US12427376B2 - Systems and methods for an artificial intelligence engine to optimize a peak performance - Google Patents
Systems and methods for an artificial intelligence engine to optimize a peak performanceInfo
- Publication number
- US12427376B2 US12427376B2 US17/854,968 US202217854968A US12427376B2 US 12427376 B2 US12427376 B2 US 12427376B2 US 202217854968 A US202217854968 A US 202217854968A US 12427376 B2 US12427376 B2 US 12427376B2
- Authority
- US
- United States
- Prior art keywords
- patient
- exercise apparatus
- data
- exercise
- treatment plan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0075—Means for generating exercise programs or schemes, e.g. computerized virtual trainer, e.g. using expert databases
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/005—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
- A63B21/0058—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using motors
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0062—Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/30—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2505/00—Evaluating, monitoring or diagnosing in the context of a particular type of medical care
- A61B2505/09—Rehabilitation or training
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1121—Determining geometric values, e.g. centre of rotation or angular range of movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/22—Ergometry; Measuring muscular strength or the force of a muscular blow
- A61B5/224—Measuring muscular strength
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6887—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
- A61B5/6895—Sport equipment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/742—Details of notification to user or communication with user or patient; User input means using visual displays
- A61B5/744—Displaying an avatar, e.g. an animated cartoon character
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B2022/0094—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements for active rehabilitation, e.g. slow motion devices
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0087—Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
- A63B2024/0093—Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load the load of the exercise apparatus being controlled by performance parameters, e.g. distance or speed
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/06—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
- A63B22/0605—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing a circular movement, e.g. ergometers
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Definitions
- Machine learning is generally defined as a field of computer science for discovering methodologies, algorithms, heuristics, and the like, whether in hardware, software or both, for the purpose of enabling computers or applications running on computers to learn without being explicitly programmed.
- Remote medical assistance also referred to as, inter alia, remote medicine, telemedicine, telemed, telmed, tel-med, or telehealth
- a healthcare professional provider or providers, such as a physician, physical therapist, a nurse, a chiropractor, etc., and a patient
- the two-way communication uses audio and/or audiovisual and/or other sensorial or perceptive (e.g., tactile, gustatory, haptic, pressure-sensing-based or electromagnetic (e.g., neurostimulatory) communications (e.g., via a computer, a smartphone, or a tablet).
- audio and/or audiovisual and/or other sensorial or perceptive e.g., tactile, gustatory, haptic, pressure-sensing-based or electromagnetic (e.g., neurostimulatory) communications
- Machine learning works through a variety of mechanisms, including iteration, optimization, pruning, testing, and the like.
- a machine learning model may be trained on a set of training data, such that the model may be used to process newly or additionally received data to generate sets of predictions and/or classifications for various uses related to the discovery, investigation and generation of heuristic methods for the purpose of optimizing or improving a goal or outcome.
- machine learning may preferably be continual or even continuous: The model developed for machine learning can always be further improved in light of the goals the model is trained to achieve. While machine learning could, in principle, be terminated at some point, then, in that case, the learning aspect would cease.
- An aspect of the disclosed embodiments provides a method for performing, by two or more patients, a respective treatment plan with respective first and second exercise apparatuses, the method comprising.
- the method comprises the steps of: receiving first patient data, wherein the first patient data includes at least a first patient identifier associated with the first patient and a first treatment plan; receiving second patient data, wherein the second patient data includes a second patient identifier associated with the second patient and a second treatment plan; receiving first measurement data associated with a first performance level of the first treatment plan by the first patient; receiving second measurement data associated with a second performance level of the second treatment plan by the second patient; determining differential data, wherein the determining is based on a contrast of one or more of the first and the second measurement data and first and second patient data; and generating, based on the differential data, an instruction to modify an operating state of the treatment plan apparatus.
- the system comprises a processing device and an artificial intelligence engine communicatively coupled to the processing device.
- the system further comprises a memory including instruction that, when executed by the processing device, cause the processing device to: receive first patient data, wherein the first patient data includes at least a first patient identifier associated with the first patient and a first treatment plan; receive second patient data, wherein the second patient data includes a second patient identifier associated with the second patient and a second treatment plan; receive first measurement data associated with a first performance level of the first treatment plan by the first patient; receive second measurement data associated with a second performance level of the second exercise by the second patient; receive second measurement data associated with a second performance level of the second treatment plan by the second patient; determine, via the artificial intelligence engine and based on a contrast of one or more of the first and the second measurement data and first and second patient data, differential data; and generate, via the artificial intelligence engine and based on the differential data, an instruction to modify at
- Another aspect of the disclosed embodiments comprises a tangible, non-transitory machine-readable medium storing instructions that, when executed, cause a processing device to perform any of the operations, steps, functions, and/or methods disclosed herein.
- FIG. 1 generally illustrates a block diagram of an embodiment of a computer-implemented system for managing a treatment plan according to the principles of the present disclosure.
- FIG. 2 generally illustrates a perspective view of an embodiment of an exercise apparatus according to the principles of the present disclosure.
- FIG. 3 generally illustrates a perspective view of a pedal of the exercise apparatus of FIG. 2 according to the principles of the present disclosure.
- FIG. 4 generally illustrates a perspective view of a patient using the exercise apparatus of FIG. 2 according to the principles of the present disclosure.
- FIG. 5 generally illustrates an example embodiment of an overview display of an assistant interface according to the principles of the present disclosure.
- a different treatment plan may be selected for the new patient, and the treatment device may be controlled, distally (e.g., which may be referred to as remotely) and based on the different treatment plan, while the new patient uses the treatment device to perform the treatment plan.
- distally e.g., which may be referred to as remotely
- Such techniques may provide the technical solution of distally controlling a treatment device.
- the disclosed embodiments may provide a technical solution by (i) receiving, from various sources (e.g., EMR systems), information in non-standardized and/or different formats; (ii) standardizing the information; and (iii) generating, based on the standardized information, treatment plans having standardized formats capable of being processed by applications (e.g., telehealth applications) executing on computing devices of medical professional and/or patients.
- sources e.g., EMR systems
- applications e.g., telehealth applications
- the server 30 includes a first processor 36 and a first machine-readable storage memory 38 , which may be called a “memory” for short, holding first instructions 40 for performing the various actions of the server 30 for execution by the first processor 36 .
- the server 30 is configured to store data regarding the treatment plan.
- the memory 38 includes a system data store 42 configured to hold system data, such as data pertaining to treatment plans for treating one or more patients.
- the server 30 is also configured to store patient data, performance data, or like the like regarding a patient in following a treatment plan.
- the memory 38 includes a patient data store 44 configured to hold patient data, such as data pertaining to the one or more patients, including data representing each patient's performance within the treatment plan.
- the server 30 may execute an artificial intelligence (AI) engine 11 that uses one or more machine learning models 13 to perform at least one of the embodiments disclosed herein.
- the server 30 may include a training engine 9 capable of generating the one or more machine learning models 13 .
- the machine learning models 13 may be trained to assign people to certain cohorts based on their characteristics, select treatment plans using real-time and historical data correlations involving patient cohort-equivalents, and control an exercise apparatus 70 , among other things.
- the machine learning models 13 may be trained to generate, based on data associated with a diagnosis of users, desired goal of the user(s), initial treatment plans to be performed by the users on the exercise apparatus 70 .
- the machine learning models 13 may be trained to provide a visual stimulus, audio stimulus, or haptic stimulus.
- the AI engine 11 may determine differential data. For example, the AI engine 11 may determine differential data associated with a difference between the rate of rotation between the first and the second patients. In another example, the AI engine may determine differential data associated with a performance level of the first or the second patient, wherein the differential data includes data which is outside a pre-determined threshold rate of rotation (e.g., the contrast between the rotation rate should not be more than 10 rotations per minute). The differential data may also be based on a contrast of measurement data associated with any number of current, past, and/or anticipated measurement data.
- the AI engine 11 may generate, based on the differential data, an instruction to modify at least one of the first and the second exercises. For example, if the differential data identifies a rate of rotation that exceeds the pre-determined threshold rate of rotation, the AI engine 11 may generate instructions to increase and/or decrease the resistance provided by the exercise apparatus or a part thereof to the first or the second patient.
- the AI engine 11 , user, and/or server 30 may control, based on the differential data, at least one of the first and the second exercise apparatus.
- the AI engine 11 may instruct the exercise apparatus 70 to increase or decrease a resistance.
- the controlling may comprise a modification to any number of operating states of the exercise. For example, the positions of the exercise apparatus 70 may be adjusted (e.g., become closer or farther from the patient), and/or a resistance, weight, etc. may be modified.
- the machine learning models 13 may also be configured, for example, to display on a user interface or otherwise inform the user of a goal for the day, where the goal is dependent upon the generated treatment plan.
- the machine learning models may be configured to request a measurement of a vital sign of the user, a respiration rate of the user, a heartrate of the user, a heart rhythm of a user, an oxygen saturation of the user, a sugar level of the user, a composition of blood of the user, cerebral activity of the user, cognitive activity of the user, a lung capacity of the user, a temperature of the user, a blood pressure of the user, an eye movement of the user, a degree of dilation of an eye of the user, a reaction time, a sound produced by the user, a perspiration rate of the user, an elapsed time of using the exercise apparatus 70 , an amount of force exerted on a portion of the exercise apparatus 70 , a range of motion achieved on the exercise apparatus 70 , a movement speed of a portion of the exercise apparatus 70
- the one or more machine learning models 13 may be generated by the training engine 9 and may be implemented in computer instructions executable by one or more processing devices of the training engine 9 and/or the servers 30 . To generate the one or more machine learning models 13 , the training engine 9 may train the one or more machine learning models 13 . The one or more machine learning models 13 may be used by the artificial intelligence engine 11 .
- the training engine 9 may be a rackmount server, a router computer, a personal computer, a portable digital assistant, a smartphone, a laptop computer, a tablet computer, a netbook, a desktop computer, an Internet of Things (IoT) device, any other suitable computing device, or a combination thereof.
- the training engine 9 may be cloud-based or a real-time software platform, and it may include privacy software or protocols, and/or security software or protocols.
- the training engine 9 may use a training data set of a corpus of the characteristics (e.g., medical diagnoses, attributes, a measurement of a vital sign of the user, a respiration rate of the user, a heartrate of the user, a heart rhythm of a user, an oxygen saturation of the user, a sugar level of the user, a composition of blood of the user, cerebral activity of the user, cognitive activity of the user, a lung capacity of the user, a temperature of the user, a blood pressure of the user, an eye movement of the user, a degree of dilation of an eye of the user, a reaction time, a sound produced by the user, a perspiration rate of the user, an elapsed time of using the exercise apparatus 70 , an amount of force exerted on a portion of the exercise apparatus 70 , a range of motion achieved on the exercise apparatus 70 , a movement speed of a portion of the exercise apparatus 70 , a pressure exerted on a portion of the characteristics (e.g., medical diagnoses,
- the one or more machine learning models 13 may be trained to match patterns of characteristics of a patient with characteristics of other people in assigned to a particular cohort.
- the term “match” may refer to an exact match, a correlative match, a substantial match, etc.
- the one or more machine learning models 13 may be trained to receive the characteristics of a patient as input, map the characteristics to characteristics of people assigned to a cohort, and select a treatment plan from that cohort.
- the one or more machine learning models 13 may also be trained to control, based on the treatment plan, treatment apparatus 70 .
- the one or more machine learning models 13 may also be trained to provide one or more treatment plan options to a healthcare professional to select from and to control the exercise apparatus 70 .
- the one or more machine learning models 13 may refer to model artifacts created by the training engine 9 .
- the training engine 9 may find patterns in the training data wherein such patterns map the training input to the target output, and generate the machine learning models 13 that capture these patterns.
- the artificial intelligence engine 11 , the database 33 , and/or the training engine 9 may reside on another component (e.g., assistant interface 94 , clinician interface 20 , etc.) depicted in FIG. 1 .
- the one or more machine learning models 13 may comprise, e.g., a single level of linear or non-linear operations (e.g., a support vector machine [SVM]) or the machine learning models 13 may be a deep network, i.e., a machine learning model comprising multiple levels of non-linear operations.
- deep networks are neural networks including generative adversarial networks, convolutional neural networks, recurrent neural networks with one or more hidden layers, and fully connected neural networks (e.g., each neuron may transmit its output signal to the input of the remaining neurons, as well as to itself).
- the machine learning model may include numerous layers and/or hidden layers that perform calculations (e.g., dot products) using various neurons.
- the system 10 also includes a patient interface 50 configured to communicate information to a patient and to receive feedback from the patient.
- the patient interface includes an input device 52 and an output device 54 , which may be collectively called a patient user interface 52 , 54 .
- the input device 52 may include one or more devices, such as a keyboard, a mouse, a touch screen input, a gesture sensor, and/or a microphone and processor configured for voice recognition.
- the output device 54 may take one or more different forms including, for example, a computer monitor or display screen on a tablet, smartphone, or a smart watch.
- the output device 54 may include other hardware and/or software components such as a projector, virtual reality capability, augmented reality capability, etc.
- the output device 54 may incorporate various different visual, audio, or other presentation technologies.
- the output device 54 may include a non-visual display, such as an audio signal, which may include spoken language and/or other sounds such as tones, chimes, and/or melodies, which may signal different conditions and/or directions.
- the output device 54 may comprise one or more different display screens presenting various data and/or interfaces or controls for use by the patient.
- the output device 54 may include graphics, which may be presented by a web-based interface and/or by a computer program or application (App.).
- the patient interface 50 may include functionality provided by or similar to existing voice-based assistants such as Siri by Apple, Alexa by Amazon, Google Assistant, or Bixby by Samsung.
- the patient interface 50 includes a second processor 60 and a second machine-readable storage memory 62 holding second instructions 64 for execution by the second processor 60 for performing various actions of patient interface 50 .
- the second machine-readable storage memory 62 also includes a local data store 66 configured to hold data, such as data pertaining to a treatment plan and/or patient data, such as data representing a patient's performance within a treatment plan.
- the patient interface 50 also includes a local communication interface 68 configured to communicate with various devices for use by the patient in the vicinity of the patient interface 50 .
- the local communication interface 68 may include wired and/or wireless communications.
- the local communication interface 68 may include a local wireless network such as Wi-Fi, Bluetooth, ZigBee, Near-Field Communications (NFC), cellular data network, etc.
- the internal sensors 76 may measure one or more operating characteristics of the exercise apparatus 70 such as, for example, a force a position, a speed, and/or a velocity.
- the internal sensors 76 may include a position sensor configured to measure at least one of a linear motion or an angular motion of a body part of the patient.
- an internal sensor 76 in the form of a position sensor may measure a distance that the patient is able to move a part of the exercise apparatus 70 , where such distance may correspond to a range of motion that the patient's body part is able to achieve.
- the internal sensors 76 may include a force sensor configured to measure a force applied by the patient.
- an internal sensor 76 in the form of a force sensor may measure a force or weight the patient is able to apply, using a particular body part, to the exercise apparatus 70 .
- the system 10 generally illustrated in FIG. 1 also includes an ambulation sensor 82 , which communicates with the server 30 via the local communication interface 68 of the patient interface 50 .
- the ambulation sensor 82 may track and store a number of steps taken by the patient.
- the ambulation sensor 82 may take the form of a wristband, wristwatch, or smart watch.
- the ambulation sensor 82 may be integrated within a phone, such as a smartphone.
- the system 10 generally illustrated in FIG. 1 also includes a supervisory interface 90 which may be similar or identical to the clinician interface 20 .
- the supervisory interface 90 may have enhanced functionality beyond what is provided on the clinician interface 20 .
- the supervisory interface 90 may be configured for use by a person having responsibility for the treatment plan, such as an orthopedic surgeon.
- the telemedicine signal 96 , 97 , 98 a , 98 b , 99 a , 99 b comprises one of an audio signal 96 , an audiovisual signal 97 , an interface control signal 98 a for controlling a function of the patient interface 50 , an interface monitor signal 98 b for monitoring a status of the patient interface 50 , an apparatus control signal 99 a for changing an operating parameter of the exercise apparatus 70 , and/or an apparatus monitor signal 99 b for monitoring a status of the exercise apparatus 70 .
- each of the control signals 98 a , 99 a may be unidirectional, conveying commands from the assistant interface 94 to the patient interface 50 .
- the assistant interface 94 includes an assistant input device 22 and an assistant display 24 , which may be collectively called an assistant user interface 22 , 24 .
- the assistant input device 22 may include one or more of a telephone, a keyboard, a mouse, a trackpad, or a touch screen, for example.
- the assistant input device 22 may include one or more microphones.
- the one or more microphones may take the form of a telephone handset, headset, or wide-area microphone or microphones configured for the healthcare professional to speak to a patient via the patient interface 50 .
- assistant input device 22 may be configured to provide voice-based functionalities, with hardware and/or software configured to interpret spoken instructions by the assistant by using the one or more microphones.
- the assistant input device 22 may include functionality provided by or similar to existing voice-based assistants such as Siri by Apple, Alexa by Amazon, Google Assistant, or Bixby by Samsung.
- the assistant input device 22 may include other hardware and/or software components.
- the assistant input device 22 may include one or more general purpose devices and/or special-purpose devices.
- the assistant display 24 may take one or more different forms including, for example, a computer monitor or display screen on a tablet, a smartphone, or a smart watch.
- the assistant display 24 may include other hardware and/or software components such as projectors, virtual reality capabilities, or augmented reality capabilities, etc.
- the assistant display 24 may incorporate various different visual, audio, or other presentation technologies.
- the assistant display 24 may include a non-visual display, such as an audio signal, which may include spoken language and/or other sounds such as tones, chimes, melodies, and/or compositions, which may signal different conditions and/or directions.
- the assistant display 24 may comprise one or more different display screens presenting various data and/or interfaces or controls for use by the healthcare professional.
- the assistant display 24 may include graphics, which may be presented by a web-based interface and/or by a computer program or application (App.).
- the system 10 may provide computer translation of language from the assistant interface 94 to the patient interface 50 and/or vice-versa.
- the computer translation of language may include computer translation of spoken language and/or computer translation of text.
- the system 10 may provide voice recognition and/or spoken pronunciation of text.
- the system 10 may convert spoken words to printed text and/or the system 10 may audibly speak language from printed text.
- the system 10 may be configured to recognize spoken words by any or all of the patient, the clinician, and/or the healthcare professional.
- the system 10 may be configured to recognize and react to spoken requests or commands by the patient. For example, in response to a verbal command by the patient (which may be given in any one of several different languages), the system 10 may automatically initiate a telemedicine
- the assistant interface 94 may be one of several different terminals (e.g., computing devices) that may be grouped together, for example, in one or more call centers or at one or more clinicians' offices. In some embodiments, a plurality of assistant interfaces 94 may be distributed geographically. In some embodiments, a person may work as an healthcare professional remotely from any conventional office infrastructure. Such remote work may be performed, for example, where the assistant interface 94 takes the form of a computer and/or telephone. This remote work functionality may allow for work-from-home arrangements that may include part time and/or flexible work hours for an healthcare professional.
- FIGS. 2 - 3 show an embodiment of an exercise apparatus 70 .
- FIG. 2 generally illustrates an exercise apparatus 70 in the form of a stationary cycling machine 100 , which may be called a stationary bike, for short.
- the stationary cycling machine 100 includes a set of pedals 102 each attached to a pedal arm 104 for rotation about an axle 106 .
- the pedals 102 are movable on the pedal arms 104 in order to adjust a range of motion used by the patient in pedaling.
- the pedals being located inwardly toward the axle 106 corresponds to a smaller range of motion than when the pedals are located outwardly away from the axle 106 .
- FIG. 4 generally illustrated a person (a patient) using the exercise apparatus 70 of FIG. 2 , and generally illustrating sensors and various data parameters connected to a patient interface 50 .
- the example patient interface 50 is a tablet computer or smartphone, or a phablet, such as an iPad, an iPhone, an Android device, or a Surface tablet, which is held manually by the patient.
- the patient interface 50 may be embedded within or attached to the exercise apparatus 70 .
- FIG. 4 generally illustrates the patient wearing the ambulation sensor 82 on his wrist, with a note showing “STEPS TODAY 1355”, indicating that the ambulation sensor 82 has recorded and transmitted that step count to the patient interface 50 .
- FIG. 4 generally illustrates the patient wearing the ambulation sensor 82 on his wrist, with a note showing “STEPS TODAY 1355”, indicating that the ambulation sensor 82 has recorded and transmitted that step count to the patient interface 50 .
- FIG. 4 also shows other patient data, such as an indicator of “SESSION TIME 0:04:13”, indicating that the patient has been using the exercise apparatus 70 for 4 minutes and 13 seconds. This session time may be determined by the patient interface 50 based on information received from the exercise apparatus 70 .
- FIG. 4 also generally illustrates an indicator showing “PAIN LEVEL 3”. Such a pain level may be obtained from the patent in response to a solicitation, such as a question, presented upon the patient interface 50 .
- the remote sensing devices 108 may detect that the a node attached to the right knee of the user moves sporadically (e.g. deviates from an expected motion) while the user uses the exercise apparatus 70 .
- the remote sensing devices 108 may be configured to detect the temperature or perspiration, of the user.
- the remote sensing devices 108 and their associated software are configured to identify a level of strain the user undergoes while the user uses the treatment device.
- the one or more remote sensing devices 108 may implement facial recognition to detect a change in the physical appearance of the user (e.g., wrinkling of the skin around the user's eyes, clenching of the user's jaw).
- FIG. 5 is an example embodiment of an overview display 120 of the assistant interface 94 .
- the overview display 120 presents several different controls and interfaces for the healthcare professional to remotely assist a patient with using the patient interface 50 and/or the exercise apparatus 70 .
- This remote assistance functionality may also be called telemedicine or telehealth.
- a healthcare professional that is assisting the patient with a medical issue may be provided with medical history information regarding the patient, whereas a technician troubleshooting an issue with the exercise apparatus 70 may be provided with a much more limited set of information regarding the patient.
- the technician for example, may be given only the patient's name.
- the patient profile display 130 may include pseudonym zed data and/or anonymized data or use any privacy enhancing technology to prevent confidential patient data from being communicated in a way that could violate patient confidentiality requirements.
- privacy enhancing technologies may enable compliance with laws, regulations, or other rules of governance such as, but not limited to, the Health Insurance Portability and Accountability Act (HIPAA), or the General Data Protection Regulation (GDPR), wherein the patient may be deemed a “data subject”.
- HIPAA Health Insurance Portability and Accountability Act
- GDPR General Data Protection Regulation
- one or more recommended treatment plans and/or excluded treatment plans may be presented in the patient profile display 130 to the healthcare professional.
- the one or more recommended treatment plans and/or excluded treatment plans may be generated by the artificial intelligence engine 11 of the server 30 and received from the server 30 in real-time during a telemedicine or telehealth session.
- An example of presenting the one or more recommended treatment plans and/or ruled-out treatment plans is described below with reference to FIG. 7 .
- the patient status display 134 may include sensor data from one or more sensors of one or more wearable devices worn by the patient or spaced from the patient (i.e., the remote sensing devices 108 ) while using the exercise apparatus 70 .
- the one or more wearable devices may include a watch, a bracelet, a necklace, a chest strap, and the like.
- the one or more wearable devices may be configured to monitor a heartrate, a temperature, a blood pressure, one or more vital signs, and the like of the patient while the patient is using the exercise apparatus 70 .
- the one or more remote sensing devices 108 may be configured to interact with or communicate with the wearable devices in order to more particularly identify attributes of the user.
- the patient status display 134 may present other data 138 regarding the patient, such as last reported pain level, or progress within a treatment plan.
- the example overview display 120 generally illustrated in FIG. 5 also includes a help data display 140 presenting information for the healthcare professional to use in assisting the patient.
- the help data display 140 may take the form of a portion or region of the overview display 120 , as generally illustrated in FIG. 5 .
- the help data display 140 may take other forms, such as a separate screen or a popup window.
- the help data display 140 may include, for example, presenting answers to frequently asked questions regarding use of the patient interface 50 and/or the exercise apparatus 70 .
- the help data display 140 may also include research data or best practices. In some embodiments, the help data display 140 may present scripts for answers or explanations in response to patient questions.
- the example overview display 120 generally illustrated in FIG. 5 also includes a patient interface control 150 presenting information regarding the patient interface 50 , and/or to modify one or more settings of the patient interface 50 .
- the patient interface control 150 may take the form of a portion or region of the overview display 120 , as shown in FIG. 5 .
- the patient interface control 150 may take other forms, such as a separate screen or a popup window.
- the patient interface control 150 may present information communicated to the assistant interface 94 via one or more of the interface monitor signals 98 b .
- the patient interface control 150 includes a display feed 152 of the display presented by the patient interface 50 .
- the display feed 152 may include a live copy of the display screen currently being presented to the patient by the patient interface 50 . In other words, the display feed 152 may present an image of what is presented on a display screen of the patient interface 50 . In some embodiments, the display feed 152 may include abbreviated information regarding the display screen currently being presented by the patient interface 50 , such as a screen name or a screen number.
- the patient interface control 150 may include a patient interface setting control 154 for the healthcare professional to adjust or to control one or more settings or aspects of the patient interface 50 . In some embodiments, the patient interface setting control 154 may cause the assistant interface 94 to generate and/or to transmit an interface control signal 98 for controlling a function or a setting of the patient interface 50 .
- the patient interface setting control 154 may allow the healthcare professional to change a setting that cannot be changed by the patient.
- the patient interface 50 may be precluded from accessing a language setting to prevent a patient from inadvertently switching, on the patient interface 50 , the language used for the displays, whereas the patient interface setting control 154 may enable the healthcare professional to change the language setting of the patient interface 50 .
- the example overview display 120 generally illustrated in FIG. 5 also includes an interface communications display 156 showing the status of communications between the patient interface 50 and one or more other devices 70 , 82 , 84 , such as the exercise apparatus 70 , the ambulation sensor 82 , and/or the goniometer 84 .
- the interface communications display 156 may take the form of a portion or region of the overview display 120 , as generally illustrated in FIG. 5 .
- the interface communications display 156 may take other forms, such as a separate screen or a popup window.
- the interface communications display 156 may include controls for the healthcare professional to remotely modify communications with one or more of the other devices 70 , 82 , 84 .
- the healthcare professional may remotely command the patient interface 50 to reset communications with one of the other devices 70 , 82 , 84 , or to establish communications with a new one of the other devices 70 , 82 , 84 .
- This functionality may be used, for example, where the patient has a problem with one of the other devices 70 , 82 , 84 , or where the patient receives a new or a replacement one of the other devices 70 , 82 , 84 .
- the example overview display 120 generally illustrated in FIG. 5 also includes an apparatus control 160 for the healthcare professional to view and/or to control information regarding the exercise apparatus 70 .
- the apparatus control 160 may take the form of a portion or region of the overview display 120 , as generally illustrated in FIG. 5 .
- the apparatus control 160 may take other forms, such as a separate screen or a popup window.
- the apparatus control 160 may include an apparatus status display 162 with information regarding the current status of the apparatus.
- the apparatus status display 162 may present information communicated to the assistant interface 94 via one or more of the apparatus monitor signals 99 b .
- the apparatus status display 162 may indicate whether the exercise apparatus 70 is currently communicating with the patient interface 50 .
- the apparatus status display 162 may present other current and/or historical information regarding the status of the exercise apparatus 70 .
- the apparatus control 160 may include an apparatus setting control 164 for the healthcare professional to adjust or control one or more aspects of the exercise apparatus 70 .
- the apparatus setting control 164 may cause the assistant interface 94 to generate and/or to transmit an apparatus control signal 99 (e.g. which may be referred to as treatment plan input) for changing an operating parameter and/or one or more characteristics of the exercise apparatus 70 , (e.g., a pedal radius setting, a resistance setting, a target RPM, other suitable characteristics of the treatment device 70 , or a combination thereof).
- the apparatus setting control 164 may include a mode button 166 and a position control 168 , which may be used in conjunction for the healthcare professional to place an actuator 78 of the exercise apparatus 70 in a manual mode, after which a setting, such as a position or a speed of the actuator 78 , can be changed using the position control 168 .
- the mode button 166 may provide for a setting, such as a position, to be toggled between automatic and manual modes.
- one or more settings may be adjustable at any time, and without having an associated auto/manual mode.
- the healthcare professional may change an operating parameter of the exercise apparatus 70 , such as a pedal radius setting, while the patient is actively using the exercise apparatus 70 .
- the apparatus setting control 164 may allow the healthcare professional to change a setting that cannot be changed by the patient using the patient interface 50 .
- the patient interface 50 may be precluded from changing a preconfigured setting, such as a height or a tilt setting of the exercise apparatus 70 , whereas the apparatus setting control 164 may provide for the healthcare professional to change the height or tilt setting of the exercise apparatus 70 .
- the example overview display 120 generally illustrated in FIG. 5 also includes a patient communications control 170 for controlling an audio or an audiovisual communications session with the patient interface 50 .
- the communications session with the patient interface 50 may comprise a live feed from the assistant interface 94 for presentation by the output device of the patient interface 50 .
- the live feed may take the form of an audio feed and/or a video feed.
- the patient interface 50 may be configured to provide two-way audio or audiovisual communications with a person using the assistant interface 94 .
- the communications session with the patient interface 50 may include bidirectional (two-way) video or audiovisual feeds, with each of the patient interface 50 and the assistant interface 94 presenting video of the other one.
- the audio or an audiovisual communications session with the patient interface 50 may take place, at least in part, while the patient is performing the rehabilitation regimen upon the body part.
- the patient communications control 170 may take the form of a portion or region of the overview display 120 , as shown in FIG. 5 .
- the patient communications control 170 may take other forms, such as a separate screen or a popup window.
- the audio and/or audiovisual communications may be processed and/or directed by the assistant interface 94 and/or by another device or devices, such as a telephone system, or a videoconferencing system used by the healthcare professional while the healthcare professional uses the assistant interface 94 .
- the audio and/or audiovisual communications may include communications with a third party.
- the system 10 may enable the healthcare professional to initiate a 3-way conversation regarding use of a particular piece of hardware or software, with the patient and a subject matter expert, such as a medical professional or a specialist.
- the example patient communications control 170 generally illustrated in FIG. 5 includes call controls 172 for the healthcare professional to use in managing various aspects of the audio or audiovisual communications with the patient.
- the call controls 172 include a disconnect button 174 for the healthcare professional to end the audio or audiovisual communications session.
- the call controls 172 also include a mute button 176 to temporarily silence an audio or audiovisual signal from the assistant interface 94 .
- the call controls 172 may include other features, such as a hold button (not shown).
- the call controls 172 also include one or more record/playback controls 178 , such as record, play, and pause buttons to control, with the patient interface 50 , recording and/or playback of audio and/or video from the teleconference session (e.g., which may be referred to herein as the virtual conference room).
- the call controls 172 also include a video feed display 180 for presenting still and/or video images from the patient interface 94 , and a self-video display 182 showing the current image of the healthcare professional using the assistant interface 94 .
- the self-video display 182 may be presented as a picture-in-picture format, within a section of the video feed display 180 , as generally illustrated in FIG. 5 . Alternatively or additionally, the self-video display 182 may be presented separately and/or independently from the video feed display 180 .
- the example overview display 120 generally illustrated in FIG. 5 also includes a third party communications control 190 for use in conducting audio and/or audiovisual communications with a third party.
- the third party communications control 190 may take the form of a portion or region of the overview display 120 , as generally illustrated in FIG. 5 .
- the third party communications control 190 may take other forms, such as a display on a separate screen or a popup window.
- the third party communications control 190 may include one or more controls, such as a contact list and/or buttons or controls to contact a third party regarding use of a particular piece of hardware or software, e.g., a subject matter expert, such as a healthcare professional or a specialist.
- the third party communications control 190 may include conference calling capability for the third party to simultaneously communicate with both the healthcare professional via the assistant interface 94 , and with the patient via the patient interface 50 .
- the system 10 may provide for the healthcare professional to initiate a 3-way conversation with the patient and the third party.
- FIG. 6 generally illustrates an example block diagram of training a machine learning model 13 to output, based on data 600 pertaining to the patient, a treatment plan 602 for the patient according to the present disclosure.
- Data pertaining to other patients may be received by the server 30 .
- the other patients may have used various treatment apparatuses to perform treatment plans.
- the data may include characteristics of the other patients, the details of the treatment plans performed by the other patients, and/or the results of performing the treatment plans (e.g., a percent of recovery of a portion of the patients' bodies, an amount of recovery of a portion of the patients' bodies, an amount of increase or decrease in muscle strength of a portion of patients' bodies, an amount of increase or decrease in range of motion of a portion of patients' bodies, etc.).
- Cohort A includes data for patients having similar first characteristics, first treatment plans, and first results.
- Cohort B includes data for patients having similar second characteristics, second treatment plans, and second results.
- cohort A may include first characteristics of patients in their twenties without any medical conditions who underwent surgery for a broken limb; their treatment plans may include a certain treatment protocol (e.g., use the exercise apparatus 70 for 30 minutes 5 times a week for 3 weeks, wherein values for the properties, configurations, and/or settings of the exercise apparatus 70 are set to X (where X is a numerical value) for the first two weeks and to Y (where Y is a numerical value) for the last week).
- Cohort A and cohort B may be included in a training dataset used to train the machine learning model 13 .
- the machine learning model 13 may be trained to match a pattern between characteristics for each cohort and output the treatment plan or a variety of possible treatment plans for selection by a healthcare provider that provides the result. Accordingly, when the data 600 for a new patient is input into the trained machine learning model 13 , the trained machine learning model 13 may match the characteristics included in the data 600 with characteristics in either cohort A or cohort B and output the appropriate treatment plan or plans 602 . In some embodiments, the machine learning model 13 may be trained to output one or more excluded treatment plans that should not be performed by the new patient.
- FIG. 7 generally illustrates an embodiment of an overview display 120 of the assistant interface 94 presenting recommended treatment plans and excluded treatment plans in real-time during a telemedicine session according to the present disclosure.
- the overview display 120 just includes sections for the patient profile 130 and the video feed display 180 , including the self-video display 182 .
- Any suitable configuration of controls and interfaces of the overview display 120 described with reference to FIG. 5 may be presented in addition to or instead of the patient profile 130 , the video feed display 180 , and the self-video display 182 .
- the healthcare professional using the assistant interface 94 may be presented in the self-video 182 in a portion of the overview display 120 (e.g., user interface presented on a display screen 24 of the assistant interface 94 ) that also presents a video from the patient in the video feed display 180 .
- the video feed display 180 may also include a graphical user interface (GUI) object 700 (e.g., a button) that enables the healthcare professional to share, in real-time or near real-time during the telemedicine session, the recommended treatment plans and/or the excluded treatment plans with the patient on the patient interface 50 .
- the healthcare professional may select the GUI object 700 to share the recommended treatment plans and/or the excluded treatment plans.
- another portion of the overview display 120 includes the patient profile display 130 .
- the patient profile display 130 is presenting two example recommended treatment plans 600 and one example excluded treatment plan 602 .
- the treatment plans may be recommended in view of characteristics of the patient being treated.
- To generate the recommended treatment plans 600 the patient should follow to achieve a desired result, a pattern between the characteristics of the patient being treated and a cohort of other people who have used the exercise apparatus 70 to perform a treatment plan may be matched by one or more machine learning models 13 of the artificial intelligence engine 11 .
- Each of the recommended treatment plans may be generated based on different desired results.
- the patient profile display 130 presents “The characteristics of the patient match characteristics of users in Cohort A. The following treatment plans are recommended for the patient based on his characteristics and desired results.” Then, the patient profile display 130 presents recommended treatment plans from cohort A, and each treatment plan provides different results.
- treatment plan “A” indicates “Patient X should use treatment apparatus for 30 minutes a day for 4 days to achieve an increased range of motion of Y %; Patient X has Type 2 Diabetes; and Patient X should be prescribed medication Z for pain management during the treatment plan (medication Z is approved for people having Type 2 Diabetes).” Accordingly, the treatment plan generated achieves increasing the range of motion of Y %.
- the treatment plan also includes a recommended medication (e.g., medication Z) to prescribe to the patient to manage pain in view of a known medical disease (e.g., Type 2 Diabetes) of the patient. That is, the recommended patient medication not only does not conflict with the medical condition of the patient but thereby improves the probability of a superior patient outcome.
- a recommended medication e.g., medication Z
- Recommended treatment plan “B” may specify, based on a different desired result of the treatment plan, a different treatment plan including a different treatment protocol for an exercise apparatus 70 , a different medication regimen, etc.
- the patient profile display 130 may also present the excluded treatment plans 602 .
- These types of treatment plans are shown to the healthcare professional using the assistant interface 94 to alert the healthcare professional not to recommend certain portions of a treatment plan to the patient.
- the excluded treatment plan could specify the following: “Patient X should not use treatment apparatus for longer than 30 minutes a day due to a heart condition; Patient X has Type 2 Diabetes; and Patient X should not be prescribed medication M for pain management during the treatment plan (in this scenario, medication M can cause complications for people having Type 2 Diabetes).
- the excluded treatment plan points out a limitation of a treatment protocol where, due to a heart condition, Patient X should not exercise for more than 30 minutes a day.
- the ruled-out treatment plan also points out that Patient X should not be prescribed medication M because it conflicts with the medical condition Type 2 Diabetes.
- the healthcare professional may select the treatment plan for the patient on the overview display 120 .
- the healthcare professional may use an input peripheral (e.g., mouse, touchscreen, microphone, keyboard, etc.) to select from the treatment plans 600 for the patient.
- the healthcare professional may discuss the pros and cons of the recommended treatment plans 600 with the patient.
- the healthcare professional may select the treatment plan for the patient to follow to achieve the desired result.
- the selected treatment plan may be transmitted to the patient interface 50 for presentation.
- the patient may view the selected treatment plan on the patient interface 50 .
- the healthcare professional and the patient may discuss during the telemedicine session the details (e.g., treatment protocol using treatment apparatus 70 , diet regimen, medication regimen, etc.) in real-time or in near real-time.
- the server 30 may control, based on the selected treatment plan and during the telemedicine session, the exercise apparatus 70 as the user uses the exercise apparatus 70 .
- FIG. 8 generally illustrates an embodiment of the overview display 120 of the assistant interface 94 presenting, in real-time during a telemedicine session, recommended treatment plans that have changed as a result of patient data changing according to the present disclosure.
- the exercise apparatus 70 and/or any computing device e.g., patient interface 50
- the data may include updated characteristics of the patient and/or other treatment data.
- the updated characteristics may include new performance information and/or measurement information.
- the performance information may include a speed of a portion of the exercise apparatus 70 , a range of motion achieved by the patient, a force exerted on a portion of the exercise apparatus 70 , a heartrate of the patient, a blood pressure of the patient, a respiratory rate of the patient, and so forth.
- the data received at the server 30 may be input into the trained machine learning model 13 , which may determine that the characteristics indicate the patient is on track for the current treatment plan. Determining the patient is on track for the current treatment plan may cause the trained machine learning model 13 to adjust a parameter of the exercise apparatus 70 . The adjustment may be based on a next step of the treatment plan to further improve the performance of the patient.
- the server 30 may provide the new treatment plan 800 to the assistant interface 94 for presentation in the patient profile 130 .
- the patient profile 130 indicates “The characteristics of the patient have changed and now match characteristics of users in Cohort B. The following treatment plan is recommended for the patient based on his characteristics and desired results.”
- the patient profile 130 presents the new treatment plan 800 (“Patient X should use the exercise apparatus 70 for 10 minutes a day for 3 days to achieve an increased range of motion of L %”
- the healthcare professional may select the new treatment plan 800 , and the server 30 may receive the selection.
- the server 30 may control the exercise apparatus 70 based on the new treatment plan 800 .
- the new treatment plan 800 may be transmitted to the patient interface 50 such that the patient may view the details of the new treatment plan 800 .
- the server 30 described herein may be configured for optimizing at least one exercise for a user.
- An exercise apparatus may be configured to enable the user to perform the at least one exercise.
- the server 30 described herein may be configured to receive user data.
- the user data may include attribute data associated with the user and outcome data associated with the exercise.
- the outcome data may be based on a selection by the user.
- the outcome data may be generated, based on the machine learning model, by the artificial intelligence engine.
- the server 30 described herein may be configured to receive measurement data associated with at least one of the user, the exercise apparatus, and the exercise.
- the measurement data may be associated with one or more sensors.
- the measurement data may be sensor data received from one or more sensors associated with at least one of the user, the exercise apparatus, and the exercise.
- the measurement data may be received in real-time or near real-time.
- the outcome data may include at least one of a duration of the exercise, a duration of uninterrupted use, a weight, a number of repetitions, a respiration rate of the user, a heartrate of the user, a reaction time, a perspiration rate of the user, an amount of force exerted on a portion of the exercise apparatus, a range of motion achieved on the exercise apparatus, a pressure exerted on a portion of the exercise apparatus, a movement speed of a portion of the exercise apparatus, a movement acceleration of a portion of the exercise apparatus, a movement jerk of a portion of the exercise apparatus, a torque level of a portion of the exercise apparatus, or any combination thereof.
- the server 30 described herein may be configured to determine differential data. The determining may be based on one or more differences between the initial target data and the measurement data. In some embodiments, the server 30 described herein may be configured to receive, based on cohort users who perform the exercise, cohort data.
- the server 30 described herein may be configured to generate, via an artificial intelligence engine and based on the differential data, a machine learning model trained to generate message data based on a difference between the differential data and the cohort data.
- the message data may comprise at least one of audio data, visual data, and haptic data.
- the audio data may include a verbal characteristic associated with at least one of a volume, a cadence, a tone, an enunciation, a word, a language, a dialect, a vernacular, an accent, an emphasis, a pitch, a rhythm, an order of words, a tense, a timbre, and a prosody.
- the verbal characteristic may be based on at least one of the cohort data and the outcome data.
- the visual data may include a visual characteristic associated with at least one of a color, an image, a video, a text, a font type, a font style, a point size, a font modifier, a virtual-reality environment, and an illumination.
- the visual characteristic may be based on at least one of the cohort data and the outcome data.
- the haptic data may include a haptic characteristic associated with at least one of a vibration, a force, a pressure, a torque, an intensity, a resistance, an electric stimulus, an ultrasonic frequency, a heat level, and a temperature.
- the haptic characteristic may be based on at least one of the cohort data and the outcome data.
- optimization of the at least one exercise is achieved by motivating via positive or negative feedback, the user of the exercise apparatus 70 .
- This may be accomplished via the particular message that is transmitted to the interface.
- the message may not include textual elements, but rather will include an audio and haptic element in order to alert the user to his status.
- the message transmitted may audibly say, in a deep intense voice “Keep going, you can do it!”
- the message may instead output on the interface a bolded and underlined textual message of similar terms.
- the user interface may display a red color with flashing elements, or alternatively may display an image of an avatar speaking the textual message.
- a video message may be displayed on the interface with the video including an avatar teaching the user how to increase efficiency of the exercise.
- optimization of the at least one exercise is achieved by monitoring the response of the user after the message is transmitted to the interface.
- the optimal message is continuously updated based on the response the user has to the optimal message.
- the message may be actively refined over time with the machine learning model 13 being trained based on the response times of previous users with various conditions. For example, based on cohort data, the machine learning model 13 may identify via correlation that certain conditions of a user produce certain measurement data consistently, despite the correlation being unnoticed or undetectable by a human observer.
- the machine learning model 13 may identify specific types of feedback in the message that are likely to induce a particular response by the user. Unexpected responses to the message may further allow the machine learning model 13 to try different forms of feedback to identify another condition of the user. For example, if it is determined that the best message to output is an audible one with a high degree of intensity, but outputting that message does not achieve the desired outcome, the machine learning model may detect that the user may suffer from hearing loss.
- the at least one exercise including the configurations, settings, range of motion settings, pain level, force settings, and speed settings, etc. of the exercise apparatus 70 for various exercises, may be transmitted to the controller of the exercise apparatus 70 .
- the controller may receive the indication. Based on the indication, the controller may electronically adjust the range of motion of the pedal 102 by adjusting the pedal inwardly, outwardly, or along or about any suitable axis, via one or more actuators, hydraulics, springs, electric motors, or the like.
- the at least one exercise may define alternative range of motion settings for the pedal 102 when the user indicates certain pain levels during an exercise. Accordingly, once the at least one exercise is uploaded to the controller of the exercise apparatus 70 , the exercise apparatus 70 may continue to operate without further instruction, further external input, and the like. It should be noted that the user (via the patient interface 50 ) and/or the assistant (via the assistant interface 94 ) may override any of the configurations or settings of the exercise apparatus 70 at any time. For example, the user may use the patient interface 50 to cause the exercise apparatus 70 to immediately stop, if so desired.
- a method 900 of the present disclosure may comprise the step 902 of receiving first patient data, wherein the first patient data may include at least a first patient identifier associated with the first patient and a first treatment plan.
- the patient identifiers may each comprise at least one of a measurement of a vital sign of patient, a respiration rate of the patient, a heartrate of the patient, a heart rhythm of a patient, an oxygen saturation of the patient, a sugar level of the patient, a composition of blood of the patient, a cerebral activity of the patient, a cognitive activity of the patient, a lung capacity of the patient, a temperature of the patient, a blood pressure of the patient, an eye movement of the patient, a degree of dilation of an eye of the patient, a reaction time, a sound produced by the patient, a perspiration rate of the patient, an elapsed time for using the exercise apparatus, an amount of force exerted on a portion of the exercise apparatus, a range of motion achieved on the exercise apparatus, a
- the method 900 may comprise the step 904 of receiving second patient data, wherein the second patient data may include both a second patient identifier associated with the second patient and a second treatment plan.
- the method 900 may comprise the step 906 of receiving first measurement data associated with a first performance level of the first treatment plan by the first patient.
- the first and the second performance levels may comprise at least one of a measurement of a vital sign of patient, a respiration rate of the patient, a heartrate of the patient, a heart rhythm of a patient, an oxygen saturation of the patient, a sugar level of the patient, a composition of blood of the patient, a cerebral activity of the patient, a cognitive activity of the patient, a lung capacity of the patient, a temperature of the patient, a blood pressure of the patient, an eye movement of the patient, a degree of dilation of an eye of the patient, a reaction time, a sound produced by the patient, a perspiration rate of the patient, an elapsed time of using the exercise apparatus, an amount of force exerted on a portion of the exercise apparatus, a range of motion achieved on the exercise apparatus, a speed of a portion of the exercise apparatus, a pressure exerted on a portion of the exercise apparatus, a movement acceleration of a portion of the exercise apparatus, a torque exerted to a portion of the exercise apparatus, and an indication of
- the method 900 may comprise the step 910 of receiving second measurement data associated with a second performance level of the second treatment plan by the second patient.
- the method 900 may comprise the step 912 of determining differential data, wherein the determining is based on a contrast of one or more of the first and the second measurement data and first and second patient data.
- the method 900 may comprise the step of generating, based on the differential data, an instruction to modify an operating state of the treatment plan apparatus.
- the method 900 of the disclosure may also comprise the step of controlling, based on the instruction, at least one of the first and the second exercise apparatus.
- the controlling may comprise at least selecting one of the first and the second exercise apparatus and modifying an operating state of the exercise apparatus.
- FIG. 11 shows an example computer system 1300 , which can perform any one or more of the methods described herein, in accordance with one or more aspects of the present disclosure.
- computer system 1300 may include a computing device and correspond to the assistance interface 94 , reporting interface 92 , supervisory interface 90 , clinician interface 20 , server 30 (including the AI engine 11 ), patient interface 50 , ambulatory sensor 82 , goniometer 84 , treatment apparatus 70 , pressure sensor 86 , or any suitable component of FIG. 1 .
- the computer system 1300 may be capable of executing instructions implementing the one or more machine learning models 13 of the artificial intelligence engine 11 of FIG. 1 .
- the computer system may be connected (e.g., networked) to other computer systems in a LAN, an intranet, an extranet, or the Internet, including via the cloud or a peer-to-peer network.
- the computer system may operate in the capacity of a server in a client-server network environment.
- the computer system may be a personal computer (PC), a tablet computer, a wearable (e.g., wristband), a set-top box (STB), a personal Digital Assistant (PDA), a mobile phone, a camera, a video camera, an Internet of Things (IoT) device, or any device capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that device.
- PC personal computer
- PDA personal Digital Assistant
- IoT Internet of Things
- computer shall also be taken to include any collection of computers that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methods discussed herein.
- the computer system 1300 includes a processing device 1302 , a main memory 1304 (e.g., read-only memory (ROM), flash memory, solid state drives (SSDs), dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM)), a static memory 1306 (e.g., flash memory, solid state drives (SSDs), static random access memory (SRAM)), and a data storage device 1308 , which communicate with each other via a bus 1310 .
- main memory 1304 e.g., read-only memory (ROM), flash memory, solid state drives (SSDs), dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM)
- DRAM dynamic random access memory
- SDRAM synchronous DRAM
- static memory 1306 e.g., flash memory, solid state drives (SSDs), static random access memory (SRAM)
- SRAM static random access memory
- Processing device 1302 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device 1302 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets or processors implementing a combination of instruction sets.
- the processing device 1302 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a system on a chip, a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like.
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- DSP digital signal processor
- network processor or the like.
- the processing device 102 is configured to execute instructions for performing any of the operations and steps discussed herein.
- the computer system 1300 may further include a network interface device 1312 .
- the computer system 1300 also may include a video display 1314 (e.g., a liquid crystal display (LCD), a light-emitting diode (LED), an organic light-emitting diode (OLED), a quantum LED, a cathode ray tube (CRT), a shadow mask CRT, an aperture grille CRT, a monochrome CRT), one or more input devices 1316 (e.g., a keyboard and/or a mouse or a gaming-like control), and one or more speakers 1318 (e.g., a speaker).
- the video display 1314 and the input device(s) 1316 may be combined into a single component or device (e.g., an LCD touch screen).
- the data storage device 1316 may include a computer-readable medium 1320 on which the instructions 1322 embodying any one or more of the methods, operations, or functions described herein is stored.
- the instructions 1322 may also reside, completely or at least partially, within the main memory 1304 and/or within the processing device 1302 during execution thereof by the computer system 1300 . As such, the main memory 1304 and the processing device 1302 also constitute computer-readable media.
- the instructions 1322 may further be transmitted or received over a network via the network interface device 1312 .
- While the computer-readable storage medium 1420 is shown in the illustrative examples to be a single medium, the term “computer-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions.
- the term “computer-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure.
- the term “computer-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, and magnetic media.
- a method for performing, by two or more patients, a respective treatment plan with respective first and second exercise apparatuses comprising: receiving first patient data, wherein the first patient data includes at least a first patient identifier associated with the first patient and a first treatment plan receiving second patient data, wherein the second patient data includes a second patient identifier associated with the second patient and a second treatment plan; receiving first measurement data associated with a first performance level of the first treatment plan by the first patient; receiving second measurement data associated with a second performance level of the second treatment plan by the second patient; determining differential data, wherein the determining is based on a contrast of one or more of the first and the second measurement data and first and second patient data; and generating, based on the differential data, an instruction to modify an operating state of the treatment apparatus.
- Clause 2 The method of Clause 1, further comprising controlling, based on the instruction, at least one of the first and the second exercise apparatus.
- Clause 3 The method of Clause 2, wherein controlling at least one of the first and the second exercise apparatus, comprises modifying an operating state of the exercise apparatus.
- Clause 4 The method of Clause 1, wherein the patient identifiers each comprise at least one of a measurement of a vital sign of patient, a respiration rate of the patient, a heartrate of the patient, a heart rhythm of a patient, an oxygen saturation of the patient, a sugar level of the patient, a composition of blood of the patient, a cerebral activity of the patient, a cognitive activity of the patient, a lung capacity of the patient, a temperature of the patient, a blood pressure of the patient, an eye movement of the patient, a degree of dilation of an eye of the patient, a reaction time, a sound produced by the patient, a perspiration rate of the patient, an elapsed time of using the exercise apparatus, an amount of force exerted on a portion of the exercise apparatus, a range of motion achieved on the exercise apparatus, a speed of a portion of the exercise apparatus, a pressure exerted on a portion of the exercise apparatus, an acceleration of a portion of the exercise apparatus, a torque exerted to a portion of
- Clause 5 The method of Clause 4, wherein the patient identifiers are each associated with a prior exercise performed by the first and second patient.
- Clause 6 The method of Clause 5, wherein the patient identifier are each associated with a performance level associated with a prior treatment plan.
- each of the first and the second performance levels comprise at least one of a patient identifiers each comprise at least one of a measurement of a vital sign of patient, a respiration rate of the patient, a heartrate of the patient, a heart rhythm of a patient, an oxygen saturation of the patient, a sugar level of the patient, a composition of blood of the patient, a cerebral activity of the patient, a cognitive activity of the patient, a lung capacity of the patient, a temperature of the patient, a blood pressure of the patient, an eye movement of the patient, a degree of dilation of an eye of the patient, a reaction time, a sound produced by the patient, a perspiration rate of the patient, an elapsed time of using the exercise apparatus, an amount of force exerted on a portion of the exercise apparatus, a range of motion achieved on the exercise apparatus, a speed of a portion of the exercise apparatus, a pressure exerted on a portion of the exercise apparatus, an acceleration of a portion of the
- Clause 8 The method of Clause 7, wherein the performance levels are each measured relative to at least one of the first and the second exercises.
- Clause 9 The method of Clause 8, wherein the first and the second performance levels are each measured relative to at least one prior exercise.
- Clause 10 The method of Clause 9, wherein the first and the second performance levels are measured relative to at least one prior exercise associated with at least one of the first and the second patient.
- a system for performing, by two or more patients, exercises with an exercise apparatus comprising: a processing device; an artificial intelligence engine communicatively coupled to the processing device; a memory including instruction that, when executed by the processing device, cause the processing device to: receive first patient data, wherein the first patient data includes at least a first patient identifier associated with the first patient and a first treatment plan; receive second patient data, wherein the second patient data includes a second patient identifier associated with the second patient and a second treatment plan; receive first measurement data associated with a first performance level of the first treatment plan by the first patient; receive second measurement data associated with a second performance level of the second exercise by the second patient; receive second measurement data associated with a second performance level of the second treatment plan by the second patient; determine, via the artificial intelligence engine and based on a contrast of one or more of the first and the second measurement data and first and second patient data, differential data; and generate, via the artificial intelligence engine and based on the differential data, an instruction to modify at least one of the first and the second patient data, differential data
- Clause 12 The system of Clause 11, further comprised of control, based on the differential data, at least one of the first and the second exercise apparatus.
- Clause 13 The system of Clause 12, wherein the control of the at least one of the first and the second exercise apparatus, comprises modifying an operating state of the exercise apparatus.
- Clause 14 The system of Clause 11, wherein the patient identifiers each comprise at least one of a measurement of a vital sign of patient, a respiration rate of the patient, a heartrate of the patient, a heart rhythm of a patient, an oxygen saturation of the patient, a sugar level of the patient, a composition of blood of the patient, a cerebral activity of the patient, a cognitive activity of the patient, a lung capacity of the patient, a temperature of the patient, a blood pressure of the patient, an eye movement of the patient, a degree of dilation of an eye of the patient, a reaction time, a sound produced by the patient, a perspiration rate of the patient, an elapsed time of using the exercise apparatus, an amount of force exerted on a portion of the exercise apparatus, a range of motion achieved on the exercise apparatus, a movement speed of a portion of the exercise apparatus, a pressure exerted on a portion of the exercise apparatus, a movement acceleration of a portion of the exercise apparatus, a movement jerk of
- Clause 15 The system of Clause 14, wherein the patient identifiers are each associated with a prior exercise performed by the patient.
