheels.
14. The shock absorbing skateboard according to claim 13 , wherein said board further comprising a plurality of fastener apertures located at predetermined locations along said board.
15. The shock absorbing skateboard according to claim 13 , wherein said first shock absorbing unit is positioned generally downward from said bottom side of said board about said front end of said board, and wherein said second shock absorbing unit is positioned generally downward from said bottom side of said board about said rear end of said board.
16. The shock absorbing skateboard according to claim 13 , wherein said shock absorbing mechanism of each of said first and second shock absorbing units comprises a plurality of horizontally-mounted compression springs wherein at least two of said horizontally-mounted compression springs correspondingly compress while at least two of said horizontally-mounted compression springs correspondingly extend.
17. The shock absorbing skateboard according to claim 11 , further comprising a front foot strap device and a rear foot strap device.
18. The shock absorbing skateboard according to claim 17 , wherein each of said foot strap devices comprises a foot strap, a comfort pad, and a swiveling securing fastener.
19. A shock absorbing scooter comprising:
a scooter board comprising a top side, a bottom side, a front end, a rear end, and a body portion extending between said front end and said rear end, said scooter board defining a longitudinal axis from said front end to said rear end;
a neck extending upwardly from said front end of said scooter board, said neck comprising a first end and a second end wherein said first end of said neck is positioned about said front end of said scooter board;
a handle bar adapted for being secured about said second end of said neck;
a first shock absorbing unit adapted for being secured to said scooter board, said first shock absorbing unit having a shock absorbing mechanism that flexes and absorbs shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism for the user and that flexes according to the motion of the user and to the direction of lean of the user when the weight of the user shifts;
a second shock absorbing unit adapted for being secured to said scooter board, said second shock absorbing unit having a shock absorbing mechanism that flexes and absorbs shock horizontally and diagonally in a simultaneous manner to provide a steering mechanism for the user and that flexes according to the motion of the user and to the direction of lean of the user when the weight of the user shifts;
at least a first pair of wheels adapted for being secured to and being in communication with said first shock absorbing unit, said at least a first pair of wheels defining a longitudinal axis from a first wheel to a second wheel of said at least a first pair of wheels, wherein said longitudinal axis of said at least a first pair of wheels is generally perpendicular to said longitudinal axis of said scooter board; and
at least a second pair of wheels adapted for being secured to and being in communication with said second shock absorbing unit, said at least a second pair of wheels defining a longitudinal axis from a first wheel to a second wheel of said at least a second pair of wheels, wherein said longitudinal axis of said at least a second pair of wheels is generally perpendicular to said longitudinal axis of said scooter board and is generally parallel to said longitudinal axis of said at least a first pair of wheels.
20. The shock absorbing scooter according to claim 19 , wherein said scooter board further comprising a plurality of fastener apertures located at predetermined locations along said scooter board.
21. The shock absorbing scooter according to claim 19 , wherein said first shock absorbing unit is positioned generally downward from said bottom side of said scooter board about said front end of said board, and wherein said second shock absorbing unit is positioned generally downward from said bottom side of said scooter board about said rear end of said board.
22. The shock absorbing scooter according to claim 19 , wherein said shock absorbing mechanism of each of said first and second shock absorbing units comprises a plurality of horizontally-mounted compression springs wherein at least two of said horizontally-mounted compression springs correspondingly compress while at least two of said horizontally-mounted compression springs correspondingly extend.
