US20080000393A1 - Self-adjusting goods display system and method - Google Patents
Self-adjusting goods display system and method Download PDFInfo
- Publication number
- US20080000393A1 US20080000393A1 US11/852,538 US85253807A US2008000393A1 US 20080000393 A1 US20080000393 A1 US 20080000393A1 US 85253807 A US85253807 A US 85253807A US 2008000393 A1 US2008000393 A1 US 2008000393A1
- Authority
- US
- United States
- Prior art keywords
- shelf
- light
- support members
- light receiver
- interior space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47F—SPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
- A47F3/00—Show cases or show cabinets
- A47F3/14—Display trays or containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D19/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D19/02—Rigid pallets with side walls, e.g. box pallets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D19/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D19/38—Details or accessories
- B65D19/44—Elements or devices for locating articles on platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/06—Storage devices mechanical with means for presenting articles for removal at predetermined position or level
- B65G1/07—Storage devices mechanical with means for presenting articles for removal at predetermined position or level the upper article of a pile being always presented at the same predetermined level
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00258—Overall construction
- B65D2519/00313—Overall construction of the base surface
- B65D2519/00328—Overall construction of the base surface shape of the contact surface of the base
- B65D2519/00338—Overall construction of the base surface shape of the contact surface of the base contact surface having a discrete foot-like shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00258—Overall construction
- B65D2519/00492—Overall construction of the side walls
- B65D2519/00497—Overall construction of the side walls whereby at least one side wall is made of one piece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00547—Connections
- B65D2519/00577—Connections structures connecting side walls, including corner posts, to each other
- B65D2519/00616—Connections structures connecting side walls, including corner posts, to each other structures not intended to be disassembled
- B65D2519/00621—Connections structures connecting side walls, including corner posts, to each other structures not intended to be disassembled sidewalls directly connected to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00547—Connections
- B65D2519/00636—Connections structures connecting side walls to the pallet
- B65D2519/00666—Structures not intended to be disassembled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00736—Details
- B65D2519/00805—Means for facilitating the removal of the load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00736—Details
- B65D2519/0081—Elements or devices for locating articles
- B65D2519/00815—Elements or devices for locating articles on the pallet
Definitions
- the present invention is directed generally to displays for goods and, more particularly, to adjustable displays typically for retail goods such as produce.
- Many goods such as many produce items can be sold by being arranged in bins.
- produce items such as apples, oranges, or melons can be placed in a bin to attract customer attention and to provide accessibility to aid customers in selection of particular produce items from the bin.
- Customers will typically sort through and rearrange the goods in the process of making a purchase of a small quantity of the goods in the bin so that much time and expense is required to maintain a neat appearance of the goods remaining in the bin.
- each bin is typically restocked frequently with additional goods so that some goods remain near the top of the bin to maintain the visual appeal of the display and easy accessibility of the goods to potential customers. This frequent restocking also requires additional time and expense.
- the present invention resides in a system having a shelf with a top surface sized to support objects, at least one support members supportedly coupled to the shelf and configured to move the shelf to adjust the vertical height for the shelf between a lower position and an upper position, and a motive force source coupled to the support members to move the support member.
- the system further includes a light source positioned to project light along a light path at least in part extending above a portion of the top surface of the shelf while the shelf is in positions below the upper position, and a light receiver positioned to receive the light projected from the light source and to have the light obstructed by at least one of the objects supported by the top surface of the shelf when the shelf is raised to position the at least one object in the light path.
- a controller is configured to activate the source of motive force source to move the support members to raise the vertical height of the shelf when the light receiver receives the light while the shelf is in positions below the upper position.
- the controller may be configured to activate the motive force source to thereby lower the vertical height of the shelf in response to receipt of a lower shelf signal.
- the system includes a bin with a plurality of side walls defining an interior space with an opening to access the interior space from above the bin.
- a table is positioned in the interior space which includes the shelf.
- the present invention may be embodied in a produce display with a bin sized to contain a collection of produce and having an interior space with access from above the bin.
- a shelf is positioned within the interior space and sized to support the collection of produce.
- Support members are movably linked to one another and movably coupled to the shelf to adjust the vertical height for the shelf between a lower position and an upper position.
- a motor with a shaft and a converter are included. The converter is configured to translate rotational motion into linear motion, and is linked to the motor and to at least one of the support members to move the at least one support member and consequently the support members to raise the shelf when the shaft of the motor rotates in a first rotational direction.
- a light source is positioned to project light across at least one of the following: a portion of the interior space and a portion of space above the interior space, and a light receiver is positioned to receive the light projected from the light source unless collection of produce supported by the shelf is positioned to obstruct the light from reaching the light receiver.
- a controller is configured to activate the motor to rotate the shaft in the first rotational direction to raise the shelf when the light receiver receives the light and the shelf is below the upper position.
- the controller is configured to activate the motor to rotate the shaft in a second rotational direction opposite the first rotational direction to lower the shelf when a lower shelf signal is received by the controller.
- the support members may be movably linked to one another to form a scissor lift.
- the system may include first and second pivot members with the support members movably linked to one another by the first pivot members and with the support members movably coupled to the shelf by the second pivot members.
- a bar may be coupled to two of the support members, and the converter may include a screw and a coupler.
- the shaft of the motor may be drivably coupled to the screw, and the screw threadably attached to the bar such that as the motor rotates the screw the screw applies a linear force to the coupler which is transmitted to the bar to adjustably move the two support members to change the vertical height of the shelf.
- the motor may be an electric motor powered by a battery, a pneumatic motor or some other source of motive force.
- a manual switch may be included to activate the motor.
- FIG. 1 is an isometric view of an implementation of a self-adjusting goods display system.
- FIG. 2 is an isometric sectional view of the self-adjusting goods display system of FIG. 1 showing interior components.
- FIG. 3 is a cross-sectional side-elevational view of the self-adjusting goods display system of FIG. 1 containing a first quantity of goods.
- FIG. 4 is a cross-sectional side-elevational view of the self-adjusting display system of FIG. 1 containing a second quantity of goods less than the first quantity of goods.
- a self-adjusting goods display system maintains a proper shelf level for a display bin containing goods. Proper maintenance of shelf level provides better visual appeal and accessibility to aid in sales of the goods in the bin. Typical goods include produce such as stackable fruit and vegetables, sports items such as various balls, and garden supplies such as bags of various materials, etc. Self-adjustment of shelf level by the display system can greatly reduce labor requirements associated with conventional approaches needed for rearranging and restocking of remaining goods as portions are sold to maintain a satisfactory visual appeal and accessibility of the displayed goods.