- Clause 16 The system of Clause 15, wherein the patient identifiers are each associated with a performance level associated with a prior exercise.
- each of the first and the second performance levels comprise at least one of a patient identifiers each comprise at least one of a measurement of a vital sign of patient, a respiration rate of the patient, a heartrate of the patient, a heart rhythm of a patient, an oxygen saturation of the patient, a sugar level of the patient, a composition of blood of the patient, a cerebral activity of the patient, a cognitive activity of the patient, a lung capacity of the patient, a temperature of the patient, a blood pressure of the patient, an eye movement of the patient, a degree of dilation of an eye of the patient, a reaction time, a sound produced by the patient, a perspiration rate of the patient, an elapsed time of using the exercise apparatus, an amount of force exerted on a portion of the exercise apparatus, a range of motion achieved on the exercise apparatus, a speed of a portion of the exercise apparatus, a pressure exerted on a portion of the exercise apparatus, an acceleration of a portion of the
- Clause 18 The system of Clause 17, wherein the first and the second performance levels are measured relative to at least one of the first and the second exercises.
- Clause 19 The system of Clause 18, wherein the first and the second performance levels are measured relative to at least one prior exercise.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Physical Education & Sports Medicine (AREA)
- Public Health (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Biomedical Technology (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Electromagnetism (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pathology (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/854,968 US12427376B2 (en) | 2019-10-03 | 2022-06-30 | Systems and methods for an artificial intelligence engine to optimize a peak performance |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201962910232P | 2019-10-03 | 2019-10-03 | |
| US17/021,895 US11071597B2 (en) | 2019-10-03 | 2020-09-15 | Telemedicine for orthopedic treatment |
| US17/150,938 US11325005B2 (en) | 2019-10-03 | 2021-01-15 | Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise |
| US202163216805P | 2021-06-30 | 2021-06-30 | |
| US17/739,906 US20220266094A1 (en) | 2019-10-03 | 2022-05-09 | Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise |
| US17/854,968 US12427376B2 (en) | 2019-10-03 | 2022-06-30 | Systems and methods for an artificial intelligence engine to optimize a peak performance |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/739,906 Continuation-In-Part US20220266094A1 (en) | 2019-10-03 | 2022-05-09 | Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20230078793A1 US20230078793A1 (en) | 2023-03-16 |
| US12427376B2 true US12427376B2 (en) | 2025-09-30 |
Family
ID=85479052
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/854,968 Active 2042-05-05 US12427376B2 (en) | 2019-10-03 | 2022-06-30 | Systems and methods for an artificial intelligence engine to optimize a peak performance |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US12427376B2 (en) |
Families Citing this family (69)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11185735B2 (en) | 2019-03-11 | 2021-11-30 | Rom Technologies, Inc. | System, method and apparatus for adjustable pedal crank |
| US12083380B2 (en) | 2019-03-11 | 2024-09-10 | Rom Technologies, Inc. | Bendable sensor device for monitoring joint extension and flexion |
| US11541274B2 (en) | 2019-03-11 | 2023-01-03 | Rom Technologies, Inc. | System, method and apparatus for electrically actuated pedal for an exercise or rehabilitation machine |
| US11957956B2 (en) | 2019-05-10 | 2024-04-16 | Rehab2Fit Technologies, Inc. | System, method and apparatus for rehabilitation and exercise |
| US11957960B2 (en) | 2019-05-10 | 2024-04-16 | Rehab2Fit Technologies Inc. | Method and system for using artificial intelligence to adjust pedal resistance |
| US11904207B2 (en) | 2019-05-10 | 2024-02-20 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to present a user interface representing a user's progress in various domains |
| US12102878B2 (en) | 2019-05-10 | 2024-10-01 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to determine a user's progress during interval training |
| US11801423B2 (en) | 2019-05-10 | 2023-10-31 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to interact with a user of an exercise device during an exercise session |
| US11433276B2 (en) | 2019-05-10 | 2022-09-06 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to independently adjust resistance of pedals based on leg strength |
| US11833393B2 (en) | 2019-05-15 | 2023-12-05 | Rehab2Fit Technologies, Inc. | System and method for using an exercise machine to improve completion of an exercise |
| US11801419B2 (en) | 2019-05-23 | 2023-10-31 | Rehab2Fit Technologies, Inc. | System, method and apparatus for rehabilitation and exercise with multi-configurable accessories |
| US11896540B2 (en) | 2019-06-24 | 2024-02-13 | Rehab2Fit Technologies, Inc. | Method and system for implementing an exercise protocol for osteogenesis and/or muscular hypertrophy |
| US11701548B2 (en) | 2019-10-07 | 2023-07-18 | Rom Technologies, Inc. | Computer-implemented questionnaire for orthopedic treatment |
| US11071597B2 (en) | 2019-10-03 | 2021-07-27 | Rom Technologies, Inc. | Telemedicine for orthopedic treatment |
| US12402804B2 (en) | 2019-09-17 | 2025-09-02 | Rom Technologies, Inc. | Wearable device for coupling to a user, and measuring and monitoring user activity |
| US11955223B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning to provide an enhanced user interface presenting data pertaining to cardiac health, bariatric health, pulmonary health, and/or cardio-oncologic health for the purpose of performing preventative actions |
| US11915815B2 (en) | 2019-10-03 | 2024-02-27 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning and generic risk factors to improve cardiovascular health such that the need for additional cardiac interventions is mitigated |
| US11075000B2 (en) | 2019-10-03 | 2021-07-27 | Rom Technologies, Inc. | Method and system for using virtual avatars associated with medical professionals during exercise sessions |
| US11101028B2 (en) | 2019-10-03 | 2021-08-24 | Rom Technologies, Inc. | Method and system using artificial intelligence to monitor user characteristics during a telemedicine session |
| US11923065B2 (en) | 2019-10-03 | 2024-03-05 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence and machine learning to detect abnormal heart rhythms of a user performing a treatment plan with an electromechanical machine |
| US12062425B2 (en) | 2019-10-03 | 2024-08-13 | Rom Technologies, Inc. | System and method for implementing a cardiac rehabilitation protocol by using artificial intelligence and standardized measurements |
| US11139060B2 (en) | 2019-10-03 | 2021-10-05 | Rom Technologies, Inc. | Method and system for creating an immersive enhanced reality-driven exercise experience for a user |
| US12224052B2 (en) | 2019-10-03 | 2025-02-11 | Rom Technologies, Inc. | System and method for using AI, machine learning and telemedicine for long-term care via an electromechanical machine |
| US11830601B2 (en) | 2019-10-03 | 2023-11-28 | Rom Technologies, Inc. | System and method for facilitating cardiac rehabilitation among eligible users |
| US20230245750A1 (en) | 2019-10-03 | 2023-08-03 | Rom Technologies, Inc. | Systems and methods for using elliptical machine to perform cardiovascular rehabilitation |
| US12420145B2 (en) | 2019-10-03 | 2025-09-23 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning for generating alignment plans to align a user with an imaging sensor during a treatment session |
| US12230381B2 (en) | 2019-10-03 | 2025-02-18 | Rom Technologies, Inc. | System and method for an enhanced healthcare professional user interface displaying measurement information for a plurality of users |
| US11978559B2 (en) | 2019-10-03 | 2024-05-07 | Rom Technologies, Inc. | Systems and methods for remotely-enabled identification of a user infection |
| US12150792B2 (en) | 2019-10-03 | 2024-11-26 | Rom Technologies, Inc. | Augmented reality placement of goniometer or other sensors |
| US11282599B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions |
| US12327623B2 (en) | 2019-10-03 | 2025-06-10 | Rom Technologies, Inc. | System and method for processing medical claims |
| US12427376B2 (en) | 2019-10-03 | 2025-09-30 | Rom Technologies, Inc. | Systems and methods for an artificial intelligence engine to optimize a peak performance |
| US12191018B2 (en) | 2019-10-03 | 2025-01-07 | Rom Technologies, Inc. | System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance |
| US11915816B2 (en) | 2019-10-03 | 2024-02-27 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning in a telemedical environment to predict user disease states |
| US11955222B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for determining, based on advanced metrics of actual performance of an electromechanical machine, medical procedure eligibility in order to ascertain survivability rates and measures of quality-of-life criteria |
| US11282604B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease |
| US11961603B2 (en) | 2019-10-03 | 2024-04-16 | Rom Technologies, Inc. | System and method for using AI ML and telemedicine to perform bariatric rehabilitation via an electromechanical machine |
| US12220201B2 (en) | 2019-10-03 | 2025-02-11 | Rom Technologies, Inc. | Remote examination through augmented reality |
| US11955220B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for using AI/ML and telemedicine for invasive surgical treatment to determine a cardiac treatment plan that uses an electromechanical machine |
| US12246222B2 (en) | 2019-10-03 | 2025-03-11 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
| US12176089B2 (en) | 2019-10-03 | 2024-12-24 | Rom Technologies, Inc. | System and method for using AI ML and telemedicine for cardio-oncologic rehabilitation via an electromechanical machine |
| US11087865B2 (en) | 2019-10-03 | 2021-08-10 | Rom Technologies, Inc. | System and method for use of treatment device to reduce pain medication dependency |
| US12420143B1 (en) | 2019-10-03 | 2025-09-23 | Rom Technologies, Inc. | System and method for enabling residentially-based cardiac rehabilitation by using an electromechanical machine and educational content to mitigate risk factors and optimize user behavior |
| US11069436B2 (en) | 2019-10-03 | 2021-07-20 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks |
| US11282608B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session |
| US12380984B2 (en) | 2019-10-03 | 2025-08-05 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence and machine learning to generate treatment plans having dynamically tailored cardiac protocols for users to manage a state of an electromechanical machine |
| US11756666B2 (en) | 2019-10-03 | 2023-09-12 | Rom Technologies, Inc. | Systems and methods to enable communication detection between devices and performance of a preventative action |
| US12020800B2 (en) | 2019-10-03 | 2024-06-25 | Rom Technologies, Inc. | System and method for using AI/ML and telemedicine to integrate rehabilitation for a plurality of comorbid conditions |
| US20210134412A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method for processing medical claims using biometric signatures |
| US12347543B2 (en) | 2019-10-03 | 2025-07-01 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence to implement a cardio protocol via a relay-based system |
| US12100499B2 (en) | 2020-08-06 | 2024-09-24 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
| US11270795B2 (en) | 2019-10-03 | 2022-03-08 | Rom Technologies, Inc. | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context |
| US12478837B2 (en) | 2019-10-03 | 2025-11-25 | Rom Technologies, Inc. | Method and system for monitoring actual patient treatment progress using sensor data |
| US12087426B2 (en) | 2019-10-03 | 2024-09-10 | Rom Technologies, Inc. | Systems and methods for using AI ML to predict, based on data analytics or big data, an optimal number or range of rehabilitation sessions for a user |
| US11265234B2 (en) | 2019-10-03 | 2022-03-01 | Rom Technologies, Inc. | System and method for transmitting data and ordering asynchronous data |
| US12154672B2 (en) | 2019-10-03 | 2024-11-26 | Rom Technologies, Inc. | Method and system for implementing dynamic treatment environments based on patient information |
| US12020799B2 (en) | 2019-10-03 | 2024-06-25 | Rom Technologies, Inc. | Rowing machines, systems including rowing machines, and methods for using rowing machines to perform treatment plans for rehabilitation |
| US12469587B2 (en) | 2019-10-03 | 2025-11-11 | Rom Technologies, Inc. | Systems and methods for assigning healthcare professionals to remotely monitor users performing treatment plans on electromechanical machines |
| US11515021B2 (en) | 2019-10-03 | 2022-11-29 | Rom Technologies, Inc. | Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance |
| US11955221B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for using AI/ML to generate treatment plans to stimulate preferred angiogenesis |
| US11887717B2 (en) | 2019-10-03 | 2024-01-30 | Rom Technologies, Inc. | System and method for using AI, machine learning and telemedicine to perform pulmonary rehabilitation via an electromechanical machine |
| US11317975B2 (en) | 2019-10-03 | 2022-05-03 | Rom Technologies, Inc. | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment |
| US12230382B2 (en) | 2019-10-03 | 2025-02-18 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence and machine learning to predict a probability of an undesired medical event occurring during a treatment plan |
| US11826613B2 (en) | 2019-10-21 | 2023-11-28 | Rom Technologies, Inc. | Persuasive motivation for orthopedic treatment |
| US12424319B2 (en) | 2019-11-06 | 2025-09-23 | Rom Technologies, Inc. | System for remote treatment utilizing privacy controls |
| US11107591B1 (en) | 2020-04-23 | 2021-08-31 | Rom Technologies, Inc. | Method and system for describing and recommending optimal treatment plans in adaptive telemedical or other contexts |
| CN115955937B (en) | 2020-06-26 | 2025-09-09 | 罗姆科技股份有限公司 | Systems, methods, and apparatus for anchoring an electronic device and measuring joint angles |
| JP7616145B2 (en) * | 2022-04-28 | 2025-01-17 | トヨタ自動車株式会社 | Pedal support structure and pedal support system |
| US20250210184A1 (en) * | 2023-12-26 | 2025-06-26 | Expanded Existence, Inc. | System and method for optimizing medical procedure using internet of things capable medical devices |
Citations (1084)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE95019C (en) | ||||
| US823712A (en) | 1905-11-09 | 1906-06-19 | Bernhard Uhlmann | Adjustable pedal-crank for bicycles. |
| GB141664A (en) | 1919-04-14 | 1920-11-11 | Louis Fournes | Improvements in pedal cranks suitable for the use of persons having one wooden leg |
| DE7628633U1 (en) | 1976-09-14 | 1977-12-29 | Schneider, Alfred, 4800 Bielefeld | BICYCLE PEDAL |
| FR2527541A2 (en) | 1980-07-22 | 1983-12-02 | Lembo Richard | Variable length bicycle crank - has toothed transmission shaft which engages in toothed rack with chain guard |
| US4499900A (en) | 1982-11-26 | 1985-02-19 | Wright State University | System and method for treating paralyzed persons |
| DE8519150U1 (en) | 1985-07-02 | 1985-10-24 | Hupp, Johannes, 2300 Klausdorf | Foot pedal crank assembly |
| EP0199600A2 (en) | 1985-04-24 | 1986-10-29 | Xi La | A pedal mechanism for a bicycle having the pedal crank radially movable thereon |
| DE3732905A1 (en) | 1986-09-30 | 1988-07-28 | Anton Reck | Crank arrangement having pedals, in particular for training apparatuses |
| US4822032A (en) | 1987-04-23 | 1989-04-18 | Whitmore Henry B | Exercise machine |
| US4860763A (en) | 1987-07-29 | 1989-08-29 | Schminke Kevin L | Cardiovascular conditioning and therapeutic system |
| US4869497A (en) | 1987-01-20 | 1989-09-26 | Universal Gym Equipment, Inc. | Computer controlled exercise machine |
| US4932650A (en) | 1989-01-13 | 1990-06-12 | Proform Fitness Products, Inc. | Semi-recumbent exercise cycle |
| EP0383137A2 (en) | 1989-02-15 | 1990-08-22 | Ruf, Jörg | Guide rail for the treatment of the lower limbs by movement |
| US5137501A (en) | 1987-07-08 | 1992-08-11 | Mertesdorf Frank L | Process and device for supporting fitness training by means of music |
| US5161430A (en) | 1990-05-18 | 1992-11-10 | Febey Richard W | Pedal stroke range adjusting device |
| US5202794A (en) | 1989-06-03 | 1993-04-13 | Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. | Attenuator for a laser beam |
| US5240417A (en) | 1991-03-14 | 1993-08-31 | Atari Games Corporation | System and method for bicycle riding simulation |
| US5247853A (en) | 1990-02-16 | 1993-09-28 | Proform Fitness Products, Inc. | Flywheel |
| US5256117A (en) | 1990-10-10 | 1993-10-26 | Stairmaster Sports Medical Products, Inc. | Stairclimbing and upper body, exercise apparatus |
| USD342299S (en) | 1991-07-12 | 1993-12-14 | Precor Incorporated | Recumbent exercise cycle |
| US5282748A (en) | 1992-09-30 | 1994-02-01 | Little Oscar L | Swimming simulator |
| US5284131A (en) | 1990-11-26 | 1994-02-08 | Errol Gray | Therapeutic exercise device for legs |
| US5316532A (en) | 1993-08-12 | 1994-05-31 | Butler Brian R | Aquatic exercise and rehabilitation device |
| US5318487A (en) | 1992-05-12 | 1994-06-07 | Life Fitness | Exercise system and method for managing physiological intensity of exercise |
| US5324241A (en) | 1993-10-14 | 1994-06-28 | Paul Artigues | Knee rehabilitation exercise device |
| US5336147A (en) | 1993-12-03 | 1994-08-09 | Sweeney Iii Edward C | Exercise machine |
| US5338272A (en) | 1993-12-03 | 1994-08-16 | Sweeney Iii Edward C | Exercise machine |
| US5356356A (en) | 1993-06-02 | 1994-10-18 | Life Plus Incorporated | Recumbent total body exerciser |
| US5361649A (en) | 1992-07-20 | 1994-11-08 | High Sierra Cycle Center | Bicycle crank and pedal assembly |
| EP0634319A2 (en) | 1993-06-01 | 1995-01-18 | Joo Sang Wan | Crank device |
| USD359777S (en) | 1994-03-21 | 1995-06-27 | LifePlus Incorporated | Recumbent total body exerciser |
| US5429140A (en) | 1993-06-04 | 1995-07-04 | Greenleaf Medical Systems, Inc. | Integrated virtual reality rehabilitation system |
| US5458022A (en) | 1993-11-15 | 1995-10-17 | Mattfeld; Raymond | Bicycle pedal range adjusting device |
| US5487713A (en) | 1993-08-12 | 1996-01-30 | Butler; Brian R. | Aquatic exercise and rehabilitation device |
| US5566589A (en) | 1995-08-28 | 1996-10-22 | Buck; Vernon E. | Bicycle crank arm extender |
| US5580338A (en) | 1995-03-06 | 1996-12-03 | Scelta; Anthony | Portable, upper body, exercise machine |
| DE19619820A1 (en) | 1995-05-16 | 1996-12-05 | Achim Oertel | Pedal crank with adjustable radius for bicycle |
| DE29620008U1 (en) | 1996-11-18 | 1997-02-06 | SM Sondermaschinenbau GmbH, 97424 Schweinfurt | Length-adjustable pedal crank for ergometers |
| US5676349A (en) | 1994-12-08 | 1997-10-14 | Wilson; Robert L. | Winch wheel device with half cleat |
| US5685804A (en) | 1995-12-07 | 1997-11-11 | Precor Incorporated | Stationary exercise device |
| WO1998009687A1 (en) | 1996-09-03 | 1998-03-12 | Piercy, Jean | Foot operated exercising device |
| US5738636A (en) | 1995-11-20 | 1998-04-14 | Orthologic Corporation | Continuous passive motion devices for joints |
| US5860941A (en) | 1995-11-14 | 1999-01-19 | Orthologic Corp. | Active/passive device for rehabilitation of upper and lower extremities |
| EP0919259A1 (en) | 1997-11-25 | 1999-06-02 | Cybersport Limited | System for controlling and coordinating exercise equipment |
| US5950813A (en) | 1997-10-07 | 1999-09-14 | Trw Inc. | Electrical switch |
| GB2336140A (en) | 1998-04-08 | 1999-10-13 | John Brian Dixon Pedelty | Variable length bicycle crank |
| US6007459A (en) | 1998-04-14 | 1999-12-28 | Burgess; Barry | Method and system for providing physical therapy services |
| JP2000005339A (en) | 1998-06-25 | 2000-01-11 | Matsushita Electric Works Ltd | Bicycle ergometer |
| USD421075S (en) | 1998-09-29 | 2000-02-22 | Nustep, Inc. | Recumbent total body exerciser |
| US6053847A (en) | 1997-05-05 | 2000-04-25 | Stearns; Kenneth W. | Elliptical exercise method and apparatus |
| US6077201A (en) | 1998-06-12 | 2000-06-20 | Cheng; Chau-Yang | Exercise bicycle |
| US6102834A (en) | 1998-12-23 | 2000-08-15 | Chen; Ping | Flash device for an exercise device |
| US6110130A (en) | 1997-04-21 | 2000-08-29 | Virtual Technologies, Inc. | Exoskeleton device for directly measuring fingertip position and inferring finger joint angle |
| EP1034817A1 (en) | 1999-03-09 | 2000-09-13 | Paul John Butterworth | Exercise and rehabilitation equipment |
| US6155958A (en) | 1992-10-30 | 2000-12-05 | Madd Dog Athletics, Inc. | Stationary exercise bicycle having a rigid frame |
| US6162189A (en) | 1999-05-26 | 2000-12-19 | Rutgers, The State University Of New Jersey | Ankle rehabilitation system |
| US6182029B1 (en) | 1996-10-28 | 2001-01-30 | The Trustees Of Columbia University In The City Of New York | System and method for language extraction and encoding utilizing the parsing of text data in accordance with domain parameters |
| USD438580S1 (en) | 2000-01-28 | 2001-03-06 | Ching-Song Shaw | Housing for an exercise machine |
| DE19947926A1 (en) | 1999-10-06 | 2001-04-12 | Medica Medizintechnik Gmbh | Training device for movement therapy, especially to move arm or leg of bed-ridden person; has adjustable handles or pedals connected to rotating support disc driven by peripherally engaging motor |
| US6253638B1 (en) | 1999-06-10 | 2001-07-03 | David Bermudez | Bicycle sprocket crank |
| WO2001049235A2 (en) | 2000-01-06 | 2001-07-12 | Dj Orthopedics, Llc | Angle sensor for orthopedic rehabilitation device |
| WO2001050387A1 (en) | 1999-12-30 | 2001-07-12 | Umagic Systems, Inc. | Personal advice system and method |
| WO2001051083A2 (en) | 2000-01-13 | 2001-07-19 | Antigenics Inc. | Innate immunity-stimulating compositions of cpg and saponin and methods thereof |
| US6267735B1 (en) | 1999-11-09 | 2001-07-31 | Chattanooga Group, Inc. | Continuous passive motion device having a comfort zone feature |
| WO2001056465A1 (en) | 2000-02-03 | 2001-08-09 | Neurofeed.Com, Llc | Method for obtaining and evaluating neuro feedback |
| US6273863B1 (en) | 1999-10-26 | 2001-08-14 | Andante Medical Devices, Ltd. | Adaptive weight bearing monitoring system for rehabilitation of injuries to the lower extremities |
| USD450101S1 (en) | 2000-10-05 | 2001-11-06 | Hank Hsu | Housing of exercise machine |
| USD450100S1 (en) | 2000-10-05 | 2001-11-06 | Hank Hsu | Housing of exercise machine |
| US20010044573A1 (en) | 1999-02-05 | 2001-11-22 | Samir Manoli | EEG electrode and EEG electrode locator assembly |
| EP1159989A1 (en) | 2000-05-24 | 2001-12-05 | In2Sports B.V. | A method of generating and/or adjusting a training schedule |
| USD451972S1 (en) | 2001-01-19 | 2001-12-11 | Fitness Quest Inc. | Shroud for elliptical exerciser |
| USD452285S1 (en) | 2001-01-19 | 2001-12-18 | Fitness Quest Inc. | Shroud for elliptical exerciser |
| US20020010596A1 (en) | 2000-04-13 | 2002-01-24 | Matory Yvedt L. | Remote patient care |
| KR20020009724A (en) | 2000-07-26 | 2002-02-02 | 이광호 | Remote Medical Examination System And A Method |
| USD454605S1 (en) | 2001-04-12 | 2002-03-19 | Kuo-Lung Lee | Frame guard for an exerciser |
| US6371891B1 (en) | 1998-12-09 | 2002-04-16 | Danny E. Speas | Adjustable pedal drive mechanism |
| KR200276919Y1 (en) | 2002-02-21 | 2002-05-27 | 주식회사 세우시스템 | controll system for health machine |
| US20020072452A1 (en) | 2000-12-07 | 2002-06-13 | Torkelson Torkel E. | Momentum-free running exercise machine for both agonist and antagonist muscle groups using controllably variable bi-directional resistance |
| USD459776S1 (en) | 2001-05-08 | 2002-07-02 | Kuo-Lung Lee | Guard frame for an exerciser |
| US6413190B1 (en) | 1999-07-27 | 2002-07-02 | Enhanced Mobility Technologies | Rehabilitation apparatus and method |
| US6430436B1 (en) | 1999-03-01 | 2002-08-06 | Digital Concepts Of Missouri, Inc. | Two electrode heart rate monitor measuring power spectrum for use on road bikes |
| KR20020065253A (en) | 2001-02-06 | 2002-08-13 | 주식회사 세우시스템 | Intelligent control system for health machines and control method thereof |
| WO2002062211A2 (en) | 2001-02-07 | 2002-08-15 | Cardionetics Limited | Method and apparatus for generating a physical exercise program |
| US6436058B1 (en) | 2000-06-15 | 2002-08-20 | Dj Orthopedics, Llc | System and method for implementing rehabilitation protocols for an orthopedic restraining device |
| GB2372459A (en) | 2001-01-17 | 2002-08-28 | Unicam Rehabilitation Systems | Pedal radius adjustment mechanism for an exercise bicycle |
| US6450923B1 (en) | 1999-10-14 | 2002-09-17 | Bala R. Vatti | Apparatus and methods for enhanced exercises and back pain relief |
| US20020143279A1 (en) | 2000-04-26 | 2002-10-03 | Porier David A. | Angle sensor for orthopedic rehabilitation device |
| US20020160883A1 (en) | 2001-03-08 | 2002-10-31 | Dugan Brian M. | System and method for improving fitness equipment and exercise |
| US6474193B1 (en) | 1999-03-25 | 2002-11-05 | Sinties Scientific, Inc. | Pedal crank |
| WO2002093312A2 (en) | 2001-05-15 | 2002-11-21 | Hill-Rom Services, Inc. | Apparatus and method for patient data management |
| US20020183599A1 (en) | 2001-06-05 | 2002-12-05 | Castellanos Alexander F. | Method and system for improving vascular systems in humans using biofeedback and network data communication |
| US6491649B1 (en) | 2000-10-06 | 2002-12-10 | Mark P. Ombrellaro | Device for the direct manual examination of a patient in a non-contiguous location |
| US20030013072A1 (en) | 2001-07-03 | 2003-01-16 | Thomas Richard Todd | Processor adjustable exercise apparatus |
| US6514085B2 (en) | 1999-07-30 | 2003-02-04 | Element K Online Llc | Methods and apparatus for computer based training relating to devices |
| US20030036683A1 (en) | 2000-05-01 | 2003-02-20 | Kehr Bruce A. | Method, system and computer program product for internet-enabled, patient monitoring system |
| US6535861B1 (en) | 1998-12-22 | 2003-03-18 | Accenture Properties (2) B.V. | Goal based educational system with support for dynamic characteristics tuning using a spread sheet object |
| US20030064863A1 (en) | 2001-10-02 | 2003-04-03 | Tsung-Yu Chen | Adjustable magnetic resistance device for exercise bike |
| US20030064860A1 (en) | 2001-09-28 | 2003-04-03 | Konami Corporation | Exercise assisting method and apparatus implementing such method |
| US6543309B2 (en) | 1996-09-03 | 2003-04-08 | Jonathan R. Heim | Clipless bicycle pedal |
| US20030083596A1 (en) | 1997-04-21 | 2003-05-01 | Immersion Corporation | Goniometer-based body-tracking device and method |
| US20030092536A1 (en) | 2001-11-14 | 2003-05-15 | Romanelli Daniel A. | Compact crank therapeutic exerciser for the extremities |
| WO2003043494A1 (en) | 2001-11-23 | 2003-05-30 | Medit As | A cluster system for remote monitoring and diagnostic support |
| US6601016B1 (en) | 2000-04-28 | 2003-07-29 | International Business Machines Corporation | Monitoring fitness activity across diverse exercise machines utilizing a universally accessible server system |
| US6602191B2 (en) | 1999-12-17 | 2003-08-05 | Q-Tec Systems Llp | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
| JP2003225875A (en) | 2002-02-05 | 2003-08-12 | Matsushita Electric Ind Co Ltd | Pet-type robot and training system for pet-type robot |
| US6613000B1 (en) | 2000-09-30 | 2003-09-02 | The Regents Of The University Of California | Method and apparatus for mass-delivered movement rehabilitation |
| US20030181832A1 (en) | 2002-03-22 | 2003-09-25 | Carnahan James V. | Augmented kinematic feedback device and method |
| US6626805B1 (en) | 1990-03-09 | 2003-09-30 | William S. Lightbody | Exercise machine |
| US6626800B1 (en) | 2000-07-12 | 2003-09-30 | John A. Casler | Method of exercise prescription and evaluation |
| US6640662B1 (en) | 2002-05-09 | 2003-11-04 | Craig Baxter | Variable length crank arm assembly |
| US6652425B1 (en) | 2002-05-31 | 2003-11-25 | Biodex Medical Systems, Inc. | Cyclocentric ergometer |
| EP1391179A1 (en) | 2002-07-30 | 2004-02-25 | Willy Kostucki | Exercise manager program |
| US20040072652A1 (en) | 2002-09-10 | 2004-04-15 | Technogym S.P.A. | Exercise machine |
| US20040102931A1 (en) | 2001-02-20 | 2004-05-27 | Ellis Michael D. | Modular personal network systems and methods |
| US20040106502A1 (en) | 2002-12-02 | 2004-06-03 | Mike Sher | Exercise machine |
| US20040147969A1 (en) | 2000-01-11 | 2004-07-29 | Brian Mann | System for detecting, diagnosing, and treating cardiovascular disease |
| US20040172093A1 (en) | 2003-01-31 | 2004-09-02 | Rummerfield Patrick D. | Apparatus for promoting nerve regeneration in paralyzed patients |
| US20040197727A1 (en) | 2001-04-13 | 2004-10-07 | Orametrix, Inc. | Method and system for comprehensive evaluation of orthodontic treatment using unified workstation |
| US20040194572A1 (en) | 2003-04-01 | 2004-10-07 | Jun-Suck Kim | Transmission for a bicycle pedal |
| US20040204959A1 (en) | 2002-12-03 | 2004-10-14 | Moreano Kenneth J. | Exernet system |
| US20050015118A1 (en) | 2001-10-19 | 2005-01-20 | Davis Glen Macartney | Muscle stimulation systems |
| US20050020411A1 (en) | 2003-07-25 | 2005-01-27 | Andrews Ronald A. | Pedal stroke adjuster for bicyles or the like |
| US20050043153A1 (en) | 2003-08-22 | 2005-02-24 | Krietzman Mark Howard | Dual circling exercise method and device |
| WO2005018453A1 (en) | 2003-08-26 | 2005-03-03 | Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant'anna | A wearable mechatronic device for the analysis of joint biomechanics |
| US20050049122A1 (en) | 2003-09-03 | 2005-03-03 | Vallone Anthony John | Physical rehabiliation and fitness exercise device |
| US6865969B2 (en) | 2003-03-28 | 2005-03-15 | Kerry Peters Stevens | Adjustable pedal for exercise devices |
| US20050085346A1 (en) | 2003-10-16 | 2005-04-21 | Johnson Kenneth W. | Rotary rehabilitation apparatus and method |
| US20050085353A1 (en) | 2003-10-16 | 2005-04-21 | Johnson Kenneth W. | Rotary rehabilitation apparatus and method |
| US6890312B1 (en) | 2001-12-03 | 2005-05-10 | William B. Priester | Joint angle indication system |
| US6895834B1 (en) | 2002-10-04 | 2005-05-24 | Racer-Mate, Inc. | Adjustable crank for bicycles |
| US20050115561A1 (en) | 2003-08-18 | 2005-06-02 | Stahmann Jeffrey E. | Patient monitoring, diagnosis, and/or therapy systems and methods |
| US6902513B1 (en) | 2002-04-02 | 2005-06-07 | Mcclure Daniel R. | Interactive fitness equipment |
| US20050143641A1 (en) | 2003-12-25 | 2005-06-30 | Olympus Corporation | Medical information processing system |
| WO2005074369A2 (en) | 2004-02-05 | 2005-08-18 | Motorika Inc. | Methods and apparatuses for rehabilitation exercise and training |
| JP2005227928A (en) | 2004-02-12 | 2005-08-25 | Terumo Corp | Home care/treatment support system |
| US20050274220A1 (en) | 2002-07-08 | 2005-12-15 | Look Cycle International | Cycle pedal with adjustable axial positioning |
| US20060003871A1 (en) | 2004-04-27 | 2006-01-05 | Houghton Andrew D | Independent and separately actuated combination fitness machine |
| WO2006004430A2 (en) | 2004-07-06 | 2006-01-12 | Ziad Badarneh | Training apparatus |
| WO2006012694A1 (en) | 2004-08-04 | 2006-02-09 | Robert Gregory Steward | An adjustable bicycle crank arm assembly |
| US20060046905A1 (en) | 2004-08-31 | 2006-03-02 | Doody James M Jr | Load variance system and method for exercise machine |
| US20060058648A1 (en) | 2004-07-23 | 2006-03-16 | Eric Meier | Integrated radiation therapy systems and methods for treating a target in a patient |
| US20060064136A1 (en) | 2004-09-23 | 2006-03-23 | Medtronic, Inc. | Method and apparatus for facilitating patient alert in implantable medical devices |
| US20060064329A1 (en) | 2000-03-24 | 2006-03-23 | Align Technology, Inc. | Health-care e-commerce systems and methods |
| KR100582596B1 (en) | 2003-10-24 | 2006-05-23 | 한국전자통신연구원 | Music and Picture Therapy Providing System and Method According to User Condition |
| US7058453B2 (en) | 1999-12-14 | 2006-06-06 | Medtronic, Inc. | Apparatus and method for remote therapy and diagnosis in medical devices via interface systems |
| US20060129432A1 (en) | 2004-12-09 | 2006-06-15 | Samsung Electronics Co., Ltd. | Device, system, and method for providing health management service |
| US7063643B2 (en) | 2001-03-08 | 2006-06-20 | Combi Corporation | Physical training machine operation system and method |
| US20060199700A1 (en) | 2002-10-29 | 2006-09-07 | Eccentron, Llc | Method and apparatus for speed controlled eccentric exercise training |
| US20060247095A1 (en) | 2001-09-21 | 2006-11-02 | Rummerfield Patrick D | Method and apparatus for promoting nerve regeneration in paralyzed patients |
| US20060277074A1 (en) | 2004-12-07 | 2006-12-07 | Motorika, Inc. | Rehabilitation methods |
| US7156665B1 (en) | 1999-02-08 | 2007-01-02 | Accenture, Llp | Goal based educational system with support for dynamic tailored feedback |
| US7156780B1 (en) | 1999-04-03 | 2007-01-02 | Swissmove Ag | Drive system operated by muscle-power |
| US7169085B1 (en) | 2005-09-23 | 2007-01-30 | Therapy Pro Inc. | User centered method of assessing physical capability and capacity for creating and providing unique care protocols with ongoing assessment |
| US20070042868A1 (en) | 2005-05-11 | 2007-02-22 | John Fisher | Cardio-fitness station with virtual- reality capability |
| CN2885238Y (en) | 2006-03-10 | 2007-04-04 | 张海涛 | Physical therapeutic system |
| US7209886B2 (en) | 2003-01-22 | 2007-04-24 | Biometric Technologies, Inc. | System and method for implementing healthcare fraud countermeasures |
| US20070118389A1 (en) | 2001-03-09 | 2007-05-24 | Shipon Jacob A | Integrated teleconferencing system |
| US20070137307A1 (en) | 2005-12-09 | 2007-06-21 | Gruben Kreg G | Electromechanical force-magnitude, force-angle sensor |
| US20070173392A1 (en) | 2006-01-23 | 2007-07-26 | Stanford Christopher Stephen R | Apparatus and method for wheelchair aerobic stationary exercise |
| US20070184414A1 (en) | 2004-06-10 | 2007-08-09 | Educamigos, S.L. | Task planning system and method for use in cognitive ability-related treatment |
| US20070194939A1 (en) | 2006-02-21 | 2007-08-23 | Alvarez Frank D | Healthcare facilities operation |
| WO2007102709A1 (en) | 2006-03-07 | 2007-09-13 | Industry Academic Cooperation Foundation Of Kyunghee University | Portable biofeedback exercise prescription apparatus and biofeedback exercise prescription method using the same |
| US20070219059A1 (en) | 2006-03-17 | 2007-09-20 | Schwartz Mark H | Method and system for continuous monitoring and training of exercise |
| USRE39904E1 (en) | 2001-04-17 | 2007-10-30 | Stamina Products, Inc. | Combined elliptical cycling and stepping exerciser |
| US20070271065A1 (en) | 2006-05-22 | 2007-11-22 | Apple Computer, Inc. | Portable media device with workout support |
| US20070287597A1 (en) | 2006-05-31 | 2007-12-13 | Blaine Cameron | Comprehensive multi-purpose exercise equipment |
| US20080021834A1 (en) | 2006-07-19 | 2008-01-24 | Mdatalink, Llc | Medical Data Encryption For Communication Over A Vulnerable System |
| US20080077619A1 (en) | 2006-09-21 | 2008-03-27 | Apple Inc. | Systems and methods for facilitating group activities |
| US20080082356A1 (en) | 2006-10-03 | 2008-04-03 | International Business Machines Corporation | System and method to optimize control cohorts using clustering algorithms |
| US20080096726A1 (en) | 2006-09-07 | 2008-04-24 | Nike, Inc. | Athletic Performance Sensing and/or Tracking Systems and Methods |
| US20080153592A1 (en) | 2003-06-17 | 2008-06-26 | Australian Simulation Control Systems Pty Ltd. | Computer game controllers |
| US20080161166A1 (en) | 2006-12-28 | 2008-07-03 | Chiu Hsiang Lo | Exercise Machine With Adjustable Pedals |
| US20080161733A1 (en) | 2004-02-05 | 2008-07-03 | Motorika Limited | Methods and Apparatuses for Rehabilitation and Training |
| US7406003B2 (en) | 2003-05-29 | 2008-07-29 | Timex Group B.V. | Multifunctional timepiece module with application specific printed circuit boards |
| US20080183500A1 (en) | 2007-01-26 | 2008-07-31 | Banigan Michael H | Systems and processes for health management |
| EP1968028A1 (en) | 2007-03-05 | 2008-09-10 | Matsushita Electric Industrial Co., Ltd. | Method for wireless communication between a personal mobile unit and an individually adaptable exercise equipment device |
| WO2008114291A1 (en) | 2007-03-21 | 2008-09-25 | Cammax S.A. | Elliptical trainer with stride adjusting device |
| US20080281633A1 (en) | 2007-05-10 | 2008-11-13 | Grigore Burdea | Periodic evaluation and telerehabilitation systems and methods |
| US20080300914A1 (en) | 2007-05-29 | 2008-12-04 | Microsoft Corporation | Dynamic activity management |
| US20080312040A1 (en) | 2004-07-27 | 2008-12-18 | Matsushita Electric Works, Ltd. | Exercise Aid Device |
| WO2009003170A1 (en) | 2007-06-27 | 2008-12-31 | Radow Scott B | Stationary exercise equipment |
| WO2009008968A1 (en) | 2007-07-09 | 2009-01-15 | Sutter Health | System and method for data collection and management |
| US20090037334A1 (en) | 2007-08-01 | 2009-02-05 | Taipei Medical University | Electronic medical record system, method for storing medical record data in the medical record system, and a portable electronic device loading the electronic medical record system therein |
| US20090058635A1 (en) | 2007-08-31 | 2009-03-05 | Lalonde John | Medical data transport over wireless life critical network |
| US20090070138A1 (en) | 2007-05-15 | 2009-03-12 | Jason Langheier | Integrated clinical risk assessment system |
| US7507188B2 (en) | 2006-04-20 | 2009-03-24 | Nurre Christopher G | Rehab cycle crank |
| JP2009112336A (en) | 2007-11-01 | 2009-05-28 | Panasonic Electric Works Co Ltd | Exercise system |
| US20090157617A1 (en) | 2007-12-12 | 2009-06-18 | Herlocker Jonathan L | Methods for enhancing digital search query techniques based on task-oriented user activity |
| US20090211395A1 (en) | 2008-02-25 | 2009-08-27 | Mul E Leonard | Adjustable pedal system for exercise bike |
| US20090270227A1 (en) | 1999-07-08 | 2009-10-29 | Ashby Darren C | Systems, methods, and devices for simulating real world terrain on an exercise device |
| US20090287503A1 (en) | 2008-05-16 | 2009-11-19 | International Business Machines Corporation | Analysis of individual and group healthcare data in order to provide real time healthcare recommendations |
| US20090299766A1 (en) | 2008-05-30 | 2009-12-03 | International Business Machines Corporation | System and method for optimizing medical treatment planning and support in difficult situations subject to multiple constraints and uncertainties |
| US7628730B1 (en) | 1999-07-08 | 2009-12-08 | Icon Ip, Inc. | Methods and systems for controlling an exercise apparatus using a USB compatible portable remote device |
| USD610635S1 (en) | 2007-11-02 | 2010-02-23 | Nustep, Inc. | Recumbent stepper |
| US20100048358A1 (en) | 2008-03-03 | 2010-02-25 | Nike, Inc. | Interactive Athletic Equipment System |
| US20100062818A1 (en) * | 2008-09-09 | 2010-03-11 | Apple Inc. | Real-time interaction with a virtual competitor while performing an exercise routine |
| US20100076786A1 (en) | 2008-08-06 | 2010-03-25 | H.Lee Moffitt Cancer Center And Research Institute, Inc. | Computer System and Computer-Implemented Method for Providing Personalized Health Information for Multiple Patients and Caregivers |
| US20100121160A1 (en) | 1999-06-23 | 2010-05-13 | Izex Technologies, Inc. | Remote psychological evaluation |
| US20100173747A1 (en) | 2009-01-08 | 2010-07-08 | Cycling & Health Tech Industry R & D Center | Upper-limb training apparatus |
| US7778851B2 (en) | 1996-12-30 | 2010-08-17 | I.M.D. Soft Ltd. | Medical information system |
| US20100216168A1 (en) | 2007-03-23 | 2010-08-26 | Precision Therapeutics, Inc. | Methods for evaluating angiogenic potential in culture |
| US20100234184A1 (en) | 2009-03-14 | 2010-09-16 | Le Page Frederick | Method and apparatus for controlling physical exertion |
| US20100248899A1 (en) | 2009-03-25 | 2010-09-30 | Bedell Daniel J | Exercise apparatus with automatically adjustable foot motion |
| US20100248905A1 (en) | 2009-03-26 | 2010-09-30 | Tung-Wu Lu | Exercise apparatus |
| US7809601B2 (en) | 2000-10-18 | 2010-10-05 | Johnson & Johnson Consumer Companies | Intelligent performance-based product recommendation system |
| US20100262052A1 (en) | 2004-03-10 | 2010-10-14 | Vision Quest Industries Incorporated Dba Vq Orthocare | Bracing and electrostimulation for arthritis |
| US7815551B2 (en) | 2007-09-13 | 2010-10-19 | Christopher R Merli | Seated exercise apparatus |
| US20100268304A1 (en) | 2009-01-13 | 2010-10-21 | Matos Jeffrey A | Controlling a personal medical device |
| US20100293003A1 (en) | 2009-04-29 | 2010-11-18 | Abbo Fred E | Personal Medical Data Device and Associated Methods |
| US7837472B1 (en) | 2001-12-27 | 2010-11-23 | The United States Of America As Represented By The Secretary Of The Army | Neurocognitive and psychomotor performance assessment and rehabilitation system |
| US20100298102A1 (en) | 2009-04-16 | 2010-11-25 | Caitlyn Joyce Bosecker | Dynamic lower limb rehabilitation robotic apparatus and method of rehabilitating human gait |
| US20100326207A1 (en) | 2007-03-30 | 2010-12-30 | Gregory John Topel | Methods and apparatus to determine belt condition in exercise equipment |
| US20100332583A1 (en) | 1999-07-21 | 2010-12-30 | Andrew Szabo | Database access system |
| US20110010188A1 (en) | 2008-02-29 | 2011-01-13 | Panasonic Electric Works Co., Ltd. | Exercise machine system |
| CN101964151A (en) | 2010-08-13 | 2011-02-02 | 同济大学 | Remote access and video conference system-based remote practical training method |
| US7890342B1 (en) | 2002-08-27 | 2011-02-15 | Ric Investments, Llc | Method and system for tracking and monitoring patient compliance with medical device usage prescription |
| US20110047108A1 (en) | 2009-08-21 | 2011-02-24 | Mr. Neilin Chakrabarty | Method for Managing Obesity, Diabetes and Other Glucose-Spike-Induced Diseases |
| WO2011025322A2 (en) | 2009-08-28 | 2011-03-03 | (주)누가의료기 | Exercise prescription system |
| US20110082007A1 (en) * | 2009-10-02 | 2011-04-07 | Birrell James S | Exercise community system |
| US20110087137A1 (en) | 2008-06-16 | 2011-04-14 | Reed Hanoun | Mobile fitness and personal caloric management system |
| US20110119212A1 (en) | 2008-02-20 | 2011-05-19 | Hubert De Bruin | Expert system for determining patient treatment response |
| KR101042258B1 (en) | 2008-07-30 | 2011-06-17 | 창명제어기술 (주) | Remote control system of shoulder joint therapy device |
| US7969315B1 (en) | 2008-05-28 | 2011-06-28 | MedHab, LLC | Sensor device and method for monitoring physical stresses placed upon a user |
| CN201889024U (en) | 2010-09-13 | 2011-07-06 | 体之杰(北京)网络科技有限公司 | Novel vertical exercise bike capable of networking for competitive game |
| US20110172059A1 (en) | 2009-03-27 | 2011-07-14 | Icon Ip, Inc. | System and method for exercising |
| US7988599B2 (en) | 2003-01-26 | 2011-08-02 | Precor Incorporated | Service tracking and alerting system for fitness equipment |
| US20110195819A1 (en) | 2008-08-22 | 2011-08-11 | James Shaw | Adaptive exercise equipment apparatus and method of use thereof |
| US8012107B2 (en) | 2004-02-05 | 2011-09-06 | Motorika Limited | Methods and apparatus for rehabilitation and training |
| US20110218814A1 (en) | 2010-03-05 | 2011-09-08 | Applied Health Services, Inc. | Method and system for assessing a patient's condition |
| US20110218462A1 (en) | 2009-10-27 | 2011-09-08 | Smith Malcolm J | System for Measurement and Analysis of Movement of Anatomical Joints and/or Mechanical Systems |
| US8021270B2 (en) | 2008-07-03 | 2011-09-20 | D Eredita Michael | Online sporting system |
| US8038578B2 (en) | 2003-11-12 | 2011-10-18 | Nokia Corporation | Apparatus and method for providing a user with a personal exercise program |
| US20110281249A1 (en) | 2010-05-14 | 2011-11-17 | Nicholas Gammell | Method And System For Creating Personalized Workout Programs |
| US20110306846A1 (en) | 2010-06-15 | 2011-12-15 | Ivan Osorio | Systems approach to disease state and health assessment |
| US8113991B2 (en) | 2008-06-02 | 2012-02-14 | Omek Interactive, Ltd. | Method and system for interactive fitness training program |
| US20120041771A1 (en) | 2010-08-11 | 2012-02-16 | Cosentino Daniel L | Systems, methods, and computer program products for patient monitoring |
| US20120065987A1 (en) | 2010-09-09 | 2012-03-15 | Siemens Medical Solutions Usa, Inc. | Computer-Based Patient Management for Healthcare |
| US8172724B2 (en) | 2010-02-16 | 2012-05-08 | Neal Solomon | Computer automated physical fitness system |
| US20120116258A1 (en) | 2005-03-24 | 2012-05-10 | Industry-Acadamic Cooperation Foundation, Kyungpook National University | Rehabilitation apparatus using game device |
| CN202220794U (en) | 2011-08-12 | 2012-05-16 | 力伽实业股份有限公司 | The crank structure of the rotating object of sports equipment |
| US20120130196A1 (en) | 2010-11-24 | 2012-05-24 | Fujitsu Limited | Mood Sensor |
| US20120130197A1 (en) | 2010-05-24 | 2012-05-24 | Welch Allyn, Inc. | Quality measurements reporting for patient care |
| US20120167709A1 (en) | 2011-01-03 | 2012-07-05 | Kung-Cheng Chen | Length adjustable bicycle crank |
| US20120183939A1 (en) | 2010-11-05 | 2012-07-19 | Nike, Inc. | Method and system for automated personal training |
| US20120190502A1 (en) | 2011-01-21 | 2012-07-26 | David Paulus | Adaptive exercise profile apparatus and method of use thereof |
| US20120232438A1 (en) | 2011-03-11 | 2012-09-13 | For You, Inc. | Orthosis Machine |
| CN102670381A (en) | 2012-05-31 | 2012-09-19 | 上海海事大学 | Full-automatic lower limb rehabilitation treatment instrument |
| WO2012128801A1 (en) | 2011-03-24 | 2012-09-27 | MedHab, LLC | Sensor device and method |
| US20120259648A1 (en) | 2011-04-07 | 2012-10-11 | Full Recovery, Inc. | Systems and methods for remote monitoring, management and optimization of physical therapy treatment |
| US20120259649A1 (en) | 2011-04-07 | 2012-10-11 | Full Recovery, Inc. | Systems and methods for remote monitoring, management and optimization of physical therapy treatment |
| US8287434B2 (en) | 2008-11-16 | 2012-10-16 | Vyacheslav Zavadsky | Method and apparatus for facilitating strength training |
| US8298123B2 (en) | 1995-12-14 | 2012-10-30 | Icon Health & Fitness, Inc. | Method and apparatus for remote interactive exercise and health equipment |
| US20120278759A1 (en) | 2008-05-07 | 2012-11-01 | Carrot Medical Llc | Integration system for medical instruments with remote control |
| US20120296455A1 (en) | 2011-05-16 | 2012-11-22 | Quentiq AG | Optical data capture of exercise data in furtherance of a health score computation |
| US20120295240A1 (en) | 1995-11-22 | 2012-11-22 | Walker Jay S | Systems and methods for improved health care compliance |
| US20120310667A1 (en) | 2011-06-03 | 2012-12-06 | Roy Altman | Dynamic clinical pathways |
| WO2013002568A2 (en) | 2011-06-30 | 2013-01-03 | 한국과학기술원 | Method for suggesting appropriate exercise intensity through estimation of maximal oxygen intake |
| US8371990B2 (en) | 1995-06-22 | 2013-02-12 | Michael J. Shea | Exercise system |
| EP2564904A1 (en) | 2011-08-30 | 2013-03-06 | Technogym S.p.A. | Exercise machine and method for performing an exercise |
| US20130066647A1 (en) | 2011-09-09 | 2013-03-14 | Depuy Spine, Inc. | Systems and methods for surgical support and management |
| EP2575064A1 (en) | 2011-09-30 | 2013-04-03 | General Electric Company | Telecare and/or telehealth communication method and system |
| US8419593B2 (en) | 2003-01-26 | 2013-04-16 | Precor Incorporated | Fitness facility equipment usage control system and method |
| KR101258250B1 (en) | 2010-12-31 | 2013-04-25 | 동신대학교산학협력단 | bicycle exercise system using virtual reality |
| US20130108594A1 (en) | 2010-04-29 | 2013-05-02 | Nhs Blood & Transplant | Method for evaluating angiogenic potential |
| US20130110545A1 (en) | 2011-11-02 | 2013-05-02 | William Smallwood | System and Methods for Managing Patients and Services |
| JP2013515995A (en) | 2009-12-28 | 2013-05-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Biofeedback for program guidance in respiratory rehabilitation |
| US20130123071A1 (en) | 2011-11-15 | 2013-05-16 | Icon Health & Fitness, Inc. | Heart Rate Based Training System |
| US20130123667A1 (en) | 2011-08-08 | 2013-05-16 | Ravi Komatireddy | Systems, apparatus and methods for non-invasive motion tracking to augment patient administered physical rehabilitation |
| US20130137552A1 (en) | 2011-11-25 | 2013-05-30 | Sony Corporation | Electronic fitness trainer and method for operating an electronic fitness trainer |
| US20130137550A1 (en) | 2011-05-20 | 2013-05-30 | The Regents Of The University Of Michigan | Targeted limb rehabilitation using a reward bias |
| US8465398B2 (en) | 2010-10-12 | 2013-06-18 | Superweigh Enterprise Co., Ltd. | Elliptical exercise apparatus |
| US20130158368A1 (en) | 2000-06-16 | 2013-06-20 | Bodymedia, Inc. | System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability |
| US20130165195A1 (en) * | 2011-12-23 | 2013-06-27 | Icon Health & Fitness, Inc. | Competitive Race System |
| US20130178334A1 (en) | 2012-01-06 | 2013-07-11 | Icon Health & Fitness, Inc. | Exercise Device Having Communication Linkage For Connection With External Computing Device |
| US8503086B2 (en) | 1995-11-06 | 2013-08-06 | Impulse Technology Ltd. | System and method for tracking and assessing movement skills in multidimensional space |
| US20130211281A1 (en) | 2011-03-24 | 2013-08-15 | MedHab, LLC | Sensor system for monitoring a foot during treatment and rehabilitation |
| US8515777B1 (en) | 2010-10-13 | 2013-08-20 | ProcessProxy Corporation | System and method for efficient provision of healthcare |
| WO2013122839A1 (en) | 2012-02-13 | 2013-08-22 | MedHab, LLC | Belt-mounted movement sensor system |
| CN103263336A (en) | 2013-05-31 | 2013-08-28 | 四川旭康医疗电器有限公司 | Electric type joint rehabilitation training system based on remote control and implementing method thereof |
| US8540516B2 (en) | 2006-11-27 | 2013-09-24 | Pharos Innovations, Llc | Optimizing behavioral change based on a patient statistical profile |
| US8540515B2 (en) | 2006-11-27 | 2013-09-24 | Pharos Innovations, Llc | Optimizing behavioral change based on a population statistical profile |
| US20130253943A1 (en) | 2012-03-21 | 2013-09-26 | Samsung Electronics Co., Ltd. | Exercise management apparatus, system and method |
| US20130274069A1 (en) | 2012-04-12 | 2013-10-17 | Icon Health & Fitness, Inc. | System And Method For Simulating Real World Exercise Sessions |
| KR101325581B1 (en) | 2012-11-12 | 2013-11-06 | 이수호 | Integrated diagnosis and treatment device for urinary incontinence and sexual dysfunction through connection to smart phone |
| US20130296987A1 (en) | 2009-12-18 | 2013-11-07 | Lesco L. Rogers | Systems, Methods and Apparatus for Delivering Nerve Stimulation to a Patient with Physician Oversight |