23. The shock absorbing scooter according to claim 19 , further comprising a reinforced support positioned rearward about said first end of said neck.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/784,397 US20080246235A1 (en) | 2007-04-05 | 2007-04-05 | Shock absorbing tandem roller skate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/784,397 US20080246235A1 (en) | 2007-04-05 | 2007-04-05 | Shock absorbing tandem roller skate |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080246235A1 true US20080246235A1 (en) | 2008-10-09 |
Family
ID=39826277
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/784,397 Abandoned US20080246235A1 (en) | 2007-04-05 | 2007-04-05 | Shock absorbing tandem roller skate |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20080246235A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120248718A1 (en) * | 2011-03-31 | 2012-10-04 | Riedell Shoes, Inc. | Truck assembly |
| CN103007517A (en) * | 2012-10-26 | 2013-04-03 | 黄振华 | Drift plate with independent cylinder shock-proof structure |
| US8556275B1 (en) | 2011-03-31 | 2013-10-15 | Riedell Shoes, Inc. | Truck assembly |
| US8857824B2 (en) | 2011-03-31 | 2014-10-14 | Riedell Shoes, Inc. | Truck assembly |
| US20150042083A1 (en) * | 2012-03-14 | 2015-02-12 | Rundle Sport Inc. | Suspension Roller Ski |
| US10617934B2 (en) * | 2019-04-16 | 2020-04-14 | Dongguan Hongmei Sports Equipment Co., Ltd. | Bottom structure of roller skate |
Citations (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US317501A (en) * | 1885-05-12 | And george | ||
| US321434A (en) * | 1885-07-07 | Roller-skate | ||
| US329557A (en) * | 1885-11-03 | Roller-skate | ||
| US1018512A (en) * | 1910-05-18 | 1912-02-27 | Eberhard F Mees | Roller-skate. |
| US1603529A (en) * | 1925-10-12 | 1926-10-19 | John W Talbot | Roller skate |
| US1616952A (en) * | 1926-02-25 | 1927-02-08 | Dahl John | Roller skate |
| US2126359A (en) * | 1936-05-22 | 1938-08-09 | Vogt Clarence | Roller skate |
| US2330147A (en) * | 1941-06-21 | 1943-09-21 | Joseph M Rodriguez | Scooter car chassis and truck |
| US3086787A (en) * | 1960-08-03 | 1963-04-23 | Christine A Wyche | Roller skate |
| US4054297A (en) * | 1976-06-18 | 1977-10-18 | Ermico Enterprises | Weight biased steering mechanism |
| US4152001A (en) * | 1977-11-28 | 1979-05-01 | Tony Christianson | Skateboard truck |
| US4272091A (en) * | 1979-05-09 | 1981-06-09 | Reid Jr Thomas J | Roller skate |
| US4278264A (en) * | 1979-07-06 | 1981-07-14 | Lenz Brent L | Skate |
| US4394028A (en) * | 1981-03-13 | 1983-07-19 | Wheelwright Joseph S | Skate |
| US4402521A (en) * | 1980-10-20 | 1983-09-06 | Mongeon Douglas R | Roller skate plate assembly with floating axles |
| US4657265A (en) * | 1985-12-13 | 1987-04-14 | Ruth Paul M | Convertible skate |
| US4838564A (en) * | 1984-10-01 | 1989-06-13 | Jarvis Patrick T | Steerable roller skate |
| US5183277A (en) * | 1991-05-13 | 1993-02-02 | Tang Kuo Tai | Steerable roller skate |
| US5224718A (en) * | 1990-11-28 | 1993-07-06 | Robert Gertler | Foot transport device |
| US5263725A (en) * | 1992-02-24 | 1993-11-23 | Daniel Gesmer | Skateboard truck assembly |
| US5330208A (en) * | 1993-03-22 | 1994-07-19 | Charron Francois E | Shock absorbent in-line roller skate |
| US5342071A (en) * | 1993-05-06 | 1994-08-30 | Mike Soo | In-line roller skate brake assembly |
| US5551713A (en) * | 1995-06-13 | 1996-09-03 | Alexander; Joshua | Shock absorbing blade roller skates |
| US5575489A (en) * | 1993-03-22 | 1996-11-19 | Oyen; Gerald O. S. | Shock absorbent in-line roller skate |
| US5685551A (en) * | 1994-06-13 | 1997-11-11 | Nordica S.P.A. | Roller skate with improved performance |
| US5704621A (en) * | 1995-09-26 | 1998-01-06 | Lazarevich; Ronald S. | Suspension system for an in-line roller skate |
| US5709396A (en) * | 1994-06-09 | 1998-01-20 | Nordica S.P.A. | Roller skate with improved comfort |
| US5735537A (en) * | 1994-05-13 | 1998-04-07 | Nordica S.P.A. | Braking device particularly for skates |
| US5752707A (en) * | 1995-07-28 | 1998-05-19 | David Geoffrey Peck | Cuff-activated brake for in-line roller skate |
| US5755449A (en) * | 1993-11-09 | 1998-05-26 | Nordica, S.P.A. | In-line skate |
| US5887361A (en) * | 1996-11-08 | 1999-03-30 | Salomon S.A. | Sports boot with a mobile collar |
| US5918888A (en) * | 1992-09-01 | 1999-07-06 | Nordica S.P.A. | Braking device particularly for skates |
| US5931480A (en) * | 1996-10-28 | 1999-08-03 | Schroeder; Scott T. | Footgear suspension device |
| US6012727A (en) * | 1999-02-10 | 2000-01-11 | Chang; Sheng-Tai | Vibration absorber assembly for the wheel seat of a roller skate |
| US6086072A (en) * | 1998-09-25 | 2000-07-11 | Prus; Robert S. | In-line skate suspension system |
| US6260871B1 (en) * | 1998-04-21 | 2001-07-17 | Yingjie Liu | Tangential wheel suspension system |
| US6279930B1 (en) * | 1999-12-27 | 2001-08-28 | Yun-Chuan Chang | Structure of scooter |
| US6286843B1 (en) * | 2000-09-05 | 2001-09-11 | Su-Yu Lin | Steering mechanism of handle-controlled skate board |
| US6299186B1 (en) * | 2000-04-28 | 2001-10-09 | Chuan-Fu Kao | Antishock structure of scooter |
| US6318739B1 (en) * | 1999-05-27 | 2001-11-20 | Albert Lucien Fehn, Jr. | Suspension for a skateboard |
| US6382646B1 (en) * | 2001-01-24 | 2002-05-07 | Athony Shaw | Kick scooter steering control mechanism |
| US6416063B1 (en) * | 1998-01-28 | 2002-07-09 | Scott H. Stillinger | High performance skate |
| US20020096848A1 (en) * | 2001-01-25 | 2002-07-25 | Hau-Chang Wei | Shock absorbing skateboard device |
| US20030057670A1 (en) * | 2001-09-21 | 2003-03-27 | Chang Tuan | Resilient force-adjusting structure for skate board |
| US6644673B2 (en) * | 1996-09-06 | 2003-11-11 | Sprung Suspensions, Inc. | Independent suspension system for in-line skates having rocker arms and adjustable springs |
| US6663116B2 (en) * | 1993-12-23 | 2003-12-16 | Brian Lee Evans | Independent suspension vehicle truck for supporting a ground contacting device |
| US6863283B1 (en) * | 2002-09-27 | 2005-03-08 | Arnold W. Houston | Shock absorbing quad and inline roller skates |
| US20050248106A1 (en) * | 2001-05-31 | 2005-11-10 | Claudio Balconi | Skate, particularly for aggressive skating |
| US7073798B1 (en) * | 1995-12-08 | 2006-07-11 | Salomon S.A. | Roller skate |
| US7121561B2 (en) * | 2003-08-25 | 2006-10-17 | Strappers, L.L.C. | Roller skate and wheel trucks therefor |
| US20070145698A1 (en) * | 2005-12-27 | 2007-06-28 | Jack Liu | Cushion for in-line skate |
| US7243925B2 (en) * | 2002-08-29 | 2007-07-17 | System Boards Australia Pty Ltd | Truck assemblies for skateboards |
-
2007
- 2007-04-05 US US11/784,397 patent/US20080246235A1/en not_active Abandoned
Patent Citations (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US317501A (en) * | 1885-05-12 | And george | ||
| US321434A (en) * | 1885-07-07 | Roller-skate | ||
| US329557A (en) * | 1885-11-03 | Roller-skate | ||
| US1018512A (en) * | 1910-05-18 | 1912-02-27 | Eberhard F Mees | Roller-skate. |
| US1603529A (en) * | 1925-10-12 | 1926-10-19 | John W Talbot | Roller skate |
| US1616952A (en) * | 1926-02-25 | 1927-02-08 | Dahl John | Roller skate |
| US2126359A (en) * | 1936-05-22 | 1938-08-09 | Vogt Clarence | Roller skate |
| US2330147A (en) * | 1941-06-21 | 1943-09-21 | Joseph M Rodriguez | Scooter car chassis and truck |
| US3086787A (en) * | 1960-08-03 | 1963-04-23 | Christine A Wyche | Roller skate |
| US4054297A (en) * | 1976-06-18 | 1977-10-18 | Ermico Enterprises | Weight biased steering mechanism |
| US4152001A (en) * | 1977-11-28 | 1979-05-01 | Tony Christianson | Skateboard truck |
| US4272091A (en) * | 1979-05-09 | 1981-06-09 | Reid Jr Thomas J | Roller skate |
| US4278264A (en) * | 1979-07-06 | 1981-07-14 | Lenz Brent L | Skate |
| US4402521A (en) * | 1980-10-20 | 1983-09-06 | Mongeon Douglas R | Roller skate plate assembly with floating axles |
| US4394028A (en) * | 1981-03-13 | 1983-07-19 | Wheelwright Joseph S | Skate |
| US4838564A (en) * | 1984-10-01 | 1989-06-13 | Jarvis Patrick T | Steerable roller skate |
| US4657265A (en) * | 1985-12-13 | 1987-04-14 | Ruth Paul M | Convertible skate |
| US5224718A (en) * | 1990-11-28 | 1993-07-06 | Robert Gertler | Foot transport device |
| US5183277A (en) * | 1991-05-13 | 1993-02-02 | Tang Kuo Tai | Steerable roller skate |
| US5263725A (en) * | 1992-02-24 | 1993-11-23 | Daniel Gesmer | Skateboard truck assembly |
| US5918888A (en) * | 1992-09-01 | 1999-07-06 | Nordica S.P.A. | Braking device particularly for skates |
| US5330208A (en) * | 1993-03-22 | 1994-07-19 | Charron Francois E | Shock absorbent in-line roller skate |
| US5575489A (en) * | 1993-03-22 | 1996-11-19 | Oyen; Gerald O. S. | Shock absorbent in-line roller skate |
| US5342071A (en) * | 1993-05-06 | 1994-08-30 | Mike Soo | In-line roller skate brake assembly |
| US5755449A (en) * | 1993-11-09 | 1998-05-26 | Nordica, S.P.A. | In-line skate |
| US6663116B2 (en) * | 1993-12-23 | 2003-12-16 | Brian Lee Evans | Independent suspension vehicle truck for supporting a ground contacting device |
| US5735537A (en) * | 1994-05-13 | 1998-04-07 | Nordica S.P.A. | Braking device particularly for skates |
| US5709396A (en) * | 1994-06-09 | 1998-01-20 | Nordica S.P.A. | Roller skate with improved comfort |
| US5685551A (en) * | 1994-06-13 | 1997-11-11 | Nordica S.P.A. | Roller skate with improved performance |
| US5551713A (en) * | 1995-06-13 | 1996-09-03 | Alexander; Joshua | Shock absorbing blade roller skates |
| US5752707A (en) * | 1995-07-28 | 1998-05-19 | David Geoffrey Peck | Cuff-activated brake for in-line roller skate |
| US5704621A (en) * | 1995-09-26 | 1998-01-06 | Lazarevich; Ronald S. | Suspension system for an in-line roller skate |
| US7073798B1 (en) * | 1995-12-08 | 2006-07-11 | Salomon S.A. | Roller skate |
| US6644673B2 (en) * | 1996-09-06 | 2003-11-11 | Sprung Suspensions, Inc. | Independent suspension system for in-line skates having rocker arms and adjustable springs |
| US5931480A (en) * | 1996-10-28 | 1999-08-03 | Schroeder; Scott T. | Footgear suspension device |
| US5887361A (en) * | 1996-11-08 | 1999-03-30 | Salomon S.A. | Sports boot with a mobile collar |
| US6416063B1 (en) * | 1998-01-28 | 2002-07-09 | Scott H. Stillinger | High performance skate |
| US6260871B1 (en) * | 1998-04-21 | 2001-07-17 | Yingjie Liu | Tangential wheel suspension system |
| US6086072A (en) * | 1998-09-25 | 2000-07-11 | Prus; Robert S. | In-line skate suspension system |
| US6012727A (en) * | 1999-02-10 | 2000-01-11 | Chang; Sheng-Tai | Vibration absorber assembly for the wheel seat of a roller skate |
| US6318739B1 (en) * | 1999-05-27 | 2001-11-20 | Albert Lucien Fehn, Jr. | Suspension for a skateboard |
| US6279930B1 (en) * | 1999-12-27 | 2001-08-28 | Yun-Chuan Chang | Structure of scooter |
| US6299186B1 (en) * | 2000-04-28 | 2001-10-09 | Chuan-Fu Kao | Antishock structure of scooter |
| US6286843B1 (en) * | 2000-09-05 | 2001-09-11 | Su-Yu Lin | Steering mechanism of handle-controlled skate board |
| US6382646B1 (en) * | 2001-01-24 | 2002-05-07 | Athony Shaw | Kick scooter steering control mechanism |
| US20020096848A1 (en) * | 2001-01-25 | 2002-07-25 | Hau-Chang Wei | Shock absorbing skateboard device |
| US20050248106A1 (en) * | 2001-05-31 | 2005-11-10 | Claudio Balconi | Skate, particularly for aggressive skating |
| US6616155B2 (en) * | 2001-09-21 | 2003-09-09 | Chang Tuan | Resilient force-adjusting structure for skate board |
| US20030057670A1 (en) * | 2001-09-21 | 2003-03-27 | Chang Tuan | Resilient force-adjusting structure for skate board |
| US7243925B2 (en) * | 2002-08-29 | 2007-07-17 | System Boards Australia Pty Ltd | Truck assemblies for skateboards |
| US6863283B1 (en) * | 2002-09-27 | 2005-03-08 | Arnold W. Houston | Shock absorbing quad and inline roller skates |
| US7121561B2 (en) * | 2003-08-25 | 2006-10-17 | Strappers, L.L.C. | Roller skate and wheel trucks therefor |
| US20070145698A1 (en) * | 2005-12-27 | 2007-06-28 | Jack Liu | Cushion for in-line skate |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120248718A1 (en) * | 2011-03-31 | 2012-10-04 | Riedell Shoes, Inc. | Truck assembly |
| US8550473B2 (en) * | 2011-03-31 | 2013-10-08 | Riedell Shoes, Inc. | Truck assembly |
| US8556275B1 (en) | 2011-03-31 | 2013-10-15 | Riedell Shoes, Inc. | Truck assembly |
| US8857824B2 (en) | 2011-03-31 | 2014-10-14 | Riedell Shoes, Inc. | Truck assembly |
| US8973923B2 (en) | 2011-03-31 | 2015-03-10 | Riedell Shoes, Inc. | Truck assembly |
| US9095765B2 (en) | 2011-03-31 | 2015-08-04 | Riedell Shoes, Inc. | Truck assembly |
| US20150042083A1 (en) * | 2012-03-14 | 2015-02-12 | Rundle Sport Inc. | Suspension Roller Ski |
| US9314687B2 (en) * | 2012-03-14 | 2016-04-19 | Rundle Sport Inc. | Suspension roller ski |
| CN103007517A (en) * | 2012-10-26 | 2013-04-03 | 黄振华 | Drift plate with independent cylinder shock-proof structure |
| US10617934B2 (en) * | 2019-04-16 | 2020-04-14 | Dongguan Hongmei Sports Equipment Co., Ltd. | Bottom structure of roller skate |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4732400A (en) | Scooter board | |
| US8308171B2 (en) | Personal transportation device for supporting a user's foot having multiple transportation attachments | |
| AU2010318724B2 (en) | Roller skate and wheel trucks therefor | |
| US20100090423A1 (en) | Personal transportation device for supporting a user's foot | |
| US20120126523A1 (en) | Laterally sliding roller ski | |
| JP2007523684A (en) | Footrest type human body movement device having a plurality of movement means attachments | |
| US20080246235A1 (en) | Shock absorbing tandem roller skate | |
| US7121561B2 (en) | Roller skate and wheel trucks therefor | |
| US6626441B1 (en) | Bicycle ski link assembly | |
| EP1112208B1 (en) | Snow-type bike | |
| US4886283A (en) | Recreational vehicle | |
| US20050236783A1 (en) | Personal conveyance for recreational use | |
| US8240680B2 (en) | Skiing implement having a simplified structure | |
| US7581735B2 (en) | Skateboard ski with spring suspension | |
| WO2004078288A2 (en) | Low profile roller skate | |
| US6702303B1 (en) | Roller skate vehicle with seat | |
| US20250339758A1 (en) | Low-profile suspension device for skates, skateboards, and the like. | |
| CA2429881C (en) | Gravity driven lean to steer wheeled vehicle | |
| CZ19782U1 (en) | Sport means for ride on snow | |
| KR200435676Y1 (en) | 3-wheel skateboard | |
| JPH0884800A (en) | Skateboard | |
| GB2393663A (en) | A steerable skateboard/scooter hybrid | |
| CA2948337A1 (en) | Foot deck-based vehicle with increased potential energy for ollie-type manoeuvers | |
| DE102011103508A1 (en) | Multi-level snowboard has longer main board, under which sliding board is supported in direction of travel, and sliding board is connected to metallic flange plates and associated axis guides |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |