TWI896060B - Rehabilitation assistance system - Google Patents
Rehabilitation assistance systemInfo
- Publication number
- TWI896060B TWI896060B TW113112059A TW113112059A TWI896060B TW I896060 B TWI896060 B TW I896060B TW 113112059 A TW113112059 A TW 113112059A TW 113112059 A TW113112059 A TW 113112059A TW I896060 B TWI896060 B TW I896060B
- Authority
- TW
- Taiwan
- Prior art keywords
- rehabilitation
- joint angle
- signal
- sensing
- physiological
- Prior art date
Links
Landscapes
- Rehabilitation Tools (AREA)
Abstract
Description
本發明是有關於一種輔助系統,且特別是有關於一種復健輔助系統。 The present invention relates to an assistive system, and in particular to a rehabilitation assistive system.
腦中風病患在肢體控制、身體功能、行走平衡及生活品質皆會受到嚴重影響。目前臨床的居家復健機構大多為單一關節動作的復健機構,其在實際操作上往往會因為枯燥且重複的復臨床的居家復健機構大多為單一關節動作的復健機構,其在實際操作上往往會因為枯燥且重複的復健動作,讓腦中風病患居家復健半途而廢,而失去較佳的復健療效。此外,由於傳統的居家復健機構並無法自動完整收集腦中風病患在復健過程中的復健動作及生理資訊,使得照護者難以掌握整個復健過程,而醫護人員亦無法即時地評估腦中風病患的復健狀況。 Stroke patients experience significant impairments in limb control, body function, walking balance, and quality of life. Currently, most home rehabilitation programs focus on single-joint movements. In practice, these tedious and repetitive exercises often cause stroke patients to abandon their home rehabilitation program midway, hindering optimal rehabilitation effectiveness. Furthermore, traditional home rehabilitation programs are unable to automatically and fully collect information about stroke patients' movements and physiological status during rehabilitation, making it difficult for caregivers to monitor the entire rehabilitation process and for medical staff to assess the patient's rehabilitation progress in real time.
本發明的目的是在於提供一種復健輔助系統,以輔助腦中風患者進行復健行走完整步態週期動作之訓練,達 到下肢行走動作復健的功能,並可即時掌握患者進行復健過程中之生理狀態。 The purpose of this invention is to provide a rehabilitation assistance system to assist stroke patients in training the complete gait cycle during rehabilitation walking, thereby achieving lower limb walking rehabilitation and providing real-time monitoring of the patient's physiological status during rehabilitation.
本發明之一方面為提供一種復健輔助系統,適用於進行復健之操作者,包含復健裝置、感測網路、感測裝置及互動式介面。復健裝置配置以帶動操作者之髖關節及膝關節進行屈曲動作及伸直動作。感測網路包含慣性感測模組,配置以量測操作者之慣性感測訊號。感測裝置配置以量測操作者之生理訊號。互動式介面耦接復健裝置、感測網路及感測裝置,其配置以接收並顯示慣性感測訊號及生理訊號,其包含記憶體及處理器。記憶體配置以儲存慣性感測訊號及生理訊號。處理器配置以接收操作者之至少一控制指令並依據此至少一控制指令發送至少一復健指令至復健裝置。 One aspect of the present invention is to provide a rehabilitation assistance system for a user undergoing rehabilitation, comprising a rehabilitation device, a sensing network, a sensing device, and an interactive interface. The rehabilitation device is configured to move the user's hip and knee joints in flexion and extension movements. The sensing network includes an inertia sensing module configured to measure the user's inertia sensing signals. The sensing device is configured to measure the user's physiological signals. The interactive interface couples the rehabilitation device, the sensing network, and the sensing device, and is configured to receive and display the inertia sensing signals and physiological signals. The interactive interface includes a memory and a processor. The memory is configured to store the inertia sensing signals and physiological signals. The processor is configured to receive at least one control instruction from the user and, based on the at least one control instruction, send at least one rehabilitation instruction to the rehabilitation device.
在一些實施例中,所述至少一慣性感測訊號更包含髖關節動作訊號及膝關節動作訊號,且處理器更配置以依據髖關節動作訊號及膝關節動作訊號並利用下肢關節角度量測演算法計算出下肢關節角度。 In some embodiments, the at least one inertia sensing signal further includes a hip joint motion signal and a knee joint motion signal, and the processor is further configured to calculate the lower limb joint angle based on the hip joint motion signal and the knee joint motion signal using a lower limb joint angle measurement algorithm.
在一些實施例中,所述下肢關節角度量測演算法係基於擴展式卡爾曼濾波器(extended Kalman filter,EKF)、無跡式卡爾曼濾波器(unscented Kalman filter,UKF)、粒子濾波器(particle filter,PF)或容積卡爾曼濾波器(cubature Kalman filter,CKF)設計,但不限於此。 In some embodiments, the lower limb joint angle measurement algorithm is based on an extended Kalman filter (EKF), an unscented Kalman filter (UKF), a particle filter (PF), or a cubature Kalman filter (CKF) design, but is not limited thereto.