| CN103390357A (en) | 2013-07-24 | 2013-11-13 | 天津开发区先特网络系统有限公司 | Training and study service device, training system and training information management method |
| US20130318027A1 (en) | 2011-11-20 | 2013-11-28 | Gal Almogy | System and method to enable detection of viral infection by users of electronic communication devices |
| US20130332616A1 (en) | 2012-06-08 | 2013-12-12 | Unitedhealth Group Incorporated | Interactive sessions with participants and providers |
| US8607465B1 (en) | 2011-08-26 | 2013-12-17 | General Tools & Instruments Company Llc | Sliding T bevel with digital readout |
| US8615529B2 (en) | 2006-06-05 | 2013-12-24 | Bruce Reiner | Method and apparatus for adapting computer-based systems to end-user profiles |
| US8613689B2 (en) | 2010-09-23 | 2013-12-24 | Precor Incorporated | Universal exercise guidance system |
| CN103473631A (en) | 2013-08-26 | 2013-12-25 | 无锡同仁(国际)康复医院 | Rehabilitation therapy management system |
| US20130345025A1 (en) | 2011-03-08 | 2013-12-26 | Willem Mare van der Merwe | Exercise apparatus |
| CN103488880A (en) | 2013-09-09 | 2014-01-01 | 上海交通大学 | Remote medical rehabilitation system in smart city |
| US20140006042A1 (en) | 2012-05-08 | 2014-01-02 | Richard Keefe | Methods for conducting studies |
| CN103501328A (en) | 2013-09-26 | 2014-01-08 | 浙江大学城市学院 | Method and system for realizing intelligence of exercise bicycle based on wireless network transmission |
| WO2014011447A1 (en) | 2012-07-09 | 2014-01-16 | MedHab, LLC | Therapeutic sleeve device |
| US20140031174A1 (en) | 2012-07-27 | 2014-01-30 | Chien-Hsiang Huang | Height adjusting mechanism for a pedaling device of a pedal exerciser |
| US20140062900A1 (en) | 2012-08-31 | 2014-03-06 | Greatbatch Ltd. | Virtual Reality Representation of Medical Devices |
| US20140074179A1 (en) | 2012-09-10 | 2014-03-13 | Dustin A Heldman | Movement disorder therapy system, devices and methods, and intelligent methods of tuning |
| TWM474545U (en) | 2013-11-18 | 2014-03-21 | Wanin Internat Co Ltd | Fitness equipment in combination with cloud services |
| US20140089836A1 (en) | 2012-09-21 | 2014-03-27 | Md Revolution, Inc. | Interactive graphical user interfaces for implementing personalized health and wellness programs |
| CN103721343A (en) | 2014-01-27 | 2014-04-16 | 纪华雷 | A biofeedback headache treatment instrument and a headache medical system based on Internet of Things technology |
| US20140108035A1 (en) | 2012-10-11 | 2014-04-17 | Kunter Seref Akbay | System and method to automatically assign resources in a network of healthcare enterprises |
| US20140113768A1 (en) | 2012-10-19 | 2014-04-24 | Industrial Technology Research Institute | Exercise bike and operation method thereof |
| US20140113261A1 (en) | 2012-04-11 | 2014-04-24 | System Instruments Co., Ltd. | Training apparatus |
| EP1909730B1 (en) | 2005-07-27 | 2014-04-30 | American Medical Innovations, LLC | Dynamic motion therapy apparatus having a treatment feedback indicator |
| US20140135173A1 (en) * | 2012-10-31 | 2014-05-15 | Icon Health & Fitness, Inc. | System and method for an interactive exercise routine |
| JP2014104139A (en) | 2012-11-27 | 2014-06-09 | Toshiba Corp | Rehabilitation information processing system, information processor, and information management device |
| US8751264B2 (en) | 2005-07-28 | 2014-06-10 | Beraja Ip, Llc | Fraud prevention system including biometric records identification and associated methods |
| US20140163439A1 (en) | 2003-09-04 | 2014-06-12 | Parallel Biotechnologies LLC | Musical vibration system localized proximate a target artery |
| US20140172514A1 (en) | 2012-12-14 | 2014-06-19 | Level 3 Communications, Inc. | Method and apparatus for calculating performance indicators |
| US20140172442A1 (en) | 2012-10-03 | 2014-06-19 | Jeff Broderick | Systems and Methods to Assess Clinical Status and Response to Drug Therapy and Exercise |
| US20140172460A1 (en) | 2012-12-19 | 2014-06-19 | Navjot Kohli | System, Method, and Computer Program Product for Digitally Recorded Musculoskeletal Diagnosis and Treatment |
| TWI442956B (en) | 2008-11-07 | 2014-07-01 | Univ Nat Chunghsing | Intelligent control method and system for treadmill |
| CN203677851U (en) | 2014-01-16 | 2014-07-02 | 苏州飞源信息技术有限公司 | Indoor intelligent bodybuilding vehicle |
| US20140188009A1 (en) | 2012-07-06 | 2014-07-03 | University Of Southern California | Customizable activity training and rehabilitation system |
| US20140194251A1 (en) | 2008-08-22 | 2014-07-10 | Alton Reich | Adaptive motor resistance video game exercise apparatus and method of use thereof |
| US20140194250A1 (en) | 2008-08-22 | 2014-07-10 | Alton Reich | Remote adaptive motor resistance training exercise apparatus and method of use thereof |
| US20140200414A1 (en) | 2010-06-15 | 2014-07-17 | Flint Hills Scientific, L.L.C. | Systems approach to comorbidity assessment |
| US20140207264A1 (en) | 2003-12-11 | 2014-07-24 | Q-Tec Systems Llc | Method and apparatus for exercise monitoring combining exercise monitoring and visual data with wireless wearable devices |
| US20140207486A1 (en) | 2011-08-31 | 2014-07-24 | Lifeguard Health Networks, Inc. | Health management system |
| US20140228649A1 (en) | 2012-07-30 | 2014-08-14 | Treefrog Developments, Inc. | Activity monitoring |
| US8818496B2 (en) | 2005-10-14 | 2014-08-26 | Medicalgorithmics Ltd. | Systems for safe and remote outpatient ECG monitoring |
| US8823448B1 (en) | 2013-03-29 | 2014-09-02 | Hamilton Sundstrand Corporation | Feed forward active EMI filters |
| US20140246499A1 (en) | 2013-03-04 | 2014-09-04 | Hello Inc. | Wearable device with magnets having first and second polarities |
| US20140257837A1 (en) | 2013-03-05 | 2014-09-11 | Clinton Colin Graham Walker | Automated interactive health care application for patient care |
| US20140256511A1 (en) | 2013-03-11 | 2014-09-11 | Kelly Ann Smith | Equipment, System and Method for Improving Exercise Efficiency In A Cardio-Fitness Machine |
| US20140274565A1 (en) | 2013-03-12 | 2014-09-18 | Robert B. Boyette | Rehabilitation device and method |
| US20140275816A1 (en) | 2013-03-13 | 2014-09-18 | Covidien Lp | Wireless patient monitoring system |
| US20140274622A1 (en) | 2013-03-15 | 2014-09-18 | Duodesk Llc | Exercise device, connector and methods of use thereof |
| US8849681B2 (en) | 2007-08-06 | 2014-09-30 | Cerephex Corporation | Apparatus and method for remote assessment and therapy management in medical devices via interface systems |
| GB2512431A (en) | 2013-03-14 | 2014-10-01 | Baxter Int | Control of a water device via a dialysis machine user interface |
| US20140303540A1 (en) | 2013-04-08 | 2014-10-09 | Elwha Llc | Apparatus, System, and Method for Controlling Movement of an Orthopedic Joint Prosthesis in a Mammalian Subject |
| JP3193662U (en) | 2014-02-26 | 2014-10-16 | イスラエル・シャミア・レボビッツ | Device for medical monitoring and treatment remote operation application |
| US20140322686A1 (en) | 2013-04-30 | 2014-10-30 | Rehabtics LLC | Methods for providing telemedicine services |
| KR20140128630A (en) | 2013-04-29 | 2014-11-06 | 주식회사 케이티 | Remote treatment system and patient terminal |
| US8893287B2 (en) | 2012-03-12 | 2014-11-18 | Microsoft Corporation | Monitoring and managing user privacy levels |
| US20140347265A1 (en) | 2013-03-15 | 2014-11-27 | Interaxon Inc. | Wearable computing apparatus and method |
| US20140371816A1 (en) | 2003-06-11 | 2014-12-18 | Jeffrey A. Matos | Controlling a personal medical device |
| US20140372133A1 (en) | 2008-10-01 | 2014-12-18 | RedBrick Health Corporation | System and method for incentive-based health improvement programs and services |
| US20150025816A1 (en) | 2011-03-24 | 2015-01-22 | MedHab, LLC | System and method for monitoring power applied to a bicycle |
| CN104335211A (en) | 2012-04-04 | 2015-02-04 | 卡迪欧康有限责任公司 | Health-monitoring system with multiple health monitoring devices, interactive voice recognition, and mobile interfaces for data collection and transmission |
| US20150046192A1 (en) | 2007-07-03 | 2015-02-12 | Elngot Llc | Records access and management |
| US20150045700A1 (en) | 2013-08-09 | 2015-02-12 | University Of Washington Through Its Center For Commercialization | Patient activity monitoring systems and associated methods |
| KR20150017693A (en) | 2013-05-31 | 2015-02-17 | 쓰추안 쉬캉 메디컬 일렉트리컬 이큅먼트 컴퍼니., 리미티드. | Joint Rehabilitation Training System Based on the Remote Control, its Implementation Method and Evaluation Method of Joint Range of Motion |
| US20150051721A1 (en) | 2013-08-19 | 2015-02-19 | bOMDIC Inc. | Exercise assistive device |
| WO2015026744A1 (en) | 2013-08-17 | 2015-02-26 | MedHab, LLC | System and method for monitoring power applied to a bicycle |
| US20150065213A1 (en) | 2001-03-08 | 2015-03-05 | Brian M. Dugan | Systems and methods for improving fitness equipment and exercise |
| US20150073814A1 (en) | 2013-09-06 | 2015-03-12 | Comprehensive Physical Consultants, Inc. | Physical therapy patient accountability and compliance system |
| US20150088544A1 (en) | 2008-07-24 | 2015-03-26 | Ideal Life Inc. | Facilitating health management of subjects |
| US20150094192A1 (en) | 2013-09-27 | 2015-04-02 | Physitrack Limited | Exercise protocol creation and management system |
| US20150099458A1 (en) | 2011-01-14 | 2015-04-09 | Covidien Lp | Network-Capable Medical Device for Remote Monitoring Systems |
| US20150099952A1 (en) | 2013-10-04 | 2015-04-09 | Covidien Lp | Apparatus, systems, and methods for cardiopulmonary monitoring |
| US9004598B2 (en) | 2013-01-08 | 2015-04-14 | Nustep, Inc. | Seating system for a recumbent stepper |
| US20150112702A1 (en) | 2013-10-17 | 2015-04-23 | Raymond Anthony Joao | Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information with or using an electronic healthcare record and genetic information and/or genetic-related information |
| US20150111644A1 (en) | 2013-10-22 | 2015-04-23 | Todd Christopher Larson | Player ranking system based on multiple quantitative and qualitative scoring types |
| US20150112230A1 (en) | 2011-11-28 | 2015-04-23 | Remendium Labs Llc | Treatment of male urinary incontinence and sexual dysfunction |
| WO2015065298A1 (en) | 2013-10-30 | 2015-05-07 | Mehmet Tansu | Method for preparing a customized exercise strategy |
| US20150130830A1 (en) | 2013-10-11 | 2015-05-14 | Seiko Epson Corporation | Measurement information display apparatus, measurement information display system, and measurement information display method |
| US20150141200A1 (en) | 2013-11-21 | 2015-05-21 | Dyaco International, Inc. | Recumbent exercise machines and associated systems and methods |
| US20150142142A1 (en) | 2013-11-17 | 2015-05-21 | Team Sport IP, LLC | Method and system to assist in player development |
| US20150149217A1 (en) | 2011-08-13 | 2015-05-28 | Matthias W. Rath | Method and system for real time visualization of individual health condition on a mobile device |
| US9044630B1 (en) | 2011-05-16 | 2015-06-02 | David L. Lampert | Range of motion machine and method and adjustable crank |
| US20150161331A1 (en) | 2013-12-04 | 2015-06-11 | Mark Oleynik | Computational medical treatment plan method and system with mass medical analysis |
| US20150161876A1 (en) | 2013-12-10 | 2015-06-11 | Sal Castillo | Methods and systems for emergency alerts |
| US20150157938A1 (en) | 2013-06-13 | 2015-06-11 | Biogaming Ltd | Personal digital trainer for physiotheraputic and rehabilitative video games |
| JP3198173U (en) | 2015-03-02 | 2015-06-18 | 岱宇國際股▲分▼有限公司 | Exercise equipment and power supply apparatus thereof |
| US20150174446A1 (en) | 2013-12-20 | 2015-06-25 | Dyaco International Inc. | Exercise device providing automatic calculation of seat position and/or crank length |
| KR20150078191A (en) | 2013-12-30 | 2015-07-08 | 주식회사 사람과기술 | remote medical examination and treatment service system and service method thereof using the system |
| US20150196805A1 (en) | 2014-01-14 | 2015-07-16 | Zsolutionz, LLC | Fuzzy logic-based evaluation and feedback of exercise performance |
| US20150199494A1 (en) | 2014-01-14 | 2015-07-16 | Zsolutionz, LLC | Cloud-based initiation of customized exercise routine |
| US20150196804A1 (en) | 2014-01-14 | 2015-07-16 | Zsolutionz, LLC | Sensor-based evaluation and feedback of exercise performance |
| US20150217056A1 (en) | 2013-12-31 | 2015-08-06 | Stratos Group Llc | Therapy systems and methods utilizing tissue oxygenation detection |
| US20150251074A1 (en) | 2012-09-04 | 2015-09-10 | Whoop, Inc. | Automated exercise recommendations |
| US20150257679A1 (en) | 2011-03-24 | 2015-09-17 | MedHab, LLC | System and method for monitoring a runner's gait |
| US20150265209A1 (en) | 2014-03-18 | 2015-09-24 | Jack Ke Zhang | Techniques for monitoring prescription compliance using a body-worn device |
| US20150290061A1 (en) | 2012-11-16 | 2015-10-15 | Hill-Rom Services, Inc. | Person support apparatuses having exercise therapy features |
| US9167281B2 (en) | 2010-02-26 | 2015-10-20 | Panasonic Intellectual Property Management Co., Ltd. | Transport stream packet header compression |
| JP5804063B2 (en) | 2011-08-10 | 2015-11-04 | 株式会社島津製作所 | Rehabilitation equipment |
| US20150331997A1 (en) | 2014-05-15 | 2015-11-19 | Raymond Anthony Joao | Apparatus and method for processing and/or providing healthcare information and/or healthcare-related information with or using an electronic healthcare record or electronic healthcare records |
| USD744050S1 (en) | 2013-11-29 | 2015-11-24 | 3D Innovations, LLC | Desk exercise cycle |
| US20150339442A1 (en) | 2013-12-04 | 2015-11-26 | Mark Oleynik | Computational medical treatment plan method and system with mass medical analysis |
| US20150341812A1 (en) | 2003-08-29 | 2015-11-26 | Ineoquest Technologies, Inc. | Video quality monitoring |
| US20150335951A1 (en) | 2014-05-21 | 2015-11-26 | IncludeFitness, Inc. | Fitness systems and methods thereof |
| US20150335950A1 (en) | 2014-05-21 | 2015-11-26 | IncludeFitness, Inc. | Fitness systems and methods thereof |
| US20150351665A1 (en) | 2013-01-24 | 2015-12-10 | MedHab, LLC | Method for measuring power generated during running |
| US20150351664A1 (en) | 2013-01-24 | 2015-12-10 | MedHab, LLC | System for measuring power generated during running |
| US20150360069A1 (en) | 2014-06-04 | 2015-12-17 | Eduardo M. Marti | Shoulder End Range of Motion Improving Device |
| US20150379430A1 (en) | 2014-06-30 | 2015-12-31 | Amazon Technologies, Inc. | Efficient duplicate detection for machine learning data sets |
| US20150379232A1 (en) | 2013-08-12 | 2015-12-31 | Orca Health, Inc. | Diagnostic computer systems and diagnostic user interfaces |
| US20160004820A1 (en) | 2005-02-01 | 2016-01-07 | Newsilike Media Group, Inc. | Security facility for maintaining health care data pools |
| US20160007885A1 (en) | 2007-10-15 | 2016-01-14 | Alterg, Inc. | Method of gait evaluation and training with differential pressure system |
| CN105263448A (en) | 2013-05-31 | 2016-01-20 | 哈佛大学校长及研究员协会 | Soft robotic armor for assisting human locomotion |
| US20160015995A1 (en) | 2013-03-11 | 2016-01-21 | The Regents Of The University Of California | Portable transcutaneous magnetic stimulator and systems and methods of use thereof |
| US20160023081A1 (en) | 2014-07-16 | 2016-01-28 | Liviu Popa-Simil | Method and accessories to enhance riding experience on vehicles with human propulsion |
| US9248071B1 (en) | 2013-03-15 | 2016-02-02 | Ergoflex, Inc. | Walking, rehabilitation and exercise machine |
| US9256711B2 (en) | 2011-07-05 | 2016-02-09 | Saudi Arabian Oil Company | Systems, computer medium and computer-implemented methods for providing health information to employees via augmented reality display |
| US20160045170A1 (en) | 2010-03-30 | 2016-02-18 | Sony Corporation | Information processing device, image output method, and program |
| US9272091B2 (en) | 2008-07-11 | 2016-03-01 | Medtronic, Inc. | Posture state display on medical device user interface |
| US9283434B1 (en) | 2014-09-30 | 2016-03-15 | Strength Master Fitness Tech Co., Ltd. | Method of detecting and prompting human lower limbs stepping motion |
| US20160081594A1 (en) | 2013-03-13 | 2016-03-24 | Virtusense Technologies | Range of motion system, and method |
| US20160086500A1 (en) | 2012-10-09 | 2016-03-24 | Kc Holdings I | Personalized avatar responsive to user physical state and context |
| US9295878B2 (en) | 2009-12-21 | 2016-03-29 | Core Industries, Llc | Instructional displays and methods for an exercise machine |
| US20160096073A1 (en) | 2014-10-07 | 2016-04-07 | Umm Al-Qura University | Game-based method and system for physical rehabilitation |
| US9312907B2 (en) | 2013-01-03 | 2016-04-12 | Claris Healthcare, Inc. | Computer apparatus for use by senior citizens |
| US9311789B1 (en) | 2013-04-09 | 2016-04-12 | BioSensics LLC | Systems and methods for sensorimotor rehabilitation |
| US20160117471A1 (en) | 2014-10-22 | 2016-04-28 | Jan Belt | Medical event lifecycle management |
| US20160132643A1 (en) | 2014-11-10 | 2016-05-12 | Accenture Global Services Limited | Medical coding management system using an intelligent coding, reporting, and analytics-focused tool |
| US20160140319A1 (en) | 1998-09-01 | 2016-05-19 | Izex Technologies, Inc. | Remote monitoring of a patient |
| US20160143593A1 (en) | 2013-10-16 | 2016-05-26 | University of Central Oklahoma | Intelligent apparatus for patient guidance and data capture during physical therapy and wheelchair usage |
| CN105620643A (en) | 2016-03-07 | 2016-06-01 | 邹维君 | Bent-arm bicycle crank |
| US20160158534A1 (en) | 2014-12-03 | 2016-06-09 | Neurohabilitation Corporation | Devices for Delivering Non-Invasive Neuromodulation to a Patient |
| US9367668B2 (en) | 2012-02-28 | 2016-06-14 | Precor Incorporated | Dynamic fitness equipment user interface adjustment |
| CN105683977A (en) | 2013-11-01 | 2016-06-15 | 皇家飞利浦有限公司 | Patient feedback for use of therapeutic device |
| US20160166833A1 (en) | 2013-11-15 | 2016-06-16 | Uk Do-I Co., Ltd. | Seating apparatus for diagnosis and treatment of diagnosing and curing urinary incontinence, erectile dysfunction and defecation disorders |
| US20160166881A1 (en) | 2014-12-12 | 2016-06-16 | Kent State University | Bike System For Use In Rehabilitation Of A Patient |
| US20160197918A1 (en) | 2010-11-29 | 2016-07-07 | Biocatch Ltd. | Device, system, and method of password-less user authentication and password-less detection of user identity |
| US20160193306A1 (en) | 2015-01-02 | 2016-07-07 | Melaleuca, Inc. | Multi-supplement compositions |
| US20160213924A1 (en) | 2015-01-26 | 2016-07-28 | CyMedica Orthopedics, Inc. | Patient therapy systems and methods |
| CN103136447B (en) | 2012-10-15 | 2016-08-03 | 四川旭康医疗电器有限公司 | Implementation method based on the medical system embedding wireless communication module |
| KR20160093990A (en) | 2015-01-30 | 2016-08-09 | 박희재 | Exercise equipment apparatus for controlling animation in virtual reality and method for method for controlling virtual reality animation |
| KR101647620B1 (en) | 2015-01-06 | 2016-08-11 | 주식회사 삼육오엠씨네트웍스 | Remote control available exercise system |
| CN105894088A (en) | 2016-03-25 | 2016-08-24 | 苏州赫博特医疗信息科技有限公司 | Medical information extraction system and method based on depth learning and distributed semantic features |
| US20160250519A1 (en) * | 2015-02-27 | 2016-09-01 | Icon Health & Fitness, Inc. | Simulating Real-World Terrain on an Exercise Device |
| CN105930668A (en) | 2016-04-29 | 2016-09-07 | 创领心律管理医疗器械(上海)有限公司 | Remote auxiliary system of medical device |
| US9443205B2 (en) | 2011-10-24 | 2016-09-13 | President And Fellows Of Harvard College | Enhancing diagnosis of disorder through artificial intelligence and mobile health technologies without compromising accuracy |
| WO2016154318A1 (en) | 2015-03-23 | 2016-09-29 | The Board Of Regents Of The University Of Nebraska | Assistive rehabilitation elliptical system |
| WO2016151364A1 (en) | 2015-03-24 | 2016-09-29 | Ares Trading S.A. | Patient care system |
| US20160294837A1 (en) | 2010-11-29 | 2016-10-06 | Biocatch Ltd. | Device, system, and method of recovery and resetting of user authentication factor |
| US20160287166A1 (en) | 2015-04-03 | 2016-10-06 | Bao Tran | Personal monitoring system |
| CN205626871U (en) | 2016-02-29 | 2016-10-12 | 米钠(厦门)科技有限公司 | Solve smart machine and body -building bicycle of traditional body -building bicycle data connection |
| US20160302721A1 (en) | 2015-03-23 | 2016-10-20 | Consensus Orthopedics, Inc. | System and methods for monitoring an orthopedic implant and rehabilitation |
| US20160302666A1 (en) | 2010-07-30 | 2016-10-20 | Fawzi Shaya | System, method and apparatus for performing real-time virtual medical examinations |
| US9474935B2 (en) | 2013-10-17 | 2016-10-25 | Prova Research Inc. | All-in-one smart console for exercise machine |
| US9481428B2 (en) | 2013-12-10 | 2016-11-01 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dynamometric cycle pedal |
| US9480873B2 (en) | 2014-11-25 | 2016-11-01 | High Spot Health Technology Co., Ltd. | Adjusting structure of elliptical trainer |
| US20160322078A1 (en) | 2010-08-26 | 2016-11-03 | Blast Motion Inc. | Multi-sensor event detection and tagging system |
| US20160325140A1 (en) | 2015-05-04 | 2016-11-10 | Yu Wu | System and method for recording exercise data |
| CN106127646A (en) | 2016-07-15 | 2016-11-16 | 佛山科学技术学院 | The monitoring system of a kind of recovery period data and monitoring method |
| US20160332028A1 (en) | 2015-05-15 | 2016-11-17 | Irina L. Melnik | Active fitness chair application |
| US20160345841A1 (en) | 2015-05-27 | 2016-12-01 | Samsung Electronics Co., Ltd. | Method and apparatus for estimating physiological index of user at maximal exercise level based on rating of perceived exertion |
| US9514277B2 (en) | 2005-03-08 | 2016-12-06 | Koninklijke Philips N.V. | Clinical monitoring network |
| US20160354636A1 (en) | 2015-06-04 | 2016-12-08 | Samsung Electronics Co., Ltd. | Method and apparatus for providing exercise program based on feedback |
| US20160361597A1 (en) | 2014-01-24 | 2016-12-15 | Nustep, Inc. | Instrumented total body recumbent cross trainer system |
| US20160361025A1 (en) | 2015-06-12 | 2016-12-15 | Merge Healthcare Incorporated | Methods and Systems for Automatically Scoring Diagnoses associated with Clinical Images |
| CN106236502A (en) | 2016-08-04 | 2016-12-21 | 沈研 | A kind of portable passive ankle pump training aids |
| US20160373477A1 (en) | 2011-10-18 | 2016-12-22 | Mcafee, Inc. | User behavioral risk assessment |
| US20170004260A1 (en) | 2012-08-16 | 2017-01-05 | Ginger.io, Inc. | Method for providing health therapeutic interventions to a user |
| US20170000422A1 (en) | 2012-08-16 | 2017-01-05 | Ginger.io, Inc. | Method and system for modeling behavior and heart disease state |
| US20170011179A1 (en) | 2015-07-09 | 2017-01-12 | MI Express Care Licensing Company, LLC | Virtual Waiting Rooms In A Telemedicine System |
| US20170032092A1 (en) | 2016-06-16 | 2017-02-02 | Benjamin Franklin Mink | Real Time Multispecialty Telehealth Interactive Patient Wellness Portal (IPWP) |
| US20170033375A1 (en) | 2015-07-29 | 2017-02-02 | Honda Motor Co., Ltd. | Resin-framed membrane electrode assembly and fuel cell |
| US20170046488A1 (en) | 2015-08-10 | 2017-02-16 | Luis Henrique Leonardo PEREIRA | Center for medical artifical intelligence control with remote system for preparation of diagnosis, drug prescription and online medical treatment shipping via telemedicine |
| US20170042467A1 (en) | 2014-04-25 | 2017-02-16 | Massachusetts Institute Of Technology | Feedback Method And Wearable Device To Monitor And Modulate Knee Adduction Moment |
| WO2017030781A1 (en) | 2015-08-14 | 2017-02-23 | MedHab, LLC | System for measuring power generated during running |
| US9579056B2 (en) | 2012-10-16 | 2017-02-28 | University Of Florida Research Foundation, Incorporated | Screening for neurological disease using speech articulation characteristics |
| US20170065851A1 (en) | 2015-09-03 | 2017-03-09 | International Business Machines Corporation | Adjusting exercise machine settings based on current work conditions |
| CN106510985A (en) | 2016-10-26 | 2017-03-22 | 北京理工大学 | Rehabilitation and walking exoskeleton robot based on master-slave control |
| US20170080320A1 (en) | 2013-03-11 | 2017-03-23 | Kelly Ann Smith | Equipment, system and method for improving exercise efficiency in a cardio-fitness machine |
| US20170091422A1 (en) | 2015-09-30 | 2017-03-30 | International Business Machines Corporation | Personalized Health Care Plan Creation and Monitoring Based on Medical and Lifestyle Conditions |
| US20170095670A1 (en) | 2015-10-05 | 2017-04-06 | Mc10 | Method and system for neuromodulation and stimulation |
| US20170095692A1 (en) | 2015-10-02 | 2017-04-06 | Lumo BodyTech, Inc | System and method for run tracking with a wearable activity monitor |
| US20170095693A1 (en) | 2015-10-02 | 2017-04-06 | Lumo BodyTech, Inc | System and method for a wearable technology platform |
| KR20170038837A (en) | 2014-08-05 | 2017-04-07 | 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 | Components, systems and methods of bicycle-based network connectivity and methods for controlling a bicycle having network connectivity |
| US20170100637A1 (en) | 2015-10-08 | 2017-04-13 | SceneSage, Inc. | Fitness training guidance system and method thereof |
| US9629558B2 (en) | 2010-09-30 | 2017-04-25 | Fitbit, Inc. | Portable monitoring devices and methods of operating same |
| US20170113092A1 (en) | 2015-10-21 | 2017-04-27 | Brainchild Medical, Inc. | Attachable Rotary Range of Motion Rehabilitation Apparatus |
| US9640057B1 (en) | 2015-11-23 | 2017-05-02 | MedHab, LLC | Personal fall detection system and method |
| CN106621195A (en) | 2016-11-30 | 2017-05-10 | 中科院合肥技术创新工程院 | Man-machine interactive system and method applied to intelligent exercise bike |
| US20170132947A1 (en) | 2014-07-03 | 2017-05-11 | Teijin Pharma Limited | Rehabilitation assistance device and program for controlling rehabilitation assistance device |
| US20170128769A1 (en) | 2014-06-18 | 2017-05-11 | Alterg, Inc. | Pressure chamber and lift for differential air pressure system with medical data collection capabilities |
| US20170136296A1 (en) | 2015-11-18 | 2017-05-18 | Osvaldo Andres Barrera | System and method for physical rehabilitation and motion training |
| US20170136298A1 (en) | 2015-11-13 | 2017-05-18 | Samsung Electronics Co., Ltd. | Method and apparatus for generating exercise program or providing exercise feedback |
| US20170147752A1 (en) | 2015-07-03 | 2017-05-25 | Omron Healthcare Co., Ltd. | Health data management device and health data management system |
| US20170143261A1 (en) | 2015-03-23 | 2017-05-25 | Consensus Orthopedics, Inc. | System and methods for monitoring physical therapy and rehabilitation of joints |
| US20170147789A1 (en) | 2015-03-23 | 2017-05-25 | Consensus Orthopedics, Inc. | System and methods with user interfaces for monitoring physical therapy and rehabilitation |
| US20170168555A1 (en) | 2014-03-06 | 2017-06-15 | Polar Electro Oy | Device power saving during exercise |
| US20170169177A1 (en) | 2015-12-14 | 2017-06-15 | The Live Network Inc | Treatment intelligence and interactive presence portal for telehealth |
| US20170173391A1 (en) | 2015-12-18 | 2017-06-22 | MAD Apparel, Inc. | Adaptive calibration for sensor-equipped athletic garments |
| US20170181698A1 (en) | 2015-03-23 | 2017-06-29 | Consensus Orthopedics, Inc. | Systems and methods using a wearable device for monitoring an orthopedic implant and rehabilitation |
| US20170190052A1 (en) | 2014-06-03 | 2017-07-06 | ArtiMinds Robotics GmbH | Method and system for programming a robot |
| US9707147B2 (en) | 2009-12-17 | 2017-07-18 | Headway Ltd. | “Teach and repeat” method and apparatus for physiotherapeutic applications |
| US20170202724A1 (en) | 2013-12-09 | 2017-07-20 | President And Fellows Of Harvard College | Assistive Flexible Suits, Flexible Suit Systems, and Methods for Making and Control Thereof to Assist Human Mobility |
| US9713744B2 (en) | 2014-03-17 | 2017-07-25 | Mitsubishi Electric Engineering Company, Limited | Exercise therapy device |
| US9717947B2 (en) | 2015-05-19 | 2017-08-01 | Rexon Industrial Corp., Ltd. | Climbing exerciser machine with adjustable inclination |
| US20170220751A1 (en) | 2016-02-01 | 2017-08-03 | Dexcom, Inc. | System and method for decision support using lifestyle factors |
| USD794142S1 (en) | 2016-01-26 | 2017-08-08 | Xiamen Zhoulong Sporting Goods Co., Ltd. | Magnetic bike |
| US20170228517A1 (en) | 2016-02-08 | 2017-08-10 | OutcomeMD, Inc. | Systems and methods for determining a wellness score, an improvement score, and/or an effectiveness score with regard to a medical condition and/or treatment |
| US20170235882A1 (en) | 2016-02-16 | 2017-08-17 | mHealthPharma, Inc. | Condition management system and method |
| US20170235906A1 (en) | 2016-02-17 | 2017-08-17 | International Business Machines Corporation | Modifying Patient Communications Based on Simulation of Vendor Communications |
| CN107066819A (en) | 2017-04-05 | 2017-08-18 | 深圳前海合泰生命健康技术有限公司 | A kind of Intelligent worn device monitored in cardiovascular disease rehabilitation |
| US9737761B1 (en) | 2014-10-29 | 2017-08-22 | REVVO, Inc. | System and method for fitness testing, tracking and training |
| US20170243028A1 (en) | 2013-11-01 | 2017-08-24 | Anonos Inc. | Systems and Methods for Enhancing Data Protection by Anonosizing Structured and Unstructured Data and Incorporating Machine Learning and Artificial Intelligence in Classical and Quantum Computing Environments |
| US20170262604A1 (en) | 2014-06-09 | 2017-09-14 | Revon Systems, Inc. | Systems and methods for health tracking and management |
| US20170258370A1 (en) | 2011-10-09 | 2017-09-14 | The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center | Freezing of gait (fog), detection, prediction and/or treatment |
| US20170266501A1 (en) | 2016-03-15 | 2017-09-21 | Nike, Inc. | Adaptive Athletic Activity Prescription Systems |
| US20170270260A1 (en) | 2013-10-31 | 2017-09-21 | Knox Medical Diagnostics | Systems and methods for monitoring respiratory function |
| US20170265800A1 (en) | 2016-03-15 | 2017-09-21 | Claris Healthcare Inc. | Apparatus and Method for Monitoring Rehabilitation from Joint Surgery |
| US9773330B1 (en) | 2016-12-29 | 2017-09-26 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis, and feedback |
| WO2017165238A1 (en) | 2016-03-21 | 2017-09-28 | MedHab, LLC | Wearable computer system and method of rebooting the system via user movements |
| US20170278209A1 (en) | 2016-03-22 | 2017-09-28 | International Business Machines Corporation | Optimization of Patient Care Team Based on Correlation of Patient Characteristics and Care Provider Characteristics |
| US20170283508A1 (en) | 2016-03-31 | 2017-10-05 | Omeros Corporation | Methods for Inhibiting Angiogenesis in a Subject in Need Thereof |
| WO2017166074A1 (en) | 2016-03-29 | 2017-10-05 | 深圳前海合泰生命健康技术有限公司 | Data processing method and device |
| US20170282015A1 (en) | 2016-04-04 | 2017-10-05 | Worldpro Group, LLC | Interactive apparatus and methods for muscle strengthening |
| US20170286621A1 (en) | 2016-03-29 | 2017-10-05 | International Business Machines Corporation | Evaluating Risk of a Patient Based on a Patient Registry and Performing Mitigating Actions Based on Risk |
| US9782621B2 (en) | 2013-12-20 | 2017-10-10 | Dyaco International Inc. | Exercise device providing automatic braking |
| US20170291067A1 (en) | 2016-04-06 | 2017-10-12 | Samsung Electronics Co., Ltd. | Method and apparatus for generating personalized exercise program |
| US20170296861A1 (en) | 2014-04-21 | 2017-10-19 | Colin M. BURKINSHAW | Full body exercise apparatus |
| US20170300654A1 (en) | 2016-04-15 | 2017-10-19 | BR Invention Holding, LLC | Mobile medicine communication platform and methods and uses thereof |
| US20170304024A1 (en) | 2014-11-11 | 2017-10-26 | Celestino José Prudente NÓBREGA | Intraoral vibratory multifunctional device and wireless system for interaction between device, patient, and dentist |
| US20170312614A1 (en) | 2016-05-02 | 2017-11-02 | Bao Tran | Smart device |
| US9813239B2 (en) | 2013-06-03 | 2017-11-07 | Osim International Ltd | System and method for providing massage related services |
| US20170323481A1 (en) | 2015-07-17 | 2017-11-09 | Bao Tran | Systems and methods for computer assisted operation |
| US20170329933A1 (en) | 2016-05-13 | 2017-11-16 | Thomas Edwin Brust | Adaptive therapy and health monitoring using personal electronic devices |
| US20170329917A1 (en) | 2016-05-13 | 2017-11-16 | WellDoc, Inc. | Database management and graphical user interfaces for measurements collected by analyzing blood |
| US20170337334A1 (en) | 2016-05-17 | 2017-11-23 | Epiphany Cardiography Products, LLC | Systems and Methods of Generating Medical Billing Codes |
| US20170337033A1 (en) | 2016-05-19 | 2017-11-23 | Fitbit, Inc. | Music selection based on exercise detection |
| US20170333755A1 (en) | 2016-05-17 | 2017-11-23 | Kuaiwear Limited | Multi-sport biometric feedback device, system, and method for adaptive coaching with gym apparatus |
| US9827445B2 (en) | 2013-09-27 | 2017-11-28 | Varian Medical Systems International Ag | Automatic creation and selection of dose prediction models for treatment plans |
| US20170344726A1 (en) | 2011-11-03 | 2017-11-30 | Omada Health, Inc. | Method and system for supporting a health regimen |
| US20170347923A1 (en) | 2016-06-03 | 2017-12-07 | Circulex, Inc. | System, apparatus, and method for monitoring and promoting patient mobility |
| US20170352157A1 (en) | 2016-06-06 | 2017-12-07 | Case Western Reserve University | Computerized analysis of computed tomography (ct) imagery to quantify tumor infiltrating lymphocytes (tils) in non-small cell lung cancer (nsclc) |
| US20170360586A1 (en) | 2016-06-17 | 2017-12-21 | Umbra Health Corporation | Orthopedic devices and systems integrated with controlling devices |
| US9849337B2 (en) | 2014-10-01 | 2017-12-26 | Michael G. Lannon | Cardio-based exercise systems with visual feedback on exercise programs |
| US20170368413A1 (en) | 2016-03-12 | 2017-12-28 | Arie Shavit | Training system and methods for designing, monitoring and providing feedback of training |
| EP3264303A1 (en) | 2016-06-27 | 2018-01-03 | Claris Healthcare Inc. | Method for coaching a patient through rehabilitation from joint surgery |
| CN107551475A (en) | 2017-09-13 | 2018-01-09 | 南京麦澜德医疗科技有限公司 | Rehabilitation equipment monitoring system, method and server |
| KR20180004928A (en) | 2016-07-05 | 2018-01-15 | 데이코어 주식회사 | Method and apparatus and computer readable record media for service for physical training |
| US9868028B2 (en) | 2013-09-04 | 2018-01-16 | Considerc Inc. | Virtual reality indoor bicycle exercise system using mobile device |
| US9872087B2 (en) | 2010-10-19 | 2018-01-16 | Welch Allyn, Inc. | Platform for patient monitoring |
| US20180017806A1 (en) | 2016-07-15 | 2018-01-18 | Canon U.S.A., Inc. | Spectrally encoded probes |
| US9872637B2 (en) | 2010-04-21 | 2018-01-23 | The Rehabilitation Institute Of Chicago | Medical evaluation system and method using sensors in mobile devices |
| US20180036591A1 (en) | 2016-03-08 | 2018-02-08 | Your Trainer Inc. | Event-based prescription of fitness-related activities |
| WO2018027080A1 (en) | 2016-08-03 | 2018-02-08 | Akili Interactive Labs, Inc. | Cognitive platform including computerized evocative elements |
| US20180052962A1 (en) | 2015-03-10 | 2018-02-22 | Elekta, Inc. | Adaptive treatment management system with a workflow management engine |
| CN107736982A (en) | 2017-10-20 | 2018-02-27 | 浙江睿索电子科技有限公司 | A kind of active-passive rehabilitation robot |
| US20180056104A1 (en) | 2016-08-23 | 2018-03-01 | Superflex, Inc. | Systems and methods for assistive exosuit system |
| US20180060494A1 (en) | 2016-08-26 | 2018-03-01 | International Business Machines Corporation | Patient Treatment Recommendations Based on Medical Records and Exogenous Information |
| US20180056130A1 (en) | 2016-08-31 | 2018-03-01 | Microsoft Technology Licensing, Llc | Providing insights based on health-related information |
| US9914053B2 (en) | 2011-03-28 | 2018-03-13 | Brian M. Dugan | Systems and methods for fitness and video games |
| US20180071572A1 (en) | 2016-09-12 | 2018-03-15 | ROM3 Rehab LLC | Rehabilitation and Exercise Device |
| US20180070864A1 (en) | 2016-06-02 | 2018-03-15 | Matthew Schuster | Methods and devices for assessing a captured motion |
| US20180075205A1 (en) | 2012-08-16 | 2018-03-15 | Ginger.io, Inc. | Method and system for providing automated conversations |
| US9919198B2 (en) | 2013-11-11 | 2018-03-20 | Breg, Inc. | Automated physical therapy systems and methods |
| US20180078843A1 (en) | 2016-02-02 | 2018-03-22 | Bao Tran | Smart device |
| US20180078149A1 (en) | 2016-09-20 | 2018-03-22 | Heartflow, Inc. | Systems and methods for monitoring and updating blood flow calculations with user-specific anatomic and physiologic sensor data |
| US20180078182A1 (en) | 2016-09-22 | 2018-03-22 | Apple Inc. | Workout monitor interface |
| US20180089385A1 (en) | 2015-05-30 | 2018-03-29 | Praxify Technologies, Inc. | Personalized treatment management system |
| US20180085615A1 (en) | 2015-04-23 | 2018-03-29 | Muoverti Limited | Improvements In Or Relating To Exercise Equipment |
| US20180096111A1 (en) | 2016-10-03 | 2018-04-05 | Richard Wells | Predictive telerehabilitation technology and user interface |
| US9939784B1 (en) | 2015-10-06 | 2018-04-10 | Raymond Berardinelli | Smartwatch device and method |
| US20180099178A1 (en) | 2015-04-20 | 2018-04-12 | Michael V. SCHAEFER | Apparatus and method for increased realism of training on exercise machines |
| US20180102190A1 (en) | 2016-07-25 | 2018-04-12 | Viviphi Ltd. | Generating customizable personal healthcare treatment plans |
| US20180103859A1 (en) | 2016-07-30 | 2018-04-19 | Catalina F Provenzano | Systems, Devices, and/or Methods for Managing Patient Monitoring |
| CN107930021A (en) | 2017-11-20 | 2018-04-20 | 北京酷玩部落科技有限公司 | Intelligent dynamic exercycle and Intelligent dynamic Upright cycle system |
| US20180113985A1 (en) | 2016-10-20 | 2018-04-26 | Play-it Health, Inc. | System for improving patient medical treatment plan compliance |
| US20180116741A1 (en) | 2016-11-03 | 2018-05-03 | Verb Surgical Inc. | Tool driver with reaction torque sensor for use in robotic surgery |
| US20180117417A1 (en) | 2016-11-01 | 2018-05-03 | Braxton K. Davis | Facilitation of interactive exercise system |
| WO2018081795A1 (en) | 2016-10-31 | 2018-05-03 | Zipline Medical, Inc. | Systems and methods for monitoring physical therapy of the knee and other joints |
| US20180130555A1 (en) | 2016-11-04 | 2018-05-10 | George Chronis | Systems and methods for intelligent admissions |
| US20180133551A1 (en) | 2016-11-16 | 2018-05-17 | Lumo BodyTech, Inc | System and method for personalized exercise training and coaching |
| US9974478B1 (en) | 2014-12-19 | 2018-05-22 | Great Lakes Neurotechnologies Inc. | Discreet movement measurement and cueing system for improvement of safety and efficacy of movement |
| US9977587B2 (en) | 2014-10-30 | 2018-05-22 | Echostar Technologies International Corporation | Fitness overlay and incorporation for home automation system |
| EP3323473A1 (en) | 2016-11-21 | 2018-05-23 | Tyromotion GmbH | Device for exercising the lower and/or upper extremities of a person |
| US20180140927A1 (en) | 2016-11-22 | 2018-05-24 | Seiko Epson Corporation | Workout information display method, workout information display system, server system, electronic device, information storage medium, and program |
| CN108078737A (en) | 2018-02-01 | 2018-05-29 | 合肥工业大学 | A kind of amplitude automatic adjustable leg device for healing and training and control method |
| US20180146870A1 (en) | 2015-06-02 | 2018-05-31 | CardiacSense Ltd. | Sensing at least one biological parameter, e.g., heart rate or heart rate variability of a subject |
| US20180178061A1 (en) | 2016-12-27 | 2018-06-28 | Cerner Innovation, Inc. | Rehabilitation compliance devices |
| US20180177612A1 (en) | 2016-12-22 | 2018-06-28 | Orthosensor Inc. | Surgical Apparatus to Support Installation of a Prosthetic Component With Reduced Alignment Error |
| JP2018102842A (en) | 2016-12-28 | 2018-07-05 | 学校法人 中村産業学園 | Walking training device, walking training evaluation method and program |
| US10026052B2 (en) | 2016-10-03 | 2018-07-17 | Metrics Medius, Inc. | Electronic task assessment platform |
| US20180199855A1 (en) | 2015-07-07 | 2018-07-19 | The Trustees Of Dartmouth College | Wearable system for autonomous detection of asthma symptoms and inhaler use, and for asthma management |
| US20180220935A1 (en) | 2015-07-23 | 2018-08-09 | Nipro Corporation | Gait analysis method and gait analysis system |
| US20180228682A1 (en) | 2017-02-10 | 2018-08-16 | Woodway Usa, Inc. | Motorized recumbent therapeutic and exercise device |
| US20180232492A1 (en) | 2017-02-16 | 2018-08-16 | Microsoft Technology Licensing, Llc | Artificial intelligence to edit health care plans |
| US10055550B2 (en) | 2007-10-24 | 2018-08-21 | Medtronic, Inc. | Remote management of therapy programming |
| USD826349S1 (en) | 2017-02-08 | 2018-08-21 | Woodway Usa, Inc. | Recumbent cycle with provision for upper body exercise |
| DE102018202497A1 (en) | 2017-02-19 | 2018-08-23 | Intel Corporation | Technologies for optimized machine learning training |
| US20180240552A1 (en) | 2017-02-20 | 2018-08-23 | Penexa, LLC | System and method for managing treatment plans |
| US20180236307A1 (en) | 2017-02-23 | 2018-08-23 | Elwha Llc | Personal therapy and exercise monitoring and oversight devices, systems, and related methods |
| US10058473B2 (en) | 2013-11-14 | 2018-08-28 | Murata Machinery, Ltd. | Training apparatus |
| US20180253991A1 (en) | 2014-11-03 | 2018-09-06 | Verily Life Sciences Llc | Methods and Systems for Improving a Presentation Function of a Client Device |
| US20180255110A1 (en) | 2017-03-03 | 2018-09-06 | At&T Intellectual Property I, L.P. | Real time communication hub for multiple secure connections through shared session |
| US10074148B2 (en) | 2011-03-31 | 2018-09-11 | Rite Aid Hdqtrs. Corp. | Medical kiosk and method of use |
| US20180256939A1 (en) | 2017-03-09 | 2018-09-13 | Christian Malcolm | Variable weight units, computing device kit applications, and method of use |
| US20180256079A1 (en) | 2017-03-08 | 2018-09-13 | National Chiao Tung University | Method and system for determining data associated with lower limb activity |
| US20180263535A1 (en) | 2015-09-09 | 2018-09-20 | The Regents Of The University Of California | Systems and methods for facilitating rehabilitation therapy |
| US20180264312A1 (en) | 2017-03-17 | 2018-09-20 | Domenic J. Pompile | Adjustable Multi-Position Stabilizing and Strengthening Apparatus |
| US20180263530A1 (en) | 2017-02-08 | 2018-09-20 | Hwisu Jung | Chest measuring device, scoliosis correction system, system for remotely diagnosing spine, and wearable measuring device |
| US20180263552A1 (en) | 2017-03-17 | 2018-09-20 | Charge LLC | Biometric and location based system and method for fitness training |
| US20180272184A1 (en) | 2017-03-17 | 2018-09-27 | Mindbridge Innovations, Llc | Stationary cycling pedal crank having an adjustable length |
| US20180271432A1 (en) | 2017-03-27 | 2018-09-27 | Claris Healthcare Inc. | Method for Calibrating Apparatus for Monitoring Rehabilitation from Joint Surgery |
| WO2018171853A1 (en) | 2017-03-21 | 2018-09-27 | EWII Telecare A/S | A telemedicine system for remote treatment of patients |
| US10089443B2 (en) | 2012-05-15 | 2018-10-02 | Baxter International Inc. | Home medical device systems and methods for therapy prescription and tracking, servicing and inventory |
| US20180285463A1 (en) | 2015-11-02 | 2018-10-04 | Samsung Electronics Co., Ltd. | Electronic device and method for generating user profile |
| US20180290017A1 (en) | 2012-08-31 | 2018-10-11 | Blue Goji Llc | System and method for a mixed or virtual reality-enhanced stationary exercise bicycle |
| US20180296143A1 (en) | 2017-04-13 | 2018-10-18 | Intuity Medical, Inc. | Systems and methods for managing chronic disease using analyte and patient data |
| US20180296157A1 (en) | 2014-09-29 | 2018-10-18 | Pulson, Inc. | Systems and methods for coordinating musculoskeletal and cardiovascular hemodynamics |
| US10111643B2 (en) | 2016-03-17 | 2018-10-30 | Medtronic Vascular, Inc. | Cardiac monitor system and method for home and telemedicine application |
| US20180318122A1 (en) | 2017-05-05 | 2018-11-08 | Becker Orthopedic Appliance Company | Configurable orthosis and method of definitive orthotic design, fabrication and validation |
| US20180330058A1 (en) | 2017-05-09 | 2018-11-15 | James Stewart Bates | Systems and methods for generating electronic health care record data |
| US20180330824A1 (en) | 2017-05-12 | 2018-11-15 | The Regents Of The University Of Michigan | Individual and cohort pharmacological phenotype prediction platform |
| US20180330810A1 (en) | 2017-05-09 | 2018-11-15 | Concorde Health, Inc. | Physical therapy monitoring algorithms |
| US20180326243A1 (en) | 2015-11-24 | 2018-11-15 | École De Technologie Supérieure | A cable-driven robot for locomotor rehabilitation of lower limbs |
| US10130311B1 (en) | 2015-05-18 | 2018-11-20 | Hrl Laboratories, Llc | In-home patient-focused rehabilitation system |
| US10137328B2 (en) | 2005-02-02 | 2018-11-27 | Mad Dogg Athletics, Inc. | Programmed exercise bicycle with computer aided guidance |
| US10143395B2 (en) | 2016-09-28 | 2018-12-04 | Medtronic Monitoring, Inc. | System and method for cardiac monitoring using rate-based sensitivity levels |
| CN208224811U (en) | 2018-04-03 | 2018-12-11 | 伊士通(上海)医疗器械有限公司 | A kind of long-range monitoring and maintenance system of athletic rehabilitation equipment |
| US20180353812A1 (en) | 2017-06-07 | 2018-12-13 | Michael G. Lannon | Data Driven System For Providing Customized Exercise Plans |
| US20180361203A1 (en) | 2017-06-16 | 2018-12-20 | Apple Inc. | Techniques for providing customized exercise-related recommendations |
| US20180360340A1 (en) | 2015-12-14 | 2018-12-20 | Otto-Von-Guericke-Universität Magdeburg | Device for neurovascular stimulation |
| US20180366225A1 (en) | 2017-06-19 | 2018-12-20 | Viz.ai, Inc. | Method and system for computer-aided triage |
| US10159872B2 (en) | 2015-09-11 | 2018-12-25 | Toyota Jidosha Kabushiki Kaisha | Balance training device and balance training method |
| US20180373844A1 (en) | 2017-06-23 | 2018-12-27 | Nuance Communications, Inc. | Computer assisted coding systems and methods |
| US20190005195A1 (en) | 2017-06-28 | 2019-01-03 | General Electric Company | Methods and systems for improving care through post-operation feedback analysis |
| US20190009135A1 (en) | 2017-07-10 | 2019-01-10 | Manifold Health Tech, Inc. | Mobile exercise apparatus controller and information transmission collection device coupled to exercise apparatus and exercise apparatus and control method |
| DE102018211212A1 (en) | 2017-07-10 | 2019-01-10 | Fanuc Corporation | Machine Learning Device, Tester and Machine Learning Method |
| CN109191954A (en) | 2018-10-09 | 2019-01-11 | 厦门脉合信息科技有限公司 | A kind of Intellectual faculties body bailding bicycle teleeducation system |
| US20190019578A1 (en) | 2017-07-17 | 2019-01-17 | AVKN Patient-Driven Care, LLC | System for tracking patient recovery following an orthopedic procedure |
| US20190019163A1 (en) | 2017-07-14 | 2019-01-17 | EasyMarkit Software Inc. | Smart messaging in medical practice communication |
| WO2019022706A1 (en) | 2017-07-24 | 2019-01-31 | Hewlett-Packard Development Company, L.P. | EXERCISE PROGRAMS |
| US20190030415A1 (en) | 2016-05-11 | 2019-01-31 | Joseph Charles Volpe, JR. | Motion sensor volume control for entertainment devices |
| US20190031284A1 (en) | 2016-01-26 | 2019-01-31 | Swissmove Ag | Pedal Drive System |
| US10198928B1 (en) | 2017-12-29 | 2019-02-05 | Medhab, Llc. | Fall detection system |
| US20190046794A1 (en) | 2015-03-27 | 2019-02-14 | Equility Llc | Multi-factor control of ear stimulation |
| JP2019028647A (en) | 2017-07-28 | 2019-02-21 | Hrソリューションズ株式会社 | Training information providing device, method and program |
| CN109363887A (en) | 2018-11-14 | 2019-02-22 | 华南理工大学 | An interactive upper limb rehabilitation training system |
| US20190065970A1 (en) | 2017-08-30 | 2019-02-28 | P Tech, Llc | Artificial intelligence and/or virtual reality for activity optimization/personalization |
| US20190066832A1 (en) | 2017-02-20 | 2019-02-28 | KangarooHealth, Inc. | Method for detecting patient risk and selectively notifying a care provider of at-risk patients |
| CN208573971U (en) | 2017-11-21 | 2019-03-05 | 中国地质大学(武汉) | A pedal-type lower limb rehabilitation robot with bilateral independent control |
| US20190080802A1 (en) | 2017-09-12 | 2019-03-14 | Duro Health, LLC | Sensor fusion of physiological and machine-interface factors as a biometric |
| US10231664B2 (en) | 2016-05-26 | 2019-03-19 | Raghav Ganesh | Method and apparatus to predict, report, and prevent episodes of emotional and physical responses to physiological and environmental conditions |
| KR20190029175A (en) | 2017-09-12 | 2019-03-20 | (주)메디즈 | Rehabilitation training system and rehabilitation training method using the same |
| US20190088356A1 (en) | 2013-10-15 | 2019-03-21 | Parkland Center For Clinical Innovation | System and Method for a Payment Exchange Based on an Enhanced Patient Care Plan |
| US20190090744A1 (en) | 2016-02-29 | 2019-03-28 | Mohamed R. Mahfouz | Connected Healthcare Environment |
| US20190096534A1 (en) | 2014-03-27 | 2019-03-28 | Raymond Anthony Joao | Apparatus and method for providing healthcare services remotely or virtually with or using an electronic healthcare record and/or a communication network |
| US10244990B2 (en) | 2015-09-30 | 2019-04-02 | The Board Of Trustees Of The University Of Alabama | Systems and methods for rehabilitation of limb motion |
| US20190108912A1 (en) | 2017-10-05 | 2019-04-11 | Iquity, Inc. | Methods for predicting or detecting disease |
| US20190105551A1 (en) | 2012-02-10 | 2019-04-11 | Envisionbody, Llc | Process to Aid in Motivation of Personal Fitness, Health Monitoring and Validation of User |
| US20190111299A1 (en) | 2014-06-04 | 2019-04-18 | T-Rex Investment, Inc. | Programmable range of motion system |
| US20190115097A1 (en) | 2011-11-23 | 2019-04-18 | Remedev, Inc. | Remotely-executed medical diagnosis and therapy including emergency automation |
| US20190118066A1 (en) | 2017-10-20 | 2019-04-25 | iNmotion Wellness, Inc. | Method and apparatus for providing interactive fitness equipment via a cloud-based networking |
| US20190117156A1 (en) | 2017-10-24 | 2019-04-25 | George Mason University | Non-invasive wearable biomechanical and physiology monitor for injury prevention and rehabilitation |
| US20190118038A1 (en) | 2017-10-25 | 2019-04-25 | Technogym S.P.A. | Method and system for managing a training of users on a plurality of exercise machines |
| US20190126099A1 (en) | 2017-10-30 | 2019-05-02 | Aviron Interactive Inc. | Networked exercise devices with shared virtual training |
| US20190132948A1 (en) | 2012-09-11 | 2019-05-02 | L.I.F.E. Corporation S.A. | Physiological monitoring garments |
| US20190134454A1 (en) | 2017-11-07 | 2019-05-09 | Superflex, Inc. | Exosuit system systems and methods for assisting, resisting and aligning core biomechanical functions |
| US20190137988A1 (en) | 2016-05-09 | 2019-05-09 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for detection in an industrial internet of things data collection environment with a self-organizing data marketplace and notifications for industrial processes |
| US20190143193A1 (en) * | 2017-11-15 | 2019-05-16 | Jae Hwan Kim | System for providing a virtual exercise place |
| US20190143191A1 (en) | 2017-11-16 | 2019-05-16 | Baidu Online Network Technology (Beijing) Co., Ltd. | Fitness guidance method, device and storage medium |
| KR20190056116A (en) | 2017-11-16 | 2019-05-24 | 주식회사 네오펙트 | A method and program for extracting training ratio of digital rehabilitation treatment system |
| US20190163876A1 (en) | 2014-08-20 | 2019-05-30 | Medavail, Inc. | Kiosk Dispenser Interactive Original Order Entry Software Application |
| US20190172587A1 (en) | 2016-12-30 | 2019-06-06 | Seoul National University R&Db Foundation | Apparatus and method for predicting disease risk of metabolic disease |
| WO2019106003A1 (en) | 2017-11-28 | 2019-06-06 | Transform Health Limited | Physical activity apparatus |
| US20190167988A1 (en) | 2017-12-04 | 2019-06-06 | CyMedica Orthopedics, Inc. | Patient therapy systems and methods |
| KR101988167B1 (en) | 2018-04-09 | 2019-06-11 | 주식회사 엠비젼 | Therapeutic apparatus for rehabilitation related pain event |
| US20190175988A1 (en) | 2016-08-09 | 2019-06-13 | San Raffaele Roma S.R.L. | Individually tailored exercise training and rehabilitation technique: medical personal trainer |
| US10322315B2 (en) | 2012-07-31 | 2019-06-18 | Peloton Interactive, Inc. | Exercise system and method |
| US20190183715A1 (en) | 2017-12-14 | 2019-06-20 | Bionic Yantra Private Limited | Apparatus and system for limb rehabilitation |
| US10327697B1 (en) | 2018-12-20 | 2019-06-25 | Spiral Physical Therapy, Inc. | Digital platform to identify health conditions and therapeutic interventions using an automatic and distributed artificial intelligence system |
| US20190200920A1 (en) | 2018-01-03 | 2019-07-04 | Celine Tien | Virtual reality biofeedback systems and methods |
| US20190214119A1 (en) | 2018-01-05 | 2019-07-11 | International Business Machines Corporation | System and method for personalizing and optimizing medication regime |
| US20190209891A1 (en) | 2012-08-31 | 2019-07-11 | Blue Goji Llc | Virtual reality and mixed reality enhanced elliptical exercise trainer |
| US20190223797A1 (en) | 2016-02-03 | 2019-07-25 | Bao Tran | Systems and methods for mass customization |
| US20190224528A1 (en) | 2018-01-22 | 2019-07-25 | K-Motion Interactive, Inc. | Method and System for Human Motion Analysis and Instruction |
| US20190228856A1 (en) | 2018-01-25 | 2019-07-25 | Kraft Foods Group Brands Llc | Method and system for preference-driven food personalization |
| WO2019143940A1 (en) | 2018-01-18 | 2019-07-25 | Amish Patel | Enhanced reality rehabilitation system and method of using the same |
| US10362940B2 (en) | 2006-06-30 | 2019-07-30 | Empire Ip Llc | Personal emergency response (PER) system |
| US20190232108A1 (en) | 2018-01-31 | 2019-08-01 | Under Armour, Inc. | System and method for estimating cardiorespiratory fitness |
| US10369021B2 (en) | 2013-03-14 | 2019-08-06 | Ekso Bionics, Inc. | Powered orthotic system for cooperative overground rehabilitation |
| US20190244540A1 (en) | 2018-02-02 | 2019-08-08 | InnerPro Sports, LLC | Systems And Methods For Providing Performance Training and Development |
| US20190240541A1 (en) | 2016-10-19 | 2019-08-08 | Board Of Regents Of The University Of Nebraska | User-paced exercise equipment |
| US20190240103A1 (en) | 2018-02-02 | 2019-08-08 | Bionic Power Inc. | Exoskeletal gait rehabilitation device |
| US10380866B1 (en) | 2018-09-21 | 2019-08-13 | Med Hab, LLC. | Dual case system for fall detection device |
| KR101969392B1 (en) | 2017-11-24 | 2019-08-13 | 에이치로보틱스 주식회사 | Anesthetic solution injection device |
| US20190251456A1 (en) | 2018-02-09 | 2019-08-15 | Dexcom, Inc. | System and method for decision support |
| US20190247718A1 (en) | 2018-02-10 | 2019-08-15 | Garrett James BLEVINS | Computer implemented methods and systems for automated coaching and distribution of fitness plans |
| JP2019134909A (en) | 2018-02-05 | 2019-08-15 | 卓生 野村 | Exercise bike for training to improve exercise capacity (sprint) |
| US20190251723A1 (en) | 2018-02-14 | 2019-08-15 | Smarter Reality, LLC | Artificial-intelligence enhanced visualization of non-invasive, minimally-invasive and surgical aesthetic medical procedures |
| CN110148472A (en) | 2019-02-27 | 2019-08-20 | 洛阳中科信息产业研究院(中科院计算技术研究所洛阳分所) | A kind of rehabilitation equipment management system based on rehabilitation |
| US20190261959A1 (en) | 2016-11-22 | 2019-08-29 | Cedars-Sinai Medical Center | Real-time tele-sonography |
| US20190262084A1 (en) | 2018-02-27 | 2019-08-29 | NavLab, Inc. | Artificial intelligence guidance system for robotic surgery |
| US20190269343A1 (en) | 2016-11-22 | 2019-09-05 | Fundacion Tecnalia Research & Innovation | Paretic limb rehabilitation methods and systems |
| CN110201358A (en) | 2019-07-05 | 2019-09-06 | 中山大学附属第一医院 | Rehabilitation training of upper limbs system and method based on virtual reality and motor relearning |
| CN110215188A (en) | 2018-05-23 | 2019-09-10 | 加利福尼亚大学董事会 | System and method for promoting rehabilitation |
| JP6573739B1 (en) | 2019-03-18 | 2019-09-11 | 航 梅山 | Indoor aerobic exercise equipment, exercise system |
| US20190274523A1 (en) | 2018-03-06 | 2019-09-12 | James Stewart Bates | Systems and methods for optical medical instrument patient measurements |
| US20190275368A1 (en) | 2018-03-09 | 2019-09-12 | Nicholas Maroldi | Device to produce assisted, active and resisted motion of a joint or extremity |
| US10413222B1 (en) | 2008-08-13 | 2019-09-17 | Cleveland Medical Devices Inc | Medical device and method with improved biometric verification |
| US10413238B1 (en) | 2018-10-18 | 2019-09-17 | Cooper Health And Fitness Applications, Llc | Fitness systems and methods |
| US20190283247A1 (en) | 2018-03-15 | 2019-09-19 | Seismic Holdings, Inc. | Management of biomechanical achievements |
| US10424033B2 (en) | 2013-03-15 | 2019-09-24 | Breg, Inc. | Healthcare practice management systems and methods |
| US10430552B2 (en) | 2015-12-31 | 2019-10-01 | Dan M. MIHAI | Distributed telemedicine system and method |
| EP3547322A1 (en) | 2018-03-27 | 2019-10-02 | Nokia Technologies Oy | An apparatus and associated methods for determining exercise settings |
| US20190307983A1 (en) | 2016-12-23 | 2019-10-10 | Enso Co. | Standalone handheld wellness device |
| CN110322957A (en) | 2019-07-10 | 2019-10-11 | 浙江和也健康科技有限公司 | A kind of real time remote magnetotherapy system and real time remote magnetotherapy method |
| US20190314681A1 (en) | 2018-04-17 | 2019-10-17 | Jie Yang | Method, system and computer products for exercise program exchange |
| US10475323B1 (en) | 2019-01-09 | 2019-11-12 | MedHab, LLC | Network hub for an alert reporting system |
| US10475537B2 (en) | 2013-06-12 | 2019-11-12 | University Health Network | Method and system for automated quality assurance and automated treatment planning in radiation therapy |
| US20190344123A1 (en) | 2018-05-14 | 2019-11-14 | LiftLab, Inc. | Strength training and exercise platform |
| USD866957S1 (en) | 2018-09-21 | 2019-11-19 | MedHab, LLC | Belt clip for fall detection device |
| US20190354632A1 (en) | 2018-05-21 | 2019-11-21 | Microsoft Technology Licensing, Llc | Exercising artificial intelligence by refining model output |
| US20190362242A1 (en) | 2018-05-25 | 2019-11-28 | Microsoft Technology Licensing, Llc | Computing resource-efficient, machine learning-based techniques for measuring an effect of participation in an activity |
| US20190366146A1 (en) | 2018-06-05 | 2019-12-05 | The Chinese University Of Hong Kong | Interactive cycling system and method of using muscle signals to control cycling pattern stimulation intensity |
| US20190371472A1 (en) | 2018-06-05 | 2019-12-05 | Fresenius Medical Care Holdings, Inc. | Systems and methods for identifying comorbidities |
| KR102055279B1 (en) | 2017-11-24 | 2019-12-12 | 에이치로보틱스 주식회사 | disital anesthetic solution injection device |
| US10507358B2 (en) | 2010-07-12 | 2019-12-17 | Polar Electro Oy | Analyzing physiological state for fitness exercise |
| US20190385199A1 (en) | 2018-06-18 | 2019-12-19 | International Business Machines Corporation | Review and recommendation filtering based on user fitness metric |
| US20190392939A1 (en) | 2013-03-14 | 2019-12-26 | Alterg, Inc. | Systems and methods for management and scheduling of differential air pressure and other unweighted or assisted treatment systems |
| US20190388728A1 (en) | 2018-06-21 | 2019-12-26 | City University Of Hong Kong | Systems and methods using a wearable sensor for sports action recognition and assessment |
| US20190392936A1 (en) | 2018-04-24 | 2019-12-26 | Arrix, Inc. | Systems and methods for medication management |
| US20200005928A1 (en) | 2018-06-27 | 2020-01-02 | Gomhealth Llc | System and method for personalized wellness management using machine learning and artificial intelligence techniques |
| US20200015736A1 (en) | 2017-07-06 | 2020-01-16 | Meshal Alhathal | Providing feedback to a patient performing an exercise based on measured parameters from a therapy device |
| WO2020014710A2 (en) | 2018-07-13 | 2020-01-16 | Blue Goji Llc | A system and method for range of motion analysis and balance training while exercising |
| US10542914B2 (en) | 2015-06-30 | 2020-01-28 | Zibrio Inc. | Identifying fall risk using machine learning algorithms |
| US10546467B1 (en) | 2017-09-18 | 2020-01-28 | Edge Technology | Dual matrix tracking system and method |
| US20200034665A1 (en) | 2018-07-30 | 2020-01-30 | DataRobot, Inc. | Determining validity of machine learning algorithms for datasets |
| US20200034707A1 (en) | 2018-07-27 | 2020-01-30 | drchrono inc. | Neural Network Encoders and Decoders for Physician Practice Optimization |
| US20200038703A1 (en) | 2016-10-07 | 2020-02-06 | Children's National Medical Center | Robotically assisted ankle rehabilitation systems, apparatuses, and methods thereof |
| US20200051446A1 (en) | 2018-08-07 | 2020-02-13 | Physera, Inc. | Classification of musculoskeletal form using machine learning model |
| CN110808092A (en) | 2019-09-17 | 2020-02-18 | 南京茂森电子技术有限公司 | Remote exercise rehabilitation system |
| US20200054922A1 (en) * | 2018-08-14 | 2020-02-20 | Tonal Systems, Inc. | Collaborative exercise |
| KR20200019548A (en) | 2018-11-26 | 2020-02-24 | 머스트무브 주식회사 | Method for recommending exercise |
| US10572626B2 (en) | 2015-10-05 | 2020-02-25 | Ricoh Co., Ltd. | Advanced telemedicine system with virtual doctor |
| US20200066390A1 (en) | 2018-08-21 | 2020-02-27 | Verapy, LLC | Physical Therapy System and Method |
| US10576331B2 (en) | 2017-07-26 | 2020-03-03 | Sportsart Industrial Co., Ltd. | Composite motion exercise machine |
| US10581896B2 (en) | 2016-12-30 | 2020-03-03 | Chronicle Llc | Remedial actions based on user risk assessments |
| JP6659831B2 (en) | 2016-04-15 | 2020-03-04 | オムロン株式会社 | Biological information analyzer, system, and program |
| KR20200025290A (en) | 2018-08-30 | 2020-03-10 | 충북대학교 산학협력단 | System and method for analyzing exercise posture |
| KR102088333B1 (en) | 2019-08-20 | 2020-03-13 | 주식회사 마이베네핏 | Team training system with mixed reality based exercise apparatus |
| KR20200029180A (en) | 2018-09-10 | 2020-03-18 | 인하대학교 산학협력단 | Method for smart coaching based on artificial intelligence |
| US20200090802A1 (en) | 2017-03-24 | 2020-03-19 | The Brigham And Women's Hospital, Inc. | Systems and Methods for Automated Treatment Recommendation Based on Pathophenotype Identification |
| US20200085300A1 (en) | 2018-09-13 | 2020-03-19 | International Business Machines Corporation | Methods and systems for managing medical anomalies |
| EP3627514A1 (en) | 2018-09-21 | 2020-03-25 | SC Kineto Tech Rehab SRL | System and method for optimised monitoring of joints in physiotherapy |
| US20200098463A1 (en) | 2018-09-20 | 2020-03-26 | Medtronic Minimed, Inc. | Patient disease management systems and methods of data-driven outcome-based recommendations |
| CN110931103A (en) | 2019-11-01 | 2020-03-27 | 深圳市迈步机器人科技有限公司 | Control method and system of rehabilitation equipment |
| KR102097190B1 (en) | 2017-10-23 | 2020-04-03 | 남정우 | Method for analyzing and displaying a realtime exercise motion using a smart mirror and smart mirror for the same |
| JP2020057082A (en) | 2018-09-28 | 2020-04-09 | 株式会社リモハブ | Rehabilitation support system, user equipment and information terminal device |
| CN110993057A (en) | 2019-12-10 | 2020-04-10 | 上海金矢机器人科技有限公司 | Rehabilitation training system and method based on cloud platform and lower limb rehabilitation robot |
| WO2020075190A1 (en) | 2018-10-10 | 2020-04-16 | Ibrum Technologies | An intelligent cardio-pulmonary screening device for telemedicine applications |
| US10625114B2 (en) | 2016-11-01 | 2020-04-21 | Icon Health & Fitness, Inc. | Elliptical and stationary bicycle apparatus including row functionality |
| US20200121987A1 (en) | 2019-12-19 | 2020-04-23 | Intel Corporation | Smart gym |
| US20200129808A1 (en) | 2015-06-30 | 2020-04-30 | Roman Fomin | Predictive analytics method and system for positively adjusting fitness and/or well-being conditioning |
| CN111105859A (en) | 2019-11-13 | 2020-05-05 | 泰康保险集团股份有限公司 | Method and device for determining rehabilitation therapy, storage medium and electronic equipment |
| US20200139194A1 (en) * | 2018-11-01 | 2020-05-07 | Zwift, Inc. | Interactive network game with game conditions altered based upon group physical activity |
| US20200143922A1 (en) | 2016-06-03 | 2020-05-07 | Yale University | Methods and apparatus for predicting depression treatment outcomes |
| CN111111110A (en) | 2019-12-31 | 2020-05-08 | 福建医科大学附属第一医院 | Doctor-patient interaction control system and method for VR (virtual reality) bicycle rehabilitation training |
| US10646746B1 (en) | 2016-09-12 | 2020-05-12 | Rom Technologies, Inc. | Adjustable rehabilitation and exercise device |
| US20200152339A1 (en) | 2018-06-06 | 2020-05-14 | Reliant Immune Diagnostics, Inc. | Code trigger telemedicine session |
| US20200151595A1 (en) | 2018-11-14 | 2020-05-14 | MAD Apparel, Inc. | Automated training and exercise adjustments based on sensor-detected exercise form and physiological activation |
| US20200151646A1 (en) | 2018-09-24 | 2020-05-14 | Alfonso Fabian De La Fuente Sanchez | Method to progressively improve the performance of a person while performing other tasks |
| US20200160198A1 (en) | 2018-11-19 | 2020-05-21 | TRIPP, Inc. | Adapting a virtual reality experience for a user based on a mood improvement score |
| KR20200056233A (en) | 2018-11-14 | 2020-05-22 | 주식회사 퓨전소프트 | A motion accuracy judgment system using artificial intelligence posture analysis technology based on single camera |
| US10660534B2 (en) | 2015-01-26 | 2020-05-26 | Samsung Electronics Co., Ltd. | Method, apparatus, and system providing exercise guide information |
| KR102116664B1 (en) | 2017-12-27 | 2020-05-29 | 서울대학교병원 | Online based health care method and apparatus |
| US20200176098A1 (en) | 2018-12-03 | 2020-06-04 | Tempus Labs | Clinical Concept Identification, Extraction, and Prediction System and Related Methods |
| KR102120828B1 (en) | 2019-05-01 | 2020-06-09 | 이영규 | Apparatus for monitoring health based on virtual reality using Artificial Intelligence and method thereof |
| US10678890B2 (en) | 2015-08-06 | 2020-06-09 | Microsoft Technology Licensing, Llc | Client computing device health-related suggestions |
| KR102121586B1 (en) | 2018-12-13 | 2020-06-11 | 주식회사 네오펙트 | Device for providing rehabilitation training for shoulder joint |
| US10685092B2 (en) | 2014-09-24 | 2020-06-16 | Telecom Italia S.P.A. | Equipment for providing a rehabilitation exercise |
| JP6710357B1 (en) | 2019-04-18 | 2020-06-17 | 株式会社PlusTips | Exercise support system |
| US20200188774A1 (en) | 2012-08-31 | 2020-06-18 | Blue Goji Llc | Full body movement control of dual joystick operated devices |
| EP3671700A1 (en) | 2018-12-19 | 2020-06-24 | SWORD Health S.A. | A method of performing sensor placement error detection and correction and system thereto |
| US20200197744A1 (en) | 2018-12-21 | 2020-06-25 | Motion Scientific Inc. | Method and system for motion measurement and rehabilitation |
| WO2020130979A1 (en) | 2018-12-18 | 2020-06-25 | Yildiz Tekni̇k Üni̇versi̇tesi̇ | Artificial intelligence-based algorithm for physiotherapy and rehabilitation robots for diagnosis and treatment purposes |
| CN111370088A (en) | 2020-02-24 | 2020-07-03 | 段秀芝 | Children rehabilitation coordination nursing device based on remote monitoring |
| US20200221975A1 (en) | 2013-03-14 | 2020-07-16 | Alterg, Inc. | Method of gait evaluation and training with differential pressure system |
| WO2020149815A2 (en) | 2019-01-17 | 2020-07-23 | Eski̇şehi̇r Osmangazi̇ Üni̇versi̇tesi̇ | Interactive artificial intelligence application system used in vestibular rehab treatment |
| CN111460305A (en) | 2020-04-01 | 2020-07-28 | 随机漫步(上海)体育科技有限公司 | Method for assisting bicycle training, readable storage medium and electronic equipment |
| US20200237291A1 (en) | 2017-10-11 | 2020-07-30 | Plethy, Inc. | Devices, systems, and methods for adaptive health monitoring using behavioral, psychological, and physiological changes of a body portion |
| US20200237452A1 (en) | 2018-08-13 | 2020-07-30 | Theator inc. | Timeline overlay on surgical video |
| EP3688537A1 (en) | 2017-09-29 | 2020-08-05 | Robert Bosch GmbH | Method, device and computer program for operating a robot control system |
| KR102142713B1 (en) | 2018-10-23 | 2020-08-10 | 주식회사 셀바스에이아이 | Firness equipment management system and computer program |
| DE102019108425B3 (en) | 2019-04-01 | 2020-08-13 | Preh Gmbh | Method for generating adaptive haptic feedback in the case of a touch-sensitive input arrangement that generates haptic feedback |
| US20200267487A1 (en) | 2019-02-14 | 2020-08-20 | Bose Corporation | Dynamic spatial auditory cues for assisting exercise routines |
| US20200261763A1 (en) * | 2016-01-12 | 2020-08-20 | Samsung Electronics Co., Ltd. | Display device and control method therefor |
| US20200275886A1 (en) | 2020-05-18 | 2020-09-03 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
| US10777200B2 (en) | 2018-07-27 | 2020-09-15 | International Business Machines Corporation | Artificial intelligence for mitigating effects of long-term cognitive conditions on patient interactions |
| US20200289879A1 (en) | 2019-03-11 | 2020-09-17 | Rom Technologies, Inc. | System, method and apparatus for a rehabilitation machine with a simulated flywheel |
| US20200289046A1 (en) | 2019-03-11 | 2020-09-17 | Rom Technologies, Inc. | Monitoring joint extension and flexion using a sensor device securable to an upper and lower limb |
| US20200293712A1 (en) | 2019-03-11 | 2020-09-17 | Christopher Potts | Methods, apparatus and systems for annotation of text documents |
| US20200303063A1 (en) | 2019-03-21 | 2020-09-24 | Health Innovators Incorporated | Systems and methods for dynamic and tailored care management |
| US20200312447A1 (en) | 2019-03-27 | 2020-10-01 | Alcon Inc. | System and method of utilizing data of medical systems |
| KR102162522B1 (en) | 2018-10-04 | 2020-10-06 | 김창호 | Apparatus and method for providing personalized medication information |
| US10792495B2 (en) | 2016-12-01 | 2020-10-06 | Thimble Bioelectronics, Inc. | Neuromodulation device and method for use |
| US20200320454A1 (en) | 2019-04-05 | 2020-10-08 | International Business Machines Corporation | Resource planning having improved visualization |
| CN111790111A (en) | 2020-07-02 | 2020-10-20 | 张勇 | Recovered health table of using of intracardiac branch of academic or vocational study with auxiliary function |
| USD899605S1 (en) | 2018-09-21 | 2020-10-20 | MedHab, LLC | Wrist attachment band for fall detection device |
| KR20200119665A (en) | 2019-04-10 | 2020-10-20 | 이문홍 | VR cycle equipment and contents providing process using Mobile |
| US20200334972A1 (en) | 2017-09-11 | 2020-10-22 | Muralidharan Gopalakrishnan | Automated wireless apparatus for real-time emergency support |
| JP6775757B1 (en) | 2019-08-08 | 2020-10-28 | 株式会社元気広場 | Function improvement support system and function improvement support device |
| US20200338394A1 (en) | 2019-04-29 | 2020-10-29 | Kenneth Neumann | Methods and systems for an artificial intelligence fitness professional support network for vibrant constitional guidance |
| KR102173553B1 (en) | 2019-09-26 | 2020-11-03 | 주식회사 베니페 | An active and Customized exercise system using deep learning technology |
| EP3731733A1 (en) | 2017-09-11 | 2020-11-04 | Qualcomm Incorporated | Micro and macro activity detection and monitoring |
| US20200346072A1 (en) | 2019-05-03 | 2020-11-05 | Xperience Robotics, Inc. | Wearable device systems and methods for guiding physical movements |
| US20200353314A1 (en) | 2019-05-06 | 2020-11-12 | Samuel Messinger | System of an artificial intelligence (ai) powered wireless gym |
| KR102180079B1 (en) | 2018-08-27 | 2020-11-17 | 김효상 | A method and system for providing of health care service using block-chain |
| US20200365256A1 (en) | 2017-12-08 | 2020-11-19 | Nec Corporation | Patient status determination device, patient status determination system, patient status determination method, and patient status determination program recording medium |
| WO2020229705A1 (en) | 2019-05-16 | 2020-11-19 | Neuberg Jeremie | Remote health monitoring system and method for hospitals and cities |
| US10857426B1 (en) | 2019-11-29 | 2020-12-08 | Kpn Innovations, Llc | Methods and systems for generating fitness recommendations according to user activity profiles |
| WO2020245727A1 (en) | 2019-06-02 | 2020-12-10 | Predicta Med Analytics Ltd. | A method of evaluating autoimmune disease risk and treatment selection |
| CN112071393A (en) | 2020-09-30 | 2020-12-11 | 郑州大学 | Exercise guiding control system based on real-time and historical physiological data of patient |
| KR102188766B1 (en) | 2020-03-09 | 2020-12-11 | 주식회사 글로벌비즈텍 | Apparatus for providing artificial intelligence based health care service |
| US10867695B2 (en) | 2012-06-04 | 2020-12-15 | Pharmalto, Llc | System and method for comprehensive health and wellness mobile management |
| CN212141371U (en) | 2019-12-31 | 2020-12-15 | 福建医科大学附属第一医院 | A doctor-patient interactive control system for rehabilitation training VR bicycle |
| WO2020249855A1 (en) | 2019-06-12 | 2020-12-17 | Sanoste Oy | An image processing arrangement for physiotherapy |
| US20200395112A1 (en) | 2018-02-18 | 2020-12-17 | Cardio Holding Bv | A System and Method for Documenting a Patient Medical History |
| US20200391080A1 (en) | 2019-06-17 | 2020-12-17 | OrthoGenesys, Inc. | System and method for intelligent self-calibration of target load thresholds for users of exercise machines |
| WO2020256577A1 (en) | 2019-06-17 | 2020-12-24 | Общество С Ограниченной Ответственностью "Сенсомед" | Hardware/software system for the rehabilitation of patients with cognitive impairments of the upper extremities after stroke |
| US20200401224A1 (en) | 2019-06-21 | 2020-12-24 | REHABILITATION INSTITUTE OF CHICAGO d/b/a Shirley Ryan AbilityLab | Wearable joint tracking device with muscle activity and methods thereof |
| WO2020252599A1 (en) | 2019-06-21 | 2020-12-24 | Flex Artificial Intelligence Inc. | Method and system for measuring and analyzing body movement, positioning and posture |
| US20200402662A1 (en) | 2019-06-20 | 2020-12-24 | IllumeSense Inc. | System for integrating data for clinical decisions |
| US20200398083A1 (en) | 2019-06-24 | 2020-12-24 | Varian Medical Systems, Inc. | Quality assurance process for radiation therapy treatment planning |
| US10874905B2 (en) | 2019-02-14 | 2020-12-29 | Tonal Systems, Inc. | Strength calibration |
| KR102196793B1 (en) | 2020-09-10 | 2020-12-30 | 이영규 | Non-face-to-face training system using artificial intelligence |
| US20200410385A1 (en) | 2019-06-27 | 2020-12-31 | Toyota Jidosha Kabushiki Kaisha | Learning system, rehabilitation support system, method, program, and trained model |
| US20200411162A1 (en) | 2019-06-25 | 2020-12-31 | Wistron Corporation | Dehydration amount prediction method for hemodialysis and electronic device using the same |
| US20200411170A1 (en) | 2019-06-28 | 2020-12-31 | University Hospitals Cleveland Medical Center | Machine-learning framework for coordinating and optimizing healthcare resource utilization and delivery of healthcare services across an integrated healthcare system |
| US20200410374A1 (en) | 2019-06-27 | 2020-12-31 | ResMed Pty Ltd | System and method for fleet management of portable oxygen concentrators |
| US10881911B2 (en) | 2015-02-04 | 2021-01-05 | Curexo, Inc. | Gait rehabilitation control system and method therefor |
| USD907143S1 (en) | 2019-12-17 | 2021-01-05 | Rom Technologies, Inc. | Rehabilitation device |
| US20210005319A1 (en) | 2019-07-01 | 2021-01-07 | Toyota Jidosha Kabushiki Kaisha | Learning apparatus, rehabilitation support system, method, program, and trained model |
| US20210005224A1 (en) | 2015-09-04 | 2021-01-07 | Richard A. ROTHSCHILD | System and Method for Determining a State of a User |
| US20210008413A1 (en) | 2019-07-11 | 2021-01-14 | Elo Labs, Inc. | Interactive Personal Training System |
| KR20210006212A (en) | 2019-07-08 | 2021-01-18 | 주식회사 인터웨어 | System for health machine using artificial intelligence |
| US20210015560A1 (en) | 2018-09-12 | 2021-01-21 | Orthogrid Systems Inc. | Artificial intelligence intra-operative surgical guidance system and method of use |
| US10902944B1 (en) | 2020-01-06 | 2021-01-26 | Carlsmed, Inc. | Patient-specific medical procedures and devices, and associated systems and methods |
| US20210027889A1 (en) | 2019-07-23 | 2021-01-28 | Hank.AI, Inc. | System and Methods for Predicting Identifiers Using Machine-Learned Techniques |
| CN112289425A (en) | 2020-11-19 | 2021-01-29 | 重庆邮电大学 | Public lease-based rehabilitation equipment management system and method |
| WO2021022003A1 (en) | 2019-07-31 | 2021-02-04 | Zoll Medical Corporation | Systems and methods for providing and managing a personalized cardiac rehabilitation plan |
| WO2021021447A1 (en) | 2019-07-31 | 2021-02-04 | Peloton Interactive, Inc. | Leaderboard systems and methods for exercise equipment |
| US20210050086A1 (en) | 2018-01-24 | 2021-02-18 | Fitnessgenes Ltd | Generating optimised workout plans using genetic and physiological data |
| US10931643B1 (en) | 2020-07-27 | 2021-02-23 | Kpn Innovations, Llc. | Methods and systems of telemedicine diagnostics through remote sensing |
| JP2021027917A (en) | 2019-08-09 | 2021-02-25 | 美津濃株式会社 | Information processing device, information processing system, and machine learning device |
| CN212624809U (en) | 2018-02-28 | 2021-02-26 | 张喆 | Intelligent national physique detection equipment and intelligent body-building equipment |
| WO2021038980A1 (en) | 2019-08-28 | 2021-03-04 | ソニー株式会社 | Information processing device, information processing method, display device equipped with artificial intelligence function, and rendition system equipped with artificial intelligence function |
| US20210065855A1 (en) | 2019-08-20 | 2021-03-04 | Rune Labs, Inc. | Neuromodulation therapy data subject consent matrix |
| KR102224618B1 (en) | 2019-04-25 | 2021-03-08 | 최봉식 | Exercise equipment using virtual reality system |
| KR102224188B1 (en) | 2019-12-31 | 2021-03-08 | 이창훈 | System and method for providing health care contents for virtual reality using cloud based artificial intelligence |
| US20210074178A1 (en) | 2017-11-05 | 2021-03-11 | Oberon Sciences Ilan Ltd. | A subject-tailored continuously developing randomization based method for improving organ function |
| US20210077884A1 (en) | 2019-03-25 | 2021-03-18 | Humberto De las Casas Zolezzi | Exercise machine |
| US20210076981A1 (en) | 2019-09-17 | 2021-03-18 | Rom Technologies, Inc. | Wearable device for coupling to a user, and measuring and monitoring user activity |
| US20210082554A1 (en) | 2019-09-12 | 2021-03-18 | International Business Machines Corporation | Providing live first aid response guidance using a machine learning based cognitive aid planner |
| US20210077860A1 (en) | 2019-09-17 | 2021-03-18 | Rom Technologies, Inc. | Reactive protocols for orthopedic treatment |
| WO2021055427A1 (en) | 2019-09-17 | 2021-03-25 | Rom Technologies, Inc. | Telemedicine for orthopedic treatment |
| US20210098129A1 (en) | 2019-09-30 | 2021-04-01 | Kenneth Neumann | Methods and systems for using artificial intelligence to select a compatible element |
| US20210098099A1 (en) | 2019-09-30 | 2021-04-01 | Kpn Innovations, Llc | Systems and methods for selecting a treatment schema based on user willingness |
| US20210093891A1 (en) | 2017-04-05 | 2021-04-01 | The Regents Of The University Of California | Methods for user adaptive radiation therapy planning and systems using the same |
| WO2021061061A1 (en) | 2019-09-24 | 2021-04-01 | Ozgonul Danismanlik Hizmetleri Saglik Turizm Gida Limited Sirketi | Interactive support and counseling system for people with weight problems and chronic diseases |
| CN112603295A (en) | 2020-12-15 | 2021-04-06 | 深圳先进技术研究院 | Rehabilitation evaluation method and system based on wearable sensor |
| US20210101051A1 (en) | 2019-10-07 | 2021-04-08 | Rom Technologies, Inc. | Computer-implemented questionnaire for orthopedic treatment |
| US20210113890A1 (en) | 2019-10-21 | 2021-04-22 | Rom Technologies, Inc. | Persuasive motivation for orthopedic treatment |
| US10987176B2 (en) | 2018-06-19 | 2021-04-27 | Tornier, Inc. | Virtual guidance for orthopedic surgical procedures |
| US10991463B2 (en) | 2018-05-18 | 2021-04-27 | John D. Kutzko | Computer-implemented system and methods for predicting the health and therapeutic behavior of individuals using artificial intelligence, smart contracts and blockchain |
| KR102246049B1 (en) | 2019-11-15 | 2021-04-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| KR102246051B1 (en) | 2019-11-15 | 2021-04-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| US20210125696A1 (en) | 2018-06-28 | 2021-04-29 | Koninklijke Philips N.V. | Method and system for personalized hypertension treatment |
| KR102246050B1 (en) | 2019-11-15 | 2021-04-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| KR102246052B1 (en) | 2019-11-15 | 2021-04-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| US20210134456A1 (en) | 2019-11-06 | 2021-05-06 | Rom Technologies, Inc. | System for remote treatment utilizing privacy controls |
| US20210134429A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks |
| US20210128255A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment |
| US20210127974A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Remote examination through augmented reality |
| US20210134425A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance |
| US20210134457A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease |
| US20210128978A1 (en) | 2019-11-01 | 2021-05-06 | Tonal Systems, Inc. | Modular exercise machine |
| US20210134412A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method for processing medical claims using biometric signatures |
| US20210134458A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method to enable remote adjustment of a device during a telemedicine session |
| US20210134463A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Systems and methods for remotely-enabled identification of a user infection |
| US20210134432A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for implementing dynamic treatment environments based on patient information |
| US20210134427A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for creating an immersive enhanced reality-driven exercise experience for a user |
| US20210134430A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
| US20210128080A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Augmented reality placement of goniometer or other sensors |
| US20210134428A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions |
| KR20210052028A (en) | 2019-10-31 | 2021-05-10 | 인제대학교 산학협력단 | Telerehabilitation and Self-management System for Home based Cardiac and Pulmonary Rehabilitation |
| US11000735B2 (en) | 2018-08-09 | 2021-05-11 | Tonal Systems, Inc. | Control sequence based exercise machine controller |
| JP6871379B2 (en) | 2017-07-07 | 2021-05-12 | りか 高木 | Treatment and / or Exercise Guidance Process Management Systems, Programs, Computer Devices, and Methods for Treatment and / or Exercise Guidance Process Management |
| US20210142893A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | System and method for processing medical claims |
| US20210142903A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session |
| US20210142875A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance |
| US20210142898A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context |
| US20210144074A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | System and method for transmitting data and ordering asynchronous data |
| US20210138304A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise |
| WO2021090267A1 (en) | 2019-11-06 | 2021-05-14 | Kci Licensing, Inc. | Apparatuses, systems, and methods for therapy mode control in therapy devices |
| CN213190965U (en) | 2020-08-31 | 2021-05-14 | 潍坊医学院 | An intelligent rehabilitation device |
| KR102264498B1 (en) | 2020-04-23 | 2021-06-14 | 주식회사 바스젠바이오 | Computer program for predicting prevalence probability |
| US20210186419A1 (en) | 2019-12-23 | 2021-06-24 | Koninklijke Philips N.V. | Optimizing sleep onset based on personalized exercise timing to adjust the circadian rhythm |
| US20210187348A1 (en) | 2017-10-31 | 2021-06-24 | Alterg, Inc. | System for unweighting a user and related methods of exercise |
| US11045709B2 (en) | 2018-05-29 | 2021-06-29 | Curiouser Products Inc. | Reflective video display apparatus for interactive training and demonstration and methods of same |
| US20210202103A1 (en) | 2014-03-28 | 2021-07-01 | Hc1.Com Inc. | Modeling and simulation of current and future health states |
| US20210202090A1 (en) | 2019-12-26 | 2021-07-01 | Teladoc Health, Inc. | Automated health condition scoring in telehealth encounters |
| WO2021138620A1 (en) | 2020-01-02 | 2021-07-08 | Peloton Interactive, Inc. | Media platform for exercise systems and methods |
| US20210205660A1 (en) | 2019-09-05 | 2021-07-08 | Zvi Shavit | Outdoors training systems and methods for designing, monitoring and providing feedback of training |
| US20210217516A1 (en) | 2018-09-05 | 2021-07-15 | Individuallytics Inc. | System and method of treating a patient by a healthcare provider using a plurality of n-of-1 micro-treatments |
| US11065170B2 (en) | 2016-11-17 | 2021-07-20 | Hefei University Of Technology | Smart medical rehabilitation device |
| US11075000B2 (en) | 2019-10-03 | 2021-07-27 | Rom Technologies, Inc. | Method and system for using virtual avatars associated with medical professionals during exercise sessions |
| US11071597B2 (en) | 2019-10-03 | 2021-07-27 | Rom Technologies, Inc. | Telemedicine for orthopedic treatment |
| US20210236020A1 (en) | 2018-04-30 | 2021-08-05 | Vanderbilt University | Wearable device to monitor musculoskeletal loading, estimate tissue microdamage and provide injury risk biofeedback |
| US20210240853A1 (en) | 2018-08-28 | 2021-08-05 | Koninklijke Philips N.V. | De-identification of protected information |
| US11087865B2 (en) | 2019-10-03 | 2021-08-10 | Rom Technologies, Inc. | System and method for use of treatment device to reduce pain medication dependency |
| US20210245003A1 (en) | 2017-10-16 | 2021-08-12 | Jennifer-Jane Turner | Portable therapeutic strengthening apparatus using adjustable resistance |
| US11094400B2 (en) | 2013-07-02 | 2021-08-17 | TapCloud LLC | System, method and apparatus for processing patient information and feedback |
| US20210251562A1 (en) | 2018-06-11 | 2021-08-19 | Abhinav Jain | System and device for diagnosing and managing erectile dysfunction |
| US11101028B2 (en) | 2019-10-03 | 2021-08-24 | Rom Technologies, Inc. | Method and system using artificial intelligence to monitor user characteristics during a telemedicine session |
| USD928635S1 (en) | 2019-09-18 | 2021-08-24 | Rom Technologies, Inc. | Goniometer |
| US11107591B1 (en) | 2020-04-23 | 2021-08-31 | Rom Technologies, Inc. | Method and system for describing and recommending optimal treatment plans in adaptive telemedical or other contexts |
| US20210272677A1 (en) | 2020-02-28 | 2021-09-02 | New York University | System and method for patient verification |
| CN113384850A (en) | 2021-05-26 | 2021-09-14 | 北京安真医疗科技有限公司 | Centrifugal training method and system |
| CN113499572A (en) | 2021-08-10 | 2021-10-15 | 杭州程天科技发展有限公司 | Rehabilitation robot with myoelectric stimulation function and control method thereof |
| WO2021216881A1 (en) | 2020-04-23 | 2021-10-28 | Rom Technologies, Inc. | Method and system for using sensor data from rehabilitation or exercise equipment to treat patients via telemedicine |
| US20210343384A1 (en) | 2020-05-04 | 2021-11-04 | Progentec Diagnostics, Inc. | Systems and methods for managing autoimmune conditions, disorders and diseases |
| US20210338469A1 (en) | 2016-06-17 | 2021-11-04 | Quazar Ekb Llc | Orthopedic devices and systems integrated with sensors and controlling devices |
| US20210354002A1 (en) * | 2018-08-01 | 2021-11-18 | Crew Innovations, Inc. | Apparatus and method for increased realism of training on exercise machines |
| US20210361514A1 (en) | 2019-11-15 | 2021-11-25 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| WO2021236961A1 (en) | 2020-05-21 | 2021-11-25 | Rom Technologies, Inc. | System and method for processing medical claims |
| US11185738B1 (en) | 2014-03-11 | 2021-11-30 | Fitistics, Llc | System and method for processing information |
| US11185735B2 (en) | 2019-03-11 | 2021-11-30 | Rom Technologies, Inc. | System, method and apparatus for adjustable pedal crank |
| US20210375425A1 (en) | 2020-05-28 | 2021-12-02 | Macvon LLC | Multifunctional intelligent fitness and physiotherapy device |
| CN215136488U (en) | 2021-05-06 | 2021-12-14 | 沧州冠王体育器材有限公司 | Wireless monitoring control recumbent exercise bicycle based on internet |
| USD939096S1 (en) | 2020-02-24 | 2021-12-21 | H Robotics Inc | Apparatus for upper limb rehabilitation |
| US20210398668A1 (en) | 2020-06-19 | 2021-12-23 | Clover Health Investments, Corp. | Systems and methods for providing telehealth sessions |
| CN113885361A (en) | 2021-10-18 | 2022-01-04 | 上海交通大学医学院附属瑞金医院 | A remote force control system for rehabilitation equipment that is not sensitive to delay |
| US20220000556A1 (en) | 2020-01-06 | 2022-01-06 | Carlsmed, Inc. | Patient-specific medical systems, devices, and methods |
| KR20220004639A (en) | 2019-03-22 | 2022-01-11 | 코그노아, 인크. | Personalized digital treatment methods and devices |
| USD940891S1 (en) | 2020-02-24 | 2022-01-11 | H Robotics Inc. | Apparatus for lower limb rehabilitation |
| KR102352602B1 (en) | 2020-02-25 | 2022-01-19 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| US20220020469A1 (en) | 2020-07-20 | 2022-01-20 | Children's Hospitals and Clinics of Minnesota | Systems and methods for functional testing and rehabilitation |
| US20220016480A1 (en) | 2019-05-10 | 2022-01-20 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Present a User Interface Representing a User's Progress in Various Domains |
| US20220016486A1 (en) | 2019-05-10 | 2022-01-20 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Adjust Pedal Resistance |
| US20220016482A1 (en) | 2019-05-10 | 2022-01-20 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Onboard a User for an Exercise Plan |
| KR102352604B1 (en) | 2020-02-25 | 2022-01-20 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| US20220016485A1 (en) | 2019-05-10 | 2022-01-20 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Determine a User's Progress During Interval Training |
| KR102352603B1 (en) | 2020-02-25 | 2022-01-20 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| US11229788B1 (en) | 2013-11-27 | 2022-01-25 | Ebt Medical, Inc. | Systems for improving neurostimulation compliance using a patient interface module |
| US11229727B2 (en) | 2019-08-07 | 2022-01-25 | Kata Gardner Technologies | Intelligent adjustment of dialysis machine operations |
| CN114049961A (en) | 2021-10-29 | 2022-02-15 | 松下电气设备(中国)有限公司 | Health promotion system and parameter adjustment method for health promotion device |
| US20220047921A1 (en) | 2019-05-10 | 2022-02-17 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Independently Adjust Resistance of Pedals Based on Leg Strength |
| GB2591542B (en) | 2020-07-30 | 2022-03-02 | Shift Smart Trainer Ltd | Smart training attachment for an exercise bicycle |
| CA3193419A1 (en) | 2020-08-28 | 2022-03-03 | Band Connect Inc. | System and method for remotely providing and monitoring physical therapy |
| US20220066548A1 (en) | 2018-12-19 | 2022-03-03 | Audi Ag | Vehicle comprising a display device and an electronic control unit |
| US20220080265A1 (en) | 2019-02-12 | 2022-03-17 | Icon Health & Fitness, Inc. | Connected stationary exercise machine |
| CN114203274A (en) | 2021-12-14 | 2022-03-18 | 浙江大学 | Chronic respiratory failure patient remote rehabilitation training guidance system |
| US11278766B2 (en) | 2018-08-02 | 2022-03-22 | Exosystems Inc. | Rehabilitation system performing rehabilitation program using wearable device and user electronic device |
| US20220096006A1 (en) | 2020-09-25 | 2022-03-31 | Apple Inc. | Estimating Caloric Expenditure using Heart Rate Model Specific to Motion Class |
| US20220105390A1 (en) | 2020-10-02 | 2022-04-07 | Toyota Jidosha Kabushiki Kaisha | Rehabilitation assistance system, rehabilitation assistance method, and program |
| JP2022521378A (en) | 2019-11-15 | 2022-04-07 | エイチ ロボティクス インコーポレイテッド | Rehabilitation exercise device for upper and lower limbs |
| CN216258145U (en) | 2020-05-28 | 2022-04-12 | 首都医科大学宣武医院 | Rehabilitation training device and rehabilitation training system |
| KR102387577B1 (en) | 2020-02-25 | 2022-04-19 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| EP3984509A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| EP3984510A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Rehabilitation exercise apparatus for arms and legs |
| EP3984512A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Upper and lower limb rehabilitation exercise apparatus |
| EP3984511A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| EP3984513A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| US20220122724A1 (en) | 2019-06-28 | 2022-04-21 | Stryker Corporation | Caregiver assistance system |
| US20220117514A1 (en) | 2019-03-29 | 2022-04-21 | University Of Southern California | System and method for determining quantitative health-related performance status of a patient |
| US20220118218A1 (en) | 2020-10-15 | 2022-04-21 | Bioserenity | Systems and methods for remotely controlled therapy |
| US20220126169A1 (en) | 2020-10-28 | 2022-04-28 | Rom Technologies, Inc. | Systems and methods for using machine learning to control a rehabilitation and exercise electromechanical device |
| WO2022092493A1 (en) | 2020-10-29 | 2022-05-05 | 에이치로보틱스 주식회사 | Rehabilitation exercise device for upper and lower limbs |
| WO2022092494A1 (en) | 2020-10-29 | 2022-05-05 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper and lower limbs |
| US11347829B1 (en) | 2013-09-26 | 2022-05-31 | ClearHealthBill, LLC | Method and system for calculating expected healthcare costs from insurance policy parameters |
| US20220181004A1 (en) | 2020-12-08 | 2022-06-09 | Happify Inc. | Customizable therapy system and process |
| US20220176039A1 (en) | 2020-12-04 | 2022-06-09 | Medtronic Minimed, Inc. | Healthcare service management via remote monitoring and patient modeling |
| CN114632302A (en) | 2021-11-01 | 2022-06-17 | 李信达 | Intelligent cardiopulmonary rehabilitation assisting system |
| US20220193491A1 (en) | 2019-10-03 | 2022-06-23 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning for generating alignment plans to align a user with an imaging sensor during a treatment session |
| US11370328B2 (en) | 2016-03-24 | 2022-06-28 | Xsensor Technology Corporation | Intelligent seat systems |
| CN114694824A (en) | 2020-12-25 | 2022-07-01 | 北京视光宝盒科技有限公司 | Remote control method and device for therapeutic apparatus |
| US11376470B2 (en) | 2018-10-15 | 2022-07-05 | International Business Machines Corporation | Chatbot exercise machine |
| KR102421437B1 (en) | 2020-11-11 | 2022-07-15 | 에이치로보틱스 주식회사 | Hand exercising apparatus |
| KR20220102207A (en) | 2021-01-12 | 2022-07-20 | 에이치로보틱스 주식회사 | Rehabilitation exercise system for upper limb and lower limb |
| US20220230729A1 (en) | 2019-10-03 | 2022-07-21 | Rom Technologies, Inc. | Method and system for telemedicine resource deployment to optimize cohort-based patient health outcomes in resource-constrained environments |
| JP3238491U (en) | 2021-06-09 | 2022-07-29 | 振亞 劉 | An intelligent system that adjusts the optimal rehab intensity or amount of exercise to match the individual's exercise prescription |
| KR102427545B1 (en) | 2021-07-21 | 2022-08-01 | 임화섭 | Knee rehabilitation exercise monitoring method and system |
| CN114898832A (en) | 2022-05-30 | 2022-08-12 | 安徽法罗适医疗技术有限公司 | Rehabilitation training remote control system, method, device, equipment and medium |
| US20220258935A1 (en) | 2010-08-13 | 2022-08-18 | Daniel L. Kraft | System and methods for the production of personalized drug products |
| US20220262483A1 (en) | 2019-10-03 | 2022-08-18 | Rom Technologies, Inc. | Systems and Methods for Using Artificial Intelligence to Implement a Cardio Protocol via a Relay-Based System |
| US20220262504A1 (en) | 2019-07-12 | 2022-08-18 | Orion Corporation | Electronic arrangement for therapeutic interventions utilizing virtual or augmented reality and related method |
| US11422841B2 (en) | 2018-04-17 | 2022-08-23 | Bluecommunication | Direct and remote control apparatus of physical device |
| US20220270738A1 (en) | 2019-10-03 | 2022-08-25 | Rom Technologies, Inc. | Computerized systems and methods for military operations where sensitive information is securely transmitted to assigned users based on ai/ml determinations of user capabilities |
| US20220273986A1 (en) | 2019-10-03 | 2022-09-01 | Rom Technologies, Inc. | Method and system for enabling patient pseudonymization or anonymization in a telemedicine session subject to the consent of a third party |
| US20220273985A1 (en) | 2021-02-26 | 2022-09-01 | Cybermedic Co., Ltd. | Interactive ai coaching-based musculoskeletal exercise and rehabilitation training system and method |
| CN114983760A (en) | 2022-06-06 | 2022-09-02 | 广州中医药大学(广州中医药研究院) | Upper limb rehabilitation training method and system |
| US11437137B1 (en) | 2019-07-18 | 2022-09-06 | Change Healthcare Holdings, Llc | Method, apparatus, and computer program product for using machine learning to encode a healthcare claim as a predefined sized vector |
| US20220288461A1 (en) | 2019-10-03 | 2022-09-15 | Rom Technologies, Inc. | Mathematical modeling for prediction of occupational task readiness and enhancement of incentives for rehabilitation into occupational task readiness |
| US20220288462A1 (en) | 2019-10-03 | 2022-09-15 | Rom Technologies, Inc. | System and method for generating treatment plans to enhance patient recovery based on specific occupations |
| US20220288460A1 (en) | 2019-10-03 | 2022-09-15 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
| CN217472652U (en) | 2022-04-02 | 2022-09-23 | 漳州万利达科技有限公司 | Interconnection fitness equipment |
| US20220305291A1 (en) | 2019-06-20 | 2022-09-29 | Elekta, Inc. | Predicting radiotherapy control points using projection images |
| US20220314072A1 (en) | 2021-03-30 | 2022-10-06 | Rehab2Fit Technologies, Inc. | Adjustment of exercise based on artificial intelligence, exercise plan, and user feedback |
| WO2022212883A1 (en) | 2021-04-01 | 2022-10-06 | Exer Labs, Inc. | Motion engine |
| US20220314075A1 (en) | 2019-10-03 | 2022-10-06 | Rom Technologies, Inc. | Method and system for monitoring actual patient treatment progress using sensor data |
| WO2022216498A1 (en) | 2021-04-08 | 2022-10-13 | Rom Technologies, Inc. | Method and system for monitoring actual patient treatment progress using sensor data |
| US20220327714A1 (en) | 2021-04-01 | 2022-10-13 | Exer Labs, Inc. | Motion Engine |
| US20220323826A1 (en) | 2021-04-11 | 2022-10-13 | Vikas Khurana | System, apparatus and method for training a subject |
| US20220327807A1 (en) | 2021-04-01 | 2022-10-13 | Exer Labs, Inc. | Continually Learning Audio Feedback Engine |
| US20220330823A1 (en) | 2019-08-05 | 2022-10-20 | GE Precision Healthcare LLC | Systems and devices for telemetry monitoring management |
| US20220331663A1 (en) | 2019-10-03 | 2022-10-20 | Rom Technologies, Inc. | System and Method for Using an Artificial Intelligence Engine to Anonymize Competitive Performance Rankings in a Rehabilitation Setting |
| CN110270062B (en) | 2018-03-15 | 2022-10-25 | 深圳市震有智联科技有限公司 | Rehabilitation robot teletherapy system and method thereof |
| US20220339501A1 (en) | 2019-10-03 | 2022-10-27 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning for generating an alignment plan capable of enabling the aligning of a user's body during a treatment session |
| US20220338761A1 (en) | 2021-04-23 | 2022-10-27 | Tactile Robotics Ltd. | Remote Training and Practicing Apparatus and System for Upper-Limb Rehabilitation |
| US20220342969A1 (en) | 2021-04-27 | 2022-10-27 | Ifit Inc. | Controlling access to a stationary exercise machine |
| KR20220145989A (en) | 2021-04-22 | 2022-11-01 | 주식회사 타고 | Spining bike applied the internet of things |
| US20220346703A1 (en) | 2021-04-21 | 2022-11-03 | AZA Health & Wellness Corp. | System and method for analyzing user physical characteristics and prescribing treatment plans to the user |
| US11495355B2 (en) | 2014-05-15 | 2022-11-08 | The Johns Hopkins University | Method, system and computer-readable media for treatment plan risk analysis |
| US11508258B2 (en) | 2019-06-07 | 2022-11-22 | Toyota Jidosha Kabushiki Kaisha | Rehabilitation training system and rehabilitation training evaluation program |
| KR102469723B1 (en) | 2020-10-29 | 2022-11-22 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| US20220370851A1 (en) | 2021-05-20 | 2022-11-24 | CITYROW Holdings, Inc. | Method and System for Determining Instantaneous Effort Value |
| KR20220156134A (en) | 2021-05-17 | 2022-11-25 | 한국공학대학교산학협력단 | Method for Providing Home Rehabilitation Service With Rotator Cuff Exercise Rehabilitation Device |
| KR102471990B1 (en) | 2020-02-25 | 2022-11-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| US20220384010A1 (en) | 2019-11-01 | 2022-12-01 | Astetias Pharma Inc. | Exercise support device, exercise support system, exercise support method, and program |
| WO2022251420A1 (en) | 2021-05-28 | 2022-12-01 | Rom Technologies, Inc. | System and method for generating treatment plans to enhance patient recovery based on specific occupations |
| US11524210B2 (en) | 2019-07-29 | 2022-12-13 | Neofect Co., Ltd. | Method and program for providing remote rehabilitation training |
| US11527326B2 (en) | 2013-08-12 | 2022-12-13 | Cerner Innovation, Inc. | Dynamically determining risk of clinical condition |
| US11532402B2 (en) | 2018-12-21 | 2022-12-20 | Smith & Nephew, Inc. | Methods and systems for providing an episode of care |
| US20220401783A1 (en) | 2020-02-25 | 2022-12-22 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| US11534654B2 (en) | 2019-01-25 | 2022-12-27 | Ifit Inc. | Systems and methods for an interactive pedaled exercise device |
| US20220415471A1 (en) | 2019-10-03 | 2022-12-29 | Rom Technologies, Inc. | Method and system for using sensor data to identify secondary conditions of a user based on a detected joint misalignment of the user who is using a treatment device to perform a treatment plan |
| US20220415469A1 (en) | 2019-10-03 | 2022-12-29 | Rom Technologies, Inc. | System and method for using an artificial intelligence engine to optimize patient compliance |
| US11553969B1 (en) | 2019-02-14 | 2023-01-17 | Onpoint Medical, Inc. | System for computation of object coordinates accounting for movement of a surgical site for spinal and other procedures |
| US20230013530A1 (en) | 2021-07-08 | 2023-01-19 | Rom Technologies, Inc. | System and method for using an ai engine to enforce dosage compliance by controlling a treatment apparatus |
| USD976339S1 (en) | 2021-04-25 | 2023-01-24 | Shenzhen Esino Technology Co., Ltd. | Pedal exerciser |
| US20230029639A1 (en) | 2021-08-02 | 2023-02-02 | Medtronic, Inc. | Medical device system for remote monitoring and inspection |
| WO2023008680A1 (en) | 2021-07-30 | 2023-02-02 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus |
| WO2023008681A1 (en) | 2021-07-30 | 2023-02-02 | 에이치로보틱스 주식회사 | Rehabilitation exercise device |
| CN218420859U (en) | 2022-09-15 | 2023-02-03 | 深圳市创通电子器械有限公司 | Remote rehabilitation training equipment for patients with limb dyskinesia |
| US20230047253A1 (en) | 2020-01-22 | 2023-02-16 | Healthpointe Solutions, Inc. | System and Method for Dynamic Goal Management in Care Plans |
| WO2023022320A1 (en) | 2021-08-18 | 2023-02-23 | 에이치로보틱스 주식회사 | Wrist exercise device and rehabilitation exercise device for upper and lower extremities using same |
| WO2023022319A1 (en) | 2021-08-17 | 2023-02-23 | 에이치로보틱스 주식회사 | Upper extremity exercise device |
| US20230060039A1 (en) | 2019-10-03 | 2023-02-23 | Rom Technologies, Inc. | Method and system for using sensors to optimize a user treatment plan in a telemedicine environment |
| US20230058605A1 (en) | 2019-10-03 | 2023-02-23 | Rom Technologies, Inc. | Method and system for using sensor data to detect joint misalignment of a user using a treatment device to perform a treatment plan |
| KR102502744B1 (en) | 2022-07-21 | 2023-02-24 | 석주필 | Operation method of rehabilitation exercise apparatus using optimal knee motion angle |
| US20230072368A1 (en) | 2019-10-03 | 2023-03-09 | Rom Technologies, Inc. | System and method for using an artificial intelligence engine to optimize a treatment plan |
| TWM638437U (en) | 2022-06-06 | 2023-03-11 | 建菱科技股份有限公司 | Monitoring and management system that can control training status of multiple fitness/rehabilitation equipment on site or remotely |
| US20230078793A1 (en) | 2019-10-03 | 2023-03-16 | Rom Technologies, Inc. | Systems and methods for an artificial intelligence engine to optimize a peak performance |
| KR20230040526A (en) | 2021-09-16 | 2023-03-23 | (주)메시 | Non-face-to-face fitness training operation method and system |
| FR3127393A1 (en) | 2021-09-29 | 2023-03-31 | Dessintey | Device for the implementation of a technique of mental representation for the rehabilitation of lower limbs |
| US11621067B1 (en) | 2020-06-24 | 2023-04-04 | Nicole Nolan | Method for generating personalized resistance training program |
| CN115954081A (en) | 2022-11-28 | 2023-04-11 | 北京大学第一医院 | Remote intelligent rehabilitation method and system after knee joint replacement |
| KR20230050506A (en) | 2021-10-07 | 2023-04-17 | 주식회사 웰니스헬스케어 | IoT-based exercise equipment remote management system and method of driving thereof |
| US20230119461A1 (en) | 2020-08-06 | 2023-04-20 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
| US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
| KR20230056118A (en) | 2021-10-19 | 2023-04-27 | 주식회사 지니소프트 | Exercise program recommendation system according to physical ability |
| KR102528503B1 (en) | 2022-09-05 | 2023-05-04 | 주식회사 피지오 | Online rehabilitation exercise system linked with experts |
| KR102531930B1 (en) | 2021-03-23 | 2023-05-12 | 한국생산기술연구원 | Method of providing training using smart clothing having electromyography sensing function and weight apparatus and training providing service system training using the same |
| WO2023091496A1 (en) | 2021-11-18 | 2023-05-25 | Rom Technologies, Inc. | System, method and apparatus for rehabilitation and exercise |
| US11663673B2 (en) | 2014-12-30 | 2023-05-30 | Johnson Health Tech Co., Ltd | Exercise apparatus with exercise use verification function and verifying method |
| KR102539190B1 (en) | 2021-02-26 | 2023-06-02 | 동의대학교 산학협력단 | Treadmill with a UI scheme for motion state analysis and feedback and Method for controlling the same |
| US20230190100A1 (en) | 2014-07-29 | 2023-06-22 | Sempulse Corporation | Enhanced computer-implemented systems and methods of automated physiological monitoring, prognosis, and triage |
| US20230197240A1 (en) | 2019-10-03 | 2023-06-22 | Rom Technologies, Inc. | System and method for facilitating cardiac rehabilitation among eligible users |
| US20230207097A1 (en) | 2019-10-03 | 2023-06-29 | Rom Technologies, Inc. | Systems and Methods of Using Artificial Intelligence and Machine Learning in a Telemedical Environment to Predict User Disease States |
| US20230207124A1 (en) | 2021-12-28 | 2023-06-29 | Optum Services (Ireland) Limited | Diagnosis and treatment recommendation using quantum computing |
| US20230215539A1 (en) | 2019-10-03 | 2023-07-06 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning and generic risk factors to improve cardiovascular health such that the need for additional cardiac interventions is mitigated |
| US20230215552A1 (en) | 2021-12-31 | 2023-07-06 | Cerner Innovation, Inc. | Early detection of patients for coordinated application of healthcare resources based on bundled payment |
| US20230218950A1 (en) | 2022-01-11 | 2023-07-13 | Tonal Systems, Inc. | Exercise machine suggested weights |
| US20230245748A1 (en) | 2019-10-03 | 2023-08-03 | Rom Technologies, Inc. | System and method for using ai/ml to generate treatment plans to stimulate preferred angiogenesis |
| US20230245751A1 (en) | 2019-10-03 | 2023-08-03 | Rom Technologies, Inc. | Rowing machines, systems including rowing machines, and methods for using rowing machines to perform treatment plans for rehabilitation |
| US20230245750A1 (en) | 2019-10-03 | 2023-08-03 | Rom Technologies, Inc. | Systems and methods for using elliptical machine to perform cardiovascular rehabilitation |
| US20230245747A1 (en) | 2019-10-03 | 2023-08-03 | Rom Technologies, Inc. | System and method for using ai/ml and telemedicine for invasive surgical treatment to determine a cardiac treatment plan that uses an electromechanical machine |
| US20230249599A1 (en) | 2022-02-07 | 2023-08-10 | Leggett & Platt Canada Co. | Interactive adjustable seat with multiple modes of operation |
| US20230253089A1 (en) | 2019-10-03 | 2023-08-10 | Rom Technologies, Inc. | Stair-climbing machines, systems including stair-climbing machines, and methods for using stair-climbing machines to perform treatment plans for rehabilitation |
| US20230263428A1 (en) | 2020-06-26 | 2023-08-24 | Rom Technologies, Inc. | System, method and apparatus for anchoring an electronic device and measuring a joint angle |
| US20230274813A1 (en) | 2019-10-03 | 2023-08-31 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning to generate treatment plans that include tailored dietary plans for users |
| WO2023164292A1 (en) | 2022-02-28 | 2023-08-31 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning in a telemedical environment to predict user disease states |
| WO2023215155A1 (en) | 2022-05-04 | 2023-11-09 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence to implement a cardio protocol via a relay-based system |
| US20230364471A1 (en) | 2022-05-16 | 2023-11-16 | Mda Co., Ltd. | Exercise rehabilitation system using smart mirror |
| US20230368886A1 (en) | 2019-10-03 | 2023-11-16 | Rom Technologies, Inc. | System and method for an enhanced healthcare professional user interface displaying measurement information for a plurality of users |
| US20230377711A1 (en) | 2019-10-03 | 2023-11-23 | Rom Technologies, Inc. | System and method for an enhanced patient user interface displaying real-time measurement information during a telemedicine session |
| US20230377710A1 (en) | 2022-05-17 | 2023-11-23 | Chengdu Shangyi Information Technology Co., Ltd. | Movement adjustment system based on heart rates and rating of perceived exertion feedbacks of different users |
| US20230377712A1 (en) | 2019-10-03 | 2023-11-23 | Rom Technologies, Inc. | Systems and methods for assigning healthcare professionals to remotely monitor users performing treatment plans on electromechanical machines |
| US20230386639A1 (en) | 2019-10-03 | 2023-11-30 | Rom Technologies, Inc. | System and method for implementing a cardiac rehabilitation protocol by using artificial intelligence and standardized measurements |
| WO2023230075A1 (en) | 2022-05-23 | 2023-11-30 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
| US20230395231A1 (en) | 2019-10-03 | 2023-12-07 | Rom Technologies, Inc. | Systems and methods to enable communication detection between devices and performance of a preventative action |
| US20230390627A1 (en) | 2022-06-05 | 2023-12-07 | Apple Inc. | User interfaces for physical activity information |
| WO2024013267A1 (en) | 2022-07-12 | 2024-01-18 | Cortery AB | Wearable and automated ultrasound therapy devices and methods |
| US20240029856A1 (en) | 2019-10-03 | 2024-01-25 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence and machine learning to predict a probability of an undesired medical event occurring during a treatment plan |
| US20240058651A1 (en) | 2019-05-10 | 2024-02-22 | Rehab2Fit Technologies, Inc. | Method and System for Using Artificial Intelligence to Interact with a User of an Exercise Device During an Exercise Session |
| US11944579B2 (en) | 2016-08-24 | 2024-04-02 | Cyberdyne Inc. | Biological activity detection apparatus and biological activity detection system |
| WO2024107807A1 (en) | 2022-11-17 | 2024-05-23 | Rom Technologies, Inc. | System and method for enabling residentially-based cardiac rehabilitation by using an electromechanical machine and educational content to mitigate risk factors and optimize user behavior |
| US20240177846A1 (en) | 2021-03-31 | 2024-05-30 | Healthpointe Solutions, Inc. | Resource Utilization Based on Patients' Medical Condition Trajectories |
| US12004871B1 (en) | 2020-08-05 | 2024-06-11 | Amazon Technologies, Inc. | Personalized three-dimensional body models and body change journey |
| US20240203580A1 (en) | 2022-12-20 | 2024-06-20 | Rom Technologies, Inc. | Method and system for using artificial intelligence to triage treatment plans for patients and electronically initiate the treament plans based on the triaging |
| US12057210B2 (en) | 2018-10-08 | 2024-08-06 | Cerner Innovation, Inc. | Integrated coordination of care |
| US12205704B2 (en) | 2019-10-04 | 2025-01-21 | Nec Corporation | Apparatus, system, method, and computer readable medium for rehabilitation planning using machine learning |
-
2022
- 2022-06-30 US US17/854,968 patent/US12427376B2/en active Active
Patent Citations (1271)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE95019C (en) | ||||
| US823712A (en) | 1905-11-09 | 1906-06-19 | Bernhard Uhlmann | Adjustable pedal-crank for bicycles. |
| GB141664A (en) | 1919-04-14 | 1920-11-11 | Louis Fournes | Improvements in pedal cranks suitable for the use of persons having one wooden leg |
| DE7628633U1 (en) | 1976-09-14 | 1977-12-29 | Schneider, Alfred, 4800 Bielefeld | BICYCLE PEDAL |
| FR2527541A2 (en) | 1980-07-22 | 1983-12-02 | Lembo Richard | Variable length bicycle crank - has toothed transmission shaft which engages in toothed rack with chain guard |
| US4499900A (en) | 1982-11-26 | 1985-02-19 | Wright State University | System and method for treating paralyzed persons |
| EP0199600A2 (en) | 1985-04-24 | 1986-10-29 | Xi La | A pedal mechanism for a bicycle having the pedal crank radially movable thereon |
| DE8519150U1 (en) | 1985-07-02 | 1985-10-24 | Hupp, Johannes, 2300 Klausdorf | Foot pedal crank assembly |
| DE3732905A1 (en) | 1986-09-30 | 1988-07-28 | Anton Reck | Crank arrangement having pedals, in particular for training apparatuses |
| US4869497A (en) | 1987-01-20 | 1989-09-26 | Universal Gym Equipment, Inc. | Computer controlled exercise machine |
| US4822032A (en) | 1987-04-23 | 1989-04-18 | Whitmore Henry B | Exercise machine |
| US5137501A (en) | 1987-07-08 | 1992-08-11 | Mertesdorf Frank L | Process and device for supporting fitness training by means of music |
| US4860763A (en) | 1987-07-29 | 1989-08-29 | Schminke Kevin L | Cardiovascular conditioning and therapeutic system |
| US4932650A (en) | 1989-01-13 | 1990-06-12 | Proform Fitness Products, Inc. | Semi-recumbent exercise cycle |
| EP0383137A2 (en) | 1989-02-15 | 1990-08-22 | Ruf, Jörg | Guide rail for the treatment of the lower limbs by movement |
| US5202794A (en) | 1989-06-03 | 1993-04-13 | Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. | Attenuator for a laser beam |
| US5247853A (en) | 1990-02-16 | 1993-09-28 | Proform Fitness Products, Inc. | Flywheel |
| US6626805B1 (en) | 1990-03-09 | 2003-09-30 | William S. Lightbody | Exercise machine |
| US5161430A (en) | 1990-05-18 | 1992-11-10 | Febey Richard W | Pedal stroke range adjusting device |
| US5256117A (en) | 1990-10-10 | 1993-10-26 | Stairmaster Sports Medical Products, Inc. | Stairclimbing and upper body, exercise apparatus |
| US5284131A (en) | 1990-11-26 | 1994-02-08 | Errol Gray | Therapeutic exercise device for legs |
| US5240417A (en) | 1991-03-14 | 1993-08-31 | Atari Games Corporation | System and method for bicycle riding simulation |
| USD342299S (en) | 1991-07-12 | 1993-12-14 | Precor Incorporated | Recumbent exercise cycle |
| US5318487A (en) | 1992-05-12 | 1994-06-07 | Life Fitness | Exercise system and method for managing physiological intensity of exercise |
| US5361649A (en) | 1992-07-20 | 1994-11-08 | High Sierra Cycle Center | Bicycle crank and pedal assembly |
| US5282748A (en) | 1992-09-30 | 1994-02-01 | Little Oscar L | Swimming simulator |
| US6155958A (en) | 1992-10-30 | 2000-12-05 | Madd Dog Athletics, Inc. | Stationary exercise bicycle having a rigid frame |
| EP0634319A2 (en) | 1993-06-01 | 1995-01-18 | Joo Sang Wan | Crank device |
| US5356356A (en) | 1993-06-02 | 1994-10-18 | Life Plus Incorporated | Recumbent total body exerciser |
| US5429140A (en) | 1993-06-04 | 1995-07-04 | Greenleaf Medical Systems, Inc. | Integrated virtual reality rehabilitation system |
| US5316532A (en) | 1993-08-12 | 1994-05-31 | Butler Brian R | Aquatic exercise and rehabilitation device |
| US5487713A (en) | 1993-08-12 | 1996-01-30 | Butler; Brian R. | Aquatic exercise and rehabilitation device |
| US5324241A (en) | 1993-10-14 | 1994-06-28 | Paul Artigues | Knee rehabilitation exercise device |
| US5458022A (en) | 1993-11-15 | 1995-10-17 | Mattfeld; Raymond | Bicycle pedal range adjusting device |
| US5336147A (en) | 1993-12-03 | 1994-08-09 | Sweeney Iii Edward C | Exercise machine |
| US5338272A (en) | 1993-12-03 | 1994-08-16 | Sweeney Iii Edward C | Exercise machine |
| USD359777S (en) | 1994-03-21 | 1995-06-27 | LifePlus Incorporated | Recumbent total body exerciser |
| US5676349A (en) | 1994-12-08 | 1997-10-14 | Wilson; Robert L. | Winch wheel device with half cleat |
| US5580338A (en) | 1995-03-06 | 1996-12-03 | Scelta; Anthony | Portable, upper body, exercise machine |
| DE19619820A1 (en) | 1995-05-16 | 1996-12-05 | Achim Oertel | Pedal crank with adjustable radius for bicycle |
| US8371990B2 (en) | 1995-06-22 | 2013-02-12 | Michael J. Shea | Exercise system |
| US5566589A (en) | 1995-08-28 | 1996-10-22 | Buck; Vernon E. | Bicycle crank arm extender |
| US8503086B2 (en) | 1995-11-06 | 2013-08-06 | Impulse Technology Ltd. | System and method for tracking and assessing movement skills in multidimensional space |
| US5860941A (en) | 1995-11-14 | 1999-01-19 | Orthologic Corp. | Active/passive device for rehabilitation of upper and lower extremities |
| US5738636A (en) | 1995-11-20 | 1998-04-14 | Orthologic Corporation | Continuous passive motion devices for joints |
| US20120295240A1 (en) | 1995-11-22 | 2012-11-22 | Walker Jay S | Systems and methods for improved health care compliance |
| US5685804A (en) | 1995-12-07 | 1997-11-11 | Precor Incorporated | Stationary exercise device |
| US8298123B2 (en) | 1995-12-14 | 2012-10-30 | Icon Health & Fitness, Inc. | Method and apparatus for remote interactive exercise and health equipment |
| US6543309B2 (en) | 1996-09-03 | 2003-04-08 | Jonathan R. Heim | Clipless bicycle pedal |
| WO1998009687A1 (en) | 1996-09-03 | 1998-03-12 | Piercy, Jean | Foot operated exercising device |
| US6182029B1 (en) | 1996-10-28 | 2001-01-30 | The Trustees Of Columbia University In The City Of New York | System and method for language extraction and encoding utilizing the parsing of text data in accordance with domain parameters |
| DE29620008U1 (en) | 1996-11-18 | 1997-02-06 | SM Sondermaschinenbau GmbH, 97424 Schweinfurt | Length-adjustable pedal crank for ergometers |
| US7778851B2 (en) | 1996-12-30 | 2010-08-17 | I.M.D. Soft Ltd. | Medical information system |
| US6110130A (en) | 1997-04-21 | 2000-08-29 | Virtual Technologies, Inc. | Exoskeleton device for directly measuring fingertip position and inferring finger joint angle |
| US20030083596A1 (en) | 1997-04-21 | 2003-05-01 | Immersion Corporation | Goniometer-based body-tracking device and method |
| US6053847A (en) | 1997-05-05 | 2000-04-25 | Stearns; Kenneth W. | Elliptical exercise method and apparatus |
| US5950813A (en) | 1997-10-07 | 1999-09-14 | Trw Inc. | Electrical switch |
| EP0919259A1 (en) | 1997-11-25 | 1999-06-02 | Cybersport Limited | System for controlling and coordinating exercise equipment |
| GB2336140A (en) | 1998-04-08 | 1999-10-13 | John Brian Dixon Pedelty | Variable length bicycle crank |
| US6007459A (en) | 1998-04-14 | 1999-12-28 | Burgess; Barry | Method and system for providing physical therapy services |
| US6077201A (en) | 1998-06-12 | 2000-06-20 | Cheng; Chau-Yang | Exercise bicycle |
| JP2000005339A (en) | 1998-06-25 | 2000-01-11 | Matsushita Electric Works Ltd | Bicycle ergometer |
| US20160140319A1 (en) | 1998-09-01 | 2016-05-19 | Izex Technologies, Inc. | Remote monitoring of a patient |
| USD421075S (en) | 1998-09-29 | 2000-02-22 | Nustep, Inc. | Recumbent total body exerciser |
| US6371891B1 (en) | 1998-12-09 | 2002-04-16 | Danny E. Speas | Adjustable pedal drive mechanism |
| US6535861B1 (en) | 1998-12-22 | 2003-03-18 | Accenture Properties (2) B.V. | Goal based educational system with support for dynamic characteristics tuning using a spread sheet object |
| US6102834A (en) | 1998-12-23 | 2000-08-15 | Chen; Ping | Flash device for an exercise device |
| US6640122B2 (en) | 1999-02-05 | 2003-10-28 | Advanced Brain Monitoring, Inc. | EEG electrode and EEG electrode locator assembly |
| US20010044573A1 (en) | 1999-02-05 | 2001-11-22 | Samir Manoli | EEG electrode and EEG electrode locator assembly |
| US7156665B1 (en) | 1999-02-08 | 2007-01-02 | Accenture, Llp | Goal based educational system with support for dynamic tailored feedback |
| US6430436B1 (en) | 1999-03-01 | 2002-08-06 | Digital Concepts Of Missouri, Inc. | Two electrode heart rate monitor measuring power spectrum for use on road bikes |
| EP1034817A1 (en) | 1999-03-09 | 2000-09-13 | Paul John Butterworth | Exercise and rehabilitation equipment |
| US6589139B1 (en) | 1999-03-09 | 2003-07-08 | Paul John Butterworth | Exercise and rehabilitation equipment |
| US6820517B1 (en) | 1999-03-25 | 2004-11-23 | Scifit Systems, Inc. | Pedal crank |
| US6474193B1 (en) | 1999-03-25 | 2002-11-05 | Sinties Scientific, Inc. | Pedal crank |
| US7156780B1 (en) | 1999-04-03 | 2007-01-02 | Swissmove Ag | Drive system operated by muscle-power |
| US6162189A (en) | 1999-05-26 | 2000-12-19 | Rutgers, The State University Of New Jersey | Ankle rehabilitation system |
| US6253638B1 (en) | 1999-06-10 | 2001-07-03 | David Bermudez | Bicycle sprocket crank |
| US20100121160A1 (en) | 1999-06-23 | 2010-05-13 | Izex Technologies, Inc. | Remote psychological evaluation |
| US7628730B1 (en) | 1999-07-08 | 2009-12-08 | Icon Ip, Inc. | Methods and systems for controlling an exercise apparatus using a USB compatible portable remote device |
| US20090270227A1 (en) | 1999-07-08 | 2009-10-29 | Ashby Darren C | Systems, methods, and devices for simulating real world terrain on an exercise device |
| US20100332583A1 (en) | 1999-07-21 | 2010-12-30 | Andrew Szabo | Database access system |
| US6413190B1 (en) | 1999-07-27 | 2002-07-02 | Enhanced Mobility Technologies | Rehabilitation apparatus and method |
| US6514085B2 (en) | 1999-07-30 | 2003-02-04 | Element K Online Llc | Methods and apparatus for computer based training relating to devices |
| DE19947926A1 (en) | 1999-10-06 | 2001-04-12 | Medica Medizintechnik Gmbh | Training device for movement therapy, especially to move arm or leg of bed-ridden person; has adjustable handles or pedals connected to rotating support disc driven by peripherally engaging motor |
| US6450923B1 (en) | 1999-10-14 | 2002-09-17 | Bala R. Vatti | Apparatus and methods for enhanced exercises and back pain relief |
| US6273863B1 (en) | 1999-10-26 | 2001-08-14 | Andante Medical Devices, Ltd. | Adaptive weight bearing monitoring system for rehabilitation of injuries to the lower extremities |
| US6267735B1 (en) | 1999-11-09 | 2001-07-31 | Chattanooga Group, Inc. | Continuous passive motion device having a comfort zone feature |
| US7058453B2 (en) | 1999-12-14 | 2006-06-06 | Medtronic, Inc. | Apparatus and method for remote therapy and diagnosis in medical devices via interface systems |
| US6602191B2 (en) | 1999-12-17 | 2003-08-05 | Q-Tec Systems Llp | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
| WO2001050387A1 (en) | 1999-12-30 | 2001-07-12 | Umagic Systems, Inc. | Personal advice system and method |
| WO2001049235A2 (en) | 2000-01-06 | 2001-07-12 | Dj Orthopedics, Llc | Angle sensor for orthopedic rehabilitation device |
| US20040147969A1 (en) | 2000-01-11 | 2004-07-29 | Brian Mann | System for detecting, diagnosing, and treating cardiovascular disease |
| WO2001051083A2 (en) | 2000-01-13 | 2001-07-19 | Antigenics Inc. | Innate immunity-stimulating compositions of cpg and saponin and methods thereof |
| USD438580S1 (en) | 2000-01-28 | 2001-03-06 | Ching-Song Shaw | Housing for an exercise machine |
| WO2001056465A1 (en) | 2000-02-03 | 2001-08-09 | Neurofeed.Com, Llc | Method for obtaining and evaluating neuro feedback |
| US20060064329A1 (en) | 2000-03-24 | 2006-03-23 | Align Technology, Inc. | Health-care e-commerce systems and methods |
| US20020010596A1 (en) | 2000-04-13 | 2002-01-24 | Matory Yvedt L. | Remote patient care |
| US20020143279A1 (en) | 2000-04-26 | 2002-10-03 | Porier David A. | Angle sensor for orthopedic rehabilitation device |
| US6601016B1 (en) | 2000-04-28 | 2003-07-29 | International Business Machines Corporation | Monitoring fitness activity across diverse exercise machines utilizing a universally accessible server system |
| US20030036683A1 (en) | 2000-05-01 | 2003-02-20 | Kehr Bruce A. | Method, system and computer program product for internet-enabled, patient monitoring system |
| EP1159989A1 (en) | 2000-05-24 | 2001-12-05 | In2Sports B.V. | A method of generating and/or adjusting a training schedule |
| US6436058B1 (en) | 2000-06-15 | 2002-08-20 | Dj Orthopedics, Llc | System and method for implementing rehabilitation protocols for an orthopedic restraining device |
| US20130158368A1 (en) | 2000-06-16 | 2013-06-20 | Bodymedia, Inc. | System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability |
| US6626800B1 (en) | 2000-07-12 | 2003-09-30 | John A. Casler | Method of exercise prescription and evaluation |
| KR20020009724A (en) | 2000-07-26 | 2002-02-02 | 이광호 | Remote Medical Examination System And A Method |
| US6613000B1 (en) | 2000-09-30 | 2003-09-02 | The Regents Of The University Of California | Method and apparatus for mass-delivered movement rehabilitation |
| USD450100S1 (en) | 2000-10-05 | 2001-11-06 | Hank Hsu | Housing of exercise machine |
| USD450101S1 (en) | 2000-10-05 | 2001-11-06 | Hank Hsu | Housing of exercise machine |
| US6491649B1 (en) | 2000-10-06 | 2002-12-10 | Mark P. Ombrellaro | Device for the direct manual examination of a patient in a non-contiguous location |
| US7809601B2 (en) | 2000-10-18 | 2010-10-05 | Johnson & Johnson Consumer Companies | Intelligent performance-based product recommendation system |
| US20020072452A1 (en) | 2000-12-07 | 2002-06-13 | Torkelson Torkel E. | Momentum-free running exercise machine for both agonist and antagonist muscle groups using controllably variable bi-directional resistance |
| GB2372459A (en) | 2001-01-17 | 2002-08-28 | Unicam Rehabilitation Systems | Pedal radius adjustment mechanism for an exercise bicycle |
| USD451972S1 (en) | 2001-01-19 | 2001-12-11 | Fitness Quest Inc. | Shroud for elliptical exerciser |
| USD452285S1 (en) | 2001-01-19 | 2001-12-18 | Fitness Quest Inc. | Shroud for elliptical exerciser |
| KR20020065253A (en) | 2001-02-06 | 2002-08-13 | 주식회사 세우시스템 | Intelligent control system for health machines and control method thereof |
| WO2002062211A2 (en) | 2001-02-07 | 2002-08-15 | Cardionetics Limited | Method and apparatus for generating a physical exercise program |
| US20190145774A1 (en) | 2001-02-20 | 2019-05-16 | Adidas Ag | Performance monitoring systems and methods |
| US20040102931A1 (en) | 2001-02-20 | 2004-05-27 | Ellis Michael D. | Modular personal network systems and methods |
| US9566472B2 (en) | 2001-03-08 | 2017-02-14 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20170106242A1 (en) | 2001-03-08 | 2017-04-20 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US8979711B2 (en) | 2001-03-08 | 2015-03-17 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20150065213A1 (en) | 2001-03-08 | 2015-03-05 | Brian M. Dugan | Systems and methods for improving fitness equipment and exercise |
| US9272185B2 (en) | 2001-03-08 | 2016-03-01 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20190076701A1 (en) | 2001-03-08 | 2019-03-14 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20160151670A1 (en) | 2001-03-08 | 2016-06-02 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20140309083A1 (en) | 2001-03-08 | 2014-10-16 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US9409054B2 (en) | 2001-03-08 | 2016-08-09 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US9937382B2 (en) | 2001-03-08 | 2018-04-10 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US10155134B2 (en) | 2001-03-08 | 2018-12-18 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US8672812B2 (en) | 2001-03-08 | 2014-03-18 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20110275483A1 (en) | 2001-03-08 | 2011-11-10 | Dugan Brian M | System and method for improving fitness equipment and exercise |
| US20160317869A1 (en) | 2001-03-08 | 2016-11-03 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US8784273B2 (en) | 2001-03-08 | 2014-07-22 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US7063643B2 (en) | 2001-03-08 | 2006-06-20 | Combi Corporation | Physical training machine operation system and method |
| US20140011640A1 (en) | 2001-03-08 | 2014-01-09 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20140155129A1 (en) | 2001-03-08 | 2014-06-05 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20150151162A1 (en) | 2001-03-08 | 2015-06-04 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20020160883A1 (en) | 2001-03-08 | 2002-10-31 | Dugan Brian M. | System and method for improving fitness equipment and exercise |
| US20180200577A1 (en) | 2001-03-08 | 2018-07-19 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US8506458B2 (en) | 2001-03-08 | 2013-08-13 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US8556778B1 (en) | 2001-03-08 | 2013-10-15 | Brian M. Dugan | System and method for improving fitness equipment and exercise |
| US20070118389A1 (en) | 2001-03-09 | 2007-05-24 | Shipon Jacob A | Integrated teleconferencing system |
| USD454605S1 (en) | 2001-04-12 | 2002-03-19 | Kuo-Lung Lee | Frame guard for an exerciser |
| US20040197727A1 (en) | 2001-04-13 | 2004-10-07 | Orametrix, Inc. | Method and system for comprehensive evaluation of orthodontic treatment using unified workstation |
| USRE39904E1 (en) | 2001-04-17 | 2007-10-30 | Stamina Products, Inc. | Combined elliptical cycling and stepping exerciser |
| USD459776S1 (en) | 2001-05-08 | 2002-07-02 | Kuo-Lung Lee | Guard frame for an exerciser |
| WO2002093312A2 (en) | 2001-05-15 | 2002-11-21 | Hill-Rom Services, Inc. | Apparatus and method for patient data management |
| US20020183599A1 (en) | 2001-06-05 | 2002-12-05 | Castellanos Alexander F. | Method and system for improving vascular systems in humans using biofeedback and network data communication |
| US20030013072A1 (en) | 2001-07-03 | 2003-01-16 | Thomas Richard Todd | Processor adjustable exercise apparatus |
| US20060247095A1 (en) | 2001-09-21 | 2006-11-02 | Rummerfield Patrick D | Method and apparatus for promoting nerve regeneration in paralyzed patients |
| US20030064860A1 (en) | 2001-09-28 | 2003-04-03 | Konami Corporation | Exercise assisting method and apparatus implementing such method |
| US20030064863A1 (en) | 2001-10-02 | 2003-04-03 | Tsung-Yu Chen | Adjustable magnetic resistance device for exercise bike |
| US20050015118A1 (en) | 2001-10-19 | 2005-01-20 | Davis Glen Macartney | Muscle stimulation systems |
| US20030092536A1 (en) | 2001-11-14 | 2003-05-15 | Romanelli Daniel A. | Compact crank therapeutic exerciser for the extremities |
| WO2003043494A1 (en) | 2001-11-23 | 2003-05-30 | Medit As | A cluster system for remote monitoring and diagnostic support |
| US6890312B1 (en) | 2001-12-03 | 2005-05-10 | William B. Priester | Joint angle indication system |
| US7837472B1 (en) | 2001-12-27 | 2010-11-23 | The United States Of America As Represented By The Secretary Of The Army | Neurocognitive and psychomotor performance assessment and rehabilitation system |
| JP2003225875A (en) | 2002-02-05 | 2003-08-12 | Matsushita Electric Ind Co Ltd | Pet-type robot and training system for pet-type robot |
| KR200276919Y1 (en) | 2002-02-21 | 2002-05-27 | 주식회사 세우시스템 | controll system for health machine |
| US20030181832A1 (en) | 2002-03-22 | 2003-09-25 | Carnahan James V. | Augmented kinematic feedback device and method |
| US6902513B1 (en) | 2002-04-02 | 2005-06-07 | Mcclure Daniel R. | Interactive fitness equipment |
| US6640662B1 (en) | 2002-05-09 | 2003-11-04 | Craig Baxter | Variable length crank arm assembly |
| US6652425B1 (en) | 2002-05-31 | 2003-11-25 | Biodex Medical Systems, Inc. | Cyclocentric ergometer |
| US20050274220A1 (en) | 2002-07-08 | 2005-12-15 | Look Cycle International | Cycle pedal with adjustable axial positioning |
| EP1391179A1 (en) | 2002-07-30 | 2004-02-25 | Willy Kostucki | Exercise manager program |
| US7890342B1 (en) | 2002-08-27 | 2011-02-15 | Ric Investments, Llc | Method and system for tracking and monitoring patient compliance with medical device usage prescription |
| US20040072652A1 (en) | 2002-09-10 | 2004-04-15 | Technogym S.P.A. | Exercise machine |
| US6895834B1 (en) | 2002-10-04 | 2005-05-24 | Racer-Mate, Inc. | Adjustable crank for bicycles |
| US20060199700A1 (en) | 2002-10-29 | 2006-09-07 | Eccentron, Llc | Method and apparatus for speed controlled eccentric exercise training |
| US20040106502A1 (en) | 2002-12-02 | 2004-06-03 | Mike Sher | Exercise machine |
| US20040204959A1 (en) | 2002-12-03 | 2004-10-14 | Moreano Kenneth J. | Exernet system |
| US7209886B2 (en) | 2003-01-22 | 2007-04-24 | Biometric Technologies, Inc. | System and method for implementing healthcare fraud countermeasures |
| US8419593B2 (en) | 2003-01-26 | 2013-04-16 | Precor Incorporated | Fitness facility equipment usage control system and method |
| US7988599B2 (en) | 2003-01-26 | 2011-08-02 | Precor Incorporated | Service tracking and alerting system for fitness equipment |
| US20040172093A1 (en) | 2003-01-31 | 2004-09-02 | Rummerfield Patrick D. | Apparatus for promoting nerve regeneration in paralyzed patients |
| US6865969B2 (en) | 2003-03-28 | 2005-03-15 | Kerry Peters Stevens | Adjustable pedal for exercise devices |
| US20040194572A1 (en) | 2003-04-01 | 2004-10-07 | Jun-Suck Kim | Transmission for a bicycle pedal |
| US7406003B2 (en) | 2003-05-29 | 2008-07-29 | Timex Group B.V. | Multifunctional timepiece module with application specific printed circuit boards |
| US20140371816A1 (en) | 2003-06-11 | 2014-12-18 | Jeffrey A. Matos | Controlling a personal medical device |
| US20080153592A1 (en) | 2003-06-17 | 2008-06-26 | Australian Simulation Control Systems Pty Ltd. | Computer game controllers |
| US20050020411A1 (en) | 2003-07-25 | 2005-01-27 | Andrews Ronald A. | Pedal stroke adjuster for bicyles or the like |
| US7204788B2 (en) | 2003-07-25 | 2007-04-17 | Andrews Ronald A | Pedal stroke adjuster for bicycles or the like |
| US20050115561A1 (en) | 2003-08-18 | 2005-06-02 | Stahmann Jeffrey E. | Patient monitoring, diagnosis, and/or therapy systems and methods |
| US20050043153A1 (en) | 2003-08-22 | 2005-02-24 | Krietzman Mark Howard | Dual circling exercise method and device |
| WO2005018453A1 (en) | 2003-08-26 | 2005-03-03 | Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant'anna | A wearable mechatronic device for the analysis of joint biomechanics |
| US20150341812A1 (en) | 2003-08-29 | 2015-11-26 | Ineoquest Technologies, Inc. | Video quality monitoring |
| US20050049122A1 (en) | 2003-09-03 | 2005-03-03 | Vallone Anthony John | Physical rehabiliation and fitness exercise device |
| US20140163439A1 (en) | 2003-09-04 | 2014-06-12 | Parallel Biotechnologies LLC | Musical vibration system localized proximate a target artery |
| US7226394B2 (en) | 2003-10-16 | 2007-06-05 | Johnson Kenneth W | Rotary rehabilitation apparatus and method |
| US20050085346A1 (en) | 2003-10-16 | 2005-04-21 | Johnson Kenneth W. | Rotary rehabilitation apparatus and method |
| US20050085353A1 (en) | 2003-10-16 | 2005-04-21 | Johnson Kenneth W. | Rotary rehabilitation apparatus and method |
| US7594879B2 (en) | 2003-10-16 | 2009-09-29 | Brainchild Llc | Rotary rehabilitation apparatus and method |
| KR100582596B1 (en) | 2003-10-24 | 2006-05-23 | 한국전자통신연구원 | Music and Picture Therapy Providing System and Method According to User Condition |
| US8038578B2 (en) | 2003-11-12 | 2011-10-18 | Nokia Corporation | Apparatus and method for providing a user with a personal exercise program |
| US20140207264A1 (en) | 2003-12-11 | 2014-07-24 | Q-Tec Systems Llc | Method and apparatus for exercise monitoring combining exercise monitoring and visual data with wireless wearable devices |
| US20050143641A1 (en) | 2003-12-25 | 2005-06-30 | Olympus Corporation | Medical information processing system |
| US8177732B2 (en) | 2004-02-05 | 2012-05-15 | Motorika Limited | Methods and apparatuses for rehabilitation and training |
| US8012107B2 (en) | 2004-02-05 | 2011-09-06 | Motorika Limited | Methods and apparatus for rehabilitation and training |
| WO2005074369A2 (en) | 2004-02-05 | 2005-08-18 | Motorika Inc. | Methods and apparatuses for rehabilitation exercise and training |
| US20080161733A1 (en) | 2004-02-05 | 2008-07-03 | Motorika Limited | Methods and Apparatuses for Rehabilitation and Training |
| JP2005227928A (en) | 2004-02-12 | 2005-08-25 | Terumo Corp | Home care/treatment support system |
| US20100262052A1 (en) | 2004-03-10 | 2010-10-14 | Vision Quest Industries Incorporated Dba Vq Orthocare | Bracing and electrostimulation for arthritis |
| US20060003871A1 (en) | 2004-04-27 | 2006-01-05 | Houghton Andrew D | Independent and separately actuated combination fitness machine |
| US20070184414A1 (en) | 2004-06-10 | 2007-08-09 | Educamigos, S.L. | Task planning system and method for use in cognitive ability-related treatment |
| WO2006004430A2 (en) | 2004-07-06 | 2006-01-12 | Ziad Badarneh | Training apparatus |
| US20060058648A1 (en) | 2004-07-23 | 2006-03-16 | Eric Meier | Integrated radiation therapy systems and methods for treating a target in a patient |
| US20080312040A1 (en) | 2004-07-27 | 2008-12-18 | Matsushita Electric Works, Ltd. | Exercise Aid Device |
| WO2006012694A1 (en) | 2004-08-04 | 2006-02-09 | Robert Gregory Steward | An adjustable bicycle crank arm assembly |
| US20060046905A1 (en) | 2004-08-31 | 2006-03-02 | Doody James M Jr | Load variance system and method for exercise machine |
| US20060064136A1 (en) | 2004-09-23 | 2006-03-23 | Medtronic, Inc. | Method and apparatus for facilitating patient alert in implantable medical devices |
| US20060277074A1 (en) | 2004-12-07 | 2006-12-07 | Motorika, Inc. | Rehabilitation methods |
| US20060129432A1 (en) | 2004-12-09 | 2006-06-15 | Samsung Electronics Co., Ltd. | Device, system, and method for providing health management service |
| US20160004820A1 (en) | 2005-02-01 | 2016-01-07 | Newsilike Media Group, Inc. | Security facility for maintaining health care data pools |
| US10137328B2 (en) | 2005-02-02 | 2018-11-27 | Mad Dogg Athletics, Inc. | Programmed exercise bicycle with computer aided guidance |
| US9514277B2 (en) | 2005-03-08 | 2016-12-06 | Koninklijke Philips N.V. | Clinical monitoring network |
| US20120116258A1 (en) | 2005-03-24 | 2012-05-10 | Industry-Acadamic Cooperation Foundation, Kyungpook National University | Rehabilitation apparatus using game device |
| US20070042868A1 (en) | 2005-05-11 | 2007-02-22 | John Fisher | Cardio-fitness station with virtual- reality capability |
| EP1909730B1 (en) | 2005-07-27 | 2014-04-30 | American Medical Innovations, LLC | Dynamic motion therapy apparatus having a treatment feedback indicator |
| US8751264B2 (en) | 2005-07-28 | 2014-06-10 | Beraja Ip, Llc | Fraud prevention system including biometric records identification and associated methods |
| US7169085B1 (en) | 2005-09-23 | 2007-01-30 | Therapy Pro Inc. | User centered method of assessing physical capability and capacity for creating and providing unique care protocols with ongoing assessment |
| US8818496B2 (en) | 2005-10-14 | 2014-08-26 | Medicalgorithmics Ltd. | Systems for safe and remote outpatient ECG monitoring |
| US20070137307A1 (en) | 2005-12-09 | 2007-06-21 | Gruben Kreg G | Electromechanical force-magnitude, force-angle sensor |
| US20070173392A1 (en) | 2006-01-23 | 2007-07-26 | Stanford Christopher Stephen R | Apparatus and method for wheelchair aerobic stationary exercise |
| US20070194939A1 (en) | 2006-02-21 | 2007-08-23 | Alvarez Frank D | Healthcare facilities operation |
| WO2007102709A1 (en) | 2006-03-07 | 2007-09-13 | Industry Academic Cooperation Foundation Of Kyunghee University | Portable biofeedback exercise prescription apparatus and biofeedback exercise prescription method using the same |
| CN2885238Y (en) | 2006-03-10 | 2007-04-04 | 张海涛 | Physical therapeutic system |
| US20070219059A1 (en) | 2006-03-17 | 2007-09-20 | Schwartz Mark H | Method and system for continuous monitoring and training of exercise |
| US7507188B2 (en) | 2006-04-20 | 2009-03-24 | Nurre Christopher G | Rehab cycle crank |
| US20070271065A1 (en) | 2006-05-22 | 2007-11-22 | Apple Computer, Inc. | Portable media device with workout support |
| US20070287597A1 (en) | 2006-05-31 | 2007-12-13 | Blaine Cameron | Comprehensive multi-purpose exercise equipment |
| US8615529B2 (en) | 2006-06-05 | 2013-12-24 | Bruce Reiner | Method and apparatus for adapting computer-based systems to end-user profiles |
| US10362940B2 (en) | 2006-06-30 | 2019-07-30 | Empire Ip Llc | Personal emergency response (PER) system |
| US20080021834A1 (en) | 2006-07-19 | 2008-01-24 | Mdatalink, Llc | Medical Data Encryption For Communication Over A Vulnerable System |
| US20080096726A1 (en) | 2006-09-07 | 2008-04-24 | Nike, Inc. | Athletic Performance Sensing and/or Tracking Systems and Methods |
| US20170209766A1 (en) | 2006-09-07 | 2017-07-27 | Nike, Inc. | Athletic Performance Sensing and/or Tracking Systems and Methods |
| US20080077619A1 (en) | 2006-09-21 | 2008-03-27 | Apple Inc. | Systems and methods for facilitating group activities |
| US20080082356A1 (en) | 2006-10-03 | 2008-04-03 | International Business Machines Corporation | System and method to optimize control cohorts using clustering algorithms |
| US8540516B2 (en) | 2006-11-27 | 2013-09-24 | Pharos Innovations, Llc | Optimizing behavioral change based on a patient statistical profile |
| US8540515B2 (en) | 2006-11-27 | 2013-09-24 | Pharos Innovations, Llc | Optimizing behavioral change based on a population statistical profile |
| US20080161166A1 (en) | 2006-12-28 | 2008-07-03 | Chiu Hsiang Lo | Exercise Machine With Adjustable Pedals |
| US20080183500A1 (en) | 2007-01-26 | 2008-07-31 | Banigan Michael H | Systems and processes for health management |
| EP1968028A1 (en) | 2007-03-05 | 2008-09-10 | Matsushita Electric Industrial Co., Ltd. | Method for wireless communication between a personal mobile unit and an individually adaptable exercise equipment device |
| WO2008114291A1 (en) | 2007-03-21 | 2008-09-25 | Cammax S.A. | Elliptical trainer with stride adjusting device |
| US20100216168A1 (en) | 2007-03-23 | 2010-08-26 | Precision Therapeutics, Inc. | Methods for evaluating angiogenic potential in culture |
| US20100326207A1 (en) | 2007-03-30 | 2010-12-30 | Gregory John Topel | Methods and apparatus to determine belt condition in exercise equipment |
| US20080281633A1 (en) | 2007-05-10 | 2008-11-13 | Grigore Burdea | Periodic evaluation and telerehabilitation systems and methods |
| WO2008140780A1 (en) | 2007-05-10 | 2008-11-20 | Grigore Burdea | Periodic evaluation and telerehabilitation systems and methods |
| US20090070138A1 (en) | 2007-05-15 | 2009-03-12 | Jason Langheier | Integrated clinical risk assessment system |
| US20080300914A1 (en) | 2007-05-29 | 2008-12-04 | Microsoft Corporation | Dynamic activity management |
| US7833135B2 (en) | 2007-06-27 | 2010-11-16 | Scott B. Radow | Stationary exercise equipment |
| WO2009003170A1 (en) | 2007-06-27 | 2008-12-31 | Radow Scott B | Stationary exercise equipment |
| US20090011907A1 (en) | 2007-06-27 | 2009-01-08 | Radow Scott B | Stationary Exercise Equipment |
| US20150046192A1 (en) | 2007-07-03 | 2015-02-12 | Elngot Llc | Records access and management |
| WO2009008968A1 (en) | 2007-07-09 | 2009-01-15 | Sutter Health | System and method for data collection and management |
| US20090037334A1 (en) | 2007-08-01 | 2009-02-05 | Taipei Medical University | Electronic medical record system, method for storing medical record data in the medical record system, and a portable electronic device loading the electronic medical record system therein |
| US8849681B2 (en) | 2007-08-06 | 2014-09-30 | Cerephex Corporation | Apparatus and method for remote assessment and therapy management in medical devices via interface systems |
| US20090058635A1 (en) | 2007-08-31 | 2009-03-05 | Lalonde John | Medical data transport over wireless life critical network |
| US7815551B2 (en) | 2007-09-13 | 2010-10-19 | Christopher R Merli | Seated exercise apparatus |
| US20160007885A1 (en) | 2007-10-15 | 2016-01-14 | Alterg, Inc. | Method of gait evaluation and training with differential pressure system |
| US10055550B2 (en) | 2007-10-24 | 2018-08-21 | Medtronic, Inc. | Remote management of therapy programming |
| JP2009112336A (en) | 2007-11-01 | 2009-05-28 | Panasonic Electric Works Co Ltd | Exercise system |
| USD610635S1 (en) | 2007-11-02 | 2010-02-23 | Nustep, Inc. | Recumbent stepper |
| US20090157617A1 (en) | 2007-12-12 | 2009-06-18 | Herlocker Jonathan L | Methods for enhancing digital search query techniques based on task-oriented user activity |
| US20110119212A1 (en) | 2008-02-20 | 2011-05-19 | Hubert De Bruin | Expert system for determining patient treatment response |
| US20090211395A1 (en) | 2008-02-25 | 2009-08-27 | Mul E Leonard | Adjustable pedal system for exercise bike |
| US20110010188A1 (en) | 2008-02-29 | 2011-01-13 | Panasonic Electric Works Co., Ltd. | Exercise machine system |
| US20100048358A1 (en) | 2008-03-03 | 2010-02-25 | Nike, Inc. | Interactive Athletic Equipment System |
| US20120278759A1 (en) | 2008-05-07 | 2012-11-01 | Carrot Medical Llc | Integration system for medical instruments with remote control |
| US20090287503A1 (en) | 2008-05-16 | 2009-11-19 | International Business Machines Corporation | Analysis of individual and group healthcare data in order to provide real time healthcare recommendations |
| US7969315B1 (en) | 2008-05-28 | 2011-06-28 | MedHab, LLC | Sensor device and method for monitoring physical stresses placed upon a user |
| US20090299766A1 (en) | 2008-05-30 | 2009-12-03 | International Business Machines Corporation | System and method for optimizing medical treatment planning and support in difficult situations subject to multiple constraints and uncertainties |
| US8113991B2 (en) | 2008-06-02 | 2012-02-14 | Omek Interactive, Ltd. | Method and system for interactive fitness training program |
| US20110087137A1 (en) | 2008-06-16 | 2011-04-14 | Reed Hanoun | Mobile fitness and personal caloric management system |
| US8021270B2 (en) | 2008-07-03 | 2011-09-20 | D Eredita Michael | Online sporting system |
| US9272091B2 (en) | 2008-07-11 | 2016-03-01 | Medtronic, Inc. | Posture state display on medical device user interface |
| US20150088544A1 (en) | 2008-07-24 | 2015-03-26 | Ideal Life Inc. | Facilitating health management of subjects |
| KR101042258B1 (en) | 2008-07-30 | 2011-06-17 | 창명제어기술 (주) | Remote control system of shoulder joint therapy device |
| US20100076786A1 (en) | 2008-08-06 | 2010-03-25 | H.Lee Moffitt Cancer Center And Research Institute, Inc. | Computer System and Computer-Implemented Method for Providing Personalized Health Information for Multiple Patients and Caregivers |
| US10413222B1 (en) | 2008-08-13 | 2019-09-17 | Cleveland Medical Devices Inc | Medical device and method with improved biometric verification |
| US20140194251A1 (en) | 2008-08-22 | 2014-07-10 | Alton Reich | Adaptive motor resistance video game exercise apparatus and method of use thereof |
| US20110195819A1 (en) | 2008-08-22 | 2011-08-11 | James Shaw | Adaptive exercise equipment apparatus and method of use thereof |
| US20140194250A1 (en) | 2008-08-22 | 2014-07-10 | Alton Reich | Remote adaptive motor resistance training exercise apparatus and method of use thereof |
| US20100062818A1 (en) * | 2008-09-09 | 2010-03-11 | Apple Inc. | Real-time interaction with a virtual competitor while performing an exercise routine |
| US20140372133A1 (en) | 2008-10-01 | 2014-12-18 | RedBrick Health Corporation | System and method for incentive-based health improvement programs and services |
| TWI442956B (en) | 2008-11-07 | 2014-07-01 | Univ Nat Chunghsing | Intelligent control method and system for treadmill |
| US8287434B2 (en) | 2008-11-16 | 2012-10-16 | Vyacheslav Zavadsky | Method and apparatus for facilitating strength training |
| US20100173747A1 (en) | 2009-01-08 | 2010-07-08 | Cycling & Health Tech Industry R & D Center | Upper-limb training apparatus |
| US20100268304A1 (en) | 2009-01-13 | 2010-10-21 | Matos Jeffrey A | Controlling a personal medical device |
| US20100234184A1 (en) | 2009-03-14 | 2010-09-16 | Le Page Frederick | Method and apparatus for controlling physical exertion |
| US20100248899A1 (en) | 2009-03-25 | 2010-09-30 | Bedell Daniel J | Exercise apparatus with automatically adjustable foot motion |
| US8079937B2 (en) | 2009-03-25 | 2011-12-20 | Daniel J Bedell | Exercise apparatus with automatically adjustable foot motion |
| US20100248905A1 (en) | 2009-03-26 | 2010-09-30 | Tung-Wu Lu | Exercise apparatus |
| US20110172059A1 (en) | 2009-03-27 | 2011-07-14 | Icon Ip, Inc. | System and method for exercising |
| US8845493B2 (en) | 2009-03-27 | 2014-09-30 | Icon Ip, Inc. | System and method for exercising |
| US20100298102A1 (en) | 2009-04-16 | 2010-11-25 | Caitlyn Joyce Bosecker | Dynamic lower limb rehabilitation robotic apparatus and method of rehabilitating human gait |
| US20100293003A1 (en) | 2009-04-29 | 2010-11-18 | Abbo Fred E | Personal Medical Data Device and Associated Methods |
| US20110047108A1 (en) | 2009-08-21 | 2011-02-24 | Mr. Neilin Chakrabarty | Method for Managing Obesity, Diabetes and Other Glucose-Spike-Induced Diseases |
| WO2011025322A2 (en) | 2009-08-28 | 2011-03-03 | (주)누가의료기 | Exercise prescription system |
| US20110082007A1 (en) * | 2009-10-02 | 2011-04-07 | Birrell James S | Exercise community system |
| US7955219B2 (en) | 2009-10-02 | 2011-06-07 | Precor Incorporated | Exercise community system |
| US20110218462A1 (en) | 2009-10-27 | 2011-09-08 | Smith Malcolm J | System for Measurement and Analysis of Movement of Anatomical Joints and/or Mechanical Systems |
| US9707147B2 (en) | 2009-12-17 | 2017-07-18 | Headway Ltd. | “Teach and repeat” method and apparatus for physiotherapeutic applications |
| US20130296987A1 (en) | 2009-12-18 | 2013-11-07 | Lesco L. Rogers | Systems, Methods and Apparatus for Delivering Nerve Stimulation to a Patient with Physician Oversight |
| US9295878B2 (en) | 2009-12-21 | 2016-03-29 | Core Industries, Llc | Instructional displays and methods for an exercise machine |
| JP2013515995A (en) | 2009-12-28 | 2013-05-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Biofeedback for program guidance in respiratory rehabilitation |
| US8172724B2 (en) | 2010-02-16 | 2012-05-08 | Neal Solomon | Computer automated physical fitness system |
| US9167281B2 (en) | 2010-02-26 | 2015-10-20 | Panasonic Intellectual Property Management Co., Ltd. | Transport stream packet header compression |
| US20110218814A1 (en) | 2010-03-05 | 2011-09-08 | Applied Health Services, Inc. | Method and system for assessing a patient's condition |
| US20160045170A1 (en) | 2010-03-30 | 2016-02-18 | Sony Corporation | Information processing device, image output method, and program |
| US9872637B2 (en) | 2010-04-21 | 2018-01-23 | The Rehabilitation Institute Of Chicago | Medical evaluation system and method using sensors in mobile devices |
| US20130108594A1 (en) | 2010-04-29 | 2013-05-02 | Nhs Blood & Transplant | Method for evaluating angiogenic potential |
| US20110281249A1 (en) | 2010-05-14 | 2011-11-17 | Nicholas Gammell | Method And System For Creating Personalized Workout Programs |
| US20120130197A1 (en) | 2010-05-24 | 2012-05-24 | Welch Allyn, Inc. | Quality measurements reporting for patient care |
| US20110306846A1 (en) | 2010-06-15 | 2011-12-15 | Ivan Osorio | Systems approach to disease state and health assessment |
| US20140200414A1 (en) | 2010-06-15 | 2014-07-17 | Flint Hills Scientific, L.L.C. | Systems approach to comorbidity assessment |
| US10507358B2 (en) | 2010-07-12 | 2019-12-17 | Polar Electro Oy | Analyzing physiological state for fitness exercise |
| US20160302666A1 (en) | 2010-07-30 | 2016-10-20 | Fawzi Shaya | System, method and apparatus for performing real-time virtual medical examinations |
| US20120041771A1 (en) | 2010-08-11 | 2012-02-16 | Cosentino Daniel L | Systems, methods, and computer program products for patient monitoring |
| US20220258935A1 (en) | 2010-08-13 | 2022-08-18 | Daniel L. Kraft | System and methods for the production of personalized drug products |
| CN101964151A (en) | 2010-08-13 | 2011-02-02 | 同济大学 | Remote access and video conference system-based remote practical training method |
| US20160322078A1 (en) | 2010-08-26 | 2016-11-03 | Blast Motion Inc. | Multi-sensor event detection and tagging system |
| US20120065987A1 (en) | 2010-09-09 | 2012-03-15 | Siemens Medical Solutions Usa, Inc. | Computer-Based Patient Management for Healthcare |
| CN201889024U (en) | 2010-09-13 | 2011-07-06 | 体之杰(北京)网络科技有限公司 | Novel vertical exercise bike capable of networking for competitive game |
| US8613689B2 (en) | 2010-09-23 | 2013-12-24 | Precor Incorporated | Universal exercise guidance system |
| US9629558B2 (en) | 2010-09-30 | 2017-04-25 | Fitbit, Inc. | Portable monitoring devices and methods of operating same |
| US8465398B2 (en) | 2010-10-12 | 2013-06-18 | Superweigh Enterprise Co., Ltd. | Elliptical exercise apparatus |
| US8515777B1 (en) | 2010-10-13 | 2013-08-20 | ProcessProxy Corporation | System and method for efficient provision of healthcare |
| US9872087B2 (en) | 2010-10-19 | 2018-01-16 | Welch Allyn, Inc. | Platform for patient monitoring |
| US20120183939A1 (en) | 2010-11-05 | 2012-07-19 | Nike, Inc. | Method and system for automated personal training |
| US20120130196A1 (en) | 2010-11-24 | 2012-05-24 | Fujitsu Limited | Mood Sensor |
| US20160197918A1 (en) | 2010-11-29 | 2016-07-07 | Biocatch Ltd. | Device, system, and method of password-less user authentication and password-less detection of user identity |
| US20160294837A1 (en) | 2010-11-29 | 2016-10-06 | Biocatch Ltd. | Device, system, and method of recovery and resetting of user authentication factor |
| KR101258250B1 (en) | 2010-12-31 | 2013-04-25 | 동신대학교산학협력단 | bicycle exercise system using virtual reality |
| US20120167709A1 (en) | 2011-01-03 | 2012-07-05 | Kung-Cheng Chen | Length adjustable bicycle crank |
| US20150099458A1 (en) | 2011-01-14 | 2015-04-09 | Covidien Lp | Network-Capable Medical Device for Remote Monitoring Systems |
| US20120190502A1 (en) | 2011-01-21 | 2012-07-26 | David Paulus | Adaptive exercise profile apparatus and method of use thereof |
| US20130345025A1 (en) | 2011-03-08 | 2013-12-26 | Willem Mare van der Merwe | Exercise apparatus |
| US20120232438A1 (en) | 2011-03-11 | 2012-09-13 | For You, Inc. | Orthosis Machine |
| US20150257679A1 (en) | 2011-03-24 | 2015-09-17 | MedHab, LLC | System and method for monitoring a runner's gait |
| EP2688472B1 (en) | 2011-03-24 | 2016-04-27 | Medhab, LLC | SENSOR DEVICE for monitoring physical rehabilitation |
| US10004946B2 (en) | 2011-03-24 | 2018-06-26 | MedHab, LLC | System and method for monitoring power applied to a bicycle |
| WO2012128801A1 (en) | 2011-03-24 | 2012-09-27 | MedHab, LLC | Sensor device and method |
| US9993181B2 (en) | 2011-03-24 | 2018-06-12 | Med Hab, LLC | System and method for monitoring a runner'S gait |
| US20130211281A1 (en) | 2011-03-24 | 2013-08-15 | MedHab, LLC | Sensor system for monitoring a foot during treatment and rehabilitation |
| US20150025816A1 (en) | 2011-03-24 | 2015-01-22 | MedHab, LLC | System and method for monitoring power applied to a bicycle |
| US9914053B2 (en) | 2011-03-28 | 2018-03-13 | Brian M. Dugan | Systems and methods for fitness and video games |
| US10074148B2 (en) | 2011-03-31 | 2018-09-11 | Rite Aid Hdqtrs. Corp. | Medical kiosk and method of use |
| US20120259648A1 (en) | 2011-04-07 | 2012-10-11 | Full Recovery, Inc. | Systems and methods for remote monitoring, management and optimization of physical therapy treatment |
| US20120259649A1 (en) | 2011-04-07 | 2012-10-11 | Full Recovery, Inc. | Systems and methods for remote monitoring, management and optimization of physical therapy treatment |
| RU2607953C2 (en) | 2011-05-16 | 2017-01-11 | дакадоо аг | Capturing of optical data on exercises in addition to calculation of assessment of health |
| US20120296455A1 (en) | 2011-05-16 | 2012-11-22 | Quentiq AG | Optical data capture of exercise data in furtherance of a health score computation |
| US9044630B1 (en) | 2011-05-16 | 2015-06-02 | David L. Lampert | Range of motion machine and method and adjustable crank |
| US20130137550A1 (en) | 2011-05-20 | 2013-05-30 | The Regents Of The University Of Michigan | Targeted limb rehabilitation using a reward bias |
| US20120310667A1 (en) | 2011-06-03 | 2012-12-06 | Roy Altman | Dynamic clinical pathways |
| WO2013002568A2 (en) | 2011-06-30 | 2013-01-03 | 한국과학기술원 | Method for suggesting appropriate exercise intensity through estimation of maximal oxygen intake |
| US9256711B2 (en) | 2011-07-05 | 2016-02-09 | Saudi Arabian Oil Company | Systems, computer medium and computer-implemented methods for providing health information to employees via augmented reality display |
| US20130123667A1 (en) | 2011-08-08 | 2013-05-16 | Ravi Komatireddy | Systems, apparatus and methods for non-invasive motion tracking to augment patient administered physical rehabilitation |
| JP5804063B2 (en) | 2011-08-10 | 2015-11-04 | 株式会社島津製作所 | Rehabilitation equipment |
| CN202220794U (en) | 2011-08-12 | 2012-05-16 | 力伽实业股份有限公司 | The crank structure of the rotating object of sports equipment |
| US20150149217A1 (en) | 2011-08-13 | 2015-05-28 | Matthias W. Rath | Method and system for real time visualization of individual health condition on a mobile device |
| US8607465B1 (en) | 2011-08-26 | 2013-12-17 | General Tools & Instruments Company Llc | Sliding T bevel with digital readout |
| EP2564904A1 (en) | 2011-08-30 | 2013-03-06 | Technogym S.p.A. | Exercise machine and method for performing an exercise |
| US20140207486A1 (en) | 2011-08-31 | 2014-07-24 | Lifeguard Health Networks, Inc. | Health management system |
| US20130066647A1 (en) | 2011-09-09 | 2013-03-14 | Depuy Spine, Inc. | Systems and methods for surgical support and management |
| EP2575064A1 (en) | 2011-09-30 | 2013-04-03 | General Electric Company | Telecare and/or telehealth communication method and system |
| US20170258370A1 (en) | 2011-10-09 | 2017-09-14 | The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center | Freezing of gait (fog), detection, prediction and/or treatment |
| US20160373477A1 (en) | 2011-10-18 | 2016-12-22 | Mcafee, Inc. | User behavioral risk assessment |
| US9443205B2 (en) | 2011-10-24 | 2016-09-13 | President And Fellows Of Harvard College | Enhancing diagnosis of disorder through artificial intelligence and mobile health technologies without compromising accuracy |
| US20130110545A1 (en) | 2011-11-02 | 2013-05-02 | William Smallwood | System and Methods for Managing Patients and Services |
| US20170344726A1 (en) | 2011-11-03 | 2017-11-30 | Omada Health, Inc. | Method and system for supporting a health regimen |
| US20130123071A1 (en) | 2011-11-15 | 2013-05-16 | Icon Health & Fitness, Inc. | Heart Rate Based Training System |
| US20130318027A1 (en) | 2011-11-20 | 2013-11-28 | Gal Almogy | System and method to enable detection of viral infection by users of electronic communication devices |
| US10468131B2 (en) | 2011-11-23 | 2019-11-05 | Remedev, Inc. | Remotely-executed medical diagnosis and therapy including emergency automation |
| US20190115097A1 (en) | 2011-11-23 | 2019-04-18 | Remedev, Inc. | Remotely-executed medical diagnosis and therapy including emergency automation |
| US20130137552A1 (en) | 2011-11-25 | 2013-05-30 | Sony Corporation | Electronic fitness trainer and method for operating an electronic fitness trainer |
| US20150112230A1 (en) | 2011-11-28 | 2015-04-23 | Remendium Labs Llc | Treatment of male urinary incontinence and sexual dysfunction |
| US20130165195A1 (en) * | 2011-12-23 | 2013-06-27 | Icon Health & Fitness, Inc. | Competitive Race System |
| US20130178334A1 (en) | 2012-01-06 | 2013-07-11 | Icon Health & Fitness, Inc. | Exercise Device Having Communication Linkage For Connection With External Computing Device |
| US20190105551A1 (en) | 2012-02-10 | 2019-04-11 | Envisionbody, Llc | Process to Aid in Motivation of Personal Fitness, Health Monitoring and Validation of User |
| WO2013122839A1 (en) | 2012-02-13 | 2013-08-22 | MedHab, LLC | Belt-mounted movement sensor system |
| EP2815242A4 (en) | 2012-02-13 | 2015-10-14 | Medhab Llc | Belt-mounted movement sensor system |
| EP2815242A1 (en) | 2012-02-13 | 2014-12-24 | Medhab, LLC | Belt-mounted movement sensor system |
| US9367668B2 (en) | 2012-02-28 | 2016-06-14 | Precor Incorporated | Dynamic fitness equipment user interface adjustment |
| US8893287B2 (en) | 2012-03-12 | 2014-11-18 | Microsoft Corporation | Monitoring and managing user privacy levels |
| US20130253943A1 (en) | 2012-03-21 | 2013-09-26 | Samsung Electronics Co., Ltd. | Exercise management apparatus, system and method |
| CN104335211A (en) | 2012-04-04 | 2015-02-04 | 卡迪欧康有限责任公司 | Health-monitoring system with multiple health monitoring devices, interactive voice recognition, and mobile interfaces for data collection and transmission |
| US20140113261A1 (en) | 2012-04-11 | 2014-04-24 | System Instruments Co., Ltd. | Training apparatus |
| US20130274069A1 (en) | 2012-04-12 | 2013-10-17 | Icon Health & Fitness, Inc. | System And Method For Simulating Real World Exercise Sessions |
| US20140006042A1 (en) | 2012-05-08 | 2014-01-02 | Richard Keefe | Methods for conducting studies |
| US10089443B2 (en) | 2012-05-15 | 2018-10-02 | Baxter International Inc. | Home medical device systems and methods for therapy prescription and tracking, servicing and inventory |
| CN102670381A (en) | 2012-05-31 | 2012-09-19 | 上海海事大学 | Full-automatic lower limb rehabilitation treatment instrument |
| US10867695B2 (en) | 2012-06-04 | 2020-12-15 | Pharmalto, Llc | System and method for comprehensive health and wellness mobile management |
| US20130332616A1 (en) | 2012-06-08 | 2013-12-12 | Unitedhealth Group Incorporated | Interactive sessions with participants and providers |
| US20140188009A1 (en) | 2012-07-06 | 2014-07-03 | University Of Southern California | Customizable activity training and rehabilitation system |
| EP2869805A1 (en) | 2012-07-09 | 2015-05-13 | Medhab, LLC | Therapeutic sleeve device |
| WO2014011447A1 (en) | 2012-07-09 | 2014-01-16 | MedHab, LLC | Therapeutic sleeve device |
| US20140031174A1 (en) | 2012-07-27 | 2014-01-30 | Chien-Hsiang Huang | Height adjusting mechanism for a pedaling device of a pedal exerciser |
| US20140228649A1 (en) | 2012-07-30 | 2014-08-14 | Treefrog Developments, Inc. | Activity monitoring |
| US10322315B2 (en) | 2012-07-31 | 2019-06-18 | Peloton Interactive, Inc. | Exercise system and method |
| US20170004260A1 (en) | 2012-08-16 | 2017-01-05 | Ginger.io, Inc. | Method for providing health therapeutic interventions to a user |
| US20170000422A1 (en) | 2012-08-16 | 2017-01-05 | Ginger.io, Inc. | Method and system for modeling behavior and heart disease state |
| US20180075205A1 (en) | 2012-08-16 | 2018-03-15 | Ginger.io, Inc. | Method and system for providing automated conversations |
| US10741285B2 (en) | 2012-08-16 | 2020-08-11 | Ginger.io, Inc. | Method and system for providing automated conversations |
| US20140062900A1 (en) | 2012-08-31 | 2014-03-06 | Greatbatch Ltd. | Virtual Reality Representation of Medical Devices |
| US20190060708A1 (en) | 2012-08-31 | 2019-02-28 | Blue Goji Llc | Virtual reality and mixed reality enhanced exercise machine |
| US20190209891A1 (en) | 2012-08-31 | 2019-07-11 | Blue Goji Llc | Virtual reality and mixed reality enhanced elliptical exercise trainer |
| US20200188774A1 (en) | 2012-08-31 | 2020-06-18 | Blue Goji Llc | Full body movement control of dual joystick operated devices |
| US20180290017A1 (en) | 2012-08-31 | 2018-10-11 | Blue Goji Llc | System and method for a mixed or virtual reality-enhanced stationary exercise bicycle |
| US20150251074A1 (en) | 2012-09-04 | 2015-09-10 | Whoop, Inc. | Automated exercise recommendations |
| US20140074179A1 (en) | 2012-09-10 | 2014-03-13 | Dustin A Heldman | Movement disorder therapy system, devices and methods, and intelligent methods of tuning |
| US20190132948A1 (en) | 2012-09-11 | 2019-05-02 | L.I.F.E. Corporation S.A. | Physiological monitoring garments |
| US20140089836A1 (en) | 2012-09-21 | 2014-03-27 | Md Revolution, Inc. | Interactive graphical user interfaces for implementing personalized health and wellness programs |
| US20140172442A1 (en) | 2012-10-03 | 2014-06-19 | Jeff Broderick | Systems and Methods to Assess Clinical Status and Response to Drug Therapy and Exercise |
| US9997082B2 (en) | 2012-10-09 | 2018-06-12 | Kc Holdings I | Personalized avatar responsive to user physical state and context |
| US20160086500A1 (en) | 2012-10-09 | 2016-03-24 | Kc Holdings I | Personalized avatar responsive to user physical state and context |
| US20140108035A1 (en) | 2012-10-11 | 2014-04-17 | Kunter Seref Akbay | System and method to automatically assign resources in a network of healthcare enterprises |
| CN103136447B (en) | 2012-10-15 | 2016-08-03 | 四川旭康医疗电器有限公司 | Implementation method based on the medical system embedding wireless communication module |
| US9579056B2 (en) | 2012-10-16 | 2017-02-28 | University Of Florida Research Foundation, Incorporated | Screening for neurological disease using speech articulation characteristics |
| US20140113768A1 (en) | 2012-10-19 | 2014-04-24 | Industrial Technology Research Institute | Exercise bike and operation method thereof |
| US20140135173A1 (en) * | 2012-10-31 | 2014-05-15 | Icon Health & Fitness, Inc. | System and method for an interactive exercise routine |
| KR101325581B1 (en) | 2012-11-12 | 2013-11-06 | 이수호 | Integrated diagnosis and treatment device for urinary incontinence and sexual dysfunction through connection to smart phone |
| US20150290061A1 (en) | 2012-11-16 | 2015-10-15 | Hill-Rom Services, Inc. | Person support apparatuses having exercise therapy features |
| JP2014104139A (en) | 2012-11-27 | 2014-06-09 | Toshiba Corp | Rehabilitation information processing system, information processor, and information management device |
| US20140172514A1 (en) | 2012-12-14 | 2014-06-19 | Level 3 Communications, Inc. | Method and apparatus for calculating performance indicators |
| US20140172460A1 (en) | 2012-12-19 | 2014-06-19 | Navjot Kohli | System, Method, and Computer Program Product for Digitally Recorded Musculoskeletal Diagnosis and Treatment |
| US9312907B2 (en) | 2013-01-03 | 2016-04-12 | Claris Healthcare, Inc. | Computer apparatus for use by senior citizens |
| US9004598B2 (en) | 2013-01-08 | 2015-04-14 | Nustep, Inc. | Seating system for a recumbent stepper |
| US20150351665A1 (en) | 2013-01-24 | 2015-12-10 | MedHab, LLC | Method for measuring power generated during running |
| US20150351664A1 (en) | 2013-01-24 | 2015-12-10 | MedHab, LLC | System for measuring power generated during running |
| US20140246499A1 (en) | 2013-03-04 | 2014-09-04 | Hello Inc. | Wearable device with magnets having first and second polarities |
| US20140257837A1 (en) | 2013-03-05 | 2014-09-11 | Clinton Colin Graham Walker | Automated interactive health care application for patient care |
| US20160015995A1 (en) | 2013-03-11 | 2016-01-21 | The Regents Of The University Of California | Portable transcutaneous magnetic stimulator and systems and methods of use thereof |
| WO2014163976A1 (en) | 2013-03-11 | 2014-10-09 | Smith Kelly Ann | Equipment, system and method for improving exercise efficiency in a cardio-fitness machine |
| US20170080320A1 (en) | 2013-03-11 | 2017-03-23 | Kelly Ann Smith | Equipment, system and method for improving exercise efficiency in a cardio-fitness machine |
| US20140256511A1 (en) | 2013-03-11 | 2014-09-11 | Kelly Ann Smith | Equipment, System and Method for Improving Exercise Efficiency In A Cardio-Fitness Machine |
| US8911327B1 (en) | 2013-03-12 | 2014-12-16 | Robert B. Boyette | Rehabilitation device and method |
| US20140274565A1 (en) | 2013-03-12 | 2014-09-18 | Robert B. Boyette | Rehabilitation device and method |
| US8864628B2 (en) | 2013-03-12 | 2014-10-21 | Robert B. Boyette | Rehabilitation device and method |
| US20140275816A1 (en) | 2013-03-13 | 2014-09-18 | Covidien Lp | Wireless patient monitoring system |
| US20160081594A1 (en) | 2013-03-13 | 2016-03-24 | Virtusense Technologies | Range of motion system, and method |
| US20190392939A1 (en) | 2013-03-14 | 2019-12-26 | Alterg, Inc. | Systems and methods for management and scheduling of differential air pressure and other unweighted or assisted treatment systems |
| US20200221975A1 (en) | 2013-03-14 | 2020-07-16 | Alterg, Inc. | Method of gait evaluation and training with differential pressure system |
| GB2512431A (en) | 2013-03-14 | 2014-10-01 | Baxter Int | Control of a water device via a dialysis machine user interface |
| US10369021B2 (en) | 2013-03-14 | 2019-08-06 | Ekso Bionics, Inc. | Powered orthotic system for cooperative overground rehabilitation |
| US9248071B1 (en) | 2013-03-15 | 2016-02-02 | Ergoflex, Inc. | Walking, rehabilitation and exercise machine |
| US20140347265A1 (en) | 2013-03-15 | 2014-11-27 | Interaxon Inc. | Wearable computing apparatus and method |
| US20140274622A1 (en) | 2013-03-15 | 2014-09-18 | Duodesk Llc | Exercise device, connector and methods of use thereof |
| US10424033B2 (en) | 2013-03-15 | 2019-09-24 | Breg, Inc. | Healthcare practice management systems and methods |
| US8823448B1 (en) | 2013-03-29 | 2014-09-02 | Hamilton Sundstrand Corporation | Feed forward active EMI filters |
| US20140303540A1 (en) | 2013-04-08 | 2014-10-09 | Elwha Llc | Apparatus, System, and Method for Controlling Movement of an Orthopedic Joint Prosthesis in a Mammalian Subject |
| US9311789B1 (en) | 2013-04-09 | 2016-04-12 | BioSensics LLC | Systems and methods for sensorimotor rehabilitation |
| KR20140128630A (en) | 2013-04-29 | 2014-11-06 | 주식회사 케이티 | Remote treatment system and patient terminal |
| US20140322686A1 (en) | 2013-04-30 | 2014-10-30 | Rehabtics LLC | Methods for providing telemedicine services |
| EP2997951A1 (en) | 2013-05-31 | 2016-03-23 | Sichuan Xukang Medical Electrical Equipment Co., Ltd. | Joint rehabilitation training system based on remote control and implementation method therefor |
| CN105263448A (en) | 2013-05-31 | 2016-01-20 | 哈佛大学校长及研究员协会 | Soft robotic armor for assisting human locomotion |
| CN103263336A (en) | 2013-05-31 | 2013-08-28 | 四川旭康医疗电器有限公司 | Electric type joint rehabilitation training system based on remote control and implementing method thereof |
| RU2014131288A (en) | 2013-05-31 | 2016-02-20 | Сычуань Ксуканг Медикал Электрикал Эквипмент Ко., Лтд. | System for restorative training of joints with remote control, method for its implementation and method for assessing the degree of joint mobility |
| KR101580071B1 (en) | 2013-05-31 | 2015-12-23 | 쓰추안 쉬캉 메디컬 일렉트리컬 이큅먼트 컴퍼니., 리미티드. | Joint Rehabilitation Training System Based on the Remote Control, its Implementation Method and Evaluation Method of Joint Range of Motion |
| KR20150017693A (en) | 2013-05-31 | 2015-02-17 | 쓰추안 쉬캉 메디컬 일렉트리컬 이큅먼트 컴퍼니., 리미티드. | Joint Rehabilitation Training System Based on the Remote Control, its Implementation Method and Evaluation Method of Joint Range of Motion |
| US9813239B2 (en) | 2013-06-03 | 2017-11-07 | Osim International Ltd | System and method for providing massage related services |
| US10475537B2 (en) | 2013-06-12 | 2019-11-12 | University Health Network | Method and system for automated quality assurance and automated treatment planning in radiation therapy |
| US20150157938A1 (en) | 2013-06-13 | 2015-06-11 | Biogaming Ltd | Personal digital trainer for physiotheraputic and rehabilitative video games |
| US11094400B2 (en) | 2013-07-02 | 2021-08-17 | TapCloud LLC | System, method and apparatus for processing patient information and feedback |
| CN103390357A (en) | 2013-07-24 | 2013-11-13 | 天津开发区先特网络系统有限公司 | Training and study service device, training system and training information management method |
| US20150045700A1 (en) | 2013-08-09 | 2015-02-12 | University Of Washington Through Its Center For Commercialization | Patient activity monitoring systems and associated methods |
| US11527326B2 (en) | 2013-08-12 | 2022-12-13 | Cerner Innovation, Inc. | Dynamically determining risk of clinical condition |
| US20150379232A1 (en) | 2013-08-12 | 2015-12-31 | Orca Health, Inc. | Diagnostic computer systems and diagnostic user interfaces |
| WO2015026744A1 (en) | 2013-08-17 | 2015-02-26 | MedHab, LLC | System and method for monitoring power applied to a bicycle |
| US20150051721A1 (en) | 2013-08-19 | 2015-02-19 | bOMDIC Inc. | Exercise assistive device |
| CN103473631A (en) | 2013-08-26 | 2013-12-25 | 无锡同仁(国际)康复医院 | Rehabilitation therapy management system |
| US9868028B2 (en) | 2013-09-04 | 2018-01-16 | Considerc Inc. | Virtual reality indoor bicycle exercise system using mobile device |
| US20150073814A1 (en) | 2013-09-06 | 2015-03-12 | Comprehensive Physical Consultants, Inc. | Physical therapy patient accountability and compliance system |
| CN103488880A (en) | 2013-09-09 | 2014-01-01 | 上海交通大学 | Remote medical rehabilitation system in smart city |
| CN103501328A (en) | 2013-09-26 | 2014-01-08 | 浙江大学城市学院 | Method and system for realizing intelligence of exercise bicycle based on wireless network transmission |
| US11347829B1 (en) | 2013-09-26 | 2022-05-31 | ClearHealthBill, LLC | Method and system for calculating expected healthcare costs from insurance policy parameters |
| US9827445B2 (en) | 2013-09-27 | 2017-11-28 | Varian Medical Systems International Ag | Automatic creation and selection of dose prediction models for treatment plans |
| US20150094192A1 (en) | 2013-09-27 | 2015-04-02 | Physitrack Limited | Exercise protocol creation and management system |
| US20150099952A1 (en) | 2013-10-04 | 2015-04-09 | Covidien Lp | Apparatus, systems, and methods for cardiopulmonary monitoring |
| US20150130830A1 (en) | 2013-10-11 | 2015-05-14 | Seiko Epson Corporation | Measurement information display apparatus, measurement information display system, and measurement information display method |
| US20190088356A1 (en) | 2013-10-15 | 2019-03-21 | Parkland Center For Clinical Innovation | System and Method for a Payment Exchange Based on an Enhanced Patient Care Plan |
| US20160143593A1 (en) | 2013-10-16 | 2016-05-26 | University of Central Oklahoma | Intelligent apparatus for patient guidance and data capture during physical therapy and wheelchair usage |
| US9474935B2 (en) | 2013-10-17 | 2016-10-25 | Prova Research Inc. | All-in-one smart console for exercise machine |
| US20150112702A1 (en) | 2013-10-17 | 2015-04-23 | Raymond Anthony Joao | Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information with or using an electronic healthcare record and genetic information and/or genetic-related information |
| US20150111644A1 (en) | 2013-10-22 | 2015-04-23 | Todd Christopher Larson | Player ranking system based on multiple quantitative and qualitative scoring types |
| WO2015065298A1 (en) | 2013-10-30 | 2015-05-07 | Mehmet Tansu | Method for preparing a customized exercise strategy |
| US20170270260A1 (en) | 2013-10-31 | 2017-09-21 | Knox Medical Diagnostics | Systems and methods for monitoring respiratory function |
| US20160275259A1 (en) | 2013-11-01 | 2016-09-22 | Koninklijke Philips N.V. | Patient feedback for uses of therapeutic device |
| CN105683977A (en) | 2013-11-01 | 2016-06-15 | 皇家飞利浦有限公司 | Patient feedback for use of therapeutic device |
| US20170243028A1 (en) | 2013-11-01 | 2017-08-24 | Anonos Inc. | Systems and Methods for Enhancing Data Protection by Anonosizing Structured and Unstructured Data and Incorporating Machine Learning and Artificial Intelligence in Classical and Quantum Computing Environments |
| US9919198B2 (en) | 2013-11-11 | 2018-03-20 | Breg, Inc. | Automated physical therapy systems and methods |
| US20180280784A1 (en) | 2013-11-11 | 2018-10-04 | Breg, Inc. | Physical therapy management system |
| US10058473B2 (en) | 2013-11-14 | 2018-08-28 | Murata Machinery, Ltd. | Training apparatus |
| US20160166833A1 (en) | 2013-11-15 | 2016-06-16 | Uk Do-I Co., Ltd. | Seating apparatus for diagnosis and treatment of diagnosing and curing urinary incontinence, erectile dysfunction and defecation disorders |
| US20150142142A1 (en) | 2013-11-17 | 2015-05-21 | Team Sport IP, LLC | Method and system to assist in player development |
| TWM474545U (en) | 2013-11-18 | 2014-03-21 | Wanin Internat Co Ltd | Fitness equipment in combination with cloud services |
| US20150141200A1 (en) | 2013-11-21 | 2015-05-21 | Dyaco International, Inc. | Recumbent exercise machines and associated systems and methods |
| US9802076B2 (en) | 2013-11-21 | 2017-10-31 | Dyaco International, Inc. | Recumbent exercise machines and associated systems and methods |
| US11229788B1 (en) | 2013-11-27 | 2022-01-25 | Ebt Medical, Inc. | Systems for improving neurostimulation compliance using a patient interface module |
| USD744050S1 (en) | 2013-11-29 | 2015-11-24 | 3D Innovations, LLC | Desk exercise cycle |
| WO2015082555A1 (en) | 2013-12-04 | 2015-06-11 | Mark Oleynik | Computational medical treatment plan method and system with mass medical analysis |
| US20150339442A1 (en) | 2013-12-04 | 2015-11-26 | Mark Oleynik | Computational medical treatment plan method and system with mass medical analysis |
| US20150161331A1 (en) | 2013-12-04 | 2015-06-11 | Mark Oleynik | Computational medical treatment plan method and system with mass medical analysis |
| US20170202724A1 (en) | 2013-12-09 | 2017-07-20 | President And Fellows Of Harvard College | Assistive Flexible Suits, Flexible Suit Systems, and Methods for Making and Control Thereof to Assist Human Mobility |
| US9481428B2 (en) | 2013-12-10 | 2016-11-01 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dynamometric cycle pedal |
| US20150161876A1 (en) | 2013-12-10 | 2015-06-11 | Sal Castillo | Methods and systems for emergency alerts |
| US9782621B2 (en) | 2013-12-20 | 2017-10-10 | Dyaco International Inc. | Exercise device providing automatic braking |
| US20150174446A1 (en) | 2013-12-20 | 2015-06-25 | Dyaco International Inc. | Exercise device providing automatic calculation of seat position and/or crank length |
| KR20150078191A (en) | 2013-12-30 | 2015-07-08 | 주식회사 사람과기술 | remote medical examination and treatment service system and service method thereof using the system |
| US20150217056A1 (en) | 2013-12-31 | 2015-08-06 | Stratos Group Llc | Therapy systems and methods utilizing tissue oxygenation detection |
| US20150199494A1 (en) | 2014-01-14 | 2015-07-16 | Zsolutionz, LLC | Cloud-based initiation of customized exercise routine |
| US20150196805A1 (en) | 2014-01-14 | 2015-07-16 | Zsolutionz, LLC | Fuzzy logic-based evaluation and feedback of exercise performance |
| US20150196804A1 (en) | 2014-01-14 | 2015-07-16 | Zsolutionz, LLC | Sensor-based evaluation and feedback of exercise performance |
| CN203677851U (en) | 2014-01-16 | 2014-07-02 | 苏州飞源信息技术有限公司 | Indoor intelligent bodybuilding vehicle |
| US10258823B2 (en) | 2014-01-24 | 2019-04-16 | Nustep, Inc. | Instrumented total body recumbent cross trainer system |
| US9757612B2 (en) | 2014-01-24 | 2017-09-12 | Nustep, Inc. | Locking device for recumbent stepper |
| US20160361597A1 (en) | 2014-01-24 | 2016-12-15 | Nustep, Inc. | Instrumented total body recumbent cross trainer system |
| CN103721343A (en) | 2014-01-27 | 2014-04-16 | 纪华雷 | A biofeedback headache treatment instrument and a headache medical system based on Internet of Things technology |
| JP3193662U (en) | 2014-02-26 | 2014-10-16 | イスラエル・シャミア・レボビッツ | Device for medical monitoring and treatment remote operation application |
| US20170168555A1 (en) | 2014-03-06 | 2017-06-15 | Polar Electro Oy | Device power saving during exercise |
| US11185738B1 (en) | 2014-03-11 | 2021-11-30 | Fitistics, Llc | System and method for processing information |
| US9713744B2 (en) | 2014-03-17 | 2017-07-25 | Mitsubishi Electric Engineering Company, Limited | Exercise therapy device |
| US20150265209A1 (en) | 2014-03-18 | 2015-09-24 | Jack Ke Zhang | Techniques for monitoring prescription compliance using a body-worn device |
| US20190096534A1 (en) | 2014-03-27 | 2019-03-28 | Raymond Anthony Joao | Apparatus and method for providing healthcare services remotely or virtually with or using an electronic healthcare record and/or a communication network |
| US20210202103A1 (en) | 2014-03-28 | 2021-07-01 | Hc1.Com Inc. | Modeling and simulation of current and future health states |
| US20170296861A1 (en) | 2014-04-21 | 2017-10-19 | Colin M. BURKINSHAW | Full body exercise apparatus |
| US20170042467A1 (en) | 2014-04-25 | 2017-02-16 | Massachusetts Institute Of Technology | Feedback Method And Wearable Device To Monitor And Modulate Knee Adduction Moment |
| US20150331997A1 (en) | 2014-05-15 | 2015-11-19 | Raymond Anthony Joao | Apparatus and method for processing and/or providing healthcare information and/or healthcare-related information with or using an electronic healthcare record or electronic healthcare records |
| US11495355B2 (en) | 2014-05-15 | 2022-11-08 | The Johns Hopkins University | Method, system and computer-readable media for treatment plan risk analysis |
| US20190083846A1 (en) | 2014-05-21 | 2019-03-21 | Includehealth, Inc. | Fitness systems and methods thereof |
| US20150335951A1 (en) | 2014-05-21 | 2015-11-26 | IncludeFitness, Inc. | Fitness systems and methods thereof |
| US20150335950A1 (en) | 2014-05-21 | 2015-11-26 | IncludeFitness, Inc. | Fitness systems and methods thereof |
| US20170190052A1 (en) | 2014-06-03 | 2017-07-06 | ArtiMinds Robotics GmbH | Method and system for programming a robot |
| US20150360069A1 (en) | 2014-06-04 | 2015-12-17 | Eduardo M. Marti | Shoulder End Range of Motion Improving Device |
| US20190111299A1 (en) | 2014-06-04 | 2019-04-18 | T-Rex Investment, Inc. | Programmable range of motion system |
| US20170262604A1 (en) | 2014-06-09 | 2017-09-14 | Revon Systems, Inc. | Systems and methods for health tracking and management |
| US20170128769A1 (en) | 2014-06-18 | 2017-05-11 | Alterg, Inc. | Pressure chamber and lift for differential air pressure system with medical data collection capabilities |
| US20150379430A1 (en) | 2014-06-30 | 2015-12-31 | Amazon Technologies, Inc. | Efficient duplicate detection for machine learning data sets |
| US20170132947A1 (en) | 2014-07-03 | 2017-05-11 | Teijin Pharma Limited | Rehabilitation assistance device and program for controlling rehabilitation assistance device |
| US20160023081A1 (en) | 2014-07-16 | 2016-01-28 | Liviu Popa-Simil | Method and accessories to enhance riding experience on vehicles with human propulsion |
| US20230190100A1 (en) | 2014-07-29 | 2023-06-22 | Sempulse Corporation | Enhanced computer-implemented systems and methods of automated physiological monitoring, prognosis, and triage |
| KR20170038837A (en) | 2014-08-05 | 2017-04-07 | 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 | Components, systems and methods of bicycle-based network connectivity and methods for controlling a bicycle having network connectivity |
| US20190163876A1 (en) | 2014-08-20 | 2019-05-30 | Medavail, Inc. | Kiosk Dispenser Interactive Original Order Entry Software Application |
| US10685092B2 (en) | 2014-09-24 | 2020-06-16 | Telecom Italia S.P.A. | Equipment for providing a rehabilitation exercise |
| US20180296157A1 (en) | 2014-09-29 | 2018-10-18 | Pulson, Inc. | Systems and methods for coordinating musculoskeletal and cardiovascular hemodynamics |
| US9283434B1 (en) | 2014-09-30 | 2016-03-15 | Strength Master Fitness Tech Co., Ltd. | Method of detecting and prompting human lower limbs stepping motion |
| US9849337B2 (en) | 2014-10-01 | 2017-12-26 | Michael G. Lannon | Cardio-based exercise systems with visual feedback on exercise programs |
| US20160096073A1 (en) | 2014-10-07 | 2016-04-07 | Umm Al-Qura University | Game-based method and system for physical rehabilitation |
| US20160117471A1 (en) | 2014-10-22 | 2016-04-28 | Jan Belt | Medical event lifecycle management |
| US9737761B1 (en) | 2014-10-29 | 2017-08-22 | REVVO, Inc. | System and method for fitness testing, tracking and training |
| US9977587B2 (en) | 2014-10-30 | 2018-05-22 | Echostar Technologies International Corporation | Fitness overlay and incorporation for home automation system |
| US20180253991A1 (en) | 2014-11-03 | 2018-09-06 | Verily Life Sciences Llc | Methods and Systems for Improving a Presentation Function of a Client Device |
| US20160132643A1 (en) | 2014-11-10 | 2016-05-12 | Accenture Global Services Limited | Medical coding management system using an intelligent coding, reporting, and analytics-focused tool |
| US20170304024A1 (en) | 2014-11-11 | 2017-10-26 | Celestino José Prudente NÓBREGA | Intraoral vibratory multifunctional device and wireless system for interaction between device, patient, and dentist |
| US9480873B2 (en) | 2014-11-25 | 2016-11-01 | High Spot Health Technology Co., Ltd. | Adjusting structure of elliptical trainer |
| US20160158534A1 (en) | 2014-12-03 | 2016-06-09 | Neurohabilitation Corporation | Devices for Delivering Non-Invasive Neuromodulation to a Patient |
| US9802081B2 (en) | 2014-12-12 | 2017-10-31 | Kent State University | Bike system for use in rehabilitation of a patient |
| US20160166881A1 (en) | 2014-12-12 | 2016-06-16 | Kent State University | Bike System For Use In Rehabilitation Of A Patient |
| US20180036593A1 (en) | 2014-12-12 | 2018-02-08 | Angela L. Ridgel | Bike System For Use In Rehabilitation Of A Patient |
| US9974478B1 (en) | 2014-12-19 | 2018-05-22 | Great Lakes Neurotechnologies Inc. | Discreet movement measurement and cueing system for improvement of safety and efficacy of movement |
| US11663673B2 (en) | 2014-12-30 | 2023-05-30 | Johnson Health Tech Co., Ltd | Exercise apparatus with exercise use verification function and verifying method |
| US20160193306A1 (en) | 2015-01-02 | 2016-07-07 | Melaleuca, Inc. | Multi-supplement compositions |
| KR101647620B1 (en) | 2015-01-06 | 2016-08-11 | 주식회사 삼육오엠씨네트웍스 | Remote control available exercise system |
| US20160213924A1 (en) | 2015-01-26 | 2016-07-28 | CyMedica Orthopedics, Inc. | Patient therapy systems and methods |
| US10660534B2 (en) | 2015-01-26 | 2020-05-26 | Samsung Electronics Co., Ltd. | Method, apparatus, and system providing exercise guide information |
| KR20160093990A (en) | 2015-01-30 | 2016-08-09 | 박희재 | Exercise equipment apparatus for controlling animation in virtual reality and method for method for controlling virtual reality animation |
| US10881911B2 (en) | 2015-02-04 | 2021-01-05 | Curexo, Inc. | Gait rehabilitation control system and method therefor |
| US20160250519A1 (en) * | 2015-02-27 | 2016-09-01 | Icon Health & Fitness, Inc. | Simulating Real-World Terrain on an Exercise Device |
| JP3198173U (en) | 2015-03-02 | 2015-06-18 | 岱宇國際股▲分▼有限公司 | Exercise equipment and power supply apparatus thereof |
| US20180052962A1 (en) | 2015-03-10 | 2018-02-22 | Elekta, Inc. | Adaptive treatment management system with a workflow management engine |
| US11272879B2 (en) | 2015-03-23 | 2022-03-15 | Consensus Orthopedics, Inc. | Systems and methods using a wearable device for monitoring an orthopedic implant and rehabilitation |
| US20170143261A1 (en) | 2015-03-23 | 2017-05-25 | Consensus Orthopedics, Inc. | System and methods for monitoring physical therapy and rehabilitation of joints |
| WO2016154318A1 (en) | 2015-03-23 | 2016-09-29 | The Board Of Regents Of The University Of Nebraska | Assistive rehabilitation elliptical system |
| US20170147789A1 (en) | 2015-03-23 | 2017-05-25 | Consensus Orthopedics, Inc. | System and methods with user interfaces for monitoring physical therapy and rehabilitation |
| US20170181698A1 (en) | 2015-03-23 | 2017-06-29 | Consensus Orthopedics, Inc. | Systems and methods using a wearable device for monitoring an orthopedic implant and rehabilitation |
| US20160302721A1 (en) | 2015-03-23 | 2016-10-20 | Consensus Orthopedics, Inc. | System and methods for monitoring an orthopedic implant and rehabilitation |
| WO2016151364A1 (en) | 2015-03-24 | 2016-09-29 | Ares Trading S.A. | Patient care system |
| CN107430641A (en) | 2015-03-24 | 2017-12-01 | 阿雷斯贸易股份有限公司 | Patient care system |
| US20190019573A1 (en) | 2015-03-24 | 2019-01-17 | Ares Trading S.A. | Patient care system |
| US20190046794A1 (en) | 2015-03-27 | 2019-02-14 | Equility Llc | Multi-factor control of ear stimulation |
| US20160287166A1 (en) | 2015-04-03 | 2016-10-06 | Bao Tran | Personal monitoring system |
| US20180099178A1 (en) | 2015-04-20 | 2018-04-12 | Michael V. SCHAEFER | Apparatus and method for increased realism of training on exercise machines |
| US20180085615A1 (en) | 2015-04-23 | 2018-03-29 | Muoverti Limited | Improvements In Or Relating To Exercise Equipment |
| US20160325140A1 (en) | 2015-05-04 | 2016-11-10 | Yu Wu | System and method for recording exercise data |
| US20160332028A1 (en) | 2015-05-15 | 2016-11-17 | Irina L. Melnik | Active fitness chair application |
| US10130311B1 (en) | 2015-05-18 | 2018-11-20 | Hrl Laboratories, Llc | In-home patient-focused rehabilitation system |
| US9717947B2 (en) | 2015-05-19 | 2017-08-01 | Rexon Industrial Corp., Ltd. | Climbing exerciser machine with adjustable inclination |
| US20160345841A1 (en) | 2015-05-27 | 2016-12-01 | Samsung Electronics Co., Ltd. | Method and apparatus for estimating physiological index of user at maximal exercise level based on rating of perceived exertion |
| US20180089385A1 (en) | 2015-05-30 | 2018-03-29 | Praxify Technologies, Inc. | Personalized treatment management system |
| US20180146870A1 (en) | 2015-06-02 | 2018-05-31 | CardiacSense Ltd. | Sensing at least one biological parameter, e.g., heart rate or heart rate variability of a subject |
| US20160354636A1 (en) | 2015-06-04 | 2016-12-08 | Samsung Electronics Co., Ltd. | Method and apparatus for providing exercise program based on feedback |
| US20160361025A1 (en) | 2015-06-12 | 2016-12-15 | Merge Healthcare Incorporated | Methods and Systems for Automatically Scoring Diagnoses associated with Clinical Images |
| US10542914B2 (en) | 2015-06-30 | 2020-01-28 | Zibrio Inc. | Identifying fall risk using machine learning algorithms |
| US20200129808A1 (en) | 2015-06-30 | 2020-04-30 | Roman Fomin | Predictive analytics method and system for positively adjusting fitness and/or well-being conditioning |
| US20170147752A1 (en) | 2015-07-03 | 2017-05-25 | Omron Healthcare Co., Ltd. | Health data management device and health data management system |
| US20180199855A1 (en) | 2015-07-07 | 2018-07-19 | The Trustees Of Dartmouth College | Wearable system for autonomous detection of asthma symptoms and inhaler use, and for asthma management |
| US20170011179A1 (en) | 2015-07-09 | 2017-01-12 | MI Express Care Licensing Company, LLC | Virtual Waiting Rooms In A Telemedicine System |
| US20170323481A1 (en) | 2015-07-17 | 2017-11-09 | Bao Tran | Systems and methods for computer assisted operation |
| US20180220935A1 (en) | 2015-07-23 | 2018-08-09 | Nipro Corporation | Gait analysis method and gait analysis system |
| US20170033375A1 (en) | 2015-07-29 | 2017-02-02 | Honda Motor Co., Ltd. | Resin-framed membrane electrode assembly and fuel cell |
| US10678890B2 (en) | 2015-08-06 | 2020-06-09 | Microsoft Technology Licensing, Llc | Client computing device health-related suggestions |
| US20170046488A1 (en) | 2015-08-10 | 2017-02-16 | Luis Henrique Leonardo PEREIRA | Center for medical artifical intelligence control with remote system for preparation of diagnosis, drug prescription and online medical treatment shipping via telemedicine |
| WO2017030781A1 (en) | 2015-08-14 | 2017-02-23 | MedHab, LLC | System for measuring power generated during running |
| US20170065851A1 (en) | 2015-09-03 | 2017-03-09 | International Business Machines Corporation | Adjusting exercise machine settings based on current work conditions |
| US20210005224A1 (en) | 2015-09-04 | 2021-01-07 | Richard A. ROTHSCHILD | System and Method for Determining a State of a User |
| US20180263535A1 (en) | 2015-09-09 | 2018-09-20 | The Regents Of The University Of California | Systems and methods for facilitating rehabilitation therapy |
| US10159872B2 (en) | 2015-09-11 | 2018-12-25 | Toyota Jidosha Kabushiki Kaisha | Balance training device and balance training method |
| US20170091422A1 (en) | 2015-09-30 | 2017-03-30 | International Business Machines Corporation | Personalized Health Care Plan Creation and Monitoring Based on Medical and Lifestyle Conditions |
| US10244990B2 (en) | 2015-09-30 | 2019-04-02 | The Board Of Trustees Of The University Of Alabama | Systems and methods for rehabilitation of limb motion |
| US20170095692A1 (en) | 2015-10-02 | 2017-04-06 | Lumo BodyTech, Inc | System and method for run tracking with a wearable activity monitor |
| US20170095693A1 (en) | 2015-10-02 | 2017-04-06 | Lumo BodyTech, Inc | System and method for a wearable technology platform |
| US10572626B2 (en) | 2015-10-05 | 2020-02-25 | Ricoh Co., Ltd. | Advanced telemedicine system with virtual doctor |
| US20170095670A1 (en) | 2015-10-05 | 2017-04-06 | Mc10 | Method and system for neuromodulation and stimulation |
| US9939784B1 (en) | 2015-10-06 | 2018-04-10 | Raymond Berardinelli | Smartwatch device and method |
| US20170100637A1 (en) | 2015-10-08 | 2017-04-13 | SceneSage, Inc. | Fitness training guidance system and method thereof |
| US10569122B2 (en) | 2015-10-21 | 2020-02-25 | Hurford Global, Llc | Attachable rotary range of motion rehabilitation apparatus |
| US20170113092A1 (en) | 2015-10-21 | 2017-04-27 | Brainchild Medical, Inc. | Attachable Rotary Range of Motion Rehabilitation Apparatus |
| US20180285463A1 (en) | 2015-11-02 | 2018-10-04 | Samsung Electronics Co., Ltd. | Electronic device and method for generating user profile |
| US20170136298A1 (en) | 2015-11-13 | 2017-05-18 | Samsung Electronics Co., Ltd. | Method and apparatus for generating exercise program or providing exercise feedback |
| US20170136296A1 (en) | 2015-11-18 | 2017-05-18 | Osvaldo Andres Barrera | System and method for physical rehabilitation and motion training |
| US20170148297A1 (en) | 2015-11-23 | 2017-05-25 | MedHab, LLC | Personal fall detection system and method |
| US9640057B1 (en) | 2015-11-23 | 2017-05-02 | MedHab, LLC | Personal fall detection system and method |
| WO2017091691A1 (en) | 2015-11-23 | 2017-06-01 | MedHab, LLC | Personal fall detection system and method |
| US20180326243A1 (en) | 2015-11-24 | 2018-11-15 | École De Technologie Supérieure | A cable-driven robot for locomotor rehabilitation of lower limbs |
| US10325070B2 (en) | 2015-12-14 | 2019-06-18 | The Live Network Inc | Treatment intelligence and interactive presence portal for telehealth |
| US20180360340A1 (en) | 2015-12-14 | 2018-12-20 | Otto-Von-Guericke-Universität Magdeburg | Device for neurovascular stimulation |
| US20170169177A1 (en) | 2015-12-14 | 2017-06-15 | The Live Network Inc | Treatment intelligence and interactive presence portal for telehealth |
| US20170173391A1 (en) | 2015-12-18 | 2017-06-22 | MAD Apparel, Inc. | Adaptive calibration for sensor-equipped athletic garments |
| US10430552B2 (en) | 2015-12-31 | 2019-10-01 | Dan M. MIHAI | Distributed telemedicine system and method |
| US20200261763A1 (en) * | 2016-01-12 | 2020-08-20 | Samsung Electronics Co., Ltd. | Display device and control method therefor |
| US20190031284A1 (en) | 2016-01-26 | 2019-01-31 | Swissmove Ag | Pedal Drive System |
| USD794142S1 (en) | 2016-01-26 | 2017-08-08 | Xiamen Zhoulong Sporting Goods Co., Ltd. | Magnetic bike |
| US20170220751A1 (en) | 2016-02-01 | 2017-08-03 | Dexcom, Inc. | System and method for decision support using lifestyle factors |
| US20180078843A1 (en) | 2016-02-02 | 2018-03-22 | Bao Tran | Smart device |
| US20190223797A1 (en) | 2016-02-03 | 2019-07-25 | Bao Tran | Systems and methods for mass customization |
| US20170228517A1 (en) | 2016-02-08 | 2017-08-10 | OutcomeMD, Inc. | Systems and methods for determining a wellness score, an improvement score, and/or an effectiveness score with regard to a medical condition and/or treatment |
| US20170235882A1 (en) | 2016-02-16 | 2017-08-17 | mHealthPharma, Inc. | Condition management system and method |
| US20170235906A1 (en) | 2016-02-17 | 2017-08-17 | International Business Machines Corporation | Modifying Patient Communications Based on Simulation of Vendor Communications |
| US20190090744A1 (en) | 2016-02-29 | 2019-03-28 | Mohamed R. Mahfouz | Connected Healthcare Environment |
| CN205626871U (en) | 2016-02-29 | 2016-10-12 | 米钠(厦门)科技有限公司 | Solve smart machine and body -building bicycle of traditional body -building bicycle data connection |
| CN105620643A (en) | 2016-03-07 | 2016-06-01 | 邹维君 | Bent-arm bicycle crank |
| US20180036591A1 (en) | 2016-03-08 | 2018-02-08 | Your Trainer Inc. | Event-based prescription of fitness-related activities |
| US20170368413A1 (en) | 2016-03-12 | 2017-12-28 | Arie Shavit | Training system and methods for designing, monitoring and providing feedback of training |
| US20170265800A1 (en) | 2016-03-15 | 2017-09-21 | Claris Healthcare Inc. | Apparatus and Method for Monitoring Rehabilitation from Joint Surgery |
| US20170266501A1 (en) | 2016-03-15 | 2017-09-21 | Nike, Inc. | Adaptive Athletic Activity Prescription Systems |
| US20220044806A1 (en) | 2016-03-15 | 2022-02-10 | Nike, Inc. | Adaptive Athletic Activity Prescription Systems |
| US10111643B2 (en) | 2016-03-17 | 2018-10-30 | Medtronic Vascular, Inc. | Cardiac monitor system and method for home and telemedicine application |
| WO2017165238A1 (en) | 2016-03-21 | 2017-09-28 | MedHab, LLC | Wearable computer system and method of rebooting the system via user movements |
| US20170278209A1 (en) | 2016-03-22 | 2017-09-28 | International Business Machines Corporation | Optimization of Patient Care Team Based on Correlation of Patient Characteristics and Care Provider Characteristics |
| US11370328B2 (en) | 2016-03-24 | 2022-06-28 | Xsensor Technology Corporation | Intelligent seat systems |
| CN105894088A (en) | 2016-03-25 | 2016-08-24 | 苏州赫博特医疗信息科技有限公司 | Medical information extraction system and method based on depth learning and distributed semantic features |
| WO2017166074A1 (en) | 2016-03-29 | 2017-10-05 | 深圳前海合泰生命健康技术有限公司 | Data processing method and device |
| US20170286621A1 (en) | 2016-03-29 | 2017-10-05 | International Business Machines Corporation | Evaluating Risk of a Patient Based on a Patient Registry and Performing Mitigating Actions Based on Risk |
| US20170283508A1 (en) | 2016-03-31 | 2017-10-05 | Omeros Corporation | Methods for Inhibiting Angiogenesis in a Subject in Need Thereof |
| US20170282015A1 (en) | 2016-04-04 | 2017-10-05 | Worldpro Group, LLC | Interactive apparatus and methods for muscle strengthening |
| US20170291067A1 (en) | 2016-04-06 | 2017-10-12 | Samsung Electronics Co., Ltd. | Method and apparatus for generating personalized exercise program |
| JP6659831B2 (en) | 2016-04-15 | 2020-03-04 | オムロン株式会社 | Biological information analyzer, system, and program |
| US20170300654A1 (en) | 2016-04-15 | 2017-10-19 | BR Invention Holding, LLC | Mobile medicine communication platform and methods and uses thereof |
| CN105930668A (en) | 2016-04-29 | 2016-09-07 | 创领心律管理医疗器械(上海)有限公司 | Remote auxiliary system of medical device |
| US20170312614A1 (en) | 2016-05-02 | 2017-11-02 | Bao Tran | Smart device |
| US20190137988A1 (en) | 2016-05-09 | 2019-05-09 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for detection in an industrial internet of things data collection environment with a self-organizing data marketplace and notifications for industrial processes |
| US20190030415A1 (en) | 2016-05-11 | 2019-01-31 | Joseph Charles Volpe, JR. | Motion sensor volume control for entertainment devices |
| US20170329933A1 (en) | 2016-05-13 | 2017-11-16 | Thomas Edwin Brust | Adaptive therapy and health monitoring using personal electronic devices |
| US20170329917A1 (en) | 2016-05-13 | 2017-11-16 | WellDoc, Inc. | Database management and graphical user interfaces for measurements collected by analyzing blood |
| US20170333755A1 (en) | 2016-05-17 | 2017-11-23 | Kuaiwear Limited | Multi-sport biometric feedback device, system, and method for adaptive coaching with gym apparatus |
| US20170337334A1 (en) | 2016-05-17 | 2017-11-23 | Epiphany Cardiography Products, LLC | Systems and Methods of Generating Medical Billing Codes |
| US20170337033A1 (en) | 2016-05-19 | 2017-11-23 | Fitbit, Inc. | Music selection based on exercise detection |
| US10231664B2 (en) | 2016-05-26 | 2019-03-19 | Raghav Ganesh | Method and apparatus to predict, report, and prevent episodes of emotional and physical responses to physiological and environmental conditions |
| US20180070864A1 (en) | 2016-06-02 | 2018-03-15 | Matthew Schuster | Methods and devices for assessing a captured motion |
| US20170347923A1 (en) | 2016-06-03 | 2017-12-07 | Circulex, Inc. | System, apparatus, and method for monitoring and promoting patient mobility |
| US20200143922A1 (en) | 2016-06-03 | 2020-05-07 | Yale University | Methods and apparatus for predicting depression treatment outcomes |
| US20170352157A1 (en) | 2016-06-06 | 2017-12-07 | Case Western Reserve University | Computerized analysis of computed tomography (ct) imagery to quantify tumor infiltrating lymphocytes (tils) in non-small cell lung cancer (nsclc) |
| US20170032092A1 (en) | 2016-06-16 | 2017-02-02 | Benjamin Franklin Mink | Real Time Multispecialty Telehealth Interactive Patient Wellness Portal (IPWP) |
| US20170360586A1 (en) | 2016-06-17 | 2017-12-21 | Umbra Health Corporation | Orthopedic devices and systems integrated with controlling devices |
| US20210338469A1 (en) | 2016-06-17 | 2021-11-04 | Quazar Ekb Llc | Orthopedic devices and systems integrated with sensors and controlling devices |
| EP3264303A1 (en) | 2016-06-27 | 2018-01-03 | Claris Healthcare Inc. | Method for coaching a patient through rehabilitation from joint surgery |
| KR20180004928A (en) | 2016-07-05 | 2018-01-15 | 데이코어 주식회사 | Method and apparatus and computer readable record media for service for physical training |
| US20180017806A1 (en) | 2016-07-15 | 2018-01-18 | Canon U.S.A., Inc. | Spectrally encoded probes |
| CN106127646A (en) | 2016-07-15 | 2016-11-16 | 佛山科学技术学院 | The monitoring system of a kind of recovery period data and monitoring method |
| US20180102190A1 (en) | 2016-07-25 | 2018-04-12 | Viviphi Ltd. | Generating customizable personal healthcare treatment plans |
| US20180103859A1 (en) | 2016-07-30 | 2018-04-19 | Catalina F Provenzano | Systems, Devices, and/or Methods for Managing Patient Monitoring |