- FIG. 1 An implementation of a self-adjusting goods display system 10 according to the present invention is shown in FIG. 1 as having an open bin 12 with side walls 13 a - d having top edges 14 .
- the implementation of the open bin 12 is depicted in FIG. 1 as a box structure having four walls 13 a - d .
- Other implementations of the bin 12 are envisioned as having other numbers of walls and having symmetrical or asymmetrical shape.
- a light source 16 and a light receiver 17 are positioned on the top edges 14 of the opposing walls 13 a and 13 c typically near a third wall (e.g. the wall 13 d as shown in FIG.
- the light source 16 generates light 22 (shown in FIGS. 3 and 4 as a line).
- the light 22 is received by the light receiver 17 when shelf adjustment is needed to raise the general level of a pile of goods 18 contained in the open bin 14 . This occurs when the pile of goods 18 is no longer obstructing the light from being received by the light receiver 17 , as explained further below.
- the bin 12 further includes doors 20 on one or more of the walls (such as wall 13 c depicted in FIG. 1 ) to provide access to interior components discussed below.
- implementations locate the light source 16 and the light receiver 17 along the top edges 14 of the opposing walls 13 a and 13 c farther from the third wall 13 d than depicted in FIG. 1 . If it is desirable for display purposes to have the walls 13 a - d of the open bin 12 always extend generally higher than the top surface of the pile of goods 18 , the light source 16 and the light receiver 17 can also be located below the top edges 14 either inside or on interior surfaces of the opposing walls 13 a and 13 c so long as the light 22 can be received by the light receiver 17 at times when the pile of goods 18 are not obstructing the light.
- Other implementations can use a mirror (not shown) located on the wall 13 c that reflects light from the light source 16 located on the wall 13 a back to the same wall 13 a where the light receiver 17 is also located adjacent to the light source.
- the self-adjusting goods display system 10 further includes a variable height table 23 with its table top providing a shelf 24 on which the pile of goods 18 rests, as illustrated in FIGS. 3 and 4 .
- the shelf 24 is supported by a scissor lift 26 having two pairs of scissor support members, each pair having two support members 28 a and 28 b .
- the upper end of support member 28 a is pivotally coupled to the underside of the shelf with a pivot member 30 .
- the support members 28 a and 28 b for each pair are coupled together along their midportion with a pivot member 32 .
- the lower end of each support member 28 b is pivotally coupled to a base mounting plate 34 with an additional pivot member 30 .
- each support member 28 a and the upper end of each support member 28 b has a roller 33 rotatably attached thereto.
- the rollers 33 of the support members 28 a rollably engage the mounting plate 34 and the rollers of the support members 28 b rollably engage the underside of the shelf 24 as the support members 28 a and 28 b pivot about the pivot members 30 when the scissor lift 26 is operating.
- Coupled between the support member 28 a of each pair of scissor support members is a bar 35 that is moved through use of a screw 36 coupled to a motor 38 attached to the mounting plate 34 .
- the motor 38 may be an electric, pneumatic, or hydraulic motor, or other type of motive force source, and can provide a rotary, linear or other output.
- the motor 38 rotatably drives the screw 36 and the screw is coupled to the bar 35 with a nut coupler 37 .
- the combination of the screw 36 and the coupler 37 acts as a converter to convert rotational motion of the screw into linear motion of the bar 35 .
- the bar 35 is moved toward and away from the motor 38 , depending on whether the screw is rotated clockwise or counter-clockwise.
- both of the support members 28 a are also moved back and forth to cause the support members 28 a and 28 b to pivot about the pivot members 30 , and the rollers 33 to roll along the mounting plate 34 and the underside of the shelf 24 .
- the vertical position of the shelf 24 is lowered by the scissor lift 26 and as the bar is moved away from the motor the vertical position of the shelf is raised by the scissor lift.
- the motor 38 is electrically coupled to a battery 40 to furnish electrical energy to the motor.
- a controller 42 is communicatively linked to the light receiver 17 and the motor 38 . In operation, upon receipt of the light 22 from the light source 16 , the light receiver 17 generates a signal that is detected by the controller 42 . The controller 42 , in turn, activates the motor 38 to raise the shelf 24 until either the light receiver 17 ceases receiving the light 22 (as a result of obstruction caused by the newly raised elevation of one or more of the goods in the pile of goods 18 on the shelf), or the shelf reaches a predetermined maximum height.
- the controller 42 senses the signal generated by the light receiver and activates the motor 38 to cause the motor to turn the screw 36 in a direction to raise the shelf 24 until the light 22 is again obstructed by the remaining goods on the shelf and no longer received by the light receiver.
- the controller 42 will deactivate the motor 38 , leaving the shelf 24 at its new elevated position. Consequently, the shelf 24 may be raised from the lower position shown in FIG. 3 to its highest position shown in FIG. 4 in incremental steps sized according to the height of the goods in the pile of goods 18 remaining on the shelf 24 .
- the light 22 from the light source 16 will reach the light receiver 17 and cause the motor 38 to be activated.
- This will raise the shelf 24 until the top of the pile of goods 18 remaining on the shelf is returned to its original and more desirable position. This is done automatically and without requiring a person to restock the display bin 12 to maintain a good visual appearance for the display and to keep the goods easy accessibility to potential customers. This helps sell more goods, and saves the time and expense involved in frequent manual restocking of the bin.
- the controller 42 is programmed to determine when the shelf 24 is at the highest level so that the motor is not activated in attempts to further raise the shelf upon receipt of the light 22 by the light receiver 17 when the final obstructing good 18 ′ (see FIG. 4 ) is removed from the pile of goods 18 .
- the shelf 24 travels between a lower position 13 inches below the top edge 14 and an upper position 2 inches below the top so as to keep goods at an ergonomic level of approximately 30 inches above floor level at all times. Sizing of the self-adjusting goods display system 10 can differ for other implementations depending upon the results desired.
- an operator will activate the motor 38 typically through a manual switch 43 located on the controller 42 or elsewhere on the system 10 to lower the shelf 24 to the lower position shown in FIG. 3 or some other position desired above the lower position.
- the pile of goods 18 can then be replaced or augmented with additional goods. If the top level of the pile of goods 18 projects above the height of the light 22 in the area of the light 22 passing between the light source 16 and the light receiver 17 , the shelf 24 will remain at its lower position, or whatever position to which it was lowered when the manual switch is returned to a position where the controller 42 again controls operation of the motor 38 .
- the shelf 24 will remain at the lower position. As described above, as sufficient goods are removed the shelf 24 will be automatically moved upward.
- Various maintenance procedures can be used to keep the battery 40 charged.
