US12138205B2 - Wheelchair arm rest device - Google Patents
Wheelchair arm rest device Download PDFInfo
- Publication number
- US12138205B2 US12138205B2 US17/383,113 US202117383113A US12138205B2 US 12138205 B2 US12138205 B2 US 12138205B2 US 202117383113 A US202117383113 A US 202117383113A US 12138205 B2 US12138205 B2 US 12138205B2
- Authority
- US
- United States
- Prior art keywords
- wheelchair
- reel
- slide member
- user
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 32
- 230000007246 mechanism Effects 0.000 claims abstract description 20
- 230000005540 biological transmission Effects 0.000 claims abstract description 17
- 210000000707 wrist Anatomy 0.000 claims description 11
- 210000000245 forearm Anatomy 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims 1
- 238000012986 modification Methods 0.000 claims 1
- 210000001364 upper extremity Anatomy 0.000 description 21
- 238000012549 training Methods 0.000 description 12
- 208000006011 Stroke Diseases 0.000 description 7
- 230000006735 deficit Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/04—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
- A61G5/041—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven having a specific drive-type
- A61G5/045—Rear wheel drive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/10—Parts, details or accessories
- A61G5/12—Rests specially adapted therefor, e.g. for the head or the feet
- A61G5/125—Rests specially adapted therefor, e.g. for the head or the feet for arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G2203/00—General characteristics of devices
- A61G2203/10—General characteristics of devices characterised by specific control means, e.g. for adjustment or steering
- A61G2203/14—Joysticks
Definitions
- FIG. 1 is a perspective view of an embodiment of a wheelchair device in accordance with this disclosure, the device shown attached to a mechanical wheelchair.
- FIGS. 2 A- 2 D are sequential views that illustrate replacement of an armrest of a wheelchair with the wheelchair device shown in FIG. 1 .
- FIG. 3 is a side view of an embodiment of the wheelchair device shown in FIG. 1 that illustrates operation of the device when in a stationary mode.
- FIG. 4 is a side perspective view of the wheelchair device shown in FIG. 1 , with a slide member of the device shown separated from the remainder of the device.
- FIG. 5 is an exploded perspective view of an embodiment of a transmission mechanism of the wheelchair device shown in FIG. 1 .
- FIG. 6 is a side cross-sectional view of the transmission mechanism of FIG. 5 .
- FIGS. 7 A and 7 B are sequential views illustrating an embodiment of use of the wheelchair device shown in FIG. 1 .
- FIGS. 8 A- 8 D are perspective views of an embodiment of a wheelchair device that depict alternative user interfaces that can be provided on the device.
- UE upper extremity
- devices that can be attached to a conventional mechanical wheelchair and enable the wheelchair user, such as a stroke patient, to perform UE movement training.
- the device enables the user to practice moving his or her hand forward and backward along a linear path, which requires the user to activate and control the muscles of his or her UE.
- the device is configured to replace a conventional armrest of the wheelchair and, like such armrests, can be secured in place using one or more quick-release fasteners.
- the device is configured to facilitate UE movement training, it is noted that, in some embodiments, the device can additionally or in exception be used to propel the wheelchair. In such cases, such propulsion is possible even for individuals with weak UEs.
- FIG. 1 illustrates an embodiment of a wheelchair device 10 that can be used for UE movement training as well as wheelchair propulsion.
- the device 10 is shown mounted to a mechanical wheelchair 12 that, like most such wheelchairs, includes a frame 14 to which relatively large rear wheels 16 and relatively small front wheels 18 are mounted.
- the rear wheels 16 are mounted to an axle that enables the wheels to spin freely.
- the front wheels 18 are caster-style wheels and, therefore, are capable of freely spinning about axes to which they are directly mounted as well as pivot about a vertical axle to which the wheels are indirectly mounted.
- a seat 20 is mounted to the frame 12 .
- leg and foot supports 22 mounted to the frame 12
- a removable armrest 24 is also mounted to the frame 12 .
- the right-side armrest of the wheelchair 12 has been removed from the wheelchair 12 and has been replaced by the wheelchair device 10 .
- the wheelchair device 10 is mounted to the right side of the wheelchair 12 , the wheelchair device is configured for use by the wheelchair user's right hand and arm and can be designated a right-side wheelchair device.
- a wheelchair device of the type depicted in the figure can be provided on the left side, the right side, or both sides of the wheelchair 12 so that the wheelchair user can perform UE movement training and/or wheelchair propulsion using the left arm, the right arm, or both arms.
- FIGS. 2 A- 2 D sequentially illustrate this process.
- the mounting elements 26 incorporate a quick-release feature (e.g., a quick-release fastener) one or both armrests of the wheelchair 12 can be replaced with a device 10 in a matter of seconds.
- the wheelchair device 10 includes an outer housing 28 that covers and contains various internal components of the device that enable it to function, an elbow support 30 that is configured to support the user's elbow and that, in some embodiments, prevents shoulder abduction, a forearm or wrist support 32 that is configured to support the user's forearm or wrist, and a hand interface 34 , such as a handgrip, that is configured to be interfaced (e.g., gripped) by the user's hand. Also visible in FIG.
- a mode selection element 36 that, as described below, can be placed in a first orientation in which the device 10 can be used in a first, stationary (or UE movement training only) mode in which the device can be used for UE movement training without propelling the wheelchair 12 , or a second orientation in which the device can be used in a propulsion mode in which the device can be used to propel the wheelchair forward (as well as provide UE movement training) using a transmission mechanism contained within the housing 28 .
- FIG. 3 is a side view of the wheelchair device 10 as attached to the wheelchair 12 (which is shown in phantom) with the outer housing 28 removed and FIG. 4 is an exploded perspective view of the device (again without the housing) that more clearly shows individual components of the device.
- the device 10 comprises a frame 40 that includes a horizontal support member 42 that is supported by and mounted to the wheelchair frame 12 with vertical support elements 44 , such as tubes, that extend downward from the member and, as described above, are configured to be received by the armrest mounting elements 26 provided on the frame.
- vertical support elements 44 such as tubes, that extend downward from the member and, as described above, are configured to be received by the armrest mounting elements 26 provided on the frame.
- fixedly mounted to the support member 42 with a mounting element 46 is a further vertical support element 48 to which the elbow support 30 is mounted.
- the height of the elbow support 30 can be adjusted by pivoting a lever 50 provided on the mounting element 46 to remove a pin 52 that extends through one of multiple holes in the support element 48 , repositioning the height of the support element to a desired location, and returning the lever 50 back to its original position and passing the pin through a different hole.
- a pivotable brake 54 that, as described below, slows or halts rotation of the rear wheel 16 of the wheelchair 12 when a slide member is pulled backward into engagement with the brake.
- the brake 54 is pivotably secured to the support member 42 using a threaded fastener 56 .
- the wheelchair device 10 also comprises one or more mounting plates 58 that can also be fixedly mounted to the horizontal support member 42 with threaded fasteners (not visible in the figures).
- the one or more mounting plates 58 include roller guides 60 that support and enable forward and backward linear movement of a slide member 62 .
- roller guides 60 are provided, including two upper roller guides and two lower roller guides.
- Mounted to a distal end of the slide member 62 (from the perspective of the wheelchair user while seated in the wheelchair 12 ) are the wrist support 32 and the hand interface 34 .
- the wrist support 32 and hand interface 34 are mounted to a further vertical support element 64 that is fixedly secured to the slide member 62 with further threaded fasteners 66 .
- a pivotable arm 68 that can pivot about its mounting or pivot point 69 to enable the wheelchair device 10 to be toggled between the stationary mode and the propulsion mode.
- a transmission mechanism 70 that is used in both the stationary and propulsion modes.
- FIGS. 5 and 6 An example configuration for the transmission mechanism 70 is shown in FIGS. 5 and 6 , with FIG. 5 depicting the mechanism in an exploded perspective view and FIG. 6 depicting the mechanism in cross-section in its assembled state.
- the mechanism 70 includes an axle 74 on which a rotatable reel 76 is rotatably mounted with one or more roller bearings 78 , which can be separated by a spacer 80 . Also mounted to the axle 74 is a spring hub 82 on which a torsion spring 84 is wound.
- the hub 82 and the spring 84 are received within an interior space defined by a body 86 of the reel 76 and a first, inner end of the spring is attached to the hub while a second, outer end of the spring is attached to the reel so that, as described below, the spring biases the reel toward one direction of rotation and provides resistance against an opposite direction of rotation.
- a cover 88 can be provided over the exposed portion of the spring 84 , and both the spring and hub 82 can be retained in place within the reel 76 with a threaded fastener 90 that threads onto the axle 74 .
- the reel 74 includes its own hub 92 that extends from the body 86 .
- a drive wheel 94 used in the propulsion mode of the wheelchair device 10 is mounted on that hub 92 with a one-way bearing 96 , which is provided within an interior space defined by the drive wheel and is secured to the reel 74 with retainer rings 98 .
- the one-way bearing 96 is configured such that the drive wheel 94 rotates in unison with the reel 76 in a first direction of rotation but can remain stationary or independently rotate when the reel rotates in a second, opposite direction.
- the wheelchair device 10 further includes a cable 100 that is attached at a first end to the slide member 62 and attached at a second end to the rotatable reel 76 .
- the first end of the cable 100 attaches to the slide member 62 at a point near the distal end of the member close to where the wrist support 32 is located.
- the cable 100 extends from that attachment point, wraps around one or more pulleys 102 mounted to the one or more mounting plates 58 , and further wraps around the outer periphery of the body 86 of the reel 76 through multiple turns.
- forward linear movement of the slide member 62 moves the first end of the cable 100 away from the transmission mechanism 70 , which causes the reel 76 to rotate in a first, backward direction (counter-clockwise in the example of FIG. 3 ) as a portion of the cable is unwound from the reel.
- the torsion spring 84 mounted within the reel 76 resists (i.e., applies a resistive force) to this backward rotation.
- backward linear movement of the slide member 62 moves the first end of the cable 100 closer to the transmission mechanism 70 , which enables the torsion spring to rotate the reel 76 in a second, forward direction (clockwise in the example of FIG. 3 ) to maintain tension on the cable and rewind it onto the reel.
- the above-described functionality of the slide member 62 , transmission mechanism 70 , and cable 100 can be used to facilitate UE movement training in the above-mentioned stationary mode of the device.
- the user when seated within the wheelchair 12 , the user can, either independently or with assistance, place his or her wrist on the wrist support 32 and his or her hand around the hand interface 34 , as shown in FIG. 7 A . The user can then push the slide member 62 forward, away from him- or herself, with the user's hand and arm.
- the reel 76 is rotated in the backward (counter-clockwise) direction against the force applied by the torsion spring 84 of the transmission mechanism 70 , which provides therapeutic resistance and, therefore, UE movement training, to the user.
- the user can move the slide member 62 forward until either achieving full extension of the arm, as illustrated in FIG. 7 B , or to the point at which the user can no further extend his or her arm.
- the user can then pull the slide member 62 backward, which moves the first end of the cable 100 toward the transmission mechanism 70 and enables the torsion spring 84 to rotate the reel 76 in the forward (clockwise) direction to maintain tension on the cable and rewind it back onto the reel.
- the spring 84 provides assistive force that can help the user return the slide member 62 to the initial position shown in FIG. 7 A .
- the wheelchair device 10 can also be used in a propulsion mode with which the wheelchair user, even those with weak UEs, can propel the wheelchair 12 forward.
- the mode selection element 36 first identified in relation to FIG. 1 and more clearly shown in FIG. 3 is toggled from one orientation to another.
- the lever can be pivoted from a first, upper orientation shown in FIG. 3 to a second, lower orientation in which the lever pivots the pivotable arm 68 downward so as to place the drive wheel 94 into firm engagement with the outer periphery of the rear wheel 16 of the wheelchair 12 .
- backward rotation causes forward rotation (clockwise in FIG. 3 ) of the rear wheel so as to propel the wheelchair 12 forward.
- forward propulsion occurs when the wheelchair user pushes the slide member 62 forward.
- the reel 76 is rotated in the backward (counter-clockwise) direction as described above and the one-way bearing 96 within the drive wheel 94 causes the drive wheel to rotate backward in unison with the reel.
- This backward rotation of the drive wheel 94 causes forward rotation of the wheelchair rear wheel 16 .
- the one-way bearing 96 enables the drive wheel 94 to rotate independently of the reel 76 so that the drive wheel does not interfere with continued forward rotation of the rear wheel 16 of the wheelchair 12 .
- the stop element 104 causes the brake to pivot backward until it firmly engages the outer periphery of the rear wheel 16 , thereby applying a braking force to the wheel that slows or halts rotation of the wheel. Therefore, the user can propel the wheelchair 12 forward by alternately pushing and pulling the slide member 62 forward and backward without pulling the member backward to the extent at which the brake is engaged.
- the user can pull the slide member 62 until the stop element 104 engages the brake 54 .
- the force of the torsion spring 84 will be enough to engage the brake 54 and halt travel the wheelchair 12 on its own.
- the amount of force applied to the brake 54 with the stop element 104 dictates the amount of braking force that is applied to the wheel 16 .
- the brake 54 is spring loaded so that it is kept out of contact with the wheel 16 when it is not being pressed into contact with the wheel by the stop element 104 .
- the braking functionality provided by the brake 54 and the stop element 104 of the slide member 62 can be especially useful when the wheelchair user is propelling the wheelchair uphill.
- the user can alternately push the slide member 62 (or two slide members, one associated with each rear wheel 16 ) forward and pull the slide member backward to engage the brake to prevent rearward travel of the wheelchair down a grade or hill under the force of gravity between each forward stroke so that forward progress is not lost between each forward stroke.
- this feature further ensures greater safety for the wheelchair user as it avoids uncontrolled backward rolling of the wheelchair.
- the force of the torsion spring 84 will be enough to engage the brake 54 and halt travel the wheelchair 12 on its own, which is especially useful in cases in which the wheelchair 12 is being propelled uphill and the user has weak UEs.
- the above-disclosed wheelchair device shifts current rehabilitation practice paradigms in at least five ways.
- the device's arm support system improves positioning and support of the upper extremity while using a wheelchair.
- the device provides a more motivating therapy than the current alternatives for individuals with moderate to severe arm impairment while they recover in medical facilities or at home.
- the device is expected to improve outcomes compared to current alternatives by increasing functionally relevant arm activity.
- the device has a high likelihood of shifting current clinical practice because it can be easily integrated into the current rehabilitation workflow and continuum of care.
- the device can include a remote patient monitoring portal to track user performance, increase adherence, and help individualize home exercise and activity goals.
- FIGS. 8 A- 8 D show a configuration similar to that shown in FIG. 1 in which a curved wrist support 110 and a vertical handgrip 112 are provided.
- FIG. 8 B shows a configuration in which a handgrip 114 is provided that can pivot within a predetermined angular range about a horizontal axis (both toward and away from the leg) to enable forearm rotation.
- FIG. 8 C shows a configuration in which a three-degree-of-freedom device 116 is provided that comprises a planar platform 118 and a knob 120 that extends upwardly from the platform.
- FIG. 8 D shows a further example of a vertical handgrip 122 .
- the disclosed wheelchair device 10 can further comprise electronics configured to log UE movements, measure range of motion, and upload user data.
- the wheelchair device 10 can include a potentiometer or a magnetic encoder or other rotational or linear sensor to measure or sense how much the drive wheel rotates or how far the slide member is pushed forward from its baseline position. This would enable therapists to set a target range of motion for each individual user and create a threshold for what is considered a beneficial/effortful exercise “repetition.”
- the device 10 can identify and count discrete UE movements using a threshold filter at this target set point applied to the voltage output of the potentiometer.
- the wheelchair device 10 can also include a binary sensor associated with the mode selector element that enables a microcontroller to differentiate between stationary and propulsion UE movements.
- the electronics can further include a low-power microcontroller (e.g., nRF52 by Nordic), a user-facing display, such as a liquid crystal display (LCD) 126 shown in FIGS. 8 A- 8 D , to provide quantitative feedback, a real-time clock to timestamp data, and a transceiver (e.g., a Multi-IMSI Super SIM cellular radio chipset from Twilio) to send data to a remote monitoring portal (e.g., a HIPAA-compliant computing device that receives and stores exercise data).
- a computing device can be used to validate the device's remote monitoring features.
- a monitoring portal can also be provided that supports one or more network pages, including a web-based frontend user interface that enables clinicians to remotely monitor their patients' exercise with their wheelchair devices.
- one of the network pages can be a dashboard screen that lists all of the users associated with the clinician's account.
- the clinicians can have the option to label each user with a unique ID code rather than a patient's name to reduce the risk to the user's privacy.
- Clinicians can further access a user-detail screen for all listed users, which can present graphs of stationary and propulsion repetitions completed with the wheelchair device for each patient by day, week, or month, which enables the clinicians to adjust exercise parameters (e.g., target number of repetitions per day).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Rehabilitation Tools (AREA)
- Invalid Beds And Related Equipment (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/383,113 US12138205B2 (en) | 2020-07-22 | 2021-07-22 | Wheelchair arm rest device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202063054900P | 2020-07-22 | 2020-07-22 | |
| US17/383,113 US12138205B2 (en) | 2020-07-22 | 2021-07-22 | Wheelchair arm rest device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20220023119A1 US20220023119A1 (en) | 2022-01-27 |
| US12138205B2 true US12138205B2 (en) | 2024-11-12 |
Family
ID=79687547
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/383,113 Active 2043-05-04 US12138205B2 (en) | 2020-07-22 | 2021-07-22 | Wheelchair arm rest device |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US12138205B2 (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6113562A (en) * | 1998-06-01 | 2000-09-05 | Peter M. Bonutti | Shoulder orthosis |
| US20070060445A1 (en) * | 2005-08-31 | 2007-03-15 | David Reinkensmeyer | Method and apparatus for automating arm and grasping movement training for rehabilitation of patients with motor impairment |
| US20070219069A1 (en) * | 2004-05-27 | 2007-09-20 | Nativ | Apparatus for assisting a person to stand and walk |
| US20150190292A1 (en) * | 2014-01-08 | 2015-07-09 | Douglas G. Robins | Wheelchair |
| US9375325B2 (en) * | 2012-06-04 | 2016-06-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Exoskeleton arm having an actuator |
| US11013956B2 (en) * | 2016-06-29 | 2021-05-25 | Fundacion Tecnalia Research & Innovatiion | Portable device for upper limb rehabilitation |
-
2021
- 2021-07-22 US US17/383,113 patent/US12138205B2/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6113562A (en) * | 1998-06-01 | 2000-09-05 | Peter M. Bonutti | Shoulder orthosis |
| US20070219069A1 (en) * | 2004-05-27 | 2007-09-20 | Nativ | Apparatus for assisting a person to stand and walk |
| US20070060445A1 (en) * | 2005-08-31 | 2007-03-15 | David Reinkensmeyer | Method and apparatus for automating arm and grasping movement training for rehabilitation of patients with motor impairment |
| US9375325B2 (en) * | 2012-06-04 | 2016-06-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Exoskeleton arm having an actuator |
| US20150190292A1 (en) * | 2014-01-08 | 2015-07-09 | Douglas G. Robins | Wheelchair |
| US11013956B2 (en) * | 2016-06-29 | 2021-05-25 | Fundacion Tecnalia Research & Innovatiion | Portable device for upper limb rehabilitation |
Also Published As
| Publication number | Publication date |
|---|---|
| US20220023119A1 (en) | 2022-01-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3938060B1 (en) | System, method and apparatus for exercise or rehabilitation equipment | |
| US6960155B2 (en) | Cycling-type physical therapy apparatus with an electrical stimulation device | |
| WO2018049299A1 (en) | Adjustable rehabilitation and exercise device | |
| US5820519A (en) | Bed exercise machine | |
| CN115089917A (en) | A cardiac rehabilitation training device after interventional cardiology | |
| US20060277074A1 (en) | Rehabilitation methods | |
| US20060009332A1 (en) | Compact physical rehabilitation device and method | |
| US20080132383A1 (en) | Device And Method For Training, Rehabilitation And/Or Support | |
| US20040204293A1 (en) | Exercise apparatus and a brake mechanism therefor | |
| Levy et al. | Variable-ratio pushrim-activated power-assist wheelchair eases wheeling over a variety of terrains for elders | |
| US9597241B2 (en) | Lever-operated wheelchair | |
| US12138205B2 (en) | Wheelchair arm rest device | |
| US20210236373A1 (en) | Hybrid spring and mass counterbalancing orthotic | |
| KR20130010586A (en) | Reform apparatus for cerebralapoplexy rehabilitative therapeutic | |
| Saengsuwan et al. | Feasibility of cardiopulmonary exercise testing and training using a robotics-assisted tilt table in dependent-ambulatory stroke patients | |
| Sarraj et al. | Design history and advantages of a new lever-propelled wheelchair prototype | |
| US20130310222A1 (en) | Multi-action stationary exercise device | |
| RU185413U1 (en) | The simulator bracelet for classes on the development of motor functions of the hands in patients with a neurological clinic | |
| CN209899826U (en) | Multifunctional chair with function of recovering function | |
| Smith et al. | Bimanual wheelchair propulsion by people with severe hemiparesis after stroke | |
| CN114667572A (en) | mirror therapy device | |
| US20140221179A1 (en) | Rope Pulling Exercise Apparatus with Variable Resistance | |
| CN113975002B (en) | Autonomous limb exercise device for rehabilitation of lower limbs | |
| CN209475099U (en) | A kind of neurology leg rehabilitation training device | |
| RU215194U1 (en) | The simulator for the passive development of the hand |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REINKENSMEYER, DAVID;COMELLAS ANDRES, MARTI;SIGNING DATES FROM 20241209 TO 20241213;REEL/FRAME:069608/0247 Owner name: FLINT REHABILITATION DEVICES, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZONDERVAN, DANIEL;REEL/FRAME:069608/0244 Effective date: 20241210 |
|
| CC | Certificate of correction |