| WO2018027080A1 (en) | 2016-08-03 | 2018-02-08 | Akili Interactive Labs, Inc. | Cognitive platform including computerized evocative elements |
| CN106236502A (en) | 2016-08-04 | 2016-12-21 | 沈研 | A kind of portable passive ankle pump training aids |
| US20190175988A1 (en) | 2016-08-09 | 2019-06-13 | San Raffaele Roma S.R.L. | Individually tailored exercise training and rehabilitation technique: medical personal trainer |
| US20180056104A1 (en) | 2016-08-23 | 2018-03-01 | Superflex, Inc. | Systems and methods for assistive exosuit system |
| US11944579B2 (en) | 2016-08-24 | 2024-04-02 | Cyberdyne Inc. | Biological activity detection apparatus and biological activity detection system |
| US20180060494A1 (en) | 2016-08-26 | 2018-03-01 | International Business Machines Corporation | Patient Treatment Recommendations Based on Medical Records and Exogenous Information |
| US20180056130A1 (en) | 2016-08-31 | 2018-03-01 | Microsoft Technology Licensing, Llc | Providing insights based on health-related information |
| US10226663B2 (en) | 2016-09-12 | 2019-03-12 | ROM3 Rehab LLC | Adjustable rehabilitation and exercise device |
| US10646746B1 (en) | 2016-09-12 | 2020-05-12 | Rom Technologies, Inc. | Adjustable rehabilitation and exercise device |
| US10173096B2 (en) | 2016-09-12 | 2019-01-08 | ROM3 Rehab LLC | Adjustable rehabilitation and exercise device |
| US10173095B2 (en) | 2016-09-12 | 2019-01-08 | ROM3 Rehab LLC | Adjustable rehabilitation and exercise device |
| US20180071571A1 (en) | 2016-09-12 | 2018-03-15 | ROM3 Rehab LLC | Adjustable Rehabilitation and Exercise Device |
| US10173094B2 (en) | 2016-09-12 | 2019-01-08 | ROM3 Rehab LLC | Adjustable rehabilitation and exercise device |
| US20180071572A1 (en) | 2016-09-12 | 2018-03-15 | ROM3 Rehab LLC | Rehabilitation and Exercise Device |
| US20180071565A1 (en) | 2016-09-12 | 2018-03-15 | ROM3 Rehab LLC | Adjustable Rehabilitation and Exercise Device |
| US20180071566A1 (en) | 2016-09-12 | 2018-03-15 | ROM3 Rehab LLC | Adjustable Rehabilitation and Exercise Device |
| US10173097B2 (en) | 2016-09-12 | 2019-01-08 | ROM3 Rehab LLC | Adjustable rehabilitation and exercise device |
| US20180071569A1 (en) | 2016-09-12 | 2018-03-15 | ROM3 Rehab LLC | Adjustable Rehabilitation and Exercise Device |
| US20180071570A1 (en) | 2016-09-12 | 2018-03-15 | ROM3 Rehab LLC | Adjustable Rehabilitation and Exercise Device |
| US20180078149A1 (en) | 2016-09-20 | 2018-03-22 | Heartflow, Inc. | Systems and methods for monitoring and updating blood flow calculations with user-specific anatomic and physiologic sensor data |
| US20180078182A1 (en) | 2016-09-22 | 2018-03-22 | Apple Inc. | Workout monitor interface |
| US10143395B2 (en) | 2016-09-28 | 2018-12-04 | Medtronic Monitoring, Inc. | System and method for cardiac monitoring using rate-based sensitivity levels |
| US20180096111A1 (en) | 2016-10-03 | 2018-04-05 | Richard Wells | Predictive telerehabilitation technology and user interface |
| US10026052B2 (en) | 2016-10-03 | 2018-07-17 | Metrics Medius, Inc. | Electronic task assessment platform |
| US20200038703A1 (en) | 2016-10-07 | 2020-02-06 | Children's National Medical Center | Robotically assisted ankle rehabilitation systems, apparatuses, and methods thereof |
| US20190240541A1 (en) | 2016-10-19 | 2019-08-08 | Board Of Regents Of The University Of Nebraska | User-paced exercise equipment |
| US20180113985A1 (en) | 2016-10-20 | 2018-04-26 | Play-it Health, Inc. | System for improving patient medical treatment plan compliance |
| CN106510985A (en) | 2016-10-26 | 2017-03-22 | 北京理工大学 | Rehabilitation and walking exoskeleton robot based on master-slave control |
| WO2018081795A1 (en) | 2016-10-31 | 2018-05-03 | Zipline Medical, Inc. | Systems and methods for monitoring physical therapy of the knee and other joints |
| US10918332B2 (en) | 2016-10-31 | 2021-02-16 | Zipline Medical, Inc. | Systems and methods for monitoring physical therapy of the knee and other joints |
| US10625114B2 (en) | 2016-11-01 | 2020-04-21 | Icon Health & Fitness, Inc. | Elliptical and stationary bicycle apparatus including row functionality |
| US20180117417A1 (en) | 2016-11-01 | 2018-05-03 | Braxton K. Davis | Facilitation of interactive exercise system |
| US20180116741A1 (en) | 2016-11-03 | 2018-05-03 | Verb Surgical Inc. | Tool driver with reaction torque sensor for use in robotic surgery |
| US20180130555A1 (en) | 2016-11-04 | 2018-05-10 | George Chronis | Systems and methods for intelligent admissions |
| US20180133551A1 (en) | 2016-11-16 | 2018-05-17 | Lumo BodyTech, Inc | System and method for personalized exercise training and coaching |
| US11065170B2 (en) | 2016-11-17 | 2021-07-20 | Hefei University Of Technology | Smart medical rehabilitation device |
| EP3323473A1 (en) | 2016-11-21 | 2018-05-23 | Tyromotion GmbH | Device for exercising the lower and/or upper extremities of a person |
| US20180140927A1 (en) | 2016-11-22 | 2018-05-24 | Seiko Epson Corporation | Workout information display method, workout information display system, server system, electronic device, information storage medium, and program |
| US20190261959A1 (en) | 2016-11-22 | 2019-08-29 | Cedars-Sinai Medical Center | Real-time tele-sonography |
| US20190269343A1 (en) | 2016-11-22 | 2019-09-05 | Fundacion Tecnalia Research & Innovation | Paretic limb rehabilitation methods and systems |
| CN106621195A (en) | 2016-11-30 | 2017-05-10 | 中科院合肥技术创新工程院 | Man-machine interactive system and method applied to intelligent exercise bike |
| US10792495B2 (en) | 2016-12-01 | 2020-10-06 | Thimble Bioelectronics, Inc. | Neuromodulation device and method for use |
| US20180177612A1 (en) | 2016-12-22 | 2018-06-28 | Orthosensor Inc. | Surgical Apparatus to Support Installation of a Prosthetic Component With Reduced Alignment Error |
| US20190307983A1 (en) | 2016-12-23 | 2019-10-10 | Enso Co. | Standalone handheld wellness device |
| US20180178061A1 (en) | 2016-12-27 | 2018-06-28 | Cerner Innovation, Inc. | Rehabilitation compliance devices |
| JP2018102842A (en) | 2016-12-28 | 2018-07-05 | 学校法人 中村産業学園 | Walking training device, walking training evaluation method and program |
| US9773330B1 (en) | 2016-12-29 | 2017-09-26 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis, and feedback |
| US10581896B2 (en) | 2016-12-30 | 2020-03-03 | Chronicle Llc | Remedial actions based on user risk assessments |
| US20190172587A1 (en) | 2016-12-30 | 2019-06-06 | Seoul National University R&Db Foundation | Apparatus and method for predicting disease risk of metabolic disease |
| USD826349S1 (en) | 2017-02-08 | 2018-08-21 | Woodway Usa, Inc. | Recumbent cycle with provision for upper body exercise |
| US20180263530A1 (en) | 2017-02-08 | 2018-09-20 | Hwisu Jung | Chest measuring device, scoliosis correction system, system for remotely diagnosing spine, and wearable measuring device |
| US20180228682A1 (en) | 2017-02-10 | 2018-08-16 | Woodway Usa, Inc. | Motorized recumbent therapeutic and exercise device |
| US11298284B2 (en) | 2017-02-10 | 2022-04-12 | Woodway Usa, Inc. | Motorized recumbent therapeutic and exercise device |
| US20180232492A1 (en) | 2017-02-16 | 2018-08-16 | Microsoft Technology Licensing, Llc | Artificial intelligence to edit health care plans |
| DE102018202497A1 (en) | 2017-02-19 | 2018-08-23 | Intel Corporation | Technologies for optimized machine learning training |
| US20180240552A1 (en) | 2017-02-20 | 2018-08-23 | Penexa, LLC | System and method for managing treatment plans |
| US20190066832A1 (en) | 2017-02-20 | 2019-02-28 | KangarooHealth, Inc. | Method for detecting patient risk and selectively notifying a care provider of at-risk patients |
| US20180236307A1 (en) | 2017-02-23 | 2018-08-23 | Elwha Llc | Personal therapy and exercise monitoring and oversight devices, systems, and related methods |
| US20180255110A1 (en) | 2017-03-03 | 2018-09-06 | At&T Intellectual Property I, L.P. | Real time communication hub for multiple secure connections through shared session |
| US20180256079A1 (en) | 2017-03-08 | 2018-09-13 | National Chiao Tung University | Method and system for determining data associated with lower limb activity |
| US20180256939A1 (en) | 2017-03-09 | 2018-09-13 | Christian Malcolm | Variable weight units, computing device kit applications, and method of use |
| US20180272184A1 (en) | 2017-03-17 | 2018-09-27 | Mindbridge Innovations, Llc | Stationary cycling pedal crank having an adjustable length |
| US20180263552A1 (en) | 2017-03-17 | 2018-09-20 | Charge LLC | Biometric and location based system and method for fitness training |
| US20180264312A1 (en) | 2017-03-17 | 2018-09-20 | Domenic J. Pompile | Adjustable Multi-Position Stabilizing and Strengthening Apparatus |
| WO2018171853A1 (en) | 2017-03-21 | 2018-09-27 | EWII Telecare A/S | A telemedicine system for remote treatment of patients |
| US20200090802A1 (en) | 2017-03-24 | 2020-03-19 | The Brigham And Women's Hospital, Inc. | Systems and Methods for Automated Treatment Recommendation Based on Pathophenotype Identification |
| US20180271432A1 (en) | 2017-03-27 | 2018-09-27 | Claris Healthcare Inc. | Method for Calibrating Apparatus for Monitoring Rehabilitation from Joint Surgery |
| CN107066819A (en) | 2017-04-05 | 2017-08-18 | 深圳前海合泰生命健康技术有限公司 | A kind of Intelligent worn device monitored in cardiovascular disease rehabilitation |
| US20210093891A1 (en) | 2017-04-05 | 2021-04-01 | The Regents Of The University Of California | Methods for user adaptive radiation therapy planning and systems using the same |
| US20180296143A1 (en) | 2017-04-13 | 2018-10-18 | Intuity Medical, Inc. | Systems and methods for managing chronic disease using analyte and patient data |
| US20180318122A1 (en) | 2017-05-05 | 2018-11-08 | Becker Orthopedic Appliance Company | Configurable orthosis and method of definitive orthotic design, fabrication and validation |
| US20180330810A1 (en) | 2017-05-09 | 2018-11-15 | Concorde Health, Inc. | Physical therapy monitoring algorithms |
| US20180330058A1 (en) | 2017-05-09 | 2018-11-15 | James Stewart Bates | Systems and methods for generating electronic health care record data |
| US20180330824A1 (en) | 2017-05-12 | 2018-11-15 | The Regents Of The University Of Michigan | Individual and cohort pharmacological phenotype prediction platform |
| US20180353812A1 (en) | 2017-06-07 | 2018-12-13 | Michael G. Lannon | Data Driven System For Providing Customized Exercise Plans |
| US10814170B2 (en) | 2017-06-16 | 2020-10-27 | Apple Inc. | Techniques for providing customized exercise-related recommendations |
| US20180361203A1 (en) | 2017-06-16 | 2018-12-20 | Apple Inc. | Techniques for providing customized exercise-related recommendations |
| US20180366225A1 (en) | 2017-06-19 | 2018-12-20 | Viz.ai, Inc. | Method and system for computer-aided triage |
| US20180373844A1 (en) | 2017-06-23 | 2018-12-27 | Nuance Communications, Inc. | Computer assisted coding systems and methods |
| US20190005195A1 (en) | 2017-06-28 | 2019-01-03 | General Electric Company | Methods and systems for improving care through post-operation feedback analysis |
| US20200015736A1 (en) | 2017-07-06 | 2020-01-16 | Meshal Alhathal | Providing feedback to a patient performing an exercise based on measured parameters from a therapy device |
| JP6871379B2 (en) | 2017-07-07 | 2021-05-12 | りか 高木 | Treatment and / or Exercise Guidance Process Management Systems, Programs, Computer Devices, and Methods for Treatment and / or Exercise Guidance Process Management |
| DE102018211212A1 (en) | 2017-07-10 | 2019-01-10 | Fanuc Corporation | Machine Learning Device, Tester and Machine Learning Method |
| US20190009135A1 (en) | 2017-07-10 | 2019-01-10 | Manifold Health Tech, Inc. | Mobile exercise apparatus controller and information transmission collection device coupled to exercise apparatus and exercise apparatus and control method |
| US20190019163A1 (en) | 2017-07-14 | 2019-01-17 | EasyMarkit Software Inc. | Smart messaging in medical practice communication |
| US20190019578A1 (en) | 2017-07-17 | 2019-01-17 | AVKN Patient-Driven Care, LLC | System for tracking patient recovery following an orthopedic procedure |
| WO2019022706A1 (en) | 2017-07-24 | 2019-01-31 | Hewlett-Packard Development Company, L.P. | EXERCISE PROGRAMS |
| US10576331B2 (en) | 2017-07-26 | 2020-03-03 | Sportsart Industrial Co., Ltd. | Composite motion exercise machine |
| JP2019028647A (en) | 2017-07-28 | 2019-02-21 | Hrソリューションズ株式会社 | Training information providing device, method and program |
| US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
| US20190065970A1 (en) | 2017-08-30 | 2019-02-28 | P Tech, Llc | Artificial intelligence and/or virtual reality for activity optimization/personalization |
| EP3731733A1 (en) | 2017-09-11 | 2020-11-04 | Qualcomm Incorporated | Micro and macro activity detection and monitoring |
| US20200334972A1 (en) | 2017-09-11 | 2020-10-22 | Muralidharan Gopalakrishnan | Automated wireless apparatus for real-time emergency support |
| KR20190029175A (en) | 2017-09-12 | 2019-03-20 | (주)메디즈 | Rehabilitation training system and rehabilitation training method using the same |
| US20190080802A1 (en) | 2017-09-12 | 2019-03-14 | Duro Health, LLC | Sensor fusion of physiological and machine-interface factors as a biometric |
| CN107551475A (en) | 2017-09-13 | 2018-01-09 | 南京麦澜德医疗科技有限公司 | Rehabilitation equipment monitoring system, method and server |
| US10546467B1 (en) | 2017-09-18 | 2020-01-28 | Edge Technology | Dual matrix tracking system and method |
| EP3688537A1 (en) | 2017-09-29 | 2020-08-05 | Robert Bosch GmbH | Method, device and computer program for operating a robot control system |
| US20190108912A1 (en) | 2017-10-05 | 2019-04-11 | Iquity, Inc. | Methods for predicting or detecting disease |
| US20200237291A1 (en) | 2017-10-11 | 2020-07-30 | Plethy, Inc. | Devices, systems, and methods for adaptive health monitoring using behavioral, psychological, and physiological changes of a body portion |
| US20230255555A1 (en) | 2017-10-11 | 2023-08-17 | Plethy, Inc. | Devices, systems, and methods for adaptive health monitoring using behavioral, psychological, and physiological changes of a body portion |
| US20210245003A1 (en) | 2017-10-16 | 2021-08-12 | Jennifer-Jane Turner | Portable therapeutic strengthening apparatus using adjustable resistance |
| US20190118066A1 (en) | 2017-10-20 | 2019-04-25 | iNmotion Wellness, Inc. | Method and apparatus for providing interactive fitness equipment via a cloud-based networking |
| CN107736982A (en) | 2017-10-20 | 2018-02-27 | 浙江睿索电子科技有限公司 | A kind of active-passive rehabilitation robot |
| KR102097190B1 (en) | 2017-10-23 | 2020-04-03 | 남정우 | Method for analyzing and displaying a realtime exercise motion using a smart mirror and smart mirror for the same |
| US20190117156A1 (en) | 2017-10-24 | 2019-04-25 | George Mason University | Non-invasive wearable biomechanical and physiology monitor for injury prevention and rehabilitation |
| US20190118038A1 (en) | 2017-10-25 | 2019-04-25 | Technogym S.P.A. | Method and system for managing a training of users on a plurality of exercise machines |
| US20190126099A1 (en) | 2017-10-30 | 2019-05-02 | Aviron Interactive Inc. | Networked exercise devices with shared virtual training |
| US20210187348A1 (en) | 2017-10-31 | 2021-06-24 | Alterg, Inc. | System for unweighting a user and related methods of exercise |
| US11654327B2 (en) | 2017-10-31 | 2023-05-23 | Alterg, Inc. | System for unweighting a user and related methods of exercise |
| US20210074178A1 (en) | 2017-11-05 | 2021-03-11 | Oberon Sciences Ilan Ltd. | A subject-tailored continuously developing randomization based method for improving organ function |
| US20190134454A1 (en) | 2017-11-07 | 2019-05-09 | Superflex, Inc. | Exosuit system systems and methods for assisting, resisting and aligning core biomechanical functions |
| US20190143193A1 (en) * | 2017-11-15 | 2019-05-16 | Jae Hwan Kim | System for providing a virtual exercise place |
| US20190143191A1 (en) | 2017-11-16 | 2019-05-16 | Baidu Online Network Technology (Beijing) Co., Ltd. | Fitness guidance method, device and storage medium |
| KR20190056116A (en) | 2017-11-16 | 2019-05-24 | 주식회사 네오펙트 | A method and program for extracting training ratio of digital rehabilitation treatment system |
| CN107930021A (en) | 2017-11-20 | 2018-04-20 | 北京酷玩部落科技有限公司 | Intelligent dynamic exercycle and Intelligent dynamic Upright cycle system |
| CN208573971U (en) | 2017-11-21 | 2019-03-05 | 中国地质大学(武汉) | A pedal-type lower limb rehabilitation robot with bilateral independent control |
| KR102055279B1 (en) | 2017-11-24 | 2019-12-12 | 에이치로보틱스 주식회사 | disital anesthetic solution injection device |
| KR101969392B1 (en) | 2017-11-24 | 2019-08-13 | 에이치로보틱스 주식회사 | Anesthetic solution injection device |
| WO2019106003A1 (en) | 2017-11-28 | 2019-06-06 | Transform Health Limited | Physical activity apparatus |
| US20190167988A1 (en) | 2017-12-04 | 2019-06-06 | CyMedica Orthopedics, Inc. | Patient therapy systems and methods |
| US20200365256A1 (en) | 2017-12-08 | 2020-11-19 | Nec Corporation | Patient status determination device, patient status determination system, patient status determination method, and patient status determination program recording medium |
| US20190183715A1 (en) | 2017-12-14 | 2019-06-20 | Bionic Yantra Private Limited | Apparatus and system for limb rehabilitation |
| US20200170876A1 (en) | 2017-12-14 | 2020-06-04 | Bionic Yantra Private Limited | Robotic management system for limb rehabilitation |
| US10492977B2 (en) | 2017-12-14 | 2019-12-03 | Bionic Yantra Private Limited | Apparatus and system for limb rehabilitation |
| KR102116664B1 (en) | 2017-12-27 | 2020-05-29 | 서울대학교병원 | Online based health care method and apparatus |
| US10198928B1 (en) | 2017-12-29 | 2019-02-05 | Medhab, Llc. | Fall detection system |
| US20190200920A1 (en) | 2018-01-03 | 2019-07-04 | Celine Tien | Virtual reality biofeedback systems and methods |
| US20190214119A1 (en) | 2018-01-05 | 2019-07-11 | International Business Machines Corporation | System and method for personalizing and optimizing medication regime |
| WO2019143940A1 (en) | 2018-01-18 | 2019-07-25 | Amish Patel | Enhanced reality rehabilitation system and method of using the same |
| US20200357299A1 (en) | 2018-01-18 | 2020-11-12 | Amish Patel | Enhanced reality rehabilitation system and method of using the same |
| US20190224528A1 (en) | 2018-01-22 | 2019-07-25 | K-Motion Interactive, Inc. | Method and System for Human Motion Analysis and Instruction |
| US11673024B2 (en) | 2018-01-22 | 2023-06-13 | Pg Tech, Llc | Method and system for human motion analysis and instruction |
| US20210050086A1 (en) | 2018-01-24 | 2021-02-18 | Fitnessgenes Ltd | Generating optimised workout plans using genetic and physiological data |
| US20190228856A1 (en) | 2018-01-25 | 2019-07-25 | Kraft Foods Group Brands Llc | Method and system for preference-driven food personalization |
| US20190232108A1 (en) | 2018-01-31 | 2019-08-01 | Under Armour, Inc. | System and method for estimating cardiorespiratory fitness |
| CN108078737A (en) | 2018-02-01 | 2018-05-29 | 合肥工业大学 | A kind of amplitude automatic adjustable leg device for healing and training and control method |
| US20190244540A1 (en) | 2018-02-02 | 2019-08-08 | InnerPro Sports, LLC | Systems And Methods For Providing Performance Training and Development |
| US20190240103A1 (en) | 2018-02-02 | 2019-08-08 | Bionic Power Inc. | Exoskeletal gait rehabilitation device |
| JP2019134909A (en) | 2018-02-05 | 2019-08-15 | 卓生 野村 | Exercise bike for training to improve exercise capacity (sprint) |
| US20190251456A1 (en) | 2018-02-09 | 2019-08-15 | Dexcom, Inc. | System and method for decision support |
| US20190247718A1 (en) | 2018-02-10 | 2019-08-15 | Garrett James BLEVINS | Computer implemented methods and systems for automated coaching and distribution of fitness plans |
| US20190251723A1 (en) | 2018-02-14 | 2019-08-15 | Smarter Reality, LLC | Artificial-intelligence enhanced visualization of non-invasive, minimally-invasive and surgical aesthetic medical procedures |
| US20200395112A1 (en) | 2018-02-18 | 2020-12-17 | Cardio Holding Bv | A System and Method for Documenting a Patient Medical History |
| US20190262084A1 (en) | 2018-02-27 | 2019-08-29 | NavLab, Inc. | Artificial intelligence guidance system for robotic surgery |
| CN212624809U (en) | 2018-02-28 | 2021-02-26 | 张喆 | Intelligent national physique detection equipment and intelligent body-building equipment |
| US20190274523A1 (en) | 2018-03-06 | 2019-09-12 | James Stewart Bates | Systems and methods for optical medical instrument patient measurements |
| US20190275368A1 (en) | 2018-03-09 | 2019-09-12 | Nicholas Maroldi | Device to produce assisted, active and resisted motion of a joint or extremity |
| CN110270062B (en) | 2018-03-15 | 2022-10-25 | 深圳市震有智联科技有限公司 | Rehabilitation robot teletherapy system and method thereof |
| US20190283247A1 (en) | 2018-03-15 | 2019-09-19 | Seismic Holdings, Inc. | Management of biomechanical achievements |
| EP3547322A1 (en) | 2018-03-27 | 2019-10-02 | Nokia Technologies Oy | An apparatus and associated methods for determining exercise settings |
| US11776676B2 (en) | 2018-03-27 | 2023-10-03 | Nokia Technologies Oy | Apparatus and associated methods for determining exercise settings |
| US20190304584A1 (en) | 2018-03-27 | 2019-10-03 | Nokia Technologies Oy | Apparatus and associated methods for determining exercise settings |
| CN208224811U (en) | 2018-04-03 | 2018-12-11 | 伊士通(上海)医疗器械有限公司 | A kind of long-range monitoring and maintenance system of athletic rehabilitation equipment |
| KR101988167B1 (en) | 2018-04-09 | 2019-06-11 | 주식회사 엠비젼 | Therapeutic apparatus for rehabilitation related pain event |
| US11422841B2 (en) | 2018-04-17 | 2022-08-23 | Bluecommunication | Direct and remote control apparatus of physical device |
| US20190314681A1 (en) | 2018-04-17 | 2019-10-17 | Jie Yang | Method, system and computer products for exercise program exchange |
| US20190392936A1 (en) | 2018-04-24 | 2019-12-26 | Arrix, Inc. | Systems and methods for medication management |
| US20210236020A1 (en) | 2018-04-30 | 2021-08-05 | Vanderbilt University | Wearable device to monitor musculoskeletal loading, estimate tissue microdamage and provide injury risk biofeedback |
| US20190344123A1 (en) | 2018-05-14 | 2019-11-14 | LiftLab, Inc. | Strength training and exercise platform |
| US10991463B2 (en) | 2018-05-18 | 2021-04-27 | John D. Kutzko | Computer-implemented system and methods for predicting the health and therapeutic behavior of individuals using artificial intelligence, smart contracts and blockchain |
| US20190354632A1 (en) | 2018-05-21 | 2019-11-21 | Microsoft Technology Licensing, Llc | Exercising artificial intelligence by refining model output |
| CN110215188A (en) | 2018-05-23 | 2019-09-10 | 加利福尼亚大学董事会 | System and method for promoting rehabilitation |
| US20190362242A1 (en) | 2018-05-25 | 2019-11-28 | Microsoft Technology Licensing, Llc | Computing resource-efficient, machine learning-based techniques for measuring an effect of participation in an activity |
| US11045709B2 (en) | 2018-05-29 | 2021-06-29 | Curiouser Products Inc. | Reflective video display apparatus for interactive training and demonstration and methods of same |
| US11065527B2 (en) | 2018-05-29 | 2021-07-20 | Curiouser Products Inc. | Reflective video display apparatus for interactive training and demonstration and methods of using same |
| US20190366146A1 (en) | 2018-06-05 | 2019-12-05 | The Chinese University Of Hong Kong | Interactive cycling system and method of using muscle signals to control cycling pattern stimulation intensity |
| US20190371472A1 (en) | 2018-06-05 | 2019-12-05 | Fresenius Medical Care Holdings, Inc. | Systems and methods for identifying comorbidities |
| US20200152339A1 (en) | 2018-06-06 | 2020-05-14 | Reliant Immune Diagnostics, Inc. | Code trigger telemedicine session |
| US20210251562A1 (en) | 2018-06-11 | 2021-08-19 | Abhinav Jain | System and device for diagnosing and managing erectile dysfunction |
| US20190385199A1 (en) | 2018-06-18 | 2019-12-19 | International Business Machines Corporation | Review and recommendation filtering based on user fitness metric |
| US10987176B2 (en) | 2018-06-19 | 2021-04-27 | Tornier, Inc. | Virtual guidance for orthopedic surgical procedures |
| US20190388728A1 (en) | 2018-06-21 | 2019-12-26 | City University Of Hong Kong | Systems and methods using a wearable sensor for sports action recognition and assessment |
| US20200005928A1 (en) | 2018-06-27 | 2020-01-02 | Gomhealth Llc | System and method for personalized wellness management using machine learning and artificial intelligence techniques |
| US20210125696A1 (en) | 2018-06-28 | 2021-04-29 | Koninklijke Philips N.V. | Method and system for personalized hypertension treatment |
| WO2020014710A2 (en) | 2018-07-13 | 2020-01-16 | Blue Goji Llc | A system and method for range of motion analysis and balance training while exercising |
| US10777200B2 (en) | 2018-07-27 | 2020-09-15 | International Business Machines Corporation | Artificial intelligence for mitigating effects of long-term cognitive conditions on patient interactions |
| US20200034707A1 (en) | 2018-07-27 | 2020-01-30 | drchrono inc. | Neural Network Encoders and Decoders for Physician Practice Optimization |
| US20200034665A1 (en) | 2018-07-30 | 2020-01-30 | DataRobot, Inc. | Determining validity of machine learning algorithms for datasets |
| US20210354002A1 (en) * | 2018-08-01 | 2021-11-18 | Crew Innovations, Inc. | Apparatus and method for increased realism of training on exercise machines |
| US11278766B2 (en) | 2018-08-02 | 2022-03-22 | Exosystems Inc. | Rehabilitation system performing rehabilitation program using wearable device and user electronic device |
| US20200051446A1 (en) | 2018-08-07 | 2020-02-13 | Physera, Inc. | Classification of musculoskeletal form using machine learning model |
| US11000735B2 (en) | 2018-08-09 | 2021-05-11 | Tonal Systems, Inc. | Control sequence based exercise machine controller |
| US20200237452A1 (en) | 2018-08-13 | 2020-07-30 | Theator inc. | Timeline overlay on surgical video |
| US20200054922A1 (en) * | 2018-08-14 | 2020-02-20 | Tonal Systems, Inc. | Collaborative exercise |
| US20200066390A1 (en) | 2018-08-21 | 2020-02-27 | Verapy, LLC | Physical Therapy System and Method |
| KR102180079B1 (en) | 2018-08-27 | 2020-11-17 | 김효상 | A method and system for providing of health care service using block-chain |
| US20210240853A1 (en) | 2018-08-28 | 2021-08-05 | Koninklijke Philips N.V. | De-identification of protected information |
| KR20200025290A (en) | 2018-08-30 | 2020-03-10 | 충북대학교 산학협력단 | System and method for analyzing exercise posture |
| US20210217516A1 (en) | 2018-09-05 | 2021-07-15 | Individuallytics Inc. | System and method of treating a patient by a healthcare provider using a plurality of n-of-1 micro-treatments |
| KR102116968B1 (en) | 2018-09-10 | 2020-05-29 | 인하대학교 산학협력단 | Method for smart coaching based on artificial intelligence |
| KR20200029180A (en) | 2018-09-10 | 2020-03-18 | 인하대학교 산학협력단 | Method for smart coaching based on artificial intelligence |
| US20210015560A1 (en) | 2018-09-12 | 2021-01-21 | Orthogrid Systems Inc. | Artificial intelligence intra-operative surgical guidance system and method of use |
| US20200085300A1 (en) | 2018-09-13 | 2020-03-19 | International Business Machines Corporation | Methods and systems for managing medical anomalies |
| US20200098463A1 (en) | 2018-09-20 | 2020-03-26 | Medtronic Minimed, Inc. | Patient disease management systems and methods of data-driven outcome-based recommendations |
| EP3627514A1 (en) | 2018-09-21 | 2020-03-25 | SC Kineto Tech Rehab SRL | System and method for optimised monitoring of joints in physiotherapy |
| US10380866B1 (en) | 2018-09-21 | 2019-08-13 | Med Hab, LLC. | Dual case system for fall detection device |
| USD899605S1 (en) | 2018-09-21 | 2020-10-20 | MedHab, LLC | Wrist attachment band for fall detection device |
| USD866957S1 (en) | 2018-09-21 | 2019-11-19 | MedHab, LLC | Belt clip for fall detection device |
| US20200093418A1 (en) | 2018-09-21 | 2020-03-26 | Kineto Tech Rehab SRL | System and method for optimized monitoring of joints in physiotherapy |
| US20200151646A1 (en) | 2018-09-24 | 2020-05-14 | Alfonso Fabian De La Fuente Sanchez | Method to progressively improve the performance of a person while performing other tasks |
| JP2020057082A (en) | 2018-09-28 | 2020-04-09 | 株式会社リモハブ | Rehabilitation support system, user equipment and information terminal device |
| KR102162522B1 (en) | 2018-10-04 | 2020-10-06 | 김창호 | Apparatus and method for providing personalized medication information |
| US12057210B2 (en) | 2018-10-08 | 2024-08-06 | Cerner Innovation, Inc. | Integrated coordination of care |
| CN109191954A (en) | 2018-10-09 | 2019-01-11 | 厦门脉合信息科技有限公司 | A kind of Intellectual faculties body bailding bicycle teleeducation system |
| WO2020075190A1 (en) | 2018-10-10 | 2020-04-16 | Ibrum Technologies | An intelligent cardio-pulmonary screening device for telemedicine applications |
| US11376470B2 (en) | 2018-10-15 | 2022-07-05 | International Business Machines Corporation | Chatbot exercise machine |
| US10413238B1 (en) | 2018-10-18 | 2019-09-17 | Cooper Health And Fitness Applications, Llc | Fitness systems and methods |
| KR102142713B1 (en) | 2018-10-23 | 2020-08-10 | 주식회사 셀바스에이아이 | Firness equipment management system and computer program |
| US20200139194A1 (en) * | 2018-11-01 | 2020-05-07 | Zwift, Inc. | Interactive network game with game conditions altered based upon group physical activity |
| US20200151595A1 (en) | 2018-11-14 | 2020-05-14 | MAD Apparel, Inc. | Automated training and exercise adjustments based on sensor-detected exercise form and physiological activation |
| KR20200056233A (en) | 2018-11-14 | 2020-05-22 | 주식회사 퓨전소프트 | A motion accuracy judgment system using artificial intelligence posture analysis technology based on single camera |
| CN109363887A (en) | 2018-11-14 | 2019-02-22 | 华南理工大学 | An interactive upper limb rehabilitation training system |
| US20200160198A1 (en) | 2018-11-19 | 2020-05-21 | TRIPP, Inc. | Adapting a virtual reality experience for a user based on a mood improvement score |
| KR20200019548A (en) | 2018-11-26 | 2020-02-24 | 머스트무브 주식회사 | Method for recommending exercise |
| US20200176098A1 (en) | 2018-12-03 | 2020-06-04 | Tempus Labs | Clinical Concept Identification, Extraction, and Prediction System and Related Methods |
| KR102121586B1 (en) | 2018-12-13 | 2020-06-11 | 주식회사 네오펙트 | Device for providing rehabilitation training for shoulder joint |
| WO2020130979A1 (en) | 2018-12-18 | 2020-06-25 | Yildiz Tekni̇k Üni̇versi̇tesi̇ | Artificial intelligence-based algorithm for physiotherapy and rehabilitation robots for diagnosis and treatment purposes |
| US20220066548A1 (en) | 2018-12-19 | 2022-03-03 | Audi Ag | Vehicle comprising a display device and an electronic control unit |
| EP3671700A1 (en) | 2018-12-19 | 2020-06-24 | SWORD Health S.A. | A method of performing sensor placement error detection and correction and system thereto |
| US10327697B1 (en) | 2018-12-20 | 2019-06-25 | Spiral Physical Therapy, Inc. | Digital platform to identify health conditions and therapeutic interventions using an automatic and distributed artificial intelligence system |
| US11532402B2 (en) | 2018-12-21 | 2022-12-20 | Smith & Nephew, Inc. | Methods and systems for providing an episode of care |
| US20200197744A1 (en) | 2018-12-21 | 2020-06-25 | Motion Scientific Inc. | Method and system for motion measurement and rehabilitation |
| US10475323B1 (en) | 2019-01-09 | 2019-11-12 | MedHab, LLC | Network hub for an alert reporting system |
| WO2020149815A2 (en) | 2019-01-17 | 2020-07-23 | Eski̇şehi̇r Osmangazi̇ Üni̇versi̇tesi̇ | Interactive artificial intelligence application system used in vestibular rehab treatment |
| US11534654B2 (en) | 2019-01-25 | 2022-12-27 | Ifit Inc. | Systems and methods for an interactive pedaled exercise device |
| US20220080265A1 (en) | 2019-02-12 | 2022-03-17 | Icon Health & Fitness, Inc. | Connected stationary exercise machine |
| US10874905B2 (en) | 2019-02-14 | 2020-12-29 | Tonal Systems, Inc. | Strength calibration |
| US20200267487A1 (en) | 2019-02-14 | 2020-08-20 | Bose Corporation | Dynamic spatial auditory cues for assisting exercise routines |
| US11553969B1 (en) | 2019-02-14 | 2023-01-17 | Onpoint Medical, Inc. | System for computation of object coordinates accounting for movement of a surgical site for spinal and other procedures |
| CN110148472A (en) | 2019-02-27 | 2019-08-20 | 洛阳中科信息产业研究院(中科院计算技术研究所洛阳分所) | A kind of rehabilitation equipment management system based on rehabilitation |
| US20220105384A1 (en) | 2019-03-11 | 2022-04-07 | Rom Technologies, Inc. | Bendable sensor device for monitoring joint extension and flexion |
| US20220080256A1 (en) | 2019-03-11 | 2022-03-17 | Rom Technologies, Inc. | System, method and apparatus for adjustable pedal crank |
| US20200289879A1 (en) | 2019-03-11 | 2020-09-17 | Rom Technologies, Inc. | System, method and apparatus for a rehabilitation machine with a simulated flywheel |
| US20220105385A1 (en) | 2019-03-11 | 2022-04-07 | Rom Technologies, Inc. | Bendable sensor device for monitoring joint extension and flexion |
| US20230201656A1 (en) | 2019-03-11 | 2023-06-29 | Rom Technologies, Inc. | Control system for a rehabilitation and exercise electromechanical device |
| US11185735B2 (en) | 2019-03-11 | 2021-11-30 | Rom Technologies, Inc. | System, method and apparatus for adjustable pedal crank |
| US20200289880A1 (en) | 2019-03-11 | 2020-09-17 | Rom Technologies, Inc. | System, method and apparatus for electrically actuated pedal for an exercise or rehabilitation machine |
| US20210244998A1 (en) | 2019-03-11 | 2021-08-12 | Rom Technologies, Inc. | System, method and apparatus for electrically actuated pedal for an exercise or rehabilitation machine |
| US20200289046A1 (en) | 2019-03-11 | 2020-09-17 | Rom Technologies, Inc. | Monitoring joint extension and flexion using a sensor device securable to an upper and lower limb |
| US20200293712A1 (en) | 2019-03-11 | 2020-09-17 | Christopher Potts | Methods, apparatus and systems for annotation of text documents |
| US11541274B2 (en) | 2019-03-11 | 2023-01-03 | Rom Technologies, Inc. | System, method and apparatus for electrically actuated pedal for an exercise or rehabilitation machine |
| US20200289889A1 (en) | 2019-03-11 | 2020-09-17 | Rom Technologies, Inc. | Bendable sensor device for monitoring joint extension and flexion |
| US20200289045A1 (en) | 2019-03-11 | 2020-09-17 | Rom Technologies, Inc. | Single sensor wearable device for monitoring joint extension and flexion |
| US20200289881A1 (en) | 2019-03-11 | 2020-09-17 | Rom Technologies, Inc. | Control system for a rehabilitation and exercise electromechanical device |
| JP6573739B1 (en) | 2019-03-18 | 2019-09-11 | 航 梅山 | Indoor aerobic exercise equipment, exercise system |
| US20200303063A1 (en) | 2019-03-21 | 2020-09-24 | Health Innovators Incorporated | Systems and methods for dynamic and tailored care management |
| KR20220004639A (en) | 2019-03-22 | 2022-01-11 | 코그노아, 인크. | Personalized digital treatment methods and devices |
| US20220300787A1 (en) | 2019-03-22 | 2022-09-22 | Cognoa, Inc. | Model optimization and data analysis using machine learning techniques |
| US20210077884A1 (en) | 2019-03-25 | 2021-03-18 | Humberto De las Casas Zolezzi | Exercise machine |
| US20200312447A1 (en) | 2019-03-27 | 2020-10-01 | Alcon Inc. | System and method of utilizing data of medical systems |
| US20220117514A1 (en) | 2019-03-29 | 2022-04-21 | University Of Southern California | System and method for determining quantitative health-related performance status of a patient |
| DE102019108425B3 (en) | 2019-04-01 | 2020-08-13 | Preh Gmbh | Method for generating adaptive haptic feedback in the case of a touch-sensitive input arrangement that generates haptic feedback |
| US20200320454A1 (en) | 2019-04-05 | 2020-10-08 | International Business Machines Corporation | Resource planning having improved visualization |
| KR20200119665A (en) | 2019-04-10 | 2020-10-20 | 이문홍 | VR cycle equipment and contents providing process using Mobile |
| JP6710357B1 (en) | 2019-04-18 | 2020-06-17 | 株式会社PlusTips | Exercise support system |
| KR102224618B1 (en) | 2019-04-25 | 2021-03-08 | 최봉식 | Exercise equipment using virtual reality system |
| US20200338394A1 (en) | 2019-04-29 | 2020-10-29 | Kenneth Neumann | Methods and systems for an artificial intelligence fitness professional support network for vibrant constitional guidance |
| KR102120828B1 (en) | 2019-05-01 | 2020-06-09 | 이영규 | Apparatus for monitoring health based on virtual reality using Artificial Intelligence and method thereof |
| US20200346072A1 (en) | 2019-05-03 | 2020-11-05 | Xperience Robotics, Inc. | Wearable device systems and methods for guiding physical movements |
| US20200353314A1 (en) | 2019-05-06 | 2020-11-12 | Samuel Messinger | System of an artificial intelligence (ai) powered wireless gym |
| US11957960B2 (en) | 2019-05-10 | 2024-04-16 | Rehab2Fit Technologies Inc. | Method and system for using artificial intelligence to adjust pedal resistance |
| US20220016482A1 (en) | 2019-05-10 | 2022-01-20 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Onboard a User for an Exercise Plan |
| US20220047921A1 (en) | 2019-05-10 | 2022-02-17 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Independently Adjust Resistance of Pedals Based on Leg Strength |
| US20220016485A1 (en) | 2019-05-10 | 2022-01-20 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Determine a User's Progress During Interval Training |
| US20220016480A1 (en) | 2019-05-10 | 2022-01-20 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Present a User Interface Representing a User's Progress in Various Domains |
| US20220016486A1 (en) | 2019-05-10 | 2022-01-20 | Rehab2Fit Technologies Inc. | Method and System for Using Artificial Intelligence to Adjust Pedal Resistance |
| US20240058651A1 (en) | 2019-05-10 | 2024-02-22 | Rehab2Fit Technologies, Inc. | Method and System for Using Artificial Intelligence to Interact with a User of an Exercise Device During an Exercise Session |
| US20230001268A1 (en) | 2019-05-10 | 2023-01-05 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to independently adjust resistance of pedals based on leg strength |
| WO2020229705A1 (en) | 2019-05-16 | 2020-11-19 | Neuberg Jeremie | Remote health monitoring system and method for hospitals and cities |
| US20220238222A1 (en) | 2019-05-16 | 2022-07-28 | Jérémie NEUBERG | Remote health monitoring system and method for hospitals and cities |
| WO2020245727A1 (en) | 2019-06-02 | 2020-12-10 | Predicta Med Analytics Ltd. | A method of evaluating autoimmune disease risk and treatment selection |
| US11508258B2 (en) | 2019-06-07 | 2022-11-22 | Toyota Jidosha Kabushiki Kaisha | Rehabilitation training system and rehabilitation training evaluation program |
| WO2020249855A1 (en) | 2019-06-12 | 2020-12-17 | Sanoste Oy | An image processing arrangement for physiotherapy |
| US20200391080A1 (en) | 2019-06-17 | 2020-12-17 | OrthoGenesys, Inc. | System and method for intelligent self-calibration of target load thresholds for users of exercise machines |
| WO2020256577A1 (en) | 2019-06-17 | 2020-12-24 | Общество С Ограниченной Ответственностью "Сенсомед" | Hardware/software system for the rehabilitation of patients with cognitive impairments of the upper extremities after stroke |
| US20220305291A1 (en) | 2019-06-20 | 2022-09-29 | Elekta, Inc. | Predicting radiotherapy control points using projection images |
| US20200402662A1 (en) | 2019-06-20 | 2020-12-24 | IllumeSense Inc. | System for integrating data for clinical decisions |
| WO2020252599A1 (en) | 2019-06-21 | 2020-12-24 | Flex Artificial Intelligence Inc. | Method and system for measuring and analyzing body movement, positioning and posture |
| US20200401224A1 (en) | 2019-06-21 | 2020-12-24 | REHABILITATION INSTITUTE OF CHICAGO d/b/a Shirley Ryan AbilityLab | Wearable joint tracking device with muscle activity and methods thereof |
| US20200398083A1 (en) | 2019-06-24 | 2020-12-24 | Varian Medical Systems, Inc. | Quality assurance process for radiation therapy treatment planning |
| US20200411162A1 (en) | 2019-06-25 | 2020-12-31 | Wistron Corporation | Dehydration amount prediction method for hemodialysis and electronic device using the same |
| US20200410374A1 (en) | 2019-06-27 | 2020-12-31 | ResMed Pty Ltd | System and method for fleet management of portable oxygen concentrators |
| US20200410385A1 (en) | 2019-06-27 | 2020-12-31 | Toyota Jidosha Kabushiki Kaisha | Learning system, rehabilitation support system, method, program, and trained model |
| US20200411170A1 (en) | 2019-06-28 | 2020-12-31 | University Hospitals Cleveland Medical Center | Machine-learning framework for coordinating and optimizing healthcare resource utilization and delivery of healthcare services across an integrated healthcare system |
| US20220122724A1 (en) | 2019-06-28 | 2022-04-21 | Stryker Corporation | Caregiver assistance system |
| US20210005319A1 (en) | 2019-07-01 | 2021-01-07 | Toyota Jidosha Kabushiki Kaisha | Learning apparatus, rehabilitation support system, method, program, and trained model |
| CN110201358A (en) | 2019-07-05 | 2019-09-06 | 中山大学附属第一医院 | Rehabilitation training of upper limbs system and method based on virtual reality and motor relearning |
| KR20210006212A (en) | 2019-07-08 | 2021-01-18 | 주식회사 인터웨어 | System for health machine using artificial intelligence |
| CN110322957A (en) | 2019-07-10 | 2019-10-11 | 浙江和也健康科技有限公司 | A kind of real time remote magnetotherapy system and real time remote magnetotherapy method |
| US20210008413A1 (en) | 2019-07-11 | 2021-01-14 | Elo Labs, Inc. | Interactive Personal Training System |
| US20220262504A1 (en) | 2019-07-12 | 2022-08-18 | Orion Corporation | Electronic arrangement for therapeutic interventions utilizing virtual or augmented reality and related method |
| US11437137B1 (en) | 2019-07-18 | 2022-09-06 | Change Healthcare Holdings, Llc | Method, apparatus, and computer program product for using machine learning to encode a healthcare claim as a predefined sized vector |
| US20210027889A1 (en) | 2019-07-23 | 2021-01-28 | Hank.AI, Inc. | System and Methods for Predicting Identifiers Using Machine-Learned Techniques |
| US11524210B2 (en) | 2019-07-29 | 2022-12-13 | Neofect Co., Ltd. | Method and program for providing remote rehabilitation training |
| WO2021022003A1 (en) | 2019-07-31 | 2021-02-04 | Zoll Medical Corporation | Systems and methods for providing and managing a personalized cardiac rehabilitation plan |
| US20210035674A1 (en) | 2019-07-31 | 2021-02-04 | Zoll Medical Corporation | Systems and methods for providing and managing a personalized cardiac rehabilitation plan |
| WO2021021447A1 (en) | 2019-07-31 | 2021-02-04 | Peloton Interactive, Inc. | Leaderboard systems and methods for exercise equipment |
| US20220330823A1 (en) | 2019-08-05 | 2022-10-20 | GE Precision Healthcare LLC | Systems and devices for telemetry monitoring management |
| US11229727B2 (en) | 2019-08-07 | 2022-01-25 | Kata Gardner Technologies | Intelligent adjustment of dialysis machine operations |
| JP6775757B1 (en) | 2019-08-08 | 2020-10-28 | 株式会社元気広場 | Function improvement support system and function improvement support device |
| JP2021027917A (en) | 2019-08-09 | 2021-02-25 | 美津濃株式会社 | Information processing device, information processing system, and machine learning device |
| KR102088333B1 (en) | 2019-08-20 | 2020-03-13 | 주식회사 마이베네핏 | Team training system with mixed reality based exercise apparatus |
| US20210065855A1 (en) | 2019-08-20 | 2021-03-04 | Rune Labs, Inc. | Neuromodulation therapy data subject consent matrix |
| WO2021038980A1 (en) | 2019-08-28 | 2021-03-04 | ソニー株式会社 | Information processing device, information processing method, display device equipped with artificial intelligence function, and rendition system equipped with artificial intelligence function |
| US20210205660A1 (en) | 2019-09-05 | 2021-07-08 | Zvi Shavit | Outdoors training systems and methods for designing, monitoring and providing feedback of training |
| US20210082554A1 (en) | 2019-09-12 | 2021-03-18 | International Business Machines Corporation | Providing live first aid response guidance using a machine learning based cognitive aid planner |
| US20210077860A1 (en) | 2019-09-17 | 2021-03-18 | Rom Technologies, Inc. | Reactive protocols for orthopedic treatment |
| CN110808092A (en) | 2019-09-17 | 2020-02-18 | 南京茂森电子技术有限公司 | Remote exercise rehabilitation system |
| US20230048040A1 (en) | 2019-09-17 | 2023-02-16 | Rom Technologies, Inc. | Wearable device for coupling to a user, and measuring and monitoring user activity |
| US20230051751A1 (en) | 2019-09-17 | 2023-02-16 | Rom Technologies, Inc. | Wearable device for coupling to a user, and measuring and monitoring user activity |
| US20210076981A1 (en) | 2019-09-17 | 2021-03-18 | Rom Technologies, Inc. | Wearable device for coupling to a user, and measuring and monitoring user activity |
| WO2021055427A1 (en) | 2019-09-17 | 2021-03-25 | Rom Technologies, Inc. | Telemedicine for orthopedic treatment |
| USD928635S1 (en) | 2019-09-18 | 2021-08-24 | Rom Technologies, Inc. | Goniometer |
| WO2021061061A1 (en) | 2019-09-24 | 2021-04-01 | Ozgonul Danismanlik Hizmetleri Saglik Turizm Gida Limited Sirketi | Interactive support and counseling system for people with weight problems and chronic diseases |
| KR102173553B1 (en) | 2019-09-26 | 2020-11-03 | 주식회사 베니페 | An active and Customized exercise system using deep learning technology |
| US20210098129A1 (en) | 2019-09-30 | 2021-04-01 | Kenneth Neumann | Methods and systems for using artificial intelligence to select a compatible element |
| US20210098099A1 (en) | 2019-09-30 | 2021-04-01 | Kpn Innovations, Llc | Systems and methods for selecting a treatment schema based on user willingness |
| US20220293257A1 (en) | 2019-10-03 | 2022-09-15 | Rom Technologies, Inc. | System and method for processing medical claims |
| US20210134463A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Systems and methods for remotely-enabled identification of a user infection |
| US11071597B2 (en) | 2019-10-03 | 2021-07-27 | Rom Technologies, Inc. | Telemedicine for orthopedic treatment |
| US20240029856A1 (en) | 2019-10-03 | 2024-01-25 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence and machine learning to predict a probability of an undesired medical event occurring during a treatment plan |
| US11139060B2 (en) | 2019-10-03 | 2021-10-05 | Rom Technologies, Inc. | Method and system for creating an immersive enhanced reality-driven exercise experience for a user |
| US20230395232A1 (en) | 2019-10-03 | 2023-12-07 | Rom Technologies, Inc. | System and method for facilitating cardiac rehabilitation among eligible users |
| US20230395231A1 (en) | 2019-10-03 | 2023-12-07 | Rom Technologies, Inc. | Systems and methods to enable communication detection between devices and performance of a preventative action |
| US20230386639A1 (en) | 2019-10-03 | 2023-11-30 | Rom Technologies, Inc. | System and method for implementing a cardiac rehabilitation protocol by using artificial intelligence and standardized measurements |
| US20230377712A1 (en) | 2019-10-03 | 2023-11-23 | Rom Technologies, Inc. | Systems and methods for assigning healthcare professionals to remotely monitor users performing treatment plans on electromechanical machines |
| US20210350898A1 (en) | 2019-10-03 | 2021-11-11 | Rom Technologies, Inc. | System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance |
| US20210350926A1 (en) | 2019-10-03 | 2021-11-11 | Rom Technologies, Inc. | System and method to enable remote adjustment of a device during a telemedicine session |
| US20210350901A1 (en) | 2019-10-03 | 2021-11-11 | Rom Technologies, Inc. | Method and system for using virtual avatars associated with medical professionals during exercise sessions |
| US20210350899A1 (en) | 2019-10-03 | 2021-11-11 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks |
| US20210350888A1 (en) | 2019-10-03 | 2021-11-11 | Rom Technologies, Inc. | System and method for processing medical claims using biometric signatures |
| US20210345975A1 (en) | 2019-10-03 | 2021-11-11 | Rom Technologies, Inc. | Augmented reality placement of goniometer or other sensors |
| US20210345879A1 (en) | 2019-10-03 | 2021-11-11 | Rom Technologies, Inc. | Remote examination through augmented reality |
| US20210350914A1 (en) | 2019-10-03 | 2021-11-11 | Rom Technologies, Inc. | System and method for processing medical claims |
| US20210350902A1 (en) | 2019-10-03 | 2021-11-11 | Rom Technologies, Inc. | Method and system for implementing dynamic treatment environments based on patient information |
| US20210138304A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise |
| US20210366587A1 (en) | 2019-10-03 | 2021-11-25 | Rom Technologies, Inc. | System and method for use of treatment device to reduce pain medication dependency |
| US20230377711A1 (en) | 2019-10-03 | 2023-11-23 | Rom Technologies, Inc. | System and method for an enhanced patient user interface displaying real-time measurement information during a telemedicine session |
| US20230368886A1 (en) | 2019-10-03 | 2023-11-16 | Rom Technologies, Inc. | System and method for an enhanced healthcare professional user interface displaying measurement information for a plurality of users |
| US20210144074A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | System and method for transmitting data and ordering asynchronous data |
| US20210142898A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context |
| US20230282329A1 (en) | 2019-10-03 | 2023-09-07 | Rom Technologies, Inc. | Computerized systems and methods for ai/ml determinations of user capabilities and fitness for military operations |
| US20210383909A1 (en) | 2019-10-03 | 2021-12-09 | Rom Technologies, Inc. | Method and system using artificial intelligence to monitor user characteristics during a telemedicine session |
| US20230274813A1 (en) | 2019-10-03 | 2023-08-31 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning to generate treatment plans that include tailored dietary plans for users |
| US20230253089A1 (en) | 2019-10-03 | 2023-08-10 | Rom Technologies, Inc. | Stair-climbing machines, systems including stair-climbing machines, and methods for using stair-climbing machines to perform treatment plans for rehabilitation |
| US20230245747A1 (en) | 2019-10-03 | 2023-08-03 | Rom Technologies, Inc. | System and method for using ai/ml and telemedicine for invasive surgical treatment to determine a cardiac treatment plan that uses an electromechanical machine |
| US20230245750A1 (en) | 2019-10-03 | 2023-08-03 | Rom Technologies, Inc. | Systems and methods for using elliptical machine to perform cardiovascular rehabilitation |
| US20230245751A1 (en) | 2019-10-03 | 2023-08-03 | Rom Technologies, Inc. | Rowing machines, systems including rowing machines, and methods for using rowing machines to perform treatment plans for rehabilitation |
| US20210407681A1 (en) | 2019-10-03 | 2021-12-30 | Rom Technologies, Inc. | Systems and methods for remotely-enabled identification of a user infection |
| US20210407670A1 (en) | 2019-10-03 | 2021-12-30 | Rom Technologies, Inc. | Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease |
| US20230245748A1 (en) | 2019-10-03 | 2023-08-03 | Rom Technologies, Inc. | System and method for using ai/ml to generate treatment plans to stimulate preferred angiogenesis |
| US20230215539A1 (en) | 2019-10-03 | 2023-07-06 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning and generic risk factors to improve cardiovascular health such that the need for additional cardiac interventions is mitigated |
| US20230207097A1 (en) | 2019-10-03 | 2023-06-29 | Rom Technologies, Inc. | Systems and Methods of Using Artificial Intelligence and Machine Learning in a Telemedical Environment to Predict User Disease States |
| US20210142875A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance |
| US20230197240A1 (en) | 2019-10-03 | 2023-06-22 | Rom Technologies, Inc. | System and method for facilitating cardiac rehabilitation among eligible users |
| US11069436B2 (en) | 2019-10-03 | 2021-07-20 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks |
| US20230078793A1 (en) | 2019-10-03 | 2023-03-16 | Rom Technologies, Inc. | Systems and methods for an artificial intelligence engine to optimize a peak performance |
| US20210142903A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session |
| US20210142893A1 (en) | 2019-10-03 | 2021-05-13 | Rom Technologies, Inc. | System and method for processing medical claims |
| US20230072368A1 (en) | 2019-10-03 | 2023-03-09 | Rom Technologies, Inc. | System and method for using an artificial intelligence engine to optimize a treatment plan |
| US20230060039A1 (en) | 2019-10-03 | 2023-02-23 | Rom Technologies, Inc. | Method and system for using sensors to optimize a user treatment plan in a telemedicine environment |
| US20210134428A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions |
| US11087865B2 (en) | 2019-10-03 | 2021-08-10 | Rom Technologies, Inc. | System and method for use of treatment device to reduce pain medication dependency |
| US20220015838A1 (en) | 2019-10-03 | 2022-01-20 | Rom Technologies, Inc. | Telemedicine for orthopedic treatment |
| US20210128080A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Augmented reality placement of goniometer or other sensors |
| US20210134430A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
| US20210134427A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for creating an immersive enhanced reality-driven exercise experience for a user |
| US20230014598A1 (en) | 2019-10-03 | 2023-01-19 | Rom Technologies, Inc. | Augmented reality placement of goniometer or other sensors |
| US20210134432A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for implementing dynamic treatment environments based on patient information |
| US11265234B2 (en) | 2019-10-03 | 2022-03-01 | Rom Technologies, Inc. | System and method for transmitting data and ordering asynchronous data |
| US20220415469A1 (en) | 2019-10-03 | 2022-12-29 | Rom Technologies, Inc. | System and method for using an artificial intelligence engine to optimize patient compliance |
| US20220415471A1 (en) | 2019-10-03 | 2022-12-29 | Rom Technologies, Inc. | Method and system for using sensor data to identify secondary conditions of a user based on a detected joint misalignment of the user who is using a treatment device to perform a treatment plan |
| US20220392591A1 (en) | 2019-10-03 | 2022-12-08 | Rom Technologies, Inc. | System and method for processing medical claims using biometric signatures |
| US20220384012A1 (en) | 2019-10-03 | 2022-12-01 | Rom Technologies, Inc. | Method and system for implementing dynamic treatment environments based on patient information |
| US11270795B2 (en) | 2019-10-03 | 2022-03-08 | Rom Technologies, Inc. | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context |
| US20210134458A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method to enable remote adjustment of a device during a telemedicine session |
| US20210134412A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method for processing medical claims using biometric signatures |
| US11515028B2 (en) | 2019-10-03 | 2022-11-29 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
| US20220079690A1 (en) | 2019-10-03 | 2022-03-17 | Rom Technologies, Inc. | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment |
| US11515021B2 (en) | 2019-10-03 | 2022-11-29 | Rom Technologies, Inc. | Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance |
| US11282608B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session |
| US11282599B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions |
| US11282604B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease |
| US20210134457A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease |
| US11284797B2 (en) | 2019-10-03 | 2022-03-29 | Rom Technologies, Inc. | Remote examination through augmented reality |
| US11508482B2 (en) | 2019-10-03 | 2022-11-22 | Rom Technologies, Inc. | Systems and methods for remotely-enabled identification of a user infection |
| US11295848B2 (en) | 2019-10-03 | 2022-04-05 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
| US20210134425A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance |
| US20210127974A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Remote examination through augmented reality |
| US20220339501A1 (en) | 2019-10-03 | 2022-10-27 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning for generating an alignment plan capable of enabling the aligning of a user's body during a treatment session |
| US20220331663A1 (en) | 2019-10-03 | 2022-10-20 | Rom Technologies, Inc. | System and Method for Using an Artificial Intelligence Engine to Anonymize Competitive Performance Rankings in a Rehabilitation Setting |
| US20210128255A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment |
| US20220314075A1 (en) | 2019-10-03 | 2022-10-06 | Rom Technologies, Inc. | Method and system for monitoring actual patient treatment progress using sensor data |
| US20230058605A1 (en) | 2019-10-03 | 2023-02-23 | Rom Technologies, Inc. | Method and system for using sensor data to detect joint misalignment of a user using a treatment device to perform a treatment plan |
| US20220115133A1 (en) | 2019-10-03 | 2022-04-14 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session |
| US20220288460A1 (en) | 2019-10-03 | 2022-09-15 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
| US11309085B2 (en) | 2019-10-03 | 2022-04-19 | Rom Technologies, Inc. | System and method to enable remote adjustment of a device during a telemedicine session |
| US20220288462A1 (en) | 2019-10-03 | 2022-09-15 | Rom Technologies, Inc. | System and method for generating treatment plans to enhance patient recovery based on specific occupations |
| US11075000B2 (en) | 2019-10-03 | 2021-07-27 | Rom Technologies, Inc. | Method and system for using virtual avatars associated with medical professionals during exercise sessions |
| US20220288461A1 (en) | 2019-10-03 | 2022-09-15 | Rom Technologies, Inc. | Mathematical modeling for prediction of occupational task readiness and enhancement of incentives for rehabilitation into occupational task readiness |
| US11101028B2 (en) | 2019-10-03 | 2021-08-24 | Rom Technologies, Inc. | Method and system using artificial intelligence to monitor user characteristics during a telemedicine session |
| US20220273986A1 (en) | 2019-10-03 | 2022-09-01 | Rom Technologies, Inc. | Method and system for enabling patient pseudonymization or anonymization in a telemedicine session subject to the consent of a third party |
| US20220266094A1 (en) | 2019-10-03 | 2022-08-25 | Rom Technologies, Inc. | Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise |
| US20210134429A1 (en) | 2019-10-03 | 2021-05-06 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks |
| US20220270738A1 (en) | 2019-10-03 | 2022-08-25 | Rom Technologies, Inc. | Computerized systems and methods for military operations where sensitive information is securely transmitted to assigned users based on ai/ml determinations of user capabilities |
| US20220262483A1 (en) | 2019-10-03 | 2022-08-18 | Rom Technologies, Inc. | Systems and Methods for Using Artificial Intelligence to Implement a Cardio Protocol via a Relay-Based System |
| US11410768B2 (en) | 2019-10-03 | 2022-08-09 | Rom Technologies, Inc. | Method and system for implementing dynamic treatment environments based on patient information |
| US11317975B2 (en) | 2019-10-03 | 2022-05-03 | Rom Technologies, Inc. | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment |
| US11404150B2 (en) | 2019-10-03 | 2022-08-02 | Rom Technologies, Inc. | System and method for processing medical claims using biometric signatures |
| US20220238223A1 (en) | 2019-10-03 | 2022-07-28 | Rom Technologies, Inc. | System and method to enable remote adjustment of a device during a telemedicine session |
| US20220230729A1 (en) | 2019-10-03 | 2022-07-21 | Rom Technologies, Inc. | Method and system for telemedicine resource deployment to optimize cohort-based patient health outcomes in resource-constrained environments |
| US11325005B2 (en) | 2019-10-03 | 2022-05-10 | Rom Technologies, Inc. | Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise |
| US11328807B2 (en) | 2019-10-03 | 2022-05-10 | Rom Technologies, Inc. | System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance |
| US20220148725A1 (en) | 2019-10-03 | 2022-05-12 | Rom Technologies, Inc. | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context |
| US20220158916A1 (en) | 2019-10-03 | 2022-05-19 | Rom Technologies, Inc. | System and method for transmitting data and ordering asynchronous data |
| US20220193491A1 (en) | 2019-10-03 | 2022-06-23 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning for generating alignment plans to align a user with an imaging sensor during a treatment session |
| US11348683B2 (en) | 2019-10-03 | 2022-05-31 | Rom Technologies, Inc. | System and method for processing medical claims |
| US12205704B2 (en) | 2019-10-04 | 2025-01-21 | Nec Corporation | Apparatus, system, method, and computer readable medium for rehabilitation planning using machine learning |
| US20210101051A1 (en) | 2019-10-07 | 2021-04-08 | Rom Technologies, Inc. | Computer-implemented questionnaire for orthopedic treatment |
| US20230364472A1 (en) | 2019-10-07 | 2023-11-16 | Rom Technologies, Inc. | Computer-implemented questionnaire for orthopedic treatment |
| US11701548B2 (en) | 2019-10-07 | 2023-07-18 | Rom Technologies, Inc. | Computer-implemented questionnaire for orthopedic treatment |
| US20210113890A1 (en) | 2019-10-21 | 2021-04-22 | Rom Technologies, Inc. | Persuasive motivation for orthopedic treatment |
| KR20210052028A (en) | 2019-10-31 | 2021-05-10 | 인제대학교 산학협력단 | Telerehabilitation and Self-management System for Home based Cardiac and Pulmonary Rehabilitation |
| CN110931103A (en) | 2019-11-01 | 2020-03-27 | 深圳市迈步机器人科技有限公司 | Control method and system of rehabilitation equipment |
| US20220384010A1 (en) | 2019-11-01 | 2022-12-01 | Astetias Pharma Inc. | Exercise support device, exercise support system, exercise support method, and program |
| US20210128978A1 (en) | 2019-11-01 | 2021-05-06 | Tonal Systems, Inc. | Modular exercise machine |
| EP4054699A1 (en) | 2019-11-06 | 2022-09-14 | KCI Licensing, Inc. | Apparatuses, systems, and methods for therapy mode control in therapy devices |
| US20210134456A1 (en) | 2019-11-06 | 2021-05-06 | Rom Technologies, Inc. | System for remote treatment utilizing privacy controls |
| WO2021090267A1 (en) | 2019-11-06 | 2021-05-14 | Kci Licensing, Inc. | Apparatuses, systems, and methods for therapy mode control in therapy devices |
| US20220395232A1 (en) | 2019-11-06 | 2022-12-15 | Kci Licensing, Inc. | Apparatuses, systems, and methods for therapy mode control in therapy devices |
| CN111105859A (en) | 2019-11-13 | 2020-05-05 | 泰康保险集团股份有限公司 | Method and device for determining rehabilitation therapy, storage medium and electronic equipment |
| KR102246049B1 (en) | 2019-11-15 | 2021-04-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| EP3984510A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Rehabilitation exercise apparatus for arms and legs |
| JP7231752B2 (en) | 2019-11-15 | 2023-03-01 | エイチ ロボティクス インコーポレイテッド | Rehabilitation exercise device for upper and lower limbs |
| US20220133576A1 (en) | 2019-11-15 | 2022-05-05 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| US20220304882A1 (en) | 2019-11-15 | 2022-09-29 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| JP7202474B2 (en) | 2019-11-15 | 2023-01-11 | エイチ ロボティクス インコーポレイテッド | Rehabilitation exercise device for upper and lower limbs |
| KR102246051B1 (en) | 2019-11-15 | 2021-04-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| KR102246052B1 (en) | 2019-11-15 | 2021-04-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| US20220304881A1 (en) | 2019-11-15 | 2022-09-29 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| EP3984513A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| EP3984511A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| US20210361514A1 (en) | 2019-11-15 | 2021-11-25 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| JP2022521378A (en) | 2019-11-15 | 2022-04-07 | エイチ ロボティクス インコーポレイテッド | Rehabilitation exercise device for upper and lower limbs |
| EP3984512A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Upper and lower limb rehabilitation exercise apparatus |
| KR102246050B1 (en) | 2019-11-15 | 2021-04-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| US20220305328A1 (en) | 2019-11-15 | 2022-09-29 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| EP3984509A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| EP3984508A1 (en) | 2019-11-15 | 2022-04-20 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| JP7231751B2 (en) | 2019-11-15 | 2023-03-01 | エイチ ロボティクス インコーポレイテッド | Rehabilitation exercise device for upper and lower limbs |
| JP7198364B2 (en) | 2019-11-15 | 2022-12-28 | エイチ ロボティクス インコーポレイテッド | Rehabilitation exercise device for upper and lower limbs |
| JP7231750B2 (en) | 2019-11-15 | 2023-03-01 | エイチ ロボティクス インコーポレイテッド | Rehabilitation exercise device for upper and lower limbs |
| US20220339052A1 (en) | 2019-11-15 | 2022-10-27 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| US10857426B1 (en) | 2019-11-29 | 2020-12-08 | Kpn Innovations, Llc | Methods and systems for generating fitness recommendations according to user activity profiles |
| CN110993057A (en) | 2019-12-10 | 2020-04-10 | 上海金矢机器人科技有限公司 | Rehabilitation training system and method based on cloud platform and lower limb rehabilitation robot |
| USD940797S1 (en) | 2019-12-17 | 2022-01-11 | Rom Technologies, Inc. | Rehabilitation device |
| USD939644S1 (en) | 2019-12-17 | 2021-12-28 | Rom Technologies, Inc. | Rehabilitation device |
| USD948639S1 (en) | 2019-12-17 | 2022-04-12 | Rom Technologies, Inc. | Rehabilitation device |
| USD907143S1 (en) | 2019-12-17 | 2021-01-05 | Rom Technologies, Inc. | Rehabilitation device |
| US20200121987A1 (en) | 2019-12-19 | 2020-04-23 | Intel Corporation | Smart gym |
| US20210186419A1 (en) | 2019-12-23 | 2021-06-24 | Koninklijke Philips N.V. | Optimizing sleep onset based on personalized exercise timing to adjust the circadian rhythm |
| US20210202090A1 (en) | 2019-12-26 | 2021-07-01 | Teladoc Health, Inc. | Automated health condition scoring in telehealth encounters |
| KR102224188B1 (en) | 2019-12-31 | 2021-03-08 | 이창훈 | System and method for providing health care contents for virtual reality using cloud based artificial intelligence |
| CN111111110A (en) | 2019-12-31 | 2020-05-08 | 福建医科大学附属第一医院 | Doctor-patient interaction control system and method for VR (virtual reality) bicycle rehabilitation training |
| CN212141371U (en) | 2019-12-31 | 2020-12-15 | 福建医科大学附属第一医院 | A doctor-patient interactive control system for rehabilitation training VR bicycle |
| WO2021138620A1 (en) | 2020-01-02 | 2021-07-08 | Peloton Interactive, Inc. | Media platform for exercise systems and methods |
| US10902944B1 (en) | 2020-01-06 | 2021-01-26 | Carlsmed, Inc. | Patient-specific medical procedures and devices, and associated systems and methods |
| US20220000556A1 (en) | 2020-01-06 | 2022-01-06 | Carlsmed, Inc. | Patient-specific medical systems, devices, and methods |
| US20230047253A1 (en) | 2020-01-22 | 2023-02-16 | Healthpointe Solutions, Inc. | System and Method for Dynamic Goal Management in Care Plans |
| CN111370088A (en) | 2020-02-24 | 2020-07-03 | 段秀芝 | Children rehabilitation coordination nursing device based on remote monitoring |
| USD939096S1 (en) | 2020-02-24 | 2021-12-21 | H Robotics Inc | Apparatus for upper limb rehabilitation |
| USD940891S1 (en) | 2020-02-24 | 2022-01-11 | H Robotics Inc. | Apparatus for lower limb rehabilitation |
| KR102352602B1 (en) | 2020-02-25 | 2022-01-19 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| KR102352603B1 (en) | 2020-02-25 | 2022-01-20 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| KR102471990B1 (en) | 2020-02-25 | 2022-11-29 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| KR102387577B1 (en) | 2020-02-25 | 2022-04-19 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| KR102352604B1 (en) | 2020-02-25 | 2022-01-20 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| EP4112033A1 (en) | 2020-02-25 | 2023-01-04 | H Robotics Inc. | Rehabilitation exercise system for upper and lower limbs |
| US20220401783A1 (en) | 2020-02-25 | 2022-12-22 | H Robotics Inc. | Rehabilitation exercise device for upper and lower limbs |
| US20210272677A1 (en) | 2020-02-28 | 2021-09-02 | New York University | System and method for patient verification |
| KR102188766B1 (en) | 2020-03-09 | 2020-12-11 | 주식회사 글로벌비즈텍 | Apparatus for providing artificial intelligence based health care service |
| CN111460305A (en) | 2020-04-01 | 2020-07-28 | 随机漫步(上海)体育科技有限公司 | Method for assisting bicycle training, readable storage medium and electronic equipment |
| US20210391091A1 (en) | 2020-04-23 | 2021-12-16 | Rom Technologies, Inc. | Method and system for describing and recommending optimal treatment plans in adaptive telemedical or other contexts |
| US11107591B1 (en) | 2020-04-23 | 2021-08-31 | Rom Technologies, Inc. | Method and system for describing and recommending optimal treatment plans in adaptive telemedical or other contexts |
| KR102264498B1 (en) | 2020-04-23 | 2021-06-14 | 주식회사 바스젠바이오 | Computer program for predicting prevalence probability |
| WO2021216881A1 (en) | 2020-04-23 | 2021-10-28 | Rom Technologies, Inc. | Method and system for using sensor data from rehabilitation or exercise equipment to treat patients via telemedicine |
| US20210343384A1 (en) | 2020-05-04 | 2021-11-04 | Progentec Diagnostics, Inc. | Systems and methods for managing autoimmune conditions, disorders and diseases |
| US20200275886A1 (en) | 2020-05-18 | 2020-09-03 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
| US11337648B2 (en) | 2020-05-18 | 2022-05-24 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
| WO2021236961A1 (en) | 2020-05-21 | 2021-11-25 | Rom Technologies, Inc. | System and method for processing medical claims |
| US20210375425A1 (en) | 2020-05-28 | 2021-12-02 | Macvon LLC | Multifunctional intelligent fitness and physiotherapy device |
| CN216258145U (en) | 2020-05-28 | 2022-04-12 | 首都医科大学宣武医院 | Rehabilitation training device and rehabilitation training system |
| US20210398668A1 (en) | 2020-06-19 | 2021-12-23 | Clover Health Investments, Corp. | Systems and methods for providing telehealth sessions |
| US11621067B1 (en) | 2020-06-24 | 2023-04-04 | Nicole Nolan | Method for generating personalized resistance training program |
| US20230263428A1 (en) | 2020-06-26 | 2023-08-24 | Rom Technologies, Inc. | System, method and apparatus for anchoring an electronic device and measuring a joint angle |
| CN111790111A (en) | 2020-07-02 | 2020-10-20 | 张勇 | Recovered health table of using of intracardiac branch of academic or vocational study with auxiliary function |
| US20220020469A1 (en) | 2020-07-20 | 2022-01-20 | Children's Hospitals and Clinics of Minnesota | Systems and methods for functional testing and rehabilitation |
| US10931643B1 (en) | 2020-07-27 | 2021-02-23 | Kpn Innovations, Llc. | Methods and systems of telemedicine diagnostics through remote sensing |
| GB2591542B (en) | 2020-07-30 | 2022-03-02 | Shift Smart Trainer Ltd | Smart training attachment for an exercise bicycle |
| US12004871B1 (en) | 2020-08-05 | 2024-06-11 | Amazon Technologies, Inc. | Personalized three-dimensional body models and body change journey |
| US20230119461A1 (en) | 2020-08-06 | 2023-04-20 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
| CA3193419A1 (en) | 2020-08-28 | 2022-03-03 | Band Connect Inc. | System and method for remotely providing and monitoring physical therapy |
| WO2022047006A1 (en) | 2020-08-28 | 2022-03-03 | Band Connect Inc. | System and method for remotely providing and monitoring physical therapy |
| CN213190965U (en) | 2020-08-31 | 2021-05-14 | 潍坊医学院 | An intelligent rehabilitation device |
| KR102196793B1 (en) | 2020-09-10 | 2020-12-30 | 이영규 | Non-face-to-face training system using artificial intelligence |
| US20220096006A1 (en) | 2020-09-25 | 2022-03-31 | Apple Inc. | Estimating Caloric Expenditure using Heart Rate Model Specific to Motion Class |
| CN112071393A (en) | 2020-09-30 | 2020-12-11 | 郑州大学 | Exercise guiding control system based on real-time and historical physiological data of patient |
| US20220105390A1 (en) | 2020-10-02 | 2022-04-07 | Toyota Jidosha Kabushiki Kaisha | Rehabilitation assistance system, rehabilitation assistance method, and program |
| US20220118218A1 (en) | 2020-10-15 | 2022-04-21 | Bioserenity | Systems and methods for remotely controlled therapy |
| US20220126169A1 (en) | 2020-10-28 | 2022-04-28 | Rom Technologies, Inc. | Systems and methods for using machine learning to control a rehabilitation and exercise electromechanical device |
| KR102469723B1 (en) | 2020-10-29 | 2022-11-22 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| WO2022092493A1 (en) | 2020-10-29 | 2022-05-05 | 에이치로보틱스 주식회사 | Rehabilitation exercise device for upper and lower limbs |
| WO2022092494A1 (en) | 2020-10-29 | 2022-05-05 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper and lower limbs |
| KR102467496B1 (en) | 2020-10-29 | 2022-11-15 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| KR102467495B1 (en) | 2020-10-29 | 2022-11-15 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus for upper limb and lower limb |
| KR102421437B1 (en) | 2020-11-11 | 2022-07-15 | 에이치로보틱스 주식회사 | Hand exercising apparatus |
| CN112289425A (en) | 2020-11-19 | 2021-01-29 | 重庆邮电大学 | Public lease-based rehabilitation equipment management system and method |
| US20220176039A1 (en) | 2020-12-04 | 2022-06-09 | Medtronic Minimed, Inc. | Healthcare service management via remote monitoring and patient modeling |
| US20220181004A1 (en) | 2020-12-08 | 2022-06-09 | Happify Inc. | Customizable therapy system and process |
| CN112603295A (en) | 2020-12-15 | 2021-04-06 | 深圳先进技术研究院 | Rehabilitation evaluation method and system based on wearable sensor |
| CN114694824A (en) | 2020-12-25 | 2022-07-01 | 北京视光宝盒科技有限公司 | Remote control method and device for therapeutic apparatus |
| KR20220102207A (en) | 2021-01-12 | 2022-07-20 | 에이치로보틱스 주식회사 | Rehabilitation exercise system for upper limb and lower limb |
| US20220273985A1 (en) | 2021-02-26 | 2022-09-01 | Cybermedic Co., Ltd. | Interactive ai coaching-based musculoskeletal exercise and rehabilitation training system and method |
| KR102539190B1 (en) | 2021-02-26 | 2023-06-02 | 동의대학교 산학협력단 | Treadmill with a UI scheme for motion state analysis and feedback and Method for controlling the same |
| KR102532766B1 (en) | 2021-02-26 | 2023-05-17 | 주식회사 싸이버메딕 | Ai-based exercise and rehabilitation training system |
| KR102531930B1 (en) | 2021-03-23 | 2023-05-12 | 한국생산기술연구원 | Method of providing training using smart clothing having electromyography sensing function and weight apparatus and training providing service system training using the same |
| US20220314072A1 (en) | 2021-03-30 | 2022-10-06 | Rehab2Fit Technologies, Inc. | Adjustment of exercise based on artificial intelligence, exercise plan, and user feedback |
| US20240177846A1 (en) | 2021-03-31 | 2024-05-30 | Healthpointe Solutions, Inc. | Resource Utilization Based on Patients' Medical Condition Trajectories |
| WO2022212883A1 (en) | 2021-04-01 | 2022-10-06 | Exer Labs, Inc. | Motion engine |
| WO2022212921A1 (en) | 2021-04-01 | 2022-10-06 | Exer Labs, Inc. | Continually learning audio feedback engine |
| US20220327714A1 (en) | 2021-04-01 | 2022-10-13 | Exer Labs, Inc. | Motion Engine |
| US20220327807A1 (en) | 2021-04-01 | 2022-10-13 | Exer Labs, Inc. | Continually Learning Audio Feedback Engine |
| WO2022216498A1 (en) | 2021-04-08 | 2022-10-13 | Rom Technologies, Inc. | Method and system for monitoring actual patient treatment progress using sensor data |
| US20220328181A1 (en) | 2021-04-08 | 2022-10-13 | Rom Technologies, Inc. | Method and system for monitoring actual patient treatment progress using sensor data |
| US20220323826A1 (en) | 2021-04-11 | 2022-10-13 | Vikas Khurana | System, apparatus and method for training a subject |
| US20220346703A1 (en) | 2021-04-21 | 2022-11-03 | AZA Health & Wellness Corp. | System and method for analyzing user physical characteristics and prescribing treatment plans to the user |
| KR20220145989A (en) | 2021-04-22 | 2022-11-01 | 주식회사 타고 | Spining bike applied the internet of things |
| US20220338761A1 (en) | 2021-04-23 | 2022-10-27 | Tactile Robotics Ltd. | Remote Training and Practicing Apparatus and System for Upper-Limb Rehabilitation |
| USD976339S1 (en) | 2021-04-25 | 2023-01-24 | Shenzhen Esino Technology Co., Ltd. | Pedal exerciser |
| US20220342969A1 (en) | 2021-04-27 | 2022-10-27 | Ifit Inc. | Controlling access to a stationary exercise machine |
| CN215136488U (en) | 2021-05-06 | 2021-12-14 | 沧州冠王体育器材有限公司 | Wireless monitoring control recumbent exercise bicycle based on internet |
| KR20220156134A (en) | 2021-05-17 | 2022-11-25 | 한국공학대학교산학협력단 | Method for Providing Home Rehabilitation Service With Rotator Cuff Exercise Rehabilitation Device |
| US20220370851A1 (en) | 2021-05-20 | 2022-11-24 | CITYROW Holdings, Inc. | Method and System for Determining Instantaneous Effort Value |
| CN113384850A (en) | 2021-05-26 | 2021-09-14 | 北京安真医疗科技有限公司 | Centrifugal training method and system |
| WO2022251420A1 (en) | 2021-05-28 | 2022-12-01 | Rom Technologies, Inc. | System and method for generating treatment plans to enhance patient recovery based on specific occupations |
| JP3238491U (en) | 2021-06-09 | 2022-07-29 | 振亞 劉 | An intelligent system that adjusts the optimal rehab intensity or amount of exercise to match the individual's exercise prescription |
| US20230013530A1 (en) | 2021-07-08 | 2023-01-19 | Rom Technologies, Inc. | System and method for using an ai engine to enforce dosage compliance by controlling a treatment apparatus |
| KR102427545B1 (en) | 2021-07-21 | 2022-08-01 | 임화섭 | Knee rehabilitation exercise monitoring method and system |
| WO2023008680A1 (en) | 2021-07-30 | 2023-02-02 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus |
| KR20230019349A (en) | 2021-07-30 | 2023-02-08 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus |
| KR20230019350A (en) | 2021-07-30 | 2023-02-08 | 에이치로보틱스 주식회사 | Rehabilitation exercise apparatus |
| WO2023008681A1 (en) | 2021-07-30 | 2023-02-02 | 에이치로보틱스 주식회사 | Rehabilitation exercise device |
| US20230029639A1 (en) | 2021-08-02 | 2023-02-02 | Medtronic, Inc. | Medical device system for remote monitoring and inspection |
| CN113499572A (en) | 2021-08-10 | 2021-10-15 | 杭州程天科技发展有限公司 | Rehabilitation robot with myoelectric stimulation function and control method thereof |
| KR20230026556A (en) | 2021-08-17 | 2023-02-27 | 에이치로보틱스 주식회사 | Upper limb exercising apparatus |
| WO2023022319A1 (en) | 2021-08-17 | 2023-02-23 | 에이치로보틱스 주식회사 | Upper extremity exercise device |
| KR20230026668A (en) | 2021-08-18 | 2023-02-27 | 에이치로보틱스 주식회사 | Exercise apparatus for wrist and rehabilitation exercise apparatus for upper limb and lower limb using the same |
| WO2023022320A1 (en) | 2021-08-18 | 2023-02-23 | 에이치로보틱스 주식회사 | Wrist exercise device and rehabilitation exercise device for upper and lower extremities using same |
| KR20230040526A (en) | 2021-09-16 | 2023-03-23 | (주)메시 | Non-face-to-face fitness training operation method and system |
| WO2023052695A1 (en) | 2021-09-29 | 2023-04-06 | Dessintey | Device for implementing a technique of mental representation for rehabilitation of lower limbs |
| FR3127393A1 (en) | 2021-09-29 | 2023-03-31 | Dessintey | Device for the implementation of a technique of mental representation for the rehabilitation of lower limbs |
| KR20230050506A (en) | 2021-10-07 | 2023-04-17 | 주식회사 웰니스헬스케어 | IoT-based exercise equipment remote management system and method of driving thereof |
| CN113885361A (en) | 2021-10-18 | 2022-01-04 | 上海交通大学医学院附属瑞金医院 | A remote force control system for rehabilitation equipment that is not sensitive to delay |
| KR20230056118A (en) | 2021-10-19 | 2023-04-27 | 주식회사 지니소프트 | Exercise program recommendation system according to physical ability |
| CN114049961A (en) | 2021-10-29 | 2022-02-15 | 松下电气设备(中国)有限公司 | Health promotion system and parameter adjustment method for health promotion device |
| CN114632302A (en) | 2021-11-01 | 2022-06-17 | 李信达 | Intelligent cardiopulmonary rehabilitation assisting system |
| WO2023091496A1 (en) | 2021-11-18 | 2023-05-25 | Rom Technologies, Inc. | System, method and apparatus for rehabilitation and exercise |
| CN114203274A (en) | 2021-12-14 | 2022-03-18 | 浙江大学 | Chronic respiratory failure patient remote rehabilitation training guidance system |
| US20230207124A1 (en) | 2021-12-28 | 2023-06-29 | Optum Services (Ireland) Limited | Diagnosis and treatment recommendation using quantum computing |
| US20230215552A1 (en) | 2021-12-31 | 2023-07-06 | Cerner Innovation, Inc. | Early detection of patients for coordinated application of healthcare resources based on bundled payment |
| US20230218950A1 (en) | 2022-01-11 | 2023-07-13 | Tonal Systems, Inc. | Exercise machine suggested weights |
| US20230249599A1 (en) | 2022-02-07 | 2023-08-10 | Leggett & Platt Canada Co. | Interactive adjustable seat with multiple modes of operation |
| WO2023164292A1 (en) | 2022-02-28 | 2023-08-31 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning in a telemedical environment to predict user disease states |
| CN217472652U (en) | 2022-04-02 | 2022-09-23 | 漳州万利达科技有限公司 | Interconnection fitness equipment |
| WO2023215155A1 (en) | 2022-05-04 | 2023-11-09 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence to implement a cardio protocol via a relay-based system |
| US20230364471A1 (en) | 2022-05-16 | 2023-11-16 | Mda Co., Ltd. | Exercise rehabilitation system using smart mirror |
| US20230377710A1 (en) | 2022-05-17 | 2023-11-23 | Chengdu Shangyi Information Technology Co., Ltd. | Movement adjustment system based on heart rates and rating of perceived exertion feedbacks of different users |
| WO2023230075A1 (en) | 2022-05-23 | 2023-11-30 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
| CN114898832A (en) | 2022-05-30 | 2022-08-12 | 安徽法罗适医疗技术有限公司 | Rehabilitation training remote control system, method, device, equipment and medium |
| US20230390627A1 (en) | 2022-06-05 | 2023-12-07 | Apple Inc. | User interfaces for physical activity information |
| TWM638437U (en) | 2022-06-06 | 2023-03-11 | 建菱科技股份有限公司 | Monitoring and management system that can control training status of multiple fitness/rehabilitation equipment on site or remotely |
| CN114983760A (en) | 2022-06-06 | 2022-09-02 | 广州中医药大学(广州中医药研究院) | Upper limb rehabilitation training method and system |
| WO2024013267A1 (en) | 2022-07-12 | 2024-01-18 | Cortery AB | Wearable and automated ultrasound therapy devices and methods |
| KR102502744B1 (en) | 2022-07-21 | 2023-02-24 | 석주필 | Operation method of rehabilitation exercise apparatus using optimal knee motion angle |
| KR102528503B1 (en) | 2022-09-05 | 2023-05-04 | 주식회사 피지오 | Online rehabilitation exercise system linked with experts |
| CN218420859U (en) | 2022-09-15 | 2023-02-03 | 深圳市创通电子器械有限公司 | Remote rehabilitation training equipment for patients with limb dyskinesia |
| WO2024107807A1 (en) | 2022-11-17 | 2024-05-23 | Rom Technologies, Inc. | System and method for enabling residentially-based cardiac rehabilitation by using an electromechanical machine and educational content to mitigate risk factors and optimize user behavior |
| CN115954081A (en) | 2022-11-28 | 2023-04-11 | 北京大学第一医院 | Remote intelligent rehabilitation method and system after knee joint replacement |
| US20240203580A1 (en) | 2022-12-20 | 2024-06-20 | Rom Technologies, Inc. | Method and system for using artificial intelligence to triage treatment plans for patients and electronically initiate the treament plans based on the triaging |
Non-Patent Citations (78)
| Title |
|---|
| "Abidi, Samina; A Knowledge-Modeling Approach to Integrate Multple Clinical Practice Guidelines to Provide Evidence-Based Clinical Decision Support for Managing Comorbid Conditons; Journal of Medical Systems 41.12: 1-19. springer Nature B.V. (Dec 2017) (Year: 2017)". |
| Abedtash, "An Interoperable Electronic Medical Record-Based Platform for Personalized Predictive Analytics", ProQuest LLC, Jul. 2017, 185 pages. |
| Ahmed et al., "Artificial Intelligence With Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine," Database (Oxford), 2020, pp. 1-35, vol. 2020. |
| Ahmed et al., "Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine," Database, 2020, pp. 1-35. |
| Ahmed et al., "Artificial Intelligence With Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine", 2020, Database (Oxford), 2020:baaa010. doi: 10.1093/database/baaa010 (Year: 2020), pp. 1-35. |
| Alcaraz et al., "Machine Learning as Digital Therapy Assessment for Mobile Gait Rehabilitation," 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, 2018, 6 pages. |
| Alex Bellec, "Part-of-Speech tagging tutorial with the Keras Deep Learning library," pp. 1-16, published Mar. 27, 2018, retrieved on Feb. 1, 2022 from https://becominghuman.ai/part-of-speech-tagging-tutorial-with-the-keras-deep-learning-library-d7f93fa05537. |
| Amiya et al., "Is Exercise Training Appropriate for Patients With Advanced Heart Failure Receiving Continuous Inotropic Infusion? A Review," 2018, pp. 1-9, vol. 12, Japan. |
| Androutsou et al., "A Smartphone Application Designed to Engage the Elderly in Home-Based Rehabilitation," Frontiers in Digital Health, Sep. 2020, vol. 2, Article 15, 13 pages. |
| Badreesh Shetty, "Natural Language Processing (NPL) for Machine Learning," pp. 1-13, published Nov. 24, 2018, retrieved on Feb. 1, 2022 from https://towardsdatascience. com/natural-language-processing-nlp-for-machine-learning-d44498845d5b. |
| Barrett et al., "Artificial intelligence supported patient self-care in chronic heart failure: a paradigm shift from reactive to predictive, preventive and personalised care," EPMA Journal (2019), pp. 445-464. |
| Beene et al., "AI and Care Delivery: Emerging Opportunities for Artificial Intelligence to Transform How Care Is Delivered," Nov. 2019, American Hospital Association, pp. 1-12. |
| Blasiak et al., "CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence,"SLAS Technology: Translating Life Sciences Innovation, 2020, 11 pages. |
| Boulanger Pierre et al., "A Low-cost Virtual Reality Bike for Remote Cardiac Rehabilitation", Dec. 7, 2017, Advances in Biometrics: International Conference, ICB 2007, Seoul, Korea, pp. 155-166. |
| Bravo-Escobar et al., "Effectiveness and safety of a home-based cardiac rehabilitation programme of mixed surveillance in patients with ischemic heart disease at moderate cardiovascular risk: A randomised, controlled clinical trial," BMC Cardiovascular Disorders, 2017, pp. 1-11, vol. 17:66. |
| cG. Acampora, D. J. Cook, P. Rashidi and A. V. Vasilakos, "A Survey on Ambient Intelligence in Healthcare," in proceedings of the IEEE, vol. 101, no. 12, pp. 2470-2494, Dec. 2013, doi: 10.1109/JPROC2013.2262913. (Year: 2013). |
| Chen et al., "Home-based cardiac rehabilitation improves quality of life, aerobic capacity, and readmission rates in patients with chronic heart failure," Medicine, 2018, pp. 1-5 vol. 97:4. |
| Chrif et al., "Control design for a lower-limb paediatric therapy device using linear motor technology," Article, 2017, pp. 119-127, Science Direct, Switzerland. |
| Chu Hin Yee, "Physical Activity, Sedentary Behaviour and Health: From Measurements to Recommendations," 2018, 255 pages. |
| Davenport et al., "The potential for artificial intelligence in healthcare," Digital Technology, Future Healthcare Journal, 2019, pp. 1-5, vol. 6, No. 2. |
| Davenport et al., "The Potential for Artificial Intelligence in Healthcare," Future Healthcare Journal, 2019, pp. 94-98, vol. 6, No. 2. |
| Davenport et al., "The Potential for Artificial Intelligence in Healthcare", 2019, Future Healthcare Journal 2019, vol. 6, No. 2: Year: 2019, pp. 1-5. |
| De Canniere Helene et al., "Wearable Monitoring and Interpretable Machine Learning Can Objectively Track Progression in Patients during Cardiac Rehabilitation", Sensors, vol. 20, No. 12, Jun. 26, 2020, XP055914617, pp. 1-15. |
| Dittus et al., "Exercise-Based Oncology Rehabilitation: Leveraging the Cardiac Rehabilitation Model," Journal of Cardiopulmonary Rehabilitation and Prevention, 2015, pp. 130-139, vol. 35. |
| Fang et al., "Use of Outpatient Cardiac Rehabilitation Among Heart Attack Survivors—20 States and the District of Columbia, 2013 and Four States, 2015," Morbidity and Mortality Weekly Report, vol. 66, No. 33, Aug. 25, 2017, pp. 869-873. |
| Fuller, Carole G.; Diagnosis and treatment considerations with comorbid developmentally disabled populations; Journal of Clinical Psychology 54.1: 1-10. John Wiley and Sons Inc. (Jan 1998) (Year: 1998). |
| Gerbild et al., "Physical Activity to Improve Erectile Dysfunction: A Systematic Review of Intervention Studies," Sexual Medicine, 2018, 15 pages. |
| H. Demirkan, "A Smart Healthcare Systems Framework," in IT Professional, vol. 15, no. 5, pp. 38-45, Sep.-Oct. 2013, doi: 10.1109/MITP.2013.35. (Year: 2013). |
| HCL Fitness, HCI Fitness PhysioTrainer Pro, 2017, retrieved on Aug. 19, 2021, 7 pages, https://www.amazon.com/HCI-Fitness-Physio Trainer-Electronically-Controlled/dp/B0759YMW78/. |
| He, Jianxing et al. The practical implementation of artificial intelligence technologies in medicine. Nature Medicine; New York vol. 25, Iss. 1. Jan. 2019. (Year: 2019). |
| International Preliminary Report on Patentability of International Application No. PCT/US2017/50895, Date of Mailing Dec. 11, 2018, 52 pages. |
| International Search Report and Written Opinion for PCT/US2023/014137, dated Jun. 9, 2023, 13 pages. |
| International Searching Authority, Search Report and Written Opinion for International Application No. PCT/US2017/50895, Date of Mailing Jan. 12, 2018, 6 pages. |
| International Searching Authority, Search Report and Written Opinion for International Application No. PCT/US2020/021876, Date of Mailing May 28, 2020, 8 pages. |
| International Searching Authority, Search Report and Written Opinion for International Application No. PCT/US2020/051008, Date of Mailing Dec. 10, 2020, 9 pages. |
| International Searching Authority, Search Report and Written Opinion for International Application No. PCT/US2020/056661, Date of Mailing Feb. 12, 2021, 12 pages. |
| International Searching Authority, Search Report and Written Opinion for International Application No. PCT/US2021/032807, Date of Mailing Sep. 6, 2021, 11 pages. |
| Ishraque et al., "Artificial Intelligence-Based Rehabilitation Therapy Exercise Recommendation System," 2018 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, USA, 2018, 5 pages. |
| Jennifer Bresnick, "What is the Role of Natural Language Processing in Healthcare?", pp. 1-7, published Aug. 18, 2016, retrieved on Feb. 1, 2022 from https://healthitanalytics.com/ featu res/what-is-the-role-of-natural-language-processing-in-healthcare. |
| Jeong et al., "Computer-assisted upper extremity training using interactive biking exercise (iBikE) platform," Sep. 2012, 34th Annual International Conference of the IEEE EMBS, 5 pages. |
| Jeong et al., "Computer-assisted upper extremity training using interactive biking exercise (iBikE) platform," Sep. 2012, pp. 1-5, 34th Annual International Conference of the IEEE EMBS. |
| Jeong et al., "Remotely controlled biking is associated with improved adherence to prescribed cycling speed," Technology and Health Care 23, 2015, 7 pages. |
| Kantoch et al., "Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk," Article, 2018, 17 pages, Sensors, Poland. |
| Kavita Ganesan, All you need to know about text preprocessing for NLP and Machine Learning, pp. 1-14, published Feb. 23, 2019, retrieved on Feb. 1, 2022 from https:// towardsdatascience.com/all-you-need-to-know-about-text-preprocessing-for-nlp-and-machine-learning-bcl c5765ff67. |
| Kuiken et al., "Computerized Biofeedback Knee Goniometer: Acceptance and Effect on Exercise Behavior in Post-total Knee Arthroplasty Rehabilitation," Biomedical Engineering Faculty Research and Publications, 2004, pp. 1-10. |
| Lara et al., "Human-Robot Sensor Interface for Cardiac Rehabilitation," IEEE International Conference on Rehabilitation Robotics, Jul. 2017, 8 pages. |
| Laustsen et al., "Telemonitored exercise-based cardiac rehabilitation improves physical capacity and health-related quality of life," Journal of Telemedicine and Telecare, 2020, DOI: 10.1177/1357633X18792808, 9 pages. |
| Lima de Melo Ghisi et al., "A systematic review of patient education in cardiac patients: Do they increase knowledge and promote health behavior change?," Patient Education and Counseling, 2014, pp. 1-15. |
| Malloy, Online Article "AI-enabled EKGs find difference between numerical age and biological age significantly affects health, longevity", Website: https://newsnetwork.mayoclinic.org/discussion/ai-enabled-ekgs-find-difference-between-numerical-age-and-biological-age-significantly-affects-health-longevity/, Mayo Clinic News Network, May 20, 2021, retrieved: Jan. 23, 2023, p. 1-4. |
| Marios et al., "The effect of tele-monitoring on exercise training adherence, functional capacity, quality of life and glycemic control in patients with type II diabetes," Journal of Sports Science and Medicine, Mar. 2012, vol. 11, 6 pages. |
| Marzolini et al., "Eligibility, Enrollment, and Completion of Exercise-Based Cardiac Rehabilitation Following Stroke Rehabilitation: What Are the Barriers?," Physical Therapy, vol. 100, No. 1, 2019, 13 pages. |
| Matrix, R3xm Recumbent Cycle, retrieved on Aug. 4, 2020, 7 pages, https://www.matrixfitness.com/en/cardio/cycles/r3xm-recumbent. |
| Nijjar et al., "Randomized Trial of Mindfulness-Based Stress Reduction in Cardiac Patients Eligible for Cardiac Rehabilitation," Scientific Reports, 2019, 12 pages. |
| Oerkild et al., "Home-based cardiac rehabilitation is an attractive alternative to no cardiac rehabilitation for elderly patients with coronary heart disease: results from a randomised clinical trial," BMJ Open Accessible Medical Research, Nov. 22, 2012, pp. 1-9. |
| Robben et al., "Delta Features From Ambient Sensor Data are Good Predictors of Change in Functional Health," Article, 2016, pp. 2168-2194, vol. 21, No. 4, IEEE Journal of Biomedical and Health Informatics. |
| ROM3 Rehab, ROM3 Rehab System, Apr. 20, 2015, retrieved on Aug. 31, 2018, 12 pages, https://vimeo.com/125438463. |
| Ruiz Ivan et al., "Towards a physical rehabilitation system using a telemedicine approach", Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 8, No. 6, Jul. 28, 2020, pp. 671-680, XP055914810. |
| Silva et al., "SapoFitness: A mobile health application for dietary evaluation," 2011 IEEE 13th International Conference on U e-Health Networking, Applications and Services, Columbia, MO, USA, 2011, 6 pages. |
| Thomas et al., "Home-Based Cardiac Rehabilitation," Circulation, 2019, pp. e69-e89, vol. 140. |
| Thomas et al., "Home-Based Cardiac Rehabilitation," HHS Public Access, Oct. 2, 2020, pp. 1-39. |
| Thomas et al., "Home-Based Cardiac Rehabilitation," Journal of the American College of Cardiology, Nov. 1, 2019, pp. 133-153, vol. 74. |
| W. Rastwan, J. Fowter and A. Arisha, "A Multi-Method Scheduling Framework for Medical Staff," 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 2018, pp. 1464-1475, doi: 10.1109/WSC.2018.8632247. (Year: 2018). |
| Wang et al., "Interactive wearable systems for upper body rehabilitation: a systematic review," Journal of NeuroEngineering and Rehabilitation, 2017, 21 pages. |
| Warburton et al., "International Launch of the PAR-⋅Q+ And ePARmed-⋅X+ Validation of the PAR-⋅Q+ and ePARmed⋅⋅X+," Health & Fitness Journal of Canada, 2011, 9 pages, vol. 4, No. 2. |
| Website for "BMI FlexEze Knee Corrective Orthosis (KCO)", pp. 1-4, retrieved on Sep. 9, 2022 from https://orthobmi.com/products/bmi-flexeze%C2%AE-knee-corrective-orthosis-kco. |
| Website for "ComfySplints Goniometer Knee", pp. 1-5, retrieved on Sep. 9, 2022 from https://www.comfysplints.com/product/knee-splints/. |
| Website for "Esino 2022 Physical Therapy Equipments Arm Fitness Indoor Trainer Leg Spin Cycle Machine Exercise Bike for Elderly," https://www.made-in-china.com/showroom/esinogroup/product-detailYdZtwGhCMKVR/China-Esino-2022-Physical-Therapy-Equipments-Arm-Fitness-Indoor-Trainer-Leg-Spin-Cycle-Machine-Exercise-Bike-for-Elderly.html, retrieved on Aug. 29, 2023, 5 pages. |
| Website for "Excy", pp. 1-12, retrieved on Sep. 9, 2022 from https://excy.com/portable-exercise-rehabilitation-excy-xcs-pro/. |
| Website for "Functional Knee Brace with ROM", p. 1, retrieved on Sep. 9, 2022 from http://medicalbrace.gr/en/product/functional-knee-brace-with-goniometer-mbtelescopicknee/. |
| Website for "J-Bike", pp. 1-3, retrieved on Sep. 9, 2022 from https://www.magneticdays.com/en/cycling-for-physical-rehabilitation. |
| Website for "Neoprene Knee Brace with goniometer—Patella ROM MB.4070", pp. 1-4, retrieved on Sep. 9, 2022 from https://www.fortuna.com.gr/en/product/neoprene-knee-brace-with-goniometer-patella-rom-mb-4070/. |
| Website for "OxeFit XP1", p. 1, retrieved on Sep. 9, 2022 from https://www.oxefit.com/xp1. |
| Website for "OxeFit XS1", pp. 1-3, retrieved on Sep. 9, 2022 from https://www.oxefit.com/xs1. |
| Website for "Pedal Exerciser", p. 1, retrieved on Sep. 9, 2022 from https://www.vivehealth.com/collections/physical-therapy-equipment/products/pedalexerciser. |
| Website for "Preva Mobile", pp. 1-6, retrieved on Sep. 9, 2022 from https://www.precor.com/en-us/resources/introducing-preva-mobile. |
| Yin Chieh et al., "A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement", BioMed Research International, vol. 2016, pp. 1-10. |
| You et al., "Including Blood Vasculature into a Game-Theoretic Model of Cancer Dynamics," Games 2019, 10, 13, 22 pages. |
| Zakari et al., "Are There Limitations to Exercise Benefits in Peripheral Arterial Disease?," Frontiers in Cardiovascular Medicine, Nov. 2018, vol. 5, Article 173, 12 pages. |
Also Published As
| Publication number | Publication date |
|---|---|
| US20230078793A1 (en) | 2023-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12427376B2 (en) | Systems and methods for an artificial intelligence engine to optimize a peak performance | |
| US20220331663A1 (en) | System and Method for Using an Artificial Intelligence Engine to Anonymize Competitive Performance Rankings in a Rehabilitation Setting | |
| US12478837B2 (en) | Method and system for monitoring actual patient treatment progress using sensor data | |
| US20220273986A1 (en) | Method and system for enabling patient pseudonymization or anonymization in a telemedicine session subject to the consent of a third party | |
| US11923057B2 (en) | Method and system using artificial intelligence to monitor user characteristics during a telemedicine session | |
| US20220328181A1 (en) | Method and system for monitoring actual patient treatment progress using sensor data | |
| US20230072368A1 (en) | System and method for using an artificial intelligence engine to optimize a treatment plan | |
| US20220415469A1 (en) | System and method for using an artificial intelligence engine to optimize patient compliance | |
| US12165768B2 (en) | Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease | |
| US20230060039A1 (en) | Method and system for using sensors to optimize a user treatment plan in a telemedicine environment | |
| US11328807B2 (en) | System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance | |
| US12183447B2 (en) | Method and system for creating an immersive enhanced reality-driven exercise experience for a user | |
| US12217865B2 (en) | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context | |
| US20220230729A1 (en) | Method and system for telemedicine resource deployment to optimize cohort-based patient health outcomes in resource-constrained environments | |
| US12096997B2 (en) | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment | |
| US20230058605A1 (en) | Method and system for using sensor data to detect joint misalignment of a user using a treatment device to perform a treatment plan | |
| US20250009443A1 (en) | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment | |
| US20220415471A1 (en) | Method and system for using sensor data to identify secondary conditions of a user based on a detected joint misalignment of the user who is using a treatment device to perform a treatment plan | |
| US20240203580A1 (en) | Method and system for using artificial intelligence to triage treatment plans for patients and electronically initiate the treament plans based on the triaging | |
| US20250182888A1 (en) | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context | |
| WO2024049746A1 (en) | System and method for using an artificial intelligence engine to optimize patient compliance | |
| WO2023049508A1 (en) | Method and system for using sensors to optimize a user treatment plan in a telemedicine environment | |
| WO2024137305A1 (en) | Method and system for using artificial intelligence to triage treatment plans for patients and electronically initiate the treament plans based on the triaging | |
| WO2024050070A1 (en) | Method and system for using a sensor data to detect joint misalignment of a user using a treatment device to perform a treatment plan | |
| WO2022155260A1 (en) | Method and system for implementing dynamic treatment environments based on patient information |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| AS | Assignment |
Owner name: ROM TECHNOLOGIES, INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MASON, STEVEN;REEL/FRAME:061947/0824 Effective date: 20221130 Owner name: ROM TECHNOLOGIES, INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNOR:MASON, STEVEN;REEL/FRAME:061947/0824 Effective date: 20221130 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |