TWI887104B - Neuromuscular fatigue detection and assessment system - Google Patents
Neuromuscular fatigue detection and assessment system Download PDFInfo
- Publication number
- TWI887104B TWI887104B TW113133058A TW113133058A TWI887104B TW I887104 B TWI887104 B TW I887104B TW 113133058 A TW113133058 A TW 113133058A TW 113133058 A TW113133058 A TW 113133058A TW I887104 B TWI887104 B TW I887104B
- Authority
- TW
- Taiwan
- Prior art keywords
- wearable device
- jump
- assessment system
- neuromuscular fatigue
- neuromuscular
- Prior art date
Links
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本發明係關於運動科學與生物醫學之技術領域,尤指一種神經肌肉疲勞檢測與評估系統。 This invention relates to the technical field of sports science and biomedicine, and particularly to a neuromuscular fatigue detection and evaluation system.
運動訓練負荷的監測與控制是科學化競技訓練的重要手段,可藉以獲得最大化的訓練適應與效益,並避免運動傷害的發生。運動訓練的負荷,可分成例如為攝氧量、心跳率、血乳酸、自覺努力程度(Rating of Perceived Exertion,RPE)與訓練衝量(Training impulse)等的內在負荷,以及例如為力量、加速度、距離與速度等的外在負荷,亦即必須涵蓋運動生理學、運動生物力學與運動心理學的範疇。 Monitoring and controlling sports training load is an important means of scientific competitive training, which can be used to maximize training adaptation and benefits and avoid sports injuries. Sports training load can be divided into internal loads such as oxygen uptake, heart rate, blood lactate, Rating of Perceived Exertion (RPE) and training impulse, and external loads such as strength, acceleration, distance and speed, which must cover the scope of sports physiology, sports biomechanics and sports psychology.
現有關於運動訓練負荷的監控上,多僅停留在單一儀器數據的蒐集與分析,例如單純監測心跳率或僅監測垂直跳,而尚未有整合性的即時監控系統。例如,在現有的相關測驗方法的市場上,僅有以市售手機應用程式(APP)進行多次跳躍的跳躍高度進行分析,其主要透過智慧型手機鏡頭拍攝人體的跳躍動作,再利用APP功能人工點選跳躍影像中的起跳時間點與落地時間點,由此二時間點定義騰空時間再計算出跳躍高度。但是,多數軟體的目的僅在監測跳躍表現,並非用以評估 神經肌肉的疲勞程度。此外,相關市售手機APP是用鏡頭拍攝並以人工視覺判斷分析,因此,除了測驗誤差高外,也未有搭配其他不同生理指標來進行即時分析與評估神經肌肉疲勞之技術。 The existing monitoring of sports training load is mostly limited to the collection and analysis of single instrument data, such as simply monitoring heart rate or vertical jump, and there is no integrated real-time monitoring system. For example, in the existing market of related testing methods, only commercially available mobile phone applications (APPs) are used to analyze the jumping height of multiple jumps. They mainly use the smartphone camera to shoot the jumping action of the human body, and then use the APP function to manually select the take-off time and landing time in the jumping image. The two time points define the space time and then calculate the jumping height. However, the purpose of most software is only to monitor jumping performance, not to evaluate the degree of neuromuscular fatigue. In addition, the relevant commercially available mobile phone apps are shot with a camera and analyzed by manual visual judgment. Therefore, in addition to the high test error, there is no technology that combines other different physiological indicators to conduct real-time analysis and assessment of neuromuscular fatigue.
因此,在現有運動訓練負荷的監控的設計上,實仍存在有諸多缺失而有予以改善之必要。 Therefore, there are still many deficiencies in the existing design of sports training load monitoring and there is a need for improvement.
本發明之目的主要係在提供一種神經肌肉疲勞檢測與評估系統,其透過運動訓練負荷與疲勞的多元監控,以在運動者的整體疲勞、訓練負荷與運動表現上,提供更有價值的資訊,且以生理與力學多元指標來進行神經肌肉疲勞之整合性評估,可提升訓練品質與效益並達成高精準度的檢測。 The main purpose of this invention is to provide a neuromuscular fatigue detection and assessment system, which provides more valuable information on the athlete's overall fatigue, training load and sports performance through multi-dimensional monitoring of sports training load and fatigue, and uses physiological and mechanical multi-dimensional indicators to conduct an integrated assessment of neuromuscular fatigue, which can improve the quality and effectiveness of training and achieve high-precision detection.
為達成前述之目的,本發明提出一種神經肌肉疲勞檢測與評估系統,用以檢測與評估一被檢測對象的神經肌肉疲勞狀態,包括:一第一穿戴裝置,其上設置有一慣性測量單元,該第一穿戴裝置用以配戴於該被檢測對象的腰部後方;一第二穿戴裝置,其上設置有一近紅外線光譜儀,該第二穿戴裝置用以配戴於該被檢測對象的大腿股外側肌的肌腹位置的皮膚上;以及一電子設備,配備有一無線裝置並以該無線裝置無線電連接至該第一穿戴裝置及該第二穿戴裝置,其中,藉由該被檢測對象實施一垂直跳躍,該第一穿戴裝置及該第二穿戴裝置分別蒐集於該垂直跳躍的過程中由該被檢測對象產生的包括加速度資訊及肌肉氧合濃度變化之檢測數據,並將該檢測數據無線傳送至該電子設備進行分析,據以判斷該被檢測對象之神經肌肉疲勞程度。 To achieve the above-mentioned purpose, the present invention provides a neuromuscular fatigue detection and evaluation system for detecting and evaluating the neuromuscular fatigue state of a detected object, comprising: a first wearable device on which an inertia measurement unit is disposed, and the first wearable device is used to be worn behind the waist of the detected object; a second wearable device on which a near-infrared spectrometer is disposed, and the second wearable device is used to be worn on the skin at the belly position of the vastus lateralis muscle of the thigh of the detected object; and an electric The electronic device is equipped with a wireless device and is wirelessly connected to the first wearable device and the second wearable device. When the detected object performs a vertical jump, the first wearable device and the second wearable device respectively collect detection data including acceleration information and changes in muscle oxygenation concentration generated by the detected object during the vertical jump, and wirelessly transmit the detection data to the electronic device for analysis, so as to determine the neuromuscular fatigue level of the detected object.
以上概述與接下來的詳細說明皆為示範性質,是為了進一步說明本發明的申請專利範圍,而有關本發明的其餘目的與優點,將在後續的說明與圖式加以闡述。 The above overview and the following detailed description are of an exemplary nature and are intended to further illustrate the scope of the patent application of the present invention. The remaining purposes and advantages of the present invention will be elaborated in the subsequent description and drawings.
1:神經肌肉疲勞檢測與評估系統 1: Neuromuscular fatigue detection and assessment system
90:被檢測對象 90: Object to be tested
11:第一穿戴裝置 11: First wearable device
12:第二穿戴裝置 12: Second wearable device
20:電子設備 20: Electronic equipment
21:無線裝置 21: Wireless devices
80:平台 80: Platform
P1、P2、P3、P4:處理程序 P1, P2, P3, P4: Processing procedures
S401~S403、S406~S408、S421~S424、S501~S508:步驟 S401~S403, S406~S408, S421~S424, S501~S508: Steps
圖1顯示本發明之神經肌肉疲勞檢測與評估系統的示意圖。 Figure 1 shows a schematic diagram of the neuromuscular fatigue detection and assessment system of the present invention.
圖2A、2B及2C顯示落下跳的動作順序的示意圖。 Figures 2A, 2B and 2C show schematic diagrams of the action sequence of a drop jump.
圖3A及3B顯示連續多次下蹲跳的一次下蹲跳的動作順序的示意圖。 Figures 3A and 3B are schematic diagrams showing the sequence of movements of a squat jump in a series of multiple squat jumps.
圖4A顯示慣性測量單元演算流程。 Figure 4A shows the algorithm flow of the inertial measurement unit.
圖4B顯示近紅外線光譜儀演算流程。 Figure 4B shows the near-infrared spectrometer calculation process.
圖5顯示疲勞程度分級演算流程。 Figure 5 shows the fatigue level grading process.
為了使本發明的目的、技術方案及優點更加清楚明白,以下結合附圖及實施例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅僅用以解釋本發明的實施方式,並不用於限定本發明。 In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the attached drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the implementation of the present invention and are not intended to limit the present invention.
圖1顯示本發明之神經肌肉疲勞檢測與評估系統的示意圖,其中,神經肌肉疲勞檢測與評估系統1是用以檢測與評估一被檢測對象90的神經肌肉疲勞狀態,且其主要括第一穿戴裝置11、第二穿戴裝置12及一電子設備20。其中,於第一穿戴裝置11上設置有一慣性測量單元(Inertial Measurement Unit,簡稱IMU),且第一穿戴裝置11
用以配戴於該被檢測對象90的腰部後方(腰椎);於第二穿戴裝置12上設置有一近紅外線光譜儀(Near-Infrared Spectrometer,簡稱NIRS),且第二穿戴裝置12用以配戴於該被檢測對象90的大腿股外側肌的肌腹位置的皮膚上;電子設備20配備有一無線裝置21並以該無線裝置21無線電連接至第一穿戴裝置11及第二穿戴裝置12,其中,無線裝置21可為一藍芽無線裝置或一WiFi無線裝置,電子設備20可為一平板電腦、筆記型電腦、個人電腦、智慧型手機等,但此僅是舉例,本發明不以此為限。
FIG1 shows a schematic diagram of the neuromuscular fatigue detection and evaluation system of the present invention, wherein the neuromuscular fatigue detection and
以本發明之神經肌肉疲勞檢測與評估系統1對被檢測對象90進行測驗時,被檢測對象90實施一垂直跳躍,且於垂直跳躍的過程中,第一穿戴裝置11及第二穿戴裝置12分別蒐集於垂直跳躍的過程中由被檢測對象90產生的包括加速度資訊及肌肉氧合濃度變化之檢測數據,並將檢測數據以無線傳送至電子設備20進行分析,據以判斷被檢測對象90所代表之神經肌肉疲勞程度。
When the neuromuscular fatigue detection and
前述垂直跳躍包括落下跳與連續多次下蹲跳,圖2A、2B及2C顯示落下跳的動作順序的示意圖,其中,於實施落下跳時,被檢測對象90是採手部置於髖關節的位置(手叉腰)的動作站在一高處(圖2A),然後往低處落下(2B),接著再往上跳躍(圖2C),例如站在放置於地面的一平台80往地面落下後再往上跳躍,據此完成前述之落下跳。進一步,圖3A及3B顯示連續多次下蹲跳的一次下蹲跳的動作順序的示意圖,其中,於實施下蹲跳時,被檢測對象90是採手部置於髖關節的位置(手叉腰)的動作先下蹲(圖3A),之後再往上跳躍(圖3B),且於下蹲跳的跳躍過程中該手部全程不脫離髖關節的位置,據此完成前述連續多次下蹲跳的一次下蹲跳。
The aforementioned vertical jump includes a drop jump and a continuous multiple squat jumps. Figures 2A, 2B and 2C show schematic diagrams of the action sequence of the drop jump, wherein, when performing the drop jump, the detected
在前述測驗的過程中,請一併參照圖1所示本發明之神經肌肉疲勞檢測與評估系統1中的電子設備20的處理程序P1、P2、P3及P4,配戴於被檢測對象90的第一穿戴裝置11及第二穿戴裝置12各自以無線方式傳送所感測的檢測數據至電子設備20並由電子設備20的無線裝置21所接收,據此,電子設備20蒐集檢測數據(處理程序P1)。接著,電子設備20辨識前述蒐集的檢測數據中之第一特徵值及第二特徵值(處理程序P2),以供進行檢測數據的辨別、判定、分析與評估,其中,第一特徵值為第一穿戴裝置11的慣性測量單元(IMU)的檢測數據之特徵值,第二特徵值為第二穿戴裝置12的近紅外線光譜儀(NIRS)的檢測數據之特徵值。
In the aforementioned testing process, please also refer to the processing procedures P1, P2, P3 and P4 of the
更詳細地,圖4A及圖4B分別顯示前述處理程序P2中的慣性測量單元(IMU)演算流程及近紅外線光譜儀(NIRS)演算流程。其中,如圖4A的慣性測量單元(IMU)演算流程所示,於進行落下跳(DJ)測驗時,首先輸入Z軸(垂直於地面的方向)加速度之數值(步驟S401)。接著運算騰空時間與觸地時間(步驟S402),其係以Z軸加速度曲線中之峰值與轉折點進行判斷,且定義1次觸地時間與1次騰空時間為完成1次跳躍,完成後即停止輸入數值並顯示結果(步驟S403)。前述步驟S401~S403可重複執行數次(例如,重複執行3次),然後進入連續多次下蹲跳(CMJ)測驗。於進行連續多次下蹲跳(CMJ)測驗時,首先輸入Z軸加速度之數值(步驟S406),接著運算騰空時間與觸地時間(步驟S407),其係以Z軸加速度曲線中之峰值與轉折點進行判斷,且定義1次觸地時間與1次騰空時間為完成1次跳躍,其中,連續多次下蹲跳(CMJ)測驗要求進行多次跳躍(例如15次跳躍),因此步驟S406及S407需執行多次(例如15次),完成後即停止輸入數值並顯示結果(步驟 S408)。 In more detail, FIG. 4A and FIG. 4B respectively show the inertial measurement unit (IMU) calculation process and the near infrared spectrometer (NIRS) calculation process in the aforementioned processing procedure P2. As shown in the inertial measurement unit (IMU) calculation process of FIG. 4A , when performing a drop jump (DJ) test, the value of the Z-axis (vertical to the ground) acceleration is first input (step S401). Then, the space time and the contact time are calculated (step S402), which are judged by the peak value and the turning point in the Z-axis acceleration curve, and one contact time and one space time are defined as completing one jump. After completion, the input of values is stopped and the result is displayed (step S403). The aforementioned steps S401-S403 may be repeated several times (for example, repeated 3 times), and then enter the continuous multiple squat jump (CMJ) test. When performing the continuous multiple squat jump (CMJ) test, first input the value of the Z-axis acceleration (step S406), then calculate the space time and the ground contact time (step S407), which is determined by the peak value and turning point in the Z-axis acceleration curve, and define 1 ground contact time and 1 space time as completing 1 jump. Among them, the continuous multiple squat jump (CMJ) test requires multiple jumps (for example, 15 jumps), so steps S406 and S407 need to be executed multiple times (for example, 15 times). After completion, stop inputting values and display the results (step S408).
再者,如圖4B的近紅外線光譜儀(NIRS)演算流程所示,首先輸入肌肉氧合濃度數值(步驟S421)並完成第1次跳躍(若尚未完成第1次跳躍,則需再執行步驟S421)。接著,記錄時間戳記-1(步驟S422)並再進行多次跳躍(例如15次跳躍),其中,前述每一跳躍是以慣性測量單元(IMU)演算流程進行跳躍判斷,以Z軸加速度曲線中之峰值與轉折點進行判斷,且定義1次觸地時間與1次騰空時間為完成1次跳躍,於完成多次(15次)跳躍後,記錄時間戳記-2(步驟S423),之後停止輸入數值並顯示結果(步驟S424),且其係運用時間戳記-1與時間戳記-2,以及該時間下之氧合濃度數值,進而計算去氧速率。 Furthermore, as shown in the near infrared spectrometer (NIRS) calculation process of FIG. 4B , the muscle oxygenation concentration value is first input (step S421 ) and the first jump is completed (if the first jump has not been completed, step S421 needs to be executed again). Next, record timestamp-1 (step S422) and perform multiple jumps (e.g. 15 jumps), wherein each jump is judged by the inertial measurement unit (IMU) calculation process, and the peak value and turning point in the Z-axis acceleration curve are used for judgment, and one contact time and one space time are defined as completing one jump. After completing multiple (15) jumps, record timestamp-2 (step S423), then stop inputting values and display the results (step S424), and use timestamp-1 and timestamp-2, as well as the oxygenation concentration value at that time, to calculate the deoxygenation rate.
於前述處理程序P2之後,接著,依據前述辨識的第一特徵值及第二特徵值,電子設備20判斷、計算並產生對應前述垂直跳躍的數個指標(處理程序P3),其中,數個指標包括於垂直跳躍的過程中的騰空時間、最佳與最低的騰空時間與跳躍高度、落下跳百分比(Percentage DJ)、下降百分比(PD score)、反應肌力(RSI)與去氧速率(Deoxy rate)。據此,電子設備20可將前述所有指標進行計算,並以計算結果來評估該被檢測對象90之綜合疲勞程度並予以分級(處理程序P4),進一步,上述指標均可即時輸出呈現於軟體畫面與報表上,並可進行即時回饋或提供長期日誌輸出,據此,達成正確地即時分析與評估神經肌肉疲勞之功效。
After the aforementioned processing procedure P2, based on the aforementioned identified first characteristic value and second characteristic value, the
更詳細地,圖5顯示前述處理程序P3及P4中的疲勞程度分級演算流程,如圖所示,首先,輸入肌肉氧合濃度數值以及跳躍數值(步驟S501)。接著,計算下降百分比(PD score)、落下跳百分比(Percentage DJ)、去氧速率(Deoxy rate)、反應肌力(RSI)、落下跳/ 連續多次下蹲跳(DJ/CMJ)等指標(步驟S502)。其中,PD score是以DJ最高數值作為標準,計算跳躍高度遞減率;Percentage DJ是以DJ最高數值作為標準,計算跳躍衰退情況;Deoxy rate是作用肌肉氧合濃度之去氧速率;RSI是跳躍高度與觸地時間之比值,取最高之5筆平均;DJ/CMJ比是落下跳與下蹲跳高度比值。接著,將上述指標對照資料庫中常模數據,分別給予風險評分(步驟S503)。接著,輸入風險評分(步驟S504)。其中,當2項數值評分達高風險時,顯示極高風險(步驟S505),當1項數值評分達高風險時,顯示高度風險(步驟S506),當0項數值評分達高風險時,顯示中度風險(步驟S507),否則顯示低度風險(步驟S508)。 In more detail, FIG5 shows the fatigue level calculation process in the aforementioned processing procedures P3 and P4. As shown in the figure, first, the muscle oxygenation concentration value and the jump value are input (step S501). Then, the descent percentage (PD score), drop jump percentage (Percentage DJ), deoxygenation rate (Deoxy rate), reaction muscle strength (RSI), drop jump/continuous multiple squat jump (DJ/CMJ) and other indicators are calculated (step S502). Among them, PD score is based on the highest DJ value to calculate the jump height decrease rate; Percentage DJ is based on the highest DJ value to calculate the jump decay; Deoxy rate is the deoxygenation rate of the oxygen concentration of the acting muscle; RSI is the ratio of jump height to ground contact time, taking the average of the highest 5 records; DJ/CMJ ratio is the ratio of drop jump to squat jump height. Then, the above indicators are compared with the normative data in the database and risk scores are given respectively (step S503). Then, the risk score is input (step S504). Among them, when two numerical scores reach high risk, it displays extremely high risk (step S505), when one numerical score reaches high risk, it displays high risk (step S506), when zero numerical scores reach high risk, it displays medium risk (step S507), otherwise it displays low risk (step S508).
由以上之說明可知,本發明透過運動訓練負荷與疲勞的多元監控,可在運動者的整體疲勞、訓練負荷與運動表現上,提供更有價值的資訊,且基於執行運動訓練與技術的對象為人體,因此以整合性的概念進行監控與評估,藉由整合運動生理學、運動生物力學與運動心理學的相關資訊,而可完整地呈顯出實際情境,據以檢測神經肌肉狀態並即時回饋,達成實時追蹤與評估神經肌肉疲勞狀態,進而提升訓練品質與效益。此外,本發明將透過偵測慣性測量單元(IMU)及近紅外線光譜儀(NIRS)之特徵值,以生理與力學多元指標來進行神經肌肉疲勞之整合性評估,其檢測的精準程度顯將遠高於習知僅單純檢測跳躍高度之測驗。 From the above description, it can be seen that the present invention can provide more valuable information on the athlete's overall fatigue, training load and sports performance through multi-dimensional monitoring of sports training load and fatigue. Moreover, since the object of sports training and technology is the human body, monitoring and evaluation are carried out with an integrated concept. By integrating relevant information of sports physiology, sports biomechanics and sports psychology, the actual situation can be fully presented, and the neuromuscular state can be detected and real-time feedback can be given accordingly, so as to achieve real-time tracking and evaluation of neuromuscular fatigue state, thereby improving the quality and effectiveness of training. In addition, the present invention will use the characteristic values of the inertial measurement unit (IMU) and the near infrared spectrometer (NIRS) to conduct an integrated assessment of neuromuscular fatigue using multiple physiological and mechanical indicators. The accuracy of the test will be much higher than the conventional test of simply measuring the jumping height.
上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。 The above embodiments are only given for the convenience of explanation. The scope of rights claimed by the present invention shall be subject to the scope of the patent application, and shall not be limited to the above embodiments.
1:神經肌肉疲勞檢測與評估系統 1: Neuromuscular fatigue detection and assessment system
90:被檢測對象 90: Object to be tested
11:第一穿戴裝置 11: First wearable device
12:第二穿戴裝置 12: Second wearable device
20:電子設備 20: Electronic equipment
21:無線裝置 21: Wireless devices
P1、P2、P3、P4:處理程序 P1, P2, P3, P4: Processing procedures
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113133058A TWI887104B (en) | 2024-09-02 | 2024-09-02 | Neuromuscular fatigue detection and assessment system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113133058A TWI887104B (en) | 2024-09-02 | 2024-09-02 | Neuromuscular fatigue detection and assessment system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TWI887104B true TWI887104B (en) | 2025-06-11 |
Family
ID=97227662
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113133058A TWI887104B (en) | 2024-09-02 | 2024-09-02 | Neuromuscular fatigue detection and assessment system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI887104B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210236020A1 (en) * | 2018-04-30 | 2021-08-05 | Vanderbilt University | Wearable device to monitor musculoskeletal loading, estimate tissue microdamage and provide injury risk biofeedback |
| TW202402230A (en) * | 2022-03-29 | 2024-01-16 | 芬蘭商奧利安公司 | A method for determining a physical state of a subject, a data processing apparatus and a system |
| CN117442217A (en) * | 2023-09-19 | 2024-01-26 | 西安电子科技大学 | Wearable upper limb muscle load intensity assessment method based on surface electromyographic signals |
| CN118286594A (en) * | 2024-03-14 | 2024-07-05 | 南方科技大学 | Self-adaptive function electric stimulation closed-loop control method, device, equipment and storage medium |
-
2024
- 2024-09-02 TW TW113133058A patent/TWI887104B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210236020A1 (en) * | 2018-04-30 | 2021-08-05 | Vanderbilt University | Wearable device to monitor musculoskeletal loading, estimate tissue microdamage and provide injury risk biofeedback |
| US12011257B2 (en) * | 2018-04-30 | 2024-06-18 | Vanderbilt University | Wearable device to monitor musculoskeletal loading, estimate tissue microdamage and provide injury risk biofeedback |
| TW202402230A (en) * | 2022-03-29 | 2024-01-16 | 芬蘭商奧利安公司 | A method for determining a physical state of a subject, a data processing apparatus and a system |
| CN117442217A (en) * | 2023-09-19 | 2024-01-26 | 西安电子科技大学 | Wearable upper limb muscle load intensity assessment method based on surface electromyographic signals |
| CN118286594A (en) * | 2024-03-14 | 2024-07-05 | 南方科技大学 | Self-adaptive function electric stimulation closed-loop control method, device, equipment and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11832950B2 (en) | Muscle activity monitoring | |
| Fox et al. | A review of player monitoring approaches in basketball: current trends and future directions | |
| MacDonald et al. | Validation of an inertial measurement unit for the measurement of jump count and height | |
| Taylor et al. | Sources of variability in iso-inertial jump assessments | |
| US20150038803A1 (en) | System and Method for Evaluating Concussion Injuries | |
| Staiano et al. | The promise of exergames as tools to measure physical health | |
| US20180279919A1 (en) | Method, Device and System for Sensing Neuromuscular, Physiological, Biomechanical, and Musculoskeletal Activity | |
| CN105147284A (en) | Improved human body balance function detection method and training system | |
| WO2016157217A2 (en) | Technological device to assist user in workouts and healthy living | |
| Taha et al. | The application of inertial measurement units and wearable sensors to measure selected physiological indicators in archery | |
| KR20130095200A (en) | An examination system of physical strength using acceleration sensor | |
| KR101651429B1 (en) | Fitness monitoring system | |
| CN110251927B (en) | Anti-cheating method for physique detection | |
| TWI887104B (en) | Neuromuscular fatigue detection and assessment system | |
| KR20160121460A (en) | Fitness monitoring system | |
| Vallejo et al. | Validity and reliability of the BeastTM sensor to measure movement velocity during the back squat exercise | |
| TW202207869A (en) | Wearable physiological sensing system for team activity including a plurality of wearable devices and a main control platform | |
| US20230178233A1 (en) | Biomechanics assessment system and biomechanical sensing device and biomechanical assessment platform thereof | |
| CN110251926B (en) | Physique detection method | |
| Fıdan et al. | Design and development of an upper extremity performance analysis system for combat sports | |
| CN107847791A (en) | Adaptability decision maker is instructed, adaptability decision-making system is instructed, instructs adaptability decision method, instructing adaptability decision procedure and record to have the recording medium of described program | |
| RU2733870C1 (en) | Method of training process organization and system for its implementation | |
| Wang et al. | sEMG for heart rate monitoring in home exercise: a comparative analysis with ECG | |
| Chia et al. | Motion sensor outputs of children and adolescents walking and running to three treadmill speeds | |
| Junhee et al. | Worker Customized Stress Monitoring through Body Composition Analysis and Wearable Bio-Sensor |