- One method lets the battery 40 discharge until the shelf 24 will not move and then the battery is replaced by a freshly charged one.
- Other implementations may utilize charge indicators located on the system 10 to indicate extent of charge left in the battery 40 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Freezers Or Refrigerated Showcases (AREA)
Abstract
A self-adjusting goods display system maintains a proper shelf level for a display bin containing goods. An implementation has an open bin with side walls having top edges and a moveable shelf to receive a pile of goods. A light source and a light receiver are positioned on the top edges of opposing walls of the bin, and the light source generates light to be received by the light receiver. When the pile of goods is reduced so that the pile no longer obstructs the light from being received by the light receiver a signal indicates a need to raise the general level of the remaining pile contained in the bin. A controller receives the signal and controls operation of a motor to raise the height of the shelf until the remaining pile of the shelf again blocks the light, or the shelf is at a position of maximum height.
Description
- This application is a continuation of U.S. patent application Ser. No. 10/718,252 which was filed on Nov. 20, 2003.
- The present invention is directed generally to displays for goods and, more particularly, to adjustable displays typically for retail goods such as produce.
- Many goods such as many produce items can be sold by being arranged in bins. For instance, produce items such as apples, oranges, or melons can be placed in a bin to attract customer attention and to provide accessibility to aid customers in selection of particular produce items from the bin. Customers will typically sort through and rearrange the goods in the process of making a purchase of a small quantity of the goods in the bin so that much time and expense is required to maintain a neat appearance of the goods remaining in the bin. Furthermore, each bin is typically restocked frequently with additional goods so that some goods remain near the top of the bin to maintain the visual appeal of the display and easy accessibility of the goods to potential customers. This frequent restocking also requires additional time and expense.
- The present invention resides in a system having a shelf with a top surface sized to support objects, at least one support members supportedly coupled to the shelf and configured to move the shelf to adjust the vertical height for the shelf between a lower position and an upper position, and a motive force source coupled to the support members to move the support member. The system further includes a light source positioned to project light along a light path at least in part extending above a portion of the top surface of the shelf while the shelf is in positions below the upper position, and a light receiver positioned to receive the light projected from the light source and to have the light obstructed by at least one of the objects supported by the top surface of the shelf when the shelf is raised to position the at least one object in the light path. A controller is configured to activate the source of motive force source to move the support members to raise the vertical height of the shelf when the light receiver receives the light while the shelf is in positions below the upper position.
- The controller may be configured to activate the motive force source to thereby lower the vertical height of the shelf in response to receipt of a lower shelf signal.
- In an illustrated embodiment the system includes a bin with a plurality of side walls defining an interior space with an opening to access the interior space from above the bin. A table is positioned in the interior space which includes the shelf.
- The present invention may be embodied in a produce display with a bin sized to contain a collection of produce and having an interior space with access from above the bin. A shelf is positioned within the interior space and sized to support the collection of produce. Support members are movably linked to one another and movably coupled to the shelf to adjust the vertical height for the shelf between a lower position and an upper position. A motor with a shaft and a converter are included. The converter is configured to translate rotational motion into linear motion, and is linked to the motor and to at least one of the support members to move the at least one support member and consequently the support members to raise the shelf when the shaft of the motor rotates in a first rotational direction. A light source is positioned to project light across at least one of the following: a portion of the interior space and a portion of space above the interior space, and a light receiver is positioned to receive the light projected from the light source unless collection of produce supported by the shelf is positioned to obstruct the light from reaching the light receiver. A controller is configured to activate the motor to rotate the shaft in the first rotational direction to raise the shelf when the light receiver receives the light and the shelf is below the upper position.
- In this embodiment the controller is configured to activate the motor to rotate the shaft in a second rotational direction opposite the first rotational direction to lower the shelf when a lower shelf signal is received by the controller. The support members may be movably linked to one another to form a scissor lift.
- The system may include first and second pivot members with the support members movably linked to one another by the first pivot members and with the support members movably coupled to the shelf by the second pivot members.
- A bar may be coupled to two of the support members, and the converter may include a screw and a coupler. The shaft of the motor may be drivably coupled to the screw, and the screw threadably attached to the bar such that as the motor rotates the screw the screw applies a linear force to the coupler which is transmitted to the bar to adjustably move the two support members to change the vertical height of the shelf.
- The motor may be an electric motor powered by a battery, a pneumatic motor or some other source of motive force. A manual switch may be included to activate the motor.
- Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings.
-
FIG. 1 is an isometric view of an implementation of a self-adjusting goods display system. -
FIG. 2 is an isometric sectional view of the self-adjusting goods display system ofFIG. 1 showing interior components. -
FIG. 3 is a cross-sectional side-elevational view of the self-adjusting goods display system ofFIG. 1 containing a first quantity of goods. -
FIG. 4 is a cross-sectional side-elevational view of the self-adjusting display system ofFIG. 1 containing a second quantity of goods less than the first quantity of goods. - As will be discussed in greater detail below, a self-adjusting goods display system maintains a proper shelf level for a display bin containing goods. Proper maintenance of shelf level provides better visual appeal and accessibility to aid in sales of the goods in the bin. Typical goods include produce such as stackable fruit and vegetables, sports items such as various balls, and garden supplies such as bags of various materials, etc. Self-adjustment of shelf level by the display system can greatly reduce labor requirements associated with conventional approaches needed for rearranging and restocking of remaining goods as portions are sold to maintain a satisfactory visual appeal and accessibility of the displayed goods.
- An implementation of a self-adjusting
goods display system 10 according to the present invention is shown inFIG. 1 as having anopen bin 12 with side walls 13 a-d havingtop edges 14. The implementation of theopen bin 12 is depicted inFIG. 1 as a box structure having four walls 13 a-d. Other implementations of thebin 12 are envisioned as having other numbers of walls and having symmetrical or asymmetrical shape. Alight source 16 and alight receiver 17 are positioned on thetop edges 14 of the 13 a and 13 c typically near a third wall (e.g. theopposing walls wall 13 d as shown inFIG. 1 ) to be less conspicuous, particularly if thethird wall 13 d can be located against a store wall or the back of a store display or other bin. Thelight source 16 generates light 22 (shown in FIGS. 3 and 4 as a line). Thelight 22 is received by thelight receiver 17 when shelf adjustment is needed to raise the general level of a pile ofgoods 18 contained in theopen bin 14. This occurs when the pile ofgoods 18 is no longer obstructing the light from being received by thelight receiver 17, as explained further below. Thebin 12 further includesdoors 20 on one or more of the walls (such aswall 13 c depicted inFIG. 1 ) to provide access to interior components discussed below. - Other implementations (not shown) locate the
light source 16 and thelight receiver 17 along thetop edges 14 of the 13 a and 13 c farther from theopposing walls third wall 13 d than depicted inFIG. 1 . If it is desirable for display purposes to have the walls 13 a-d of theopen bin 12 always extend generally higher than the top surface of the pile ofgoods 18, thelight source 16 and thelight receiver 17 can also be located below thetop edges 14 either inside or on interior surfaces of the 13 a and 13 c so long as theopposing walls light 22 can be received by thelight receiver 17 at times when the pile ofgoods 18 are not obstructing the light. Other implementations (not shown) can use a mirror (not shown) located on thewall 13 c that reflects light from thelight source 16 located on thewall 13 a back to thesame wall 13 a where thelight receiver 17 is also located adjacent to the light source. - The self-adjusting
goods display system 10 further includes a variable height table 23 with its table top providing ashelf 24 on which the pile ofgoods 18 rests, as illustrated inFIGS. 3 and 4 . Theshelf 24 is supported by ascissor lift 26 having two pairs of scissor support members, each pair having two 28 a and 28 b. The upper end ofsupport members support member 28 a is pivotally coupled to the underside of the shelf with apivot member 30. The 28 a and 28 b for each pair are coupled together along their midportion with asupport members pivot member 32. The lower end of eachsupport member 28 b is pivotally coupled to abase mounting plate 34 with anadditional pivot member 30. The lower end of eachsupport member 28 a and the upper end of eachsupport member 28 b has aroller 33 rotatably attached thereto. Therollers 33 of thesupport members 28 a rollably engage themounting plate 34 and the rollers of thesupport members 28 b rollably engage the underside of theshelf 24 as the 28 a and 28 b pivot about thesupport members pivot members 30 when thescissor lift 26 is operating. - Coupled between the
support member 28 a of each pair of scissor support members is abar 35 that is moved through use of ascrew 36 coupled to amotor 38 attached to themounting plate 34. Themotor 38 may be an electric, pneumatic, or hydraulic motor, or other type of motive force source, and can provide a rotary, linear or other output. In the illustrated embodiment, themotor 38 rotatably drives thescrew 36 and the screw is coupled to thebar 35 with anut coupler 37. The combination of thescrew 36 and thecoupler 37 acts as a converter to convert rotational motion of the screw into linear motion of thebar 35. As thescrew 36 is turned by themotor 38, thebar 35 is moved toward and away from themotor 38, depending on whether the screw is rotated clockwise or counter-clockwise. As thebar 35 moves, both of thesupport members 28 a are also moved back and forth to cause the 28 a and 28 b to pivot about thesupport members pivot members 30, and therollers 33 to roll along the mountingplate 34 and the underside of theshelf 24. According to the implementation depicted inFIG. 2 , as thebar 35 is moved toward themotor 38, the vertical position of theshelf 24 is lowered by thescissor lift 26 and as the bar is moved away from the motor the vertical position of the shelf is raised by the scissor lift. - The
motor 38 is electrically coupled to abattery 40 to furnish electrical energy to the motor. Acontroller 42 is communicatively linked to thelight receiver 17 and themotor 38. In operation, upon receipt of the light 22 from thelight source 16, thelight receiver 17 generates a signal that is detected by thecontroller 42. Thecontroller 42, in turn, activates themotor 38 to raise theshelf 24 until either thelight receiver 17 ceases receiving the light 22 (as a result of obstruction caused by the newly raised elevation of one or more of the goods in the pile ofgoods 18 on the shelf), or the shelf reaches a predetermined maximum height. - In normal usage, when enough of the goods are removed from the pile of
goods 18 on theshelf 24 for sale or otherwise that thelight receiver 17 receives the light 22 from thelight source 16, thecontroller 42 senses the signal generated by the light receiver and activates themotor 38 to cause the motor to turn thescrew 36 in a direction to raise theshelf 24 until the light 22 is again obstructed by the remaining goods on the shelf and no longer received by the light receiver. As a result, thecontroller 42 will deactivate themotor 38, leaving theshelf 24 at its new elevated position. Consequently, theshelf 24 may be raised from the lower position shown inFIG. 3 to its highest position shown inFIG. 4 in incremental steps sized according to the height of the goods in the pile ofgoods 18 remaining on theshelf 24. - In such fashion, as goods are removed from the pile of
goods 18 on theshelf 24 and the pile of goods starts looking somewhat depleted and the top of the pile of goods is lower than the original height (thus giving the pile of goods a less attractive appearance and making reaching down for the goods more inconvenient), the light 22 from thelight source 16 will reach thelight receiver 17 and cause themotor 38 to be activated. This will raise theshelf 24 until the top of the pile ofgoods 18 remaining on the shelf is returned to its original and more desirable position. This is done automatically and without requiring a person to restock thedisplay bin 12 to maintain a good visual appearance for the display and to keep the goods easy accessibility to potential customers. This helps sell more goods, and saves the time and expense involved in frequent manual restocking of the bin. - The
controller 42 is programmed to determine when theshelf 24 is at the highest level so that the motor is not activated in attempts to further raise the shelf upon receipt of the light 22 by thelight receiver 17 when the final obstructing good 18′ (seeFIG. 4 ) is removed from the pile ofgoods 18. In some implementations theshelf 24 travels between a lower position 13 inches below thetop edge 14 and an upper position 2 inches below the top so as to keep goods at an ergonomic level of approximately 30 inches above floor level at all times. Sizing of the self-adjustinggoods display system 10 can differ for other implementations depending upon the results desired. - When the pile of
goods 18 needs to be restocked due to such factors as insufficient quantity or expiring shelf life, an operator will activate themotor 38 typically through amanual switch 43 located on thecontroller 42 or elsewhere on thesystem 10 to lower theshelf 24 to the lower position shown inFIG. 3 or some other position desired above the lower position. The pile ofgoods 18 can then be replaced or augmented with additional goods. If the top level of the pile ofgoods 18 projects above the height of the light 22 in the area of the light 22 passing between thelight source 16 and thelight receiver 17, theshelf 24 will remain at its lower position, or whatever position to which it was lowered when the manual switch is returned to a position where thecontroller 42 again controls operation of themotor 38. As long as the height of the pile ofgoods 18 remains high enough in elevation so that at least one of the goods obstructs the light 22 from being received by thelight receiver 17, theshelf 24 will remain at the lower position. As described above, as sufficient goods are removed theshelf 24 will be automatically moved upward. - Various maintenance procedures can be used to keep the
battery 40 charged. One method lets thebattery 40 discharge until theshelf 24 will not move and then the battery is replaced by a freshly charged one. Other implementations may utilize charge indicators located on thesystem 10 to indicate extent of charge left in thebattery 40. - From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. For instance, the depicted implementation used a battery, but other implementations can use other motive force systems such as pneumatic or hydraulic systems. Accordingly, the invention is not limited except as by the appended claims.
Claims (16)
1. A produce display comprising:
a bin sized to contain a collection of produce, the bin having an interior space with access from above the bin;
a shelf positioned within the interior space and sized to support the collection of produce;
support members movably linked to one another and movably coupled to the shelf to adjust the vertical height for the shelf between a lower position and an upper position;
a motor with a shaft;
a converter, the converter configured to translate rotational motion into linear motion, the converter linked to the motor and to at least one of the support members to move the at least one support member and consequently the support members to raise the shelf when the shaft of the motor rotates in a first rotational direction;
a light source positioned to project light across at least one of the following: a portion of the interior space and a portion of space above the interior space;
a light receiver positioned to receive the light projected from the light source unless the collection of produce supported by the shelf is positioned to obstruct the light from reaching the light receiver; and
a controller configured to activate the motor to rotate the shaft in the first rotational direction to raise the shelf when the light receiver receives the light and the shelf is below the upper position.
2. The system of claim 1 wherein the controller is configured to activate the motor to rotate the shaft in a second rotational direction opposite the first rotational direction to lower the shelf when a lower shelf signal is received by the controller.
3. The system of claim 1 further including a bar coupled to two of the support members, and wherein the converter includes a screw and a coupler, the shaft of the motor being drivably coupled to the screw, and the screw being threadably attached to the bar such that as the motor rotates the screw the screw applies a linear force to the coupler which is transmitted to the bar to adjustably move the two support members to change the vertical height of the shelf.
4. The system of claim 1 wherein the motor is an electric motor and is powered by a battery.
5. The system of claim 1 wherein the motor is a pneumatic motor or source.
6. The system of claim 1 wherein the controller includes a manual switch to activate the motor.
7. A system comprising:
a bin with a plurality of side walls defining an interior space with an opening to access the interior space from above the bin;
a table positioned in the interior space including a shelf sized to receive objects thereon and at least one support member supporting the shelf, the shelf being coupled to the support member and the support member being movable to adjust the vertical height for the shelf between a lower position and an upper position;
a motive force source coupled to the support member to adjustably move the support member;
a light source positioned to project light across at least one of the following: a portion of the interior space and a portion of space above the interior space;
a light receiver positioned to receive the light projected from the light source unless at least one object being supported by the shelf is positioned to obstruct the light from reaching the light receiver; and
a controller configured to activate the motive force source to apply force to the support member to adjustably move the shelf in a first direction to raise the vertical height of the shelf when the light receiver receives the light and the shelf is below the upper position.
8. The system of claim 7 , wherein the controller is configured to activate the motive force source to move the shelf in a second direction opposite the first direction to lower the vertical height of the shelf when a lower shelf signal is received.
9. A system comprising:
a bin with a plurality of side walls defining an interior space with an opening to access the interior space from above the bin;
a table positioned in the interior space including a shelf sized to receive objects thereon and support members with at least one of the support members supporting the shelf, the shelf being coupled to the at least one support member and the support members being movably linked to one another to form a scissor lift and movable to adjust the vertical height for the shelf between a lower position and an upper position;
a motive force source coupled to at least one of the support members to adjustably move the support members;
a light source positioned to project light across at least one of the following: a portion of the interior space and a portion of space above the interior space;
a light receiver positioned to receive the light projected from the light source unless at least one object being supported by the shelf is positioned to obstruct the light from reaching the light receiver; and
a controller configured to activate the motive force source to apply force to the at least one of the support members to which the motive force source is coupled to adjustably move the shelf in a first direction to raise the vertical height of the shelf when the light receiver receives the light and the shelf is below the upper position.
10. A system comprising:
a bin with a plurality of side walls defining an interior space with an opening to access the interior space from above the bin;
a table positioned in the interior space including a shelf sized to receive objects thereon and support members with at least one of the support members supporting the shelf, the shelf being coupled to the at least one support member and the at least one support member being movable to adjust the vertical height for the shelf between a lower position and an upper position;
first and second pivot members, the support members being movably linked to one another by the first pivot member and the at least one support member being movably coupled to the shelf by the second pivot member;
a motive force source coupled to at least one of the support members to adjustably move the support members;
a light source positioned to project light across at least one of the following: a portion of the interior space and a portion of space above the interior space;
a light receiver positioned to receive the light projected from the light source unless at least one object being supported by the shelf is positioned to obstruct the light from reaching the light receiver; and
a controller configured to activate the motive force source to apply force to the at least one of the support members to which the motive force source is coupled to adjustably move the shelf in a first direction to raise the vertical height of the shelf when the light receiver receives the light and the shelf is below the upper position.
11. A system for use with objects comprising:
a shelf with a top surface sized to support at least one of the objects;
at least one support member supportedly coupled to the shelf and configured to move the shelf to adjust the vertical height for the shelf between a lower position and an upper position;
a motive force source coupled to the support members to move the support member;
a light source positioned to project light along a light path at least in part extending above a portion of the top surface of the shelf while the shelf is in positions below the upper position;
a light receiver positioned to receive the light projected from the light source and to have the light obstructed by at least one of the objects supported by the top surface of the shelf when the shelf is raised to position the at least one object in the light path; and
a controller configured to activate the motive force source to move the support member to raise the vertical height of the shelf when the light receiver receives the light while the shelf is in positions below the upper position.
12. The system of claim 11 wherein the controller is configured to activate the motive force source to thereby lower the vertical height of the shelf in response to a lower shelf signal is received.
13. A system for use with objects comprising:
a shelf with a top surface sized to support at least one of the objects;
support members with at least one of the support members supportedly coupled to the shelf and configured to move the shelf to adjust the vertical height for the shelf between a lower position and an upper position, the support members being movably linked to one another to form a scissor lift;
a motive force source coupled to at least one of the support members to move the support members;
a light source positioned to project light along a light path at least in part extending above a portion of the top surface of the shelf while the shelf is in positions below the upper position;
a light receiver positioned to receive the light projected from the light source and to have the light obstructed by at least one of the objects supported by the top surface of the shelf when the shelf is raised to position the at least one object in the light path; and
a controller configured to activate the motive force source to move the at least one support member to raise the vertical height of the shelf when the light receiver receives the light while the shelf is in positions below the upper position.
14. A system for use with objects comprising:
a shelf with a top surface sized to support at least one of the objects;
support members with at least one of the support members supportedly coupled to the shelf and configured to move the shelf to adjust the vertical height for the shelf between a lower position and an upper position;
first and second pivot members, the support members being movably linked to one another by the first pivot member and the at least one support member being movably coupled to the shelf by the second pivot member;
a motive force source coupled to at least one of the support members to move the support members;
a light source positioned to project light along a light path at least in part extending above a portion of the top surface of the shelf while the shelf is in positions below the upper position;
a light receiver positioned to receive the light projected from the light source and to have the light obstructed by at least one of the objects supported by the top surface of the shelf when the shelf is raised to position the at least one object in the light path; and
a controller configured to activate the motive force source to move the at least one support member to raise the vertical height of the shelf when the light receiver receives the light while the shelf is in positions below the upper position.
15. A method comprising:
shining light toward a light receiver when the light is obstructed from reaching the light receiver by at least one of a group of produce piled on a shelf;
allowing customers to remove a portion of the produce piled on the shelf to leave remaining produce on the shelf that is not obstructing the light from being received by the light receiver;
electronically determining that light is being received by the light receiver and raising the shelf in response thereto; and
terminating raising of the shelf when the remaining produce on the shelf obstructs the light from reaching the light receiver.
16. A method comprising:
shining light toward a light receiver when the light is obstructed from reaching the light receiver by at least one of a group of objects piled on a shelf;
electronically determining that the light is being received by the light receiver and raising the shelf in response thereto; and
terminating raising of the shelf when at least one of the group of objects remaining on the shelf obstructs the light from reaching the light receiver.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/852,538 US20080000393A1 (en) | 2003-11-20 | 2007-09-10 | Self-adjusting goods display system and method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/718,252 US7445126B2 (en) | 2003-11-20 | 2003-11-20 | Self-adjusting goods display system and method |
| US11/852,538 US20080000393A1 (en) | 2003-11-20 | 2007-09-10 | Self-adjusting goods display system and method |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/718,252 Continuation US7445126B2 (en) | 2003-11-20 | 2003-11-20 | Self-adjusting goods display system and method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080000393A1 true US20080000393A1 (en) | 2008-01-03 |
Family
ID=34738997
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/718,252 Expired - Fee Related US7445126B2 (en) | 2003-11-20 | 2003-11-20 | Self-adjusting goods display system and method |
| US11/852,538 Abandoned US20080000393A1 (en) | 2003-11-20 | 2007-09-10 | Self-adjusting goods display system and method |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/718,252 Expired - Fee Related US7445126B2 (en) | 2003-11-20 | 2003-11-20 | Self-adjusting goods display system and method |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US7445126B2 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120180704A1 (en) * | 2011-01-13 | 2012-07-19 | Lift2Sell, LLC | Scissor lift pallet lifter |
| US10045641B2 (en) | 2011-01-13 | 2018-08-14 | Lift2Sell, LLC | Pallet lifting system |
| US10244861B1 (en) * | 2015-01-24 | 2019-04-02 | Nathan Mark Poniatowski | Desktop workspace that adjusts vertically |
| CN110101260A (en) * | 2019-06-21 | 2019-08-09 | 南京中意仓储有限公司 | A kind of storage goods storage rack facilitating adjusting |
| US10377612B2 (en) * | 2016-02-19 | 2019-08-13 | Toyota Material Handling Manufacturing Sweden Ab | Lift-truck with automated height adjustment of load engagement means |
| US20190365088A1 (en) * | 2018-05-31 | 2019-12-05 | Zhejiang Yotrio Group Co., Ltd. | Multifunctional lifting table |
| CN111685540A (en) * | 2020-07-27 | 2020-09-22 | 广州华盖电子商务有限公司 | Commodity display device based on light sense control |
| CN112141507A (en) * | 2020-10-10 | 2020-12-29 | 安徽中鑫宏伟科技有限公司 | Transfer device for transporting nylon heat insulation strip master batches and using method thereof |
| US10893748B1 (en) | 2017-07-08 | 2021-01-19 | Office Kick, Inc. | Height adjustable desktop |
| EP3814250A4 (en) * | 2018-06-27 | 2022-03-30 | Flex1One A/S | An automatic lifting device and use thereof |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7445126B2 (en) * | 2003-11-20 | 2008-11-04 | Pacific Bin Corporation | Self-adjusting goods display system and method |
| GB0519324D0 (en) * | 2005-09-22 | 2005-11-02 | Michael Sheridan & Company Ltd | Display unit |
| US20090200200A1 (en) * | 2008-02-13 | 2009-08-13 | Cvs Pharmacy, Inc. | Dump bin insert |
| JP4745427B2 (en) * | 2009-07-14 | 2011-08-10 | 富士通株式会社 | Article holding device and rack device provided with the same |
| DE102010023595B4 (en) * | 2009-12-07 | 2016-10-06 | Frank Hessemer | Container with height adjustable bottom |
| WO2012076609A1 (en) * | 2010-12-08 | 2012-06-14 | Ascenda Solutions Ab | Goods handling system |
| US20140203693A1 (en) * | 2013-01-24 | 2014-07-24 | GM Global Technology Operations LLC | Module for packages |
| US9809377B2 (en) | 2015-10-14 | 2017-11-07 | Empire Technology Development Llc | Fruit in a bubble wrap mat |
| US10766701B2 (en) * | 2018-03-22 | 2020-09-08 | Feedall, LLC | Self-leveling bin assembly |
| FR3103801B1 (en) * | 2019-11-29 | 2022-01-14 | Pa Cotte Sa | Package comprising means of retaining an object |
| US11510506B1 (en) * | 2021-11-11 | 2022-11-29 | Vira Insight, Llc | Expandable retail pusher display |
| US11950711B2 (en) * | 2022-08-24 | 2024-04-09 | Jiree (Hua'an) Technology Co., Ltd. | Automatic lifting display rack |
Citations (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2816808A (en) * | 1954-06-22 | 1957-12-17 | Nicholas A Haines | Cup and saucer dispenser |
| US3035835A (en) * | 1961-01-23 | 1962-05-22 | Harris Intertype Corp | Pile feeder |
| US3080066A (en) * | 1960-11-07 | 1963-03-05 | Joseph Robb & Company Ltd | Floating spring loaded riser device |
| US3091503A (en) * | 1961-03-30 | 1963-05-28 | Fisher James Glenn | Floating platform lock-down mechanisms for spooler troughs and doff trucks |
| US3361510A (en) * | 1966-03-31 | 1968-01-02 | Edward P. Mcdermott | Filing cabinet elevator |
| US3663078A (en) * | 1970-10-19 | 1972-05-16 | Insulating Fabricators Inc | Receptacle and improved floating platform therefor |
| US4149762A (en) * | 1977-08-29 | 1979-04-17 | Amf Incorporated | Self-leveling dispenser |
| US4568132A (en) * | 1984-12-19 | 1986-02-04 | Weber-Knapp Company | Motorized lift mechanism |
| US4592485A (en) * | 1984-05-17 | 1986-06-03 | Meals Incorporated | Meal vending apparatus |
| US4718657A (en) * | 1983-12-01 | 1988-01-12 | Delphax Systems | Paper stacker |
| US4735173A (en) * | 1986-05-09 | 1988-04-05 | Jacques Dubreuil | Animal transport unit |
| US4867277A (en) * | 1988-09-29 | 1989-09-19 | Sloan William C | Portable lifting device and cart |
| US4954760A (en) * | 1988-10-28 | 1990-09-04 | Max G. Futch | Self leveling dispenser |
| US5222857A (en) * | 1991-06-04 | 1993-06-29 | Murata Kikai Kabushiki Kaisha | Process and apparatus for picking up a load from a stack |
| US5253757A (en) * | 1992-05-12 | 1993-10-19 | Ball State University | Drawing receptacle for use with computer printers |
| US5271483A (en) * | 1992-12-02 | 1993-12-21 | Hong Young K | Apparatus for lifting false floor in swimming pool |
| US5305996A (en) * | 1991-11-13 | 1994-04-26 | Fujitsu Limited | Paper hopper |
| US5626206A (en) * | 1995-03-09 | 1997-05-06 | Weber; Dennis R. | Device for and method of vertically adjusting parts in a bin |
| US6000770A (en) * | 1999-01-15 | 1999-12-14 | Frich; Mark R. | Library book bin with a vertically adjustable floor |
| US6035973A (en) * | 1995-03-09 | 2000-03-14 | Ergonomics Specialists | Device for and method of vertically adjusting parts in a bin |
| US6361131B1 (en) * | 2000-09-18 | 2002-03-26 | Edward S. Powell, Jr. | Linear actuator for retractable platform |
| US6364330B1 (en) * | 1997-04-21 | 2002-04-02 | Problem Solvers Co. | Ergonomic platform truck |
| US7445126B2 (en) * | 2003-11-20 | 2008-11-04 | Pacific Bin Corporation | Self-adjusting goods display system and method |
| US7552923B2 (en) * | 2000-09-14 | 2009-06-30 | Electronics For Imaging, Inc. | Simple and inexpensive high capacity output catch tray for document production machines |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4662523A (en) * | 1985-04-15 | 1987-05-05 | Stein Industries Inc. | Adjustable refrigeration display rack |
| US5314080A (en) * | 1992-12-28 | 1994-05-24 | Wentworth Richard W | Adjustable display rack |
| US6745588B2 (en) * | 2002-06-18 | 2004-06-08 | Delaware Capital Formation, Inc. | Display device |
-
2003
- 2003-11-20 US US10/718,252 patent/US7445126B2/en not_active Expired - Fee Related
-
2007
- 2007-09-10 US US11/852,538 patent/US20080000393A1/en not_active Abandoned
Patent Citations (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2816808A (en) * | 1954-06-22 | 1957-12-17 | Nicholas A Haines | Cup and saucer dispenser |
| US3080066A (en) * | 1960-11-07 | 1963-03-05 | Joseph Robb & Company Ltd | Floating spring loaded riser device |
| US3035835A (en) * | 1961-01-23 | 1962-05-22 | Harris Intertype Corp | Pile feeder |
| US3091503A (en) * | 1961-03-30 | 1963-05-28 | Fisher James Glenn | Floating platform lock-down mechanisms for spooler troughs and doff trucks |
| US3361510A (en) * | 1966-03-31 | 1968-01-02 | Edward P. Mcdermott | Filing cabinet elevator |
| US3663078A (en) * | 1970-10-19 | 1972-05-16 | Insulating Fabricators Inc | Receptacle and improved floating platform therefor |
| US4149762A (en) * | 1977-08-29 | 1979-04-17 | Amf Incorporated | Self-leveling dispenser |
| US4718657A (en) * | 1983-12-01 | 1988-01-12 | Delphax Systems | Paper stacker |
| US4592485A (en) * | 1984-05-17 | 1986-06-03 | Meals Incorporated | Meal vending apparatus |
| US4568132A (en) * | 1984-12-19 | 1986-02-04 | Weber-Knapp Company | Motorized lift mechanism |
| US4735173A (en) * | 1986-05-09 | 1988-04-05 | Jacques Dubreuil | Animal transport unit |
| US4867277A (en) * | 1988-09-29 | 1989-09-19 | Sloan William C | Portable lifting device and cart |
| US4954760A (en) * | 1988-10-28 | 1990-09-04 | Max G. Futch | Self leveling dispenser |
| US5222857A (en) * | 1991-06-04 | 1993-06-29 | Murata Kikai Kabushiki Kaisha | Process and apparatus for picking up a load from a stack |
| US5305996A (en) * | 1991-11-13 | 1994-04-26 | Fujitsu Limited | Paper hopper |
| US5253757A (en) * | 1992-05-12 | 1993-10-19 | Ball State University | Drawing receptacle for use with computer printers |
| US5271483A (en) * | 1992-12-02 | 1993-12-21 | Hong Young K | Apparatus for lifting false floor in swimming pool |
| US5626206A (en) * | 1995-03-09 | 1997-05-06 | Weber; Dennis R. | Device for and method of vertically adjusting parts in a bin |
| US6035973A (en) * | 1995-03-09 | 2000-03-14 | Ergonomics Specialists | Device for and method of vertically adjusting parts in a bin |
| US6044932A (en) * | 1995-03-09 | 2000-04-04 | Ergonomics Specialists | Ergonomic parts bin elevator with integral springs |
| US6364330B1 (en) * | 1997-04-21 | 2002-04-02 | Problem Solvers Co. | Ergonomic platform truck |
| US6000770A (en) * | 1999-01-15 | 1999-12-14 | Frich; Mark R. | Library book bin with a vertically adjustable floor |
| US7552923B2 (en) * | 2000-09-14 | 2009-06-30 | Electronics For Imaging, Inc. | Simple and inexpensive high capacity output catch tray for document production machines |
| US6361131B1 (en) * | 2000-09-18 | 2002-03-26 | Edward S. Powell, Jr. | Linear actuator for retractable platform |
| US7445126B2 (en) * | 2003-11-20 | 2008-11-04 | Pacific Bin Corporation | Self-adjusting goods display system and method |
Cited By (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120180704A1 (en) * | 2011-01-13 | 2012-07-19 | Lift2Sell, LLC | Scissor lift pallet lifter |
| US9149131B2 (en) * | 2011-01-13 | 2015-10-06 | Life2Sell, LLC | Scissor lift pallet lifter |
| US10023355B2 (en) | 2011-01-13 | 2018-07-17 | Lift2Sell, LLC | Scissor lift pallet lifter |
| US10045641B2 (en) | 2011-01-13 | 2018-08-14 | Lift2Sell, LLC | Pallet lifting system |
| US11147366B1 (en) * | 2015-01-24 | 2021-10-19 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11388989B1 (en) | 2015-01-24 | 2022-07-19 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US12082695B1 (en) | 2015-01-24 | 2024-09-10 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US12318003B1 (en) | 2015-01-24 | 2025-06-03 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US10568416B1 (en) | 2015-01-24 | 2020-02-25 | Nathan Mark Poniatowski | Desktop workspace that adjusts vertically |
| US10575630B1 (en) | 2015-01-24 | 2020-03-03 | Nathan Mark Poniatowski | Desktop workspace that adjusts verically |
| US12318002B1 (en) | 2015-01-24 | 2025-06-03 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US12256842B1 (en) | 2015-01-24 | 2025-03-25 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US12226015B1 (en) | 2015-01-24 | 2025-02-18 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11134773B1 (en) | 2015-01-24 | 2021-10-05 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11134774B1 (en) * | 2015-01-24 | 2021-10-05 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11140977B1 (en) | 2015-01-24 | 2021-10-12 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US12102229B1 (en) | 2015-01-24 | 2024-10-01 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11160367B1 (en) | 2015-01-24 | 2021-11-02 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US12193569B1 (en) | 2015-01-24 | 2025-01-14 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US12342937B1 (en) | 2015-01-24 | 2025-07-01 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US10244861B1 (en) * | 2015-01-24 | 2019-04-02 | Nathan Mark Poniatowski | Desktop workspace that adjusts vertically |
| US12121149B1 (en) | 2015-01-24 | 2024-10-22 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11464325B1 (en) | 2015-01-24 | 2022-10-11 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11470959B1 (en) | 2015-01-24 | 2022-10-18 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11800927B1 (en) | 2015-01-24 | 2023-10-31 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11849843B1 (en) | 2015-01-24 | 2023-12-26 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11857073B1 (en) | 2015-01-24 | 2024-01-02 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11864654B1 (en) | 2015-01-24 | 2024-01-09 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11910926B1 (en) | 2015-01-24 | 2024-02-27 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11925264B1 (en) | 2015-01-24 | 2024-03-12 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11944196B1 (en) | 2015-01-24 | 2024-04-02 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11950699B1 (en) | 2015-01-24 | 2024-04-09 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US11980289B1 (en) | 2015-01-24 | 2024-05-14 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US12082696B1 (en) | 2015-01-24 | 2024-09-10 | Office Kick, Inc. | Desktop workspace that adjusts vertically |
| US10377612B2 (en) * | 2016-02-19 | 2019-08-13 | Toyota Material Handling Manufacturing Sweden Ab | Lift-truck with automated height adjustment of load engagement means |
| US11388991B1 (en) | 2017-07-08 | 2022-07-19 | Office Kick, Inc. | Height adjustable desktop |
| US11395544B1 (en) | 2017-07-08 | 2022-07-26 | Office Kick, Inc. | Keyboard tray that adjusts horizontally and vertically |
| US10893748B1 (en) | 2017-07-08 | 2021-01-19 | Office Kick, Inc. | Height adjustable desktop |
| US20190365088A1 (en) * | 2018-05-31 | 2019-12-05 | Zhejiang Yotrio Group Co., Ltd. | Multifunctional lifting table |
| EP3814250A4 (en) * | 2018-06-27 | 2022-03-30 | Flex1One A/S | An automatic lifting device and use thereof |
| CN110101260A (en) * | 2019-06-21 | 2019-08-09 | 南京中意仓储有限公司 | A kind of storage goods storage rack facilitating adjusting |
| CN111685540A (en) * | 2020-07-27 | 2020-09-22 | 广州华盖电子商务有限公司 | Commodity display device based on light sense control |
| CN112141507A (en) * | 2020-10-10 | 2020-12-29 | 安徽中鑫宏伟科技有限公司 | Transfer device for transporting nylon heat insulation strip master batches and using method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US20050150434A1 (en) | 2005-07-14 |
| US7445126B2 (en) | 2008-11-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20080000393A1 (en) | Self-adjusting goods display system and method | |
| JP3920574B2 (en) | Vending machines that minimize product upsets | |
| US7347335B2 (en) | Pusher assembly, merchandise dispenser and method of dispensing merchandise | |
| US10617232B2 (en) | Shelving system having stowable shelves | |
| US5730068A (en) | Display table | |
| US10026254B1 (en) | Mechanical lift for delivery bins in vending machines | |
| US5716113A (en) | Sliding shelf for beverage dispensing machine | |
| US20250086237A1 (en) | Assembly for product support and deployment for a vending machine | |
| US20040226488A1 (en) | Retail merchandising apparatus and methods thereof | |
| KR101031359B1 (en) | Flower Vending Machine with Adjustable Growth Environment | |
| JPH0611560U (en) | Product display device | |
| KR20200052663A (en) | The showcase with rise and fall type door | |
| DE3426610A1 (en) | Device for storing merchandise, in particular foods in refrigerated furniture of self-service shops | |
| US5791500A (en) | Inclined display rack | |
| US7171909B2 (en) | Adjustable display rack | |
| US5544997A (en) | Device for expediting the cutting of boxes | |
| US11391502B2 (en) | Inline vending unit | |
| CN223286878U (en) | Agricultural and sideline products sales display device with adjustment structure | |
| US5931340A (en) | Dispenser incorporating storage and retriever module | |
| SG174489A1 (en) | Helical coil dispenser for vending machine | |
| JPH07184753A (en) | Movable shelf type rack for article display | |
| CN116509184A (en) | A fruit and vegetable fresh-keeping display freezer | |
| US3203589A (en) | Vending machine | |
| EP0341014A1 (en) | Dispensing device and support therefor | |
| JPH1173557A (en) | Automatic vending machine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: PACIFIC BIN CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILSON, PETER D.;AFFLERBACH, ROBERT H.;REEL/FRAME:019829/0845 Effective date: 20040318 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |