TWI876945B - Diabetes detection system and detection method thereof - Google Patents
Diabetes detection system and detection method thereof Download PDFInfo
- Publication number
- TWI876945B TWI876945B TW113111917A TW113111917A TWI876945B TW I876945 B TWI876945 B TW I876945B TW 113111917 A TW113111917 A TW 113111917A TW 113111917 A TW113111917 A TW 113111917A TW I876945 B TWI876945 B TW I876945B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- diabetes
- module
- detection system
- symptom
- Prior art date
Links
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本發明涉及一種檢測系統,尤其涉及一種糖尿病檢測系統及其檢測方法。The present invention relates to a detection system, and more particularly to a diabetes detection system and a detection method thereof.
傳統的糖尿病檢測方式是使用侵入皮膚,從而獲取血液來辨識受試者是否存在糖尿病的病徵(例如:血糖濃度)。然而,糖尿病的檢測是頻繁的,這也使到受試者需要經常創造出傷口。也因如此,現有的糖尿病檢測系統改以光線照射至皮膚內的血管,從而偵測血管中的血液變化來辨識是否存在糖尿病的病徵。雖然,現有的糖尿病檢測系統能實現「非侵入」的檢測,但光學檢測的方式存在許多噪聲問題,導致檢測的結果不精確。The traditional method of diabetes testing is to use an invasive method to obtain blood to identify whether the subject has symptoms of diabetes (e.g., blood sugar concentration). However, diabetes testing is frequent, which also requires the subject to frequently inflict wounds. For this reason, existing diabetes testing systems use light to illuminate the blood vessels in the skin to detect changes in the blood vessels to identify whether there are signs of diabetes. Although existing diabetes testing systems can achieve "non-invasive" testing, optical detection methods have many noise problems, resulting in inaccurate test results.
於是,本發明人認為上述缺陷可改善,乃特潛心研究並配合科學原理的運用,終於提出一種設計合理且有效改善上述缺陷的本發明。Therefore, the inventors of the present invention believe that the above defects can be improved, and have conducted intensive research and applied scientific principles to finally propose the present invention which has a reasonable design and effectively improves the above defects.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種糖尿病檢測系統及其檢測方法。The technical problem to be solved by the present invention is to provide a diabetes detection system and a detection method thereof in view of the deficiencies of the prior art.
本發明實施例公開一種糖尿病檢測系統,包括:一基礎生理取樣模組,能用來對一人員進行取樣以取得一目標生理資料;一處理模組,電性耦接所述基礎生理取樣模組,所述處理模組以統計方式、及信號處理方式至少其中一者對所述目標生理資料進行過濾,以產生一處理資料;以及一比對模組及一資料庫,所述比對模組電性耦接所述處理模組及所述資料庫,所述比對模組由所述資料庫中取得具備糖尿病特徵的一病徵資料,並且所述比對模組通過所述病徵資料比對所述處理資料,當所述病徵資料匹配所述處理資料時,所述比對模組發出一通知訊號。The present invention discloses a diabetes detection system, including: a basic physiological sampling module, which can be used to sample a person to obtain a target physiological data; a processing module, which is electrically coupled to the basic physiological sampling module, and the processing module filters the target physiological data in at least one of a statistical method and a signal processing method to generate a processed data; and a comparison module and a database, the comparison module is electrically coupled to the processing module and the database, the comparison module obtains a symptom data with diabetes characteristics from the database, and the comparison module compares the processed data with the symptom data, and when the symptom data matches the processed data, the comparison module sends a notification signal.
較佳地,所述目標生理資料限定為一體重數據、一體溫數據、一血脂數據、及一聲音數據至少其中一者。Preferably, the target physiological data is limited to at least one of a body weight data, a body temperature data, a blood lipid data, and a sound data.
較佳地,所述處理模組進行的信號處理方式限定為低通濾波、增強、及錯誤校正至少其中一者。Preferably, the signal processing method performed by the processing module is limited to at least one of low-pass filtering, enhancement, and error correction.
較佳地,所述處理模組進行的統計方式限定為插值法。Preferably, the statistical method performed by the processing module is limited to interpolation.
本發明實施例還公開一種糖尿病檢測系統的檢測方法,包括以下步驟:對一地區中的人員取樣以取得一目標生理資料;於所述地區的一群體中篩選出多個正常生理數據及至少一個糖尿病生理數據;利用所述至少一個糖尿病生理數據比對各所述正常生理數據之間的差異,以建立一病徵資料;以統計方式、及信號處理方式至少其中一者對所述目標生理資料進行過濾,以產生一處理資料;以及利用所述病徵資料比對所述處理資料,並於所述病徵資料匹配所述處理資料時發出一通知訊號。The embodiment of the present invention also discloses a detection method of a diabetes detection system, comprising the following steps: sampling people in an area to obtain a target physiological data; screening a plurality of normal physiological data and at least one diabetic physiological data from a group in the area; using the at least one diabetic physiological data to compare the differences between the normal physiological data to establish a symptom data; filtering the target physiological data by at least one of a statistical method and a signal processing method to generate a processed data; and using the symptom data to compare the processed data, and sending a notification signal when the symptom data matches the processed data.
較佳地,所述目標生理資料限定為一體重數據、一體溫數據、一血脂數據、及一聲音數據至少其中一者。Preferably, the target physiological data is limited to at least one of a body weight data, a body temperature data, a blood lipid data, and a sound data.
較佳地,所述處理模組進行的信號處理方式限定為低通濾波、增強、及錯誤校正至少其中一者。Preferably, the signal processing method performed by the processing module is limited to at least one of low-pass filtering, enhancement, and error correction.
較佳地,所述處理模組進行的統計方式限定為插值法。Preferably, the statistical method performed by the processing module is limited to interpolation.
綜上所述,本發明實施例所公開的糖尿病檢測系統及其檢測方法,能通過“所述處理模組以統計方式、及信號處理方式至少其中一者對所述目標生理資料進行過濾,以產生一處理資料”、及“所述比對模組通過所述病徵資料比對所述處理資料,當所述病徵資料匹配所述處理資料時,所述比對模組發出一通知訊號”的設計,所述糖尿病檢測系統及其檢測方法能通過非侵入方式準確地辨識糖尿病的病徵。In summary, the diabetes detection system and detection method disclosed in the embodiments of the present invention can accurately identify the symptoms of diabetes in a non-invasive manner through the designs of "the processing module filters the target physiological data in at least one of a statistical manner and a signal processing manner to generate a processed data" and "the comparison module compares the processed data with the symptom data, and when the symptom data matches the processed data, the comparison module sends a notification signal".
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。To further understand the features and technical contents of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are only used for reference and description and are not used to limit the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關“糖尿病檢測系統及其檢測方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。The following is an explanation of the implementation of the "diabetes detection system and its detection method" disclosed in the present invention through specific concrete embodiments. Technical personnel in this field can understand the advantages and effects of the present invention from the contents disclosed in this manual. The present invention can be implemented or applied through other different specific embodiments, and the details in this manual can also be modified and changed in various ways based on different viewpoints and applications without deviating from the concept of the present invention. In addition, the drawings of the present invention are only simple schematic illustrations and are not depicted according to actual sizes. Please note in advance. The following implementation will further explain the relevant technical contents of the present invention in detail, but the disclosed contents are not intended to limit the scope of protection of the present invention.
應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者訊號,但這些元件或者訊號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一訊號與另一訊號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。It should be understood that, although the terms "first", "second", "third", etc. may be used in this document to describe various components or signals, these components or signals should not be limited by these terms. These terms are mainly used to distinguish one component from another component, or one signal from another signal. In addition, the term "or" used in this document may include any one or more combinations of the related listed items depending on the actual situation.
另外,於以下說明中,如有指出請參閱特定圖式或是如特定圖式所示,其僅是用以強調於後續說明中,所述的相關內容大部份出現於該特定圖式中,但不限制該後續說明中僅可參考所述特定圖式。In addition, in the following description, if it is indicated to refer to a specific figure or as shown in a specific figure, it is only used to emphasize that most of the related content described in the subsequent description appears in the specific figure, but it does not limit the subsequent description to only refer to the specific figure.
[第一實施例][First embodiment]
參閱圖1所示,本實施例提供一種糖尿病檢測系統100,所述糖尿病檢測系統100包含一基礎生理取樣模組1、一處理模組2、一比對模組3及一資料庫4。Referring to FIG. 1 , this embodiment provides a
配合圖1所示,所述基礎生理取樣模組1能用來對一人員進行取樣以取得一目標生理資料。其中,所述目標生理資料可以是一體重數據、一體溫數據、一血脂數據、及一聲音數據至少其中一者。舉例來說,受試者可以穿戴一生理數據收集裝置,所述生理數據收集裝置可以以非侵入方式取得所述體重數據、所述體溫數據、所述血脂數據、及所述聲音數據。As shown in FIG1 , the basic physiological sampling module 1 can be used to sample a person to obtain a target physiological data. The target physiological data can be at least one of a weight data, a body temperature data, a blood lipid data, and a voice data. For example, the subject can wear a physiological data collection device, and the physiological data collection device can obtain the weight data, the body temperature data, the blood lipid data, and the voice data in a non-invasive manner.
所述處理模組2電性耦接所述基礎生理取樣模組1,所述處理模組2以統計方式、及信號處理方式至少其中一者對所述目標生理資料進行過濾,以產生一處理資料。於實務上,所述處理模組2進行的信號處理方式可以是低通濾波、增強、及錯誤校正至少其中一者。所述處理模組2進行的統計方式可以是插值法。據此,所述處理模組2能通過適當的統計方式配合號處理方式來實現濾波,從而降低噪聲、澄清和改進所獲得的資訊,以便後續使用。The
復參圖1所示,所述比對模組3電性耦接所述處理模組2及所述資料庫4,所述比對模組3由所述資料庫4中取得具備糖尿病特徵的一病徵資料,並且所述比對模組3通過所述病徵資料比對所述處理資料。據此,當所述病徵資料匹配所述處理資料時,所述比對模組3能發出一通知訊號,以通知存在糖尿病的病徵。Referring again to FIG. 1 , the
於實務上,所述資料庫4的建立方式可以是對一地區(例如:特定國家)中的人員取樣以取得一目標生理資料(例如:聲音片段),並且於所述地區的一群體中篩選出多個正常生理數據及至少一個糖尿病生理數據。據此,利用所述至少一個糖尿病生理數據比對各所述正常生理數據之間的差異,以建立一病徵資料。In practice, the
舉例來說,由印度的四個區域招募數名男性與女性作為參與者,並且全部參與者皆接受侵入式的準確糖尿病檢驗,從而辨別出非糖尿病患者、以及糖尿病患者(例如:T2DM)。接著,請全數參與者利用智能手機錄製固定的短語,並且每天最多錄製六次,持續兩週。例如:短語為「你好,你現在的血糖水平是多少?」。之後,從每個錄製短語中提取數個顯著的聲學特徵,例如:基本頻率、共振峰頻率、共振峰帶寬、語速等,並且對非糖尿病患者和糖尿病患者的語音特徵進行統計分析,以確定兩者之間的差異。最後,使用機器學習模型,將語音特徵與T2DM狀態進行關聯,從而建立一個資料庫(即,預測模型)。所述比對模組則利用所述資料庫來比對所述目標生理資料是否存在糖尿病的病徵,以發出一通知訊號至一通知裝置(例如:電腦、手錶等)供受試者或相關人員查看。For example, several male and female participants were recruited from four regions in India, and all participants underwent invasive and accurate diabetes testing to identify non-diabetic patients and diabetic patients (e.g., T2DM). Then, all participants were asked to record a fixed phrase using a smartphone, up to six times a day, for two weeks. For example, the phrase was "Hello, what is your current blood sugar level?". After that, several significant acoustic features were extracted from each recorded phrase, such as fundamental frequency, formant frequency, formant bandwidth, speech rate, etc., and the voice features of non-diabetic patients and diabetic patients were statistically analyzed to determine the differences between the two. Finally, a machine learning model was used to associate the voice features with T2DM status to establish a database (i.e., a prediction model). The comparison module uses the database to compare the target physiological data to see if there are symptoms of diabetes, so as to send a notification signal to a notification device (eg, a computer, a watch, etc.) for the subject or related personnel to view.
當然,前述例子是以聲音來做說明,但所述資料庫可以包含對應所述目標生理資料的資料,亦即體重變化、體溫變化、血脂變化等,並且建立的方式也大致如前述,於此則不特別贅述。Of course, the above example is explained using sound, but the database can include data corresponding to the target physiological data, that is, weight changes, body temperature changes, blood lipid changes, etc., and the establishment method is roughly the same as mentioned above, so it will not be elaborated here.
[第二實施例][Second embodiment]
參閱圖2所示,本實施例提供一種糖尿病檢測系統的檢測方法,所述檢測方法可以是應用於第一實施例的糖尿病檢測系統100、或是任何其他的糖尿病檢測系統100。所述檢測方法包括步驟S101~S109。2 , this embodiment provides a detection method of a diabetes detection system, which can be applied to the
步驟S101:對一地區中的人員取樣以取得一目標生理資料。其中,所述目標生理資料較佳是一體重數據、一體溫數據、一血脂數據、及一聲音數據至少其中一者。Step S101: sampling people in an area to obtain a target physiological data, wherein the target physiological data is preferably at least one of a weight data, a body temperature data, a blood lipid data, and a voice data.
步驟S103:於所述地區的一群體中篩選出多個正常生理數據及至少一個糖尿病生理數據。Step S103: Filter out a plurality of normal physiological data and at least one diabetic physiological data from a population in the region.
步驟S105:利用所述至少一個糖尿病生理數據比對各所述正常生理數據之間的差異,以建立一病徵資料。Step S105: using the at least one diabetes physiological data to compare the difference between the normal physiological data to establish a symptom data.
步驟S107:以統計方式、及信號處理方式至少其中一者對所述目標生理資料進行過濾,以產生一處理資料。於實務上,所述處理模組進行的信號處理方式可以是低通濾波、增強、及錯誤校正至少其中一者。所述處理模組進行的統計方式可以是插值法。Step S107: Filter the target physiological data by at least one of a statistical method and a signal processing method to generate a processed data. In practice, the signal processing method performed by the processing module can be at least one of low-pass filtering, enhancement, and error correction. The statistical method performed by the processing module can be an interpolation method.
步驟S109:利用所述病徵資料比對所述處理資料,並於所述病徵資料匹配所述處理資料時發出一通知訊號。Step S109: using the symptom data to compare the processed data, and sending a notification signal when the symptom data matches the processed data.
[本發明實施例的技術效果][Technical Effects of the Embodiments of the Invention]
綜上所述,本發明實施例所公開的糖尿病檢測系統及其檢測方法,能通過“所述處理模組以統計方式、及信號處理方式至少其中一者對所述目標生理資料進行過濾,以產生一處理資料”、及“所述比對模組通過所述病徵資料比對所述處理資料,當所述病徵資料匹配所述處理資料時,所述比對模組發出一通知訊號”的設計,所述糖尿病檢測系統及其檢測方法能通過非侵入方式準確地辨識糖尿病的病徵。In summary, the diabetes detection system and detection method disclosed in the embodiments of the present invention can accurately identify the symptoms of diabetes in a non-invasive manner through the designs of "the processing module filters the target physiological data in at least one of a statistical manner and a signal processing manner to generate a processed data" and "the comparison module compares the processed data with the symptom data, and when the symptom data matches the processed data, the comparison module sends a notification signal".
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The above disclosed contents are only the preferred feasible embodiments of the present invention, and do not limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the contents of the description and drawings of the present invention are included in the scope of the patent application of the present invention.
100:糖尿病檢測系統 1:基礎生理取樣模組 2:處理模組 3:比對模組 4:資料庫 S101~S109:步驟 100: Diabetes testing system 1: Basic physiological sampling module 2: Processing module 3: Comparison module 4: Database S101~S109: Steps
圖1為本發明的糖尿病檢測系統的電路方塊示意圖。FIG1 is a circuit block diagram of the diabetes detection system of the present invention.
圖2為本發明的檢測方法的步驟流程示意圖。FIG. 2 is a schematic diagram of the step flow of the detection method of the present invention.
100:糖尿病檢測系統 100: Diabetes detection system
1:基礎生理取樣模組 1: Basic physiological sampling module
2:處理模組 2: Processing module
3:比對模組 3: Comparison module
4:資料庫 4: Database
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113111917A TWI876945B (en) | 2024-03-29 | 2024-03-29 | Diabetes detection system and detection method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113111917A TWI876945B (en) | 2024-03-29 | 2024-03-29 | Diabetes detection system and detection method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI876945B true TWI876945B (en) | 2025-03-11 |
| TW202537586A TW202537586A (en) | 2025-10-01 |
Family
ID=95830687
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113111917A TWI876945B (en) | 2024-03-29 | 2024-03-29 | Diabetes detection system and detection method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI876945B (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002015777A1 (en) * | 2000-08-18 | 2002-02-28 | Cygnus, Inc. | Methods and devices for prediction of hypoglycemic events |
| US20100152600A1 (en) * | 2008-04-03 | 2010-06-17 | Kai Sensors, Inc. | Non-contact physiologic motion sensors and methods for use |
| US8185181B2 (en) * | 2009-10-30 | 2012-05-22 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
| US8690578B1 (en) * | 2013-01-03 | 2014-04-08 | Mark E. Nusbaum | Mobile computing weight, diet, nutrition, and exercise tracking system with enhanced feedback and data acquisition functionality |
| US20160287166A1 (en) * | 2015-04-03 | 2016-10-06 | Bao Tran | Personal monitoring system |
| US20210162261A1 (en) * | 2019-11-29 | 2021-06-03 | Kpn Innovations, Llc. | Methods and systems for generating physical activity sets for a human subject |
| WO2022126080A1 (en) * | 2020-12-07 | 2022-06-16 | Beta Bionics, Inc. | Medicament pumps and control systems for managing glucose control therapy data of a subject |
| EP3263032B1 (en) * | 2003-12-09 | 2024-01-24 | Dexcom, Inc. | Signal processing for continuous analyte sensor |
-
2024
- 2024-03-29 TW TW113111917A patent/TWI876945B/en active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002015777A1 (en) * | 2000-08-18 | 2002-02-28 | Cygnus, Inc. | Methods and devices for prediction of hypoglycemic events |
| EP3263032B1 (en) * | 2003-12-09 | 2024-01-24 | Dexcom, Inc. | Signal processing for continuous analyte sensor |
| US20100152600A1 (en) * | 2008-04-03 | 2010-06-17 | Kai Sensors, Inc. | Non-contact physiologic motion sensors and methods for use |
| US8185181B2 (en) * | 2009-10-30 | 2012-05-22 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
| US8690578B1 (en) * | 2013-01-03 | 2014-04-08 | Mark E. Nusbaum | Mobile computing weight, diet, nutrition, and exercise tracking system with enhanced feedback and data acquisition functionality |
| US20160287166A1 (en) * | 2015-04-03 | 2016-10-06 | Bao Tran | Personal monitoring system |
| US20210162261A1 (en) * | 2019-11-29 | 2021-06-03 | Kpn Innovations, Llc. | Methods and systems for generating physical activity sets for a human subject |
| WO2022126080A1 (en) * | 2020-12-07 | 2022-06-16 | Beta Bionics, Inc. | Medicament pumps and control systems for managing glucose control therapy data of a subject |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhang et al. | Sprsound: Open-source sjtu paediatric respiratory sound database | |
| Eisenberg et al. | Recognition of lexically controlled words and sentences by children with normal hearing and children with cochlear implants | |
| Trine et al. | Extended high frequencies provide both spectral and temporal information to improve speech-in-speech recognition | |
| Fitzpatrick et al. | Comparison of outcomes in children with hearing aids and cochlear implants | |
| Reinhart et al. | Effects of reverberation and compression on consonant identification in individuals with hearing impairment | |
| Nixon et al. | Hearing aid uptake, benefit, and use: The impact of hearing, cognition, and personal factors | |
| Pessoa et al. | Pediatric respiratory sound classification using a dual input deep learning architecture | |
| Li et al. | Noise tolerance in human frequency-following responses to voice pitch | |
| Wijesinghe et al. | Machine learning based automated speech dialog analysis of autistic children | |
| TWI876945B (en) | Diabetes detection system and detection method thereof | |
| Moon et al. | Speech patterns and enunciation for encephalopathy determination—A prospective study of hepatic encephalopathy | |
| Illner et al. | Which aspects of motor speech disorder are captured by Mel Frequency Cepstral Coefficients? Evidence from the change in STN-DBS conditions in Parkinson's disease | |
| CN116013511B (en) | Intelligent recommendation method and system for diabetes intervention based on knowledge graph | |
| Parlak et al. | Voice analysis results in individuals with Alzheimer's disease: How do age and cognitive status affect voice parameters? | |
| Wang et al. | Acoustic analysis of voice in dysarthria following stroke | |
| Kania et al. | Fundamental frequency histograms measured by electroglottography during speech: a pilot study for standardization | |
| TW202537586A (en) | Diabetes detection system and detection method thereof | |
| Molis et al. | Effects of high presentation levels on recognition of low-and high-frequency speech | |
| Li et al. | Heart sound classification based on two-channel feature fusion and dual attention mechanism | |
| CN117373492B (en) | Deep learning-based schizophrenia voice detection method and system | |
| Souza et al. | Consequences of broad auditory filters for identification of multichannel-compressed vowels | |
| Ford et al. | Gender differences in the spectral characteristics of voiceless sibilants produced by Australian English-speaking children | |
| Scharenborg et al. | Age and hearing loss and the use of acoustic cues in fricative categorization | |
| Wilson et al. | The picture identification task, a reply to Dillon | |
| Aditya et al. | Early-warning of Cardiac Condition through Detection of Murmur in Heart Sound-A Case Study |