在一些實施例中,所述下肢關節角度係髖關節角度 或膝關節角度。 In some embodiments, the lower limb joint angle is a hip joint angle or a knee joint angle.
在一些實施例中,所述處理器更配置以在髖關節角度大於髖關節角度範圍之髖關節角度範圍上限或小於髖關節角度範圍之髖關節角度範圍下限時控制復健裝置停止作動,且其中處理器更配置以在膝關節角度大於膝關節角度範圍之膝關節角度範圍上限或小於膝關節角度範圍之膝關節角度範圍下限時控制復健裝置停止作動。 In some embodiments, the processor is further configured to control the rehabilitation device to stop moving when the hip joint angle is greater than an upper limit of the hip joint angle range or less than a lower limit of the hip joint angle range, and the processor is further configured to control the rehabilitation device to stop moving when the knee joint angle is greater than an upper limit of the knee joint angle range or less than a lower limit of the knee joint angle range.
在一些實施例中,所述下肢關節角度量測演算法更包含下肢動作姿態估測演算法及下肢關節角度估測演算法。 In some embodiments, the lower limb joint angle measurement algorithm further includes a lower limb movement posture estimation algorithm and a lower limb joint angle estimation algorithm.
在一些實施例中,所述生理訊號更包含皮膚溫度、心率值及血氧濃度。 In some embodiments, the physiological signals further include skin temperature, heart rate, and blood oxygen concentration.
在一些實施例中,所述處理器更配置以利用生理急停機制演算法處理生理訊號,且在判別出生理訊號之生理參數超出正常生理參數範圍時,控制復健裝置停止作動。 In some embodiments, the processor is further configured to process the physiological signal using a physiological emergency stop mechanism algorithm, and control the rehabilitation device to stop operating when it is determined that the physiological parameters of the physiological signal exceed the normal physiological parameter range.
在一些實施例中,所述至少一控制指令更包含設定裝置高度指令、設定步數指令、設定步伐長度指令、設定步伐速度指令及設定行走時間指令之其中一或多者。 In some embodiments, the at least one control command further includes one or more of a device height setting command, a step count setting command, a step length setting command, a step speed setting command, and a walking time setting command.
在一些實施例中,所述處理器更配置以將至少一慣性感測訊號及至少一生理訊號儲存至雲端資料庫。 In some embodiments, the processor is further configured to store at least one inertial sensing signal and at least one physiological signal in a cloud database.
11:大腿骨骼架體 11: Thigh skeleton
12:小腿骨骼架體 12: Calf skeleton
13:髖關節線性致動器 13: Hip joint linear actuator
14:膝關節步進馬達 14: Knee joint stepping motor
15:扶手裝置 15: Handrails
16:固定元件 16: Fixing components
17:驅動裝置 17: Drive device
100:復健輔助系統 100: Rehabilitation Assistance System
110:復健裝置 110: Rehabilitation Device
111:大腿長度調整裝置 111: Thigh length adjustment device
120:感測網路 120: Sensing Network
121:小腿長度調整裝置 121: Calf length adjustment device
130:感測裝置 130: Sensing device
131:髖關節致動器支撐架體 131: Hip joint actuator support frame
140:互動式介面 140:Interactive Interface
141:膝關節馬達支撐架體 141: Knee joint motor support frame
142:記憶體 142: Memory
144:處理器 144: Processor
152:急停按鈕 152: Emergency stop button
153:扶手高度調整裝置 153: Armrest height adjustment device
154:扶手高度致動器支撐架體 154: Armrest height actuator support frame
162:大腿動作訊號感測裝置 162: Thigh Movement Signal Sensor
163:小腿動作訊號感測裝置 163: Calf movement signal sensor device
171:直流減速馬達 171: DC deceleration motor
172:驅動輪 172: Drive wheel
173:拖輪 173:Tugboat
200:機械裝置 200: Mechanical Devices
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 圖1為依據本發明實施例之復健輔助系統的功能方塊圖;圖2為依據本發明實施例之應用復健輔助系統之機械裝置的示意圖;以及圖3為依據本發明實施例之操作者使用機械裝置的情境示意圖。 To facilitate a clearer understanding of the above and other objects, features, advantages, and embodiments of the present invention, the accompanying drawings are provided as follows: Figure 1 is a functional block diagram of a rehabilitation assistance system according to an embodiment of the present invention; Figure 2 is a schematic diagram of a mechanical device incorporating the rehabilitation assistance system according to an embodiment of the present invention; and Figure 3 is a schematic diagram of an operator using the mechanical device according to an embodiment of the present invention.
以下仔細討論本發明的實施例。可以理解的是,實施例提供許多可應用的觀念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。 The following discusses embodiments of the present invention in detail. It will be appreciated that the embodiments provide numerous applicable concepts that can be implemented in a wide variety of specific contexts. The embodiments discussed and disclosed are for illustrative purposes only and are not intended to limit the scope of the present invention.
圖1為依據本發明實施例之復健輔助系統100的功能方塊圖。復健輔助系統100適用於進行復健之操作者,其包含復健裝置110、感測網路120、感測裝置130及互動式介面140。其中,互動式介面140更包含記憶體142及處理器144。 FIG1 is a functional block diagram of a rehabilitation assistance system 100 according to an embodiment of the present invention. The rehabilitation assistance system 100 is suitable for use by a user performing rehabilitation and includes a rehabilitation device 110, a sensor network 120, a sensor device 130, and an interactive interface 140. The interactive interface 140 further includes a memory 142 and a processor 144.
圖2為依據本發明實施例之應用復健輔助系統100之機械裝置200的示意圖。機械裝置200包含復健裝置110、感測網路120及感測裝置130。 Figure 2 is a schematic diagram of a mechanical device 200 used in the rehabilitation assistance system 100 according to an embodiment of the present invention. The mechanical device 200 includes a rehabilitation device 110, a sensing network 120, and a sensing device 130.
復健裝置110更包含大腿骨骼架體11、大腿長度調整裝置111、髖關節線性致動器13、髖關節致動器支撐架體131、小腿骨骼架體12、小腿長度調整裝置121、膝關節步進馬達14、膝關節馬達支撐架體141。需說明的是,復健裝置110為左右腳對稱之裝置。復健裝置110配置以 帶動操作者之髖關節及膝關節進行屈曲動作及伸直動作。在本發明之一實施例中,復健裝置110係利用線性致動器及步進馬達作為其驅動動力。 The rehabilitation device 110 further includes a thigh frame 11, a thigh length adjustment device 111, a hip linear actuator 13, a hip actuator support frame 131, a calf frame 12, a calf length adjustment device 121, a knee stepper motor 14, and a knee motor support frame 141. It should be noted that the rehabilitation device 110 is symmetrical for both legs. The rehabilitation device 110 is configured to flex and extend the user's hip and knee joints. In one embodiment of the present invention, the rehabilitation device 110 utilizes a linear actuator and a stepper motor as its driving force.
感測網路120設置於一或多個固定元件16上,其包含一或多個大腿動作訊號感測裝置162及一或多個小腿動作訊號感測裝置163。每一大腿動作訊號感測裝置162及小腿動作訊號感測裝置163皆包含微控制器、慣性感測模組及第一無線射頻傳輸模組。其中,慣性感測模組配置以量測操作者之慣性感測訊號,且其中,第一無線射頻傳輸模組配置以發送測得之慣性感測訊號。 The sensing network 120 is installed on one or more fixed elements 16 and includes one or more thigh motion signal sensing devices 162 and one or more calf motion signal sensing devices 163. Each thigh motion signal sensing device 162 and calf motion signal sensing device 163 includes a microcontroller, an inertia sensing module, and a first wireless radio frequency transmission module. The inertia sensing module is configured to measure the operator's inertia sensing signal, and the first wireless radio frequency transmission module is configured to transmit the measured inertia sensing signal.
圖3為依據本發明實施例之操作者使用機械裝置200的情境示意圖。如圖3所示,固定元件16繫於操作者之腿部(大腿及/或小腿),並可適當調整其固定於腿部之鬆緊度。在一些實施例中,固定元件16是以魔鬼氈方式固定於腿部之綁帶或以鈕扣方式固定於腿部之綁帶。 Figure 3 is a schematic diagram of an operator using a mechanical device 200 according to an embodiment of the present invention. As shown in Figure 3 , the securing element 16 is secured to the operator's leg (thigh and/or calf), and its tightness can be adjusted appropriately. In some embodiments, the securing element 16 is a Velcro strap or a buckle strap.
需說明的是,慣性感測訊號包含髖關節動作訊號及膝關節動作訊號。 It should be noted that inertial sensing signals include hip joint motion signals and knee joint motion signals.
慣性感測模組更包含加速度計、陀螺儀、磁力計等,但不限於此。 Inertial sensing modules also include, but are not limited to, accelerometers, gyroscopes, and magnetometers.
感測網路120透過加速度計收集之慣性感測訊號為加速度訊號,在將此加速度訊號代入下肢關節角度量測演算法進行計算前,此加速度訊號需先經過訊號前處理過程,包含加速度訊號校正及復健動作雜訊濾波之操作。 The inertial sensing signal collected by the accelerometer in the sensing network 120 is an acceleration signal. Before being substituted into the lower limb joint angle measurement algorithm for calculation, this acceleration signal must first undergo a signal pre-processing process, including acceleration signal correction and rehabilitation movement noise filtering.
感測網路120透過陀螺儀收集之慣性感測訊號為 角速度訊號,在將此角速度訊號代入下肢關節角度量測演算法進行計算前,此角速度訊號需先經過訊號前處理過程,包含角速度訊號校正及復健動作雜訊濾波之操作。 The inertial sensing signal collected by the gyroscope in the sensing network 120 is an angular velocity signal. Before being substituted into the lower limb joint angle measurement algorithm for calculation, this angular velocity signal must first undergo signal pre-processing, including angular velocity signal calibration and rehabilitation movement noise filtering.
感測網路120透過磁力計收集之慣性感測訊號為磁力計訊號,在將此磁力計訊號代入下肢關節角度量測演算法進行計算前,此磁力計訊號需先經過訊號前處理過程,包含磁力計訊號校正及復健動作雜訊濾波之操作。 The inertial sensing signal collected by the sensing network 120 via the magnetometer is the magnetometer signal. Before being substituted into the lower limb joint angle measurement algorithm for calculation, the magnetometer signal must first undergo signal pre-processing, including magnetometer signal calibration and rehabilitation movement noise filtering.
需進一步說明的是,髖關節動作訊號及膝關節動作訊號包含加速度訊號、角速度訊號及磁力計訊號。 It should be further explained that the hip joint motion signals and knee joint motion signals include acceleration signals, angular velocity signals, and magnetometer signals.
第一無線射頻傳輸模組配置以發送操作者之髖關節動作訊號、膝關節動作訊號等,但不限於此。 The first wireless radio frequency transmission module is configured to transmit the operator's hip joint movement signal, knee joint movement signal, etc., but is not limited thereto.
感測裝置130設置於扶手裝置15上,且扶手裝置15更設有急停按鈕152、扶手高度調整裝置153及扶手高度致動器支撐架體154。感測裝置130配置以量測操作者之生理訊號,進一步地,感測裝置130更包含第二無線射頻傳輸模組,配置以發送生理訊號。在本發明之一實施例中,感測裝置130可以是紅外線溫度感測器或血氧濃度心率脈搏感測器。需說明的是,生理訊號包含皮膚溫度、心率值及血氧濃度。也就是說,第二無線射頻傳輸模組配置以發送操作者之皮膚溫度、心率值、血氧濃度等,但不限於此。 The sensing device 130 is mounted on the armrest 15 and further includes an emergency stop button 152, an armrest height adjustment device 153, and an armrest height actuator support frame 154. The sensing device 130 is configured to measure the operator's physiological signals. Furthermore, the sensing device 130 includes a second wireless radio frequency transmission module configured to transmit these physiological signals. In one embodiment of the present invention, the sensing device 130 may be an infrared temperature sensor or a blood oxygen concentration, heart rate, or pulse sensor. It should be noted that the physiological signals include skin temperature, heart rate, and blood oxygen concentration. In other words, the second wireless radio frequency transmission module is configured to transmit the operator's skin temperature, heart rate, blood oxygen concentration, etc., but is not limited to these.
機械裝置200還包含驅動裝置17,其設有直流減速馬達171、一或多個驅動輪172(例如圖2中所繪示之2個驅動輪172)及一或多個拖輪173(例如圖2中所繪 示之10個拖輪173)。 The mechanical device 200 further includes a drive device 17, which includes a DC reduction motor 171, one or more drive wheels 172 (e.g., the two drive wheels 172 shown in FIG. 2 ), and one or more tugs 173 (e.g., the ten tugs 173 shown in FIG. 2 ).
互動式介面140耦接復健裝置110、感測網路120及感測裝置130,其配置以接收並顯示慣性感測訊號及生理訊號,即接收並顯示包含髖關節動作訊號、膝關節動作訊號、皮膚溫度、心率值、血氧濃度等訊號,但不限於此。 The interactive interface 140 is coupled to the rehabilitation device 110, the sensing network 120, and the sensing device 130. It is configured to receive and display inertial sensing signals and physiological signals, including but not limited to hip joint motion signals, knee joint motion signals, skin temperature, heart rate, and blood oxygen concentration.
在本發明之一實施例中,互動式介面140更配置以提供操作者調整扶手裝置15的高度、大腿骨骼架體11的長度及小腿骨骼架體12的長度。 In one embodiment of the present invention, the interactive interface 140 is further configured to allow the operator to adjust the height of the armrest device 15, the length of the thigh frame 11, and the length of the calf frame 12.
在本發明之另一實施例中,互動式介面140更配置以提供操作者設定步數、設定步伐長度、設定髖關節角度及設定膝關節角度。 In another embodiment of the present invention, the interactive interface 140 is further configured to allow the operator to set the number of steps, set the step length, set the hip joint angle, and set the knee joint angle.
在一些實施例中,機械裝置200之操作者可透過互動式介面140設定髖關節角度及膝關節角度,感測網路120中之大腿動作訊號感測裝置162、小腿動作訊號感測裝置163的微控制器將依據各個步態週期的髖關節角度及膝關節角度來分別驅動髖關節線性致動器13及膝關節步進馬達14,藉此帶動操作者大小腿作動,完成完整步態週期之行走動作復健。 In some embodiments, the operator of the mechanical device 200 can set the hip and knee joint angles through the interactive interface 140. The microcontrollers of the thigh motion signal sensor 162 and calf motion signal sensor 163 in the sensing network 120 will drive the hip joint linear actuator 13 and knee joint stepping motor 14, respectively, based on the hip and knee joint angles during each gait cycle. This drives the operator's calf and thigh movements, completing walking motion rehabilitation throughout the entire gait cycle.
在髖關節線性致動器13之驅動方面,本發明係將完整步態週期區分為雙腳支撐I(腳跟著地)、雙腳支撐I(著地期/腳掌著地)、單腳支撐(站立中期)、單腳支撐(站立末期/腳跟離地)、雙腳支撐II(擺盪前期/腳趾離地)及擺盪期等六個分期,並依據該六個分期之特定人體 髖關節角度:雙腳支撐I(腳跟著地)(髖關節屈曲30°);雙腳支撐I(著地期/腳掌著地)(髖關節屈曲30°);單腳支撐(站立中期)(髖關節屈曲10°);單腳支撐(站立末期/腳跟離地)(髖關節伸直10°);雙腳支撐II(擺盪前期/腳趾離地)(髖關節0°);擺盪期(髖關節屈曲30°),來加以設定髖關節線性致動器13之推動行程,藉此以驅動髖關節線性致動器13。 Regarding the actuation of the hip joint linear actuator 13, the present invention divides the complete gait cycle into six phases: Bipedal Support I (heel strike), Bipedal Support II (landing phase/foot strike), Single-Foot Support (mid-stance phase), Single-Foot Support (end-stance phase/heel-off), Bipedal Support II (pre-swing phase/toe-off), and Swing phase. Based on the specific human body conditions of these six phases, the hip joint angle is: Bipedal Support I (heel strike) (hip flexion 30°) The hip linear actuator 13 is driven by the following parameters: Bipedal support I (landing phase/foot landing) (hip flexion 30°); Single-leg support (mid-stance phase) (hip flexion 10°); Single-leg support (late stance phase/heel-off) (hip extension 10°); Bipedal support II (early swing phase/toe-off) (hip 0°); swing phase (hip flexion 30°).
在膝關節步進馬達14之驅動方面,本發明係將完整步態週期區分為雙腳支撐I(腳跟著地)、雙腳支撐I(著地期/腳掌著地)、單腳支撐(站立中期)、單腳支撐(站立末期/腳跟離地)、雙腳支撐II(擺盪前期/腳趾離地)及擺盪期等六個分期,並依據該六個分期之特定人體髖關節角度:雙腳支撐I(腳跟著地)(膝關節0°);雙腳支撐I(著地期/腳掌著地)(膝關節屈曲10°);單腳支撐(站立中期)(膝關節0°);單腳支撐(站立末期/腳跟離地)(膝關節0°);雙腳支撐II(擺盪前期/腳趾離地)(膝關節屈曲35°);擺盪期(膝關節0°),來加以設定膝關節步進馬達14之推動行程,藉此以驅動膝關節步進馬達14。 In terms of driving the knee joint stepping motor 14, the present invention divides the complete gait cycle into six phases: double-foot support I (heel landing), double-foot support I (landing phase/foot landing), single-foot support (mid-stance phase), single-foot support (end-stance phase/heel off), double-foot support II (early swing phase/toe off) and swing phase, and according to the specific human hip joint angles of the six phases: double-foot support I (heel landing) (knee joint The following parameters are used to set the propulsion stroke of the knee stepper motor 14: Bipedal support I (landing phase/foot landing) (knee flexion 10°); Single-leg support (mid-stance phase) (knee 0°); Single-leg support (end-stance phase/heel-off) (knee 0°); Bipedal support II (early swing phase/toe-off) (knee flexion 35°); swing phase (knee 0°), thereby driving the knee stepper motor 14.
互動式介面140更包含記憶體142,其配置以儲存慣性感測訊號及生理訊號,即儲存包含髖關節動作訊號、膝關節動作訊號、皮膚溫度、心率值、血氧濃度等,但不限於此。 The interactive interface 140 further includes a memory 142 configured to store inertial sensing signals and physiological signals, including but not limited to hip joint motion signals, knee joint motion signals, skin temperature, heart rate, blood oxygen concentration, etc.
記憶體142可以是高速隨機存取記憶體,還可包 含非揮發性記憶體,例如硬碟、插接式硬碟、智慧存儲卡(smart media card,SMC)、安全數位(secure digital,SD)卡、快閃記憶體卡(flash card)、至少一個磁碟記憶體件、快閃記憶體器件、或其他非揮發性固態記憶體件。 Memory 142 can be high-speed random access memory and may also include non-volatile memory, such as a hard drive, a plug-in hard drive, a smart media card (SMC), a secure digital (SD) card, a flash memory card, at least one magnetic disk memory device, a flash memory device, or other non-volatile solid-state memory device.
互動式介面140更包含處理器144,其配置以接收操作者之一或多個控制指令並依據此一或多個控制指令發送一或多個復健指令至復健裝置110。 The interactive interface 140 further includes a processor 144 configured to receive one or more control instructions from the operator and send one or more rehabilitation instructions to the rehabilitation device 110 according to the one or more control instructions.
在本發明之一實施例中,此一或多個控制指令更包含設定裝置高度指令、設定步數指令、設定步伐長度指令、設定步伐速度指令及設定行走時間指令等,但不限於此。 In one embodiment of the present invention, the one or more control instructions further include, but are not limited to, an instruction for setting device height, an instruction for setting step count, an instruction for setting stride length, an instruction for setting stride speed, and an instruction for setting walking time.
處理器144可以是中央處理單元(central processing unit,CPU)、圖形處理器(graphics processing unit,GPU)、微控制器單元(microcontroller unit,MCU)、微處理器、系統單晶片(system-on-chip,SoC)、數位信號處理器(digital signal processor,DSP)、特殊應用積體電路(application-specific integrated circuit,ASIC)、可程式化邏輯控制器(programmable logic controller,PLC)或上述元件的組合,但不限於此。 The processor 144 may be, but is not limited to, a central processing unit (CPU), a graphics processing unit (GPU), a microcontroller unit (MCU), a microprocessor, a system-on-chip (SoC), a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a programmable logic controller (PLC), or a combination of the foregoing.
在感測裝置130測得操作者之皮膚溫度、心率值、血氧濃度等生理訊號後,處理器144將此些生理訊號代入生理急停機制演算法,以判斷操作者進行復健過程中之生理狀況,作為復健裝置110之生理急停控制機制。 After the sensor device 130 measures the operator's skin temperature, heart rate, blood oxygen concentration, and other physiological signals, the processor 144 feeds these physiological signals into a physiological emergency stop mechanism algorithm to determine the operator's physiological condition during rehabilitation, thus serving as the physiological emergency stop control mechanism for the rehabilitation device 110.
具體而言,在操作者進行復健的過程中,當感測裝置130測得操作者之生理訊號異常時,處理器144將發出一停止訊號,以控制復健裝置110停止作動。 Specifically, during the operator's rehabilitation process, if the sensing device 130 detects an abnormal physiological signal from the operator, the processor 144 will issue a stop signal to control the rehabilitation device 110 to stop operating.
在本發明之一實施例中,處理器144更配置以利用生理急停機制演算法處理生理訊號,且在判別出生理訊號之生理參數超出正常生理參數範圍(即生理參數大於正常生理參數範圍上限或小於正常生理參數範圍下限)時,控制復健裝置110停止作動。 In one embodiment of the present invention, the processor 144 is further configured to process the physiological signal using a physiological emergency stop mechanism algorithm and control the rehabilitation device 110 to stop operating when it is determined that the physiological parameter of the physiological signal exceeds the normal physiological parameter range (i.e., the physiological parameter is greater than the upper limit of the normal physiological parameter range or less than the lower limit of the normal physiological parameter range).
具體而言,處理器144將皮膚溫度、心率值及血氧濃度作為生理急停機制演算法的輸入訊號,並藉由生理急停機制演算法中的機器學習或深度學習之神經網路模型判斷此一或多個生理訊號是否異常(即生理訊號之生理參數是否超出正常生理參數範圍)。若處理器144判斷此一或多個生理訊號為異常時,則控制復健裝置110停止作動。 Specifically, processor 144 uses skin temperature, heart rate, and blood oxygen concentration as input signals for the physiological emergency stop mechanism algorithm. The machine learning or deep learning neural network model within the physiological emergency stop mechanism algorithm determines whether one or more of these physiological signals are abnormal (i.e., whether the physiological parameters of the physiological signals exceed the normal physiological parameter range). If processor 144 determines that one or more of these physiological signals are abnormal, it controls rehabilitation device 110 to stop operating.
需說明的是,生理急停機制演算法係以機器學習或深度學習之神經網路模型架構實現,但不限於此。 It should be noted that the physiological emergency stop mechanism algorithm is implemented using a neural network model architecture based on machine learning or deep learning, but is not limited to this.
在由記憶體142中存取測得操作者之髖關節動作訊號及膝關節動作訊號後,處理器144將髖關節動作訊號、膝關節動作訊號後代入下肢關節角度量測演算法,以計算出下肢關節角度。 After accessing the operator's hip and knee joint motion signals from memory 142, processor 144 substitutes the hip and knee joint motion signals into the lower limb joint angle measurement algorithm to calculate the lower limb joint angle.
需說明的是,下肢關節角度量測演算法係基於擴展式卡爾曼濾波器(extended Kalman filter,EKF)、無跡式卡爾曼濾波器(unscented Kalman filter, UKF)、粒子濾波器(particle filter,PF)或容積卡爾曼濾波器(cubature Kalman filter,CKF)設計,但不限於此。 It should be noted that the lower limb joint angle measurement algorithm is based on, but not limited to, an extended Kalman filter (EKF), an unscented Kalman filter (UKF), a particle filter (PF), or a cubature Kalman filter (CKF).
下肢關節角度量測演算法更包含下肢動作姿態估測演算法、下肢關節角度估測演算法等,但不限於此。 Lower limb joint angle measurement algorithms further include lower limb movement posture estimation algorithms, lower limb joint angle estimation algorithms, etc., but are not limited to these.
在本發明之一實施例中,下肢關節角度為髖關節角度或膝關節角度。 In one embodiment of the present invention, the lower limb joint angle is a hip joint angle or a knee joint angle.
具體而言,處理器144首先利用下肢關節角度量測演算法中之下肢動作姿態估測演算法分別計算出大腿骨骼及小腿骨骼在三維空間中轉動之滾動角、俯仰角及偏擺角,接著再利用下肢關節角度量測演算法中之下肢關節角度估測演算法計算出操作者之髖關節角度及膝關節角度。 Specifically, processor 144 first uses the lower limb posture estimation algorithm within the lower limb joint angle measurement algorithm to calculate the roll angle, pitch angle, and yaw angle of the thigh and calf bones in three-dimensional space. It then uses the lower limb joint angle estimation algorithm within the lower limb joint angle measurement algorithm to calculate the operator's hip and knee joint angles.
具體而言,在操作者進行復健的過程中,當感測網路120測得操作者之髖關節動作訊號及膝關節動作訊號後,利用下肢關節角度量測演算法計算出操作者之髖關節角度及膝關節角度異常時,處理器144將發出一停止訊號,以控制復健裝置110停止作動。 Specifically, during rehabilitation, when the sensing network 120 detects the operator's hip and knee joint motion signals and uses the lower limb joint angle measurement algorithm to calculate that the operator's hip and knee joint angles are abnormal, the processor 144 will issue a stop signal to control the rehabilitation device 110 to stop.
在本發明之一實施例中,處理器144更配置以在髖關節角度大於髖關節角度範圍之髖關節角度範圍上限或小於髖關節角度範圍下限時,控制復健裝置110停止作動。 In one embodiment of the present invention, the processor 144 is further configured to control the rehabilitation device 110 to stop operating when the hip joint angle is greater than the upper limit of the hip joint angle range or less than the lower limit of the hip joint angle range.
在本發明之另一實施例中,處理器144更配置以在膝關節角度大於膝關節角度範圍之膝關節角度範圍上限或小於膝關節角度範圍下限時,控制復健裝置110停止作 動。 In another embodiment of the present invention, the processor 144 is further configured to control the rehabilitation device 110 to stop moving when the knee joint angle is greater than the upper limit of the knee joint angle range or less than the lower limit of the knee joint angle range.
在測得操作者之慣性感測訊號(例如髖關節動作訊號、膝關節動作訊號等)及生理訊號(例如皮膚溫度、心率值、血氧濃度等)後,處理器144將此些慣性感測訊號及生理訊號儲存致雲端資料庫中。 After measuring the operator's inertial sensing signals (e.g., hip joint motion signals, knee joint motion signals, etc.) and physiological signals (e.g., skin temperature, heart rate, blood oxygen concentration, etc.), processor 144 stores these inertial sensing signals and physiological signals in a cloud database.
復健輔助系統100更包含監控平台,其配置以即時顯示包含髖關節角度、膝關節角度、皮膚溫度、血氧濃度及心率等訊號,供醫療人員及操作者家屬可透過存取雲端資料庫即時掌握操作者進行復健過程中之狀態。 The rehabilitation assistance system 100 also includes a monitoring platform configured to display real-time signals including hip joint angle, knee joint angle, skin temperature, blood oxygen concentration, and heart rate. This allows medical staff and the operator's family to access a cloud database to monitor the operator's rehabilitation status in real time.
此外,監控平台更配置以將操作者之歷史復健紀錄儲存至雲端資料庫中。 In addition, the monitoring platform is configured to store the operator's historical rehabilitation records in a cloud database.
在本發明之一實施例中,復健輔助系統100更包含可安裝於行動裝置上之應用程式,使醫療人員及家屬可透過使用其個人行動裝置上之應用程式即時觀測操作者進行復健動作時的髖關節角度、膝關節角度、皮膚溫度、血氧濃度及心率等訊號,並可進一步地觀看操作者完整的歷史復健記錄。 In one embodiment of the present invention, the rehabilitation assistance system 100 further includes an application that can be installed on a mobile device. This allows medical personnel and family members to use the application on their personal mobile devices to monitor the operator's hip joint angle, knee joint angle, skin temperature, blood oxygen concentration, heart rate, and other signals in real time while the operator performs rehabilitation exercises. The application can also be used to view the operator's complete rehabilitation history.
承前一實施例,行動裝置可以是智慧型手機、智慧型手環、平板電腦等,但不限於此。 Continuing from the previous embodiment, the mobile device may be a smartphone, a smart bracelet, a tablet computer, etc., but is not limited thereto.
綜上所述,本發明之復健輔助系統結合復健裝置、感測網路、感測裝置及互動式介面,以輔助腦中風患者進行復健行走完整步態週期動作之訓練,達到下肢行走動作復健的功能。此外,醫療人員及家屬還可透過監控平台或行動裝置上之應用程式即時掌握患者進行復健過程中之生 理狀態。 In summary, the rehabilitation assistance system of the present invention combines rehabilitation devices, a sensor network, sensor devices, and an interactive interface to assist stroke patients in training the complete gait cycle during rehabilitation walking, thereby achieving lower limb walking rehabilitation. Furthermore, medical staff and family members can monitor the patient's physiological status in real time during rehabilitation through a monitoring platform or mobile device application.
雖然本發明已以實施例揭露如上,然而其並非用以限定本發明之範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神與範圍內,當可做各種改變、替換與更動,因此本發明的保護範圍當以後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above through the use of embodiments, these are not intended to limit the scope of the present invention. Any person skilled in the art may make various changes, substitutions, and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be determined by the scope of the patent application appended hereto.
100:復健輔助系統 100: Rehabilitation Assistance System
110:復健裝置 110: Rehabilitation Device
120:感測網路 120: Sensing Network
130:感測裝置 130: Sensing device
140:互動式介面 140:Interactive Interface
142:記憶體 142: Memory
144:處理器 144: Processor
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113112059A TWI896060B (en) | 2024-03-29 | 2024-03-29 | Rehabilitation assistance system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113112059A TWI896060B (en) | 2024-03-29 | 2024-03-29 | Rehabilitation assistance system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI896060B true TWI896060B (en) | 2025-09-01 |
| TW202537610A TW202537610A (en) | 2025-10-01 |
Family
ID=97831694
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113112059A TWI896060B (en) | 2024-03-29 | 2024-03-29 | Rehabilitation assistance system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI896060B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI564129B (en) * | 2015-11-27 | 2017-01-01 | 財團法人工業技術研究院 | Method for estimating posture of robotic walking aid |
| CN112932897A (en) * | 2021-01-28 | 2021-06-11 | 上海电气集团股份有限公司 | Method and device for movement of rehabilitation robot and rehabilitation robot |
| US20210244992A1 (en) * | 2016-08-23 | 2021-08-12 | Seismic Holdings, Inc. | Systems and methods for assistive exosuit system |
| CN115836858A (en) * | 2022-10-21 | 2023-03-24 | 江汉大学 | A lower limb motion posture monitoring device, method and related equipment |
-
2024
- 2024-03-29 TW TW113112059A patent/TWI896060B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI564129B (en) * | 2015-11-27 | 2017-01-01 | 財團法人工業技術研究院 | Method for estimating posture of robotic walking aid |
| US20210244992A1 (en) * | 2016-08-23 | 2021-08-12 | Seismic Holdings, Inc. | Systems and methods for assistive exosuit system |
| CN112932897A (en) * | 2021-01-28 | 2021-06-11 | 上海电气集团股份有限公司 | Method and device for movement of rehabilitation robot and rehabilitation robot |
| CN115836858A (en) * | 2022-10-21 | 2023-03-24 | 江汉大学 | A lower limb motion posture monitoring device, method and related equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5507224B2 (en) | Walking assistance robot | |
| CN105456004B (en) | Exoskeleton-type moves walking rehabilitation training device and method | |
| JP6175050B2 (en) | Active robotic walking training system and method | |
| JP5706016B2 (en) | Walking assistance robot | |
| US9198821B2 (en) | Lower extremity exoskeleton for gait retraining | |
| EP2663267B1 (en) | Powered joint orthosis | |
| US20100152629A1 (en) | Integrated system to assist in the rehabilitation and/or exercising of a single leg after stroke or other unilateral injury | |
| US8771208B2 (en) | Powered orthosis systems and methods | |
| Vouga et al. | TWIICE—A lightweight lower-limb exoskeleton for complete paraplegics | |
| CN109568089A (en) | A kind of trailing type lower limb recovery robot by training paces system | |
| CN104582668A (en) | mobility aids | |
| US20180369053A1 (en) | System and method for restoring human motor activity | |
| Li et al. | Using body sensor network to measure the effect of rehabilitation therapy on improvement of lower limb motor function in children with spastic diplegia | |
| Jiang et al. | Recent advances on lower limb exoskeleton rehabilitation robot | |
| Kagawa et al. | Gait pattern generation for a power-assist device of paraplegic gait | |
| Li et al. | BEAR-H: An intelligent bilateral exoskeletal assistive robot for smart rehabilitation | |
| CN114903750A (en) | A lower extremity exoskeleton control system and lower extremity exoskeleton control method for paraplegic patients | |
| Chen et al. | Adaptive control strategy for gait rehabilitation robot to assist-when-needed | |
| TWI896060B (en) | Rehabilitation assistance system | |
| CN117838485A (en) | Auxiliary unilateral lower limb exoskeleton robot and self-adaptive control method thereof | |
| TW202537610A (en) | Rehabilitation assistance system | |
| JP2013048701A (en) | Walking support device and walking support program | |
| CN213250914U (en) | Lower limb rehabilitation robot | |
| CN117224367A (en) | Lower limb exoskeleton rehabilitation training system based on sensor mapping | |
| TWI894027B (en) | Rehabilitation assistance system |