TWI860839B - Method and system for exercise status assessment and non-transitory computer-readable medium - Google Patents
Method and system for exercise status assessment and non-transitory computer-readable medium Download PDFInfo
- Publication number
- TWI860839B TWI860839B TW112134379A TW112134379A TWI860839B TW I860839 B TWI860839 B TW I860839B TW 112134379 A TW112134379 A TW 112134379A TW 112134379 A TW112134379 A TW 112134379A TW I860839 B TWI860839 B TW I860839B
- Authority
- TW
- Taiwan
- Prior art keywords
- wireless signal
- signal strength
- sports
- preset
- sports equipment
- Prior art date
Links
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本發明係關於一種運動狀態評估方法及系統以及儲存所述方法的非暫態電腦可讀取媒體。The present invention relates to a method and system for evaluating a sports state and a non-transitory computer-readable medium for storing the method.
為了追蹤及監測運動的狀態,傳統的運動器材中通常會內建計數器以記錄動作的次數,例如機械式計數器可以透過按鍵、旋轉齒輪或拉動器材被觸發以進行計數,或是電子計數器可以透過電壓變化、電流變化或感應產生的訊號進行處理以進行計數。此外,也可以透過雷射光波或超音波的發射與反射進行計算以取得動作軌跡,來達到動作計次的功能。In order to track and monitor the state of exercise, traditional sports equipment usually has a built-in counter to record the number of movements. For example, a mechanical counter can be triggered by pressing a button, rotating a gear, or pulling a device to count, or an electronic counter can be processed by voltage changes, current changes, or signals generated by induction to count. In addition, the movement trajectory can also be obtained through the emission and reflection of laser light waves or ultrasound to achieve the function of movement counting.
由於內建計數器未能有效的定位動作的各個定點,因此誤判率高,導致無法有效計數,進而無法透過動作次數來分析與紀錄運動狀態。另外,雷射光波或超音波則因需要較大量的阻隔點偵測反射而建置困難且成本高昂。Since the built-in counter cannot effectively locate each fixed point of the movement, the misjudgment rate is high, resulting in ineffective counting, and thus the inability to analyze and record the movement status through the number of movements. In addition, laser light waves or ultrasound waves are difficult to build and costly because they require a large number of blocking points to detect reflections.
鑒於上述,本發明提供一種運動狀態評估方法及系統以及儲存所述方法的非暫態電腦可讀取媒體。In view of the above, the present invention provides a method and system for evaluating a sports state and a non-transitory computer-readable medium for storing the method.
依據本發明一實施例的運動狀態評估系統,包含第一無線訊號裝置、至少一第二無線訊號裝置及運算裝置,其中運算裝置連接於至少一第二無線訊號裝置。第一無線訊號裝置用於設置於運動器材。至少一第二無線訊號裝置用於與第一無線訊號裝置進行無線通訊。運算裝置用於透過至少一第二無線訊號裝置取得第一無線訊號裝置的無線訊號強度變化;執行判斷無線訊號強度變化與預設訊號強度軌跡是否匹配的判斷步驟;當判斷步驟的判斷結果為匹配時,將動作次數加一次;當判斷步驟的判斷結果為不匹配時,維持動作次數;以及至少根據動作次數產生並輸出運動狀態訊息。According to an embodiment of the present invention, a sports state evaluation system comprises a first wireless signal device, at least one second wireless signal device and a computing device, wherein the computing device is connected to the at least one second wireless signal device. The first wireless signal device is used to be set on sports equipment. The at least one second wireless signal device is used to perform wireless communication with the first wireless signal device. The computing device is used to obtain the change of the wireless signal strength of the first wireless signal device through at least one second wireless signal device; execute a determination step of whether the change of the wireless signal strength matches a preset signal strength trajectory; when the determination result of the determination step is a match, the number of actions is increased once; when the determination result of the determination step is a mismatch, the number of actions is maintained; and at least a motion status message is generated and output according to the number of actions.
依據本發明一實施例的運動狀態評估方法,適用於運動器材且由至少一運算裝置執行,包含:取得設置於該運動器材的一無線訊號裝置的一無線訊號強度變化;執行判斷該無線訊號強度變化與一預設訊號強度軌跡是否匹配的一判斷步驟;當該判斷步驟的判斷結果為匹配時,將一動作次數加一次;當該判斷步驟的該判斷結果為不匹配時,維持該動作次數;以及至少根據該動作次數產生並輸出一運動狀態訊息。A motion status assessment method according to an embodiment of the present invention is applicable to sports equipment and is executed by at least one computing device, comprising: obtaining a wireless signal strength change of a wireless signal device installed on the sports equipment; executing a judgment step to determine whether the wireless signal strength change matches a preset signal strength trajectory; when the judgment result of the judgment step is a match, adding an action count once; when the judgment result of the judgment step is a mismatch, maintaining the action count; and generating and outputting a motion status message at least based on the action count.
依據本發明一實施例的非暫態電腦可讀取媒體,包含至少一電腦可執行程序,所述至少一電腦可執行程序由處理器執行以進行上述運動狀態評估方法。According to an embodiment of the present invention, a non-transitory computer-readable medium includes at least one computer-executable program, and the at least one computer-executable program is executed by a processor to perform the above-mentioned motion state evaluation method.
藉由上述結構,本案所揭示的運動狀態評估方法及系統以及儲存所述方法的非暫態電腦可讀取媒體,可以透過判斷無線訊號強度變化與預設訊號強度軌跡是否匹配來進行運動次數的計數,藉此,不需要針對運動軌跡進行實際的距離換算,可以低成本地完成運動次數的計數,且可靠性高。Through the above structure, the motion state assessment method and system disclosed in this case and the non-transitory computer-readable medium storing the method can count the number of movements by judging whether the change in wireless signal strength matches the preset signal strength trajectory. In this way, there is no need to convert the actual distance of the motion trajectory, and the counting of the number of movements can be completed at a low cost and with high reliability.
以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the disclosed content and the following description of the implementation methods are used to demonstrate and explain the spirit and principle of the present invention, and provide a further explanation of the scope of the patent application of the present invention.
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The following detailed description of the features and advantages of the present invention is provided in the implementation mode, and the content is sufficient to enable any person skilled in the relevant art to understand the technical content of the present invention and implement it accordingly. Moreover, according to the content disclosed in this specification, the scope of the patent application and the drawings, any person skilled in the relevant art can easily understand the relevant purposes and advantages of the present invention. The following embodiments are to further explain the viewpoints of the present invention in detail, but are not to limit the scope of the present invention by any viewpoint.
請參考圖1,圖1為依據本發明一實施例所繪示的運動狀態評估系統的功能方塊圖。如圖1所示,運動狀態評估系統1適用於運動器材2,包含第一無線訊號裝置11、第二無線訊號裝置12及運算裝置13。第二無線訊號裝置12透過無線的方式連接於第一無線訊號裝置11及運算裝置13。運動器材2例如為啞鈴、槓鈴、多功能機等。Please refer to FIG. 1, which is a functional block diagram of a sports state evaluation system according to an embodiment of the present invention. As shown in FIG. 1, the sports
第一無線訊號裝置11用於設置於運動器材2。第二無線訊號裝置12用於與第一無線訊號裝置11進行無線通訊。舉例來說,第一無線訊號裝置11及第二無線訊號裝置12可以包含基於相同無線通訊技術的訊號收發器,例如藍牙收發器。於一些實施態樣中,第一無線訊號裝置11發送的無線訊號可以帶有運動器材2的目標種類資訊、重量資訊等特性資訊,其中所述目標種類資訊指示運動器材2的種類,例如啞鈴、槓鈴、多功能機等。The first
運算裝置13用於透過第二無線訊號裝置12取得第一無線訊號裝置11的無線訊號強度變化,並判斷無線訊號強度變化與對應於運動器材2之訓練動作的預設訊號強度軌跡是否匹配,並據以進行動作計次,其中具體的執行內容將於後描述。運算裝置13可以為微控制器或其他可以運行程式的處理器與記憶體之集合。於一實施態樣中,第二無線訊號裝置12與運算裝置13可以分別為手機、平板電腦等個人設備所包含的元件。於另一實施態樣中,第二無線訊號裝置12與運算裝置13可以為分開設置的兩個設備。運算裝置13可以至少根據動作次數產生並輸出運動狀態訊息。The
另外,於第一無線訊號裝置11發送的無線訊號帶有目標種類資訊的實施態樣中,運算裝置13可以透過第二無線訊號裝置12取得來自第一無線訊號裝置11的無線訊號,並從中擷取目標種類資訊。運算裝置13可以根據目標種類資訊,從多個候選訊號強度軌跡中選擇預設訊號強度軌跡,其中所述多個候選訊號強度軌跡分別對應於多個預設種類資訊,且所述多個候選訊號強度軌跡、所述多個預設種類資訊及其對應關係可預存於運算裝置13中或是預存於運算裝置13可存取之雲端資料庫。於第一無線訊號裝置11發送的無線訊號帶有重量資訊的實施態樣中,運算裝置13可以透過第二無線訊號裝置12取得來自第一無線訊號裝置11的無線訊號,從中擷取重量資訊,並且除了動作次數,更根據重量資訊來產生並輸出運動狀態訊息。In addition, in the implementation mode where the wireless signal sent by the first
請參考圖2,圖2為依據本發明另一實施例所繪示的運動狀態評估系統的功能方塊圖。如圖2所示,運動狀態評估系統1’的可以包含第一無線訊號裝置11、二第二無線訊號裝置12及16、運算裝置13、識別元件14、識別元件偵測裝置15及影像擷取裝置17,其中第一無線訊號裝置11、第二無線訊號裝置12及16及運算裝置13的功能及連接關係皆同於圖1的運動狀態評估系統1的第一無線訊號裝置11、第二無線訊號裝置12及運算裝置13,於此不予贅述。影像擷取裝置17透過有線或無線的方式連接於運算裝置13。另外要特別說明的是,圖2所示的識別元件14、識別元件偵測裝置15、第二無線訊號裝置16及影像擷取裝置17為選擇性設置的元件。Please refer to FIG. 2, which is a functional block diagram of a motion state evaluation system according to another embodiment of the present invention. As shown in FIG. 2, the motion state evaluation system 1' may include a first
識別元件14用於設置於運動器材2,且儲存運動器材2的種類資訊或/及重量資訊,其中所述種類資訊指示運動器材2的種類,例如啞鈴、槓鈴、多功能機等。於一實施態樣中,運動器材2為啞鈴,識別元件14可以設置於啞鈴的本體,並儲存種類資訊或/及重量資訊。於另一實施態樣中,運動器材2為槓鈴,識別元件14的數量可以為多個,分別設置於槓及槓片,其中設置於槓的識別元件14可以儲存種類資訊,而設置於槓片的識別元件14可以儲存槓片的重量資訊。於又一實施態樣中,運動器材2為多功能機,識別元件14的數量可以為多個,分別設置於多功能機的機台及配重塊,其中設置於機台的識別元件14可以儲存種類資訊,而設置於配重塊的識別元件14可以儲存配重塊的重量資訊。舉例來說,識別元件14可以為QR碼(Quick Response Code, QR Code)、近距離無線通訊(Near-field Communication,NFC)天線或無線射頻辨識(Radio-frequency Identification,RFID)天線。The
識別元件偵測裝置15用於偵測識別元件14以取得其所待有的資訊。舉例來說,識別元件偵測裝置15可以是對應於QR碼的掃描模組、對應於NFC天線的NFC感應模組或RFID感應模組。於一實施態樣中,識別元件偵測裝置15可以為手機、平板電腦等個人設備所包含的元件。於另一實施態樣中,識別元件偵測裝置15可以為獨立設置的設備。The identification
於此實施例中,運算裝置13在進行動作計次的過程中,可以同時參考第二無線訊號裝置12及16分別從第一無線訊號裝置11取得的無線訊號強度值以進行判斷,具體的參考方式將於後描述。另外,除了進行動作計次之外,運算裝置13更可用於透過識別元件偵測裝置15偵測識別元件14以取得運動器材2的目標種類資訊,且根據目標種類資訊,從多個候選訊號強度軌跡中選擇預設訊號強度軌跡,其中所述多個候選訊號強度軌跡分別對應於多個預設種類資訊,且所述多個候選訊號強度軌跡、所述多個預設種類資訊及其對應關係可預存於運算裝置13中或是預存於運算裝置13可存取之雲端資料庫。在識別元件14存有重量資訊的實施態樣中,運算裝置13可透過識別元件偵測裝置15偵測識別元件14以取得運動器材2的重量資訊。另外,在配重塊無法安裝識別元件14的實施態樣中,運算裝置13可透過影像擷取裝置17取得運動器材2的影像,並透過影像分析的方式取得運動器材2的重量資訊,其中具體的分析方式將於後描述。In this embodiment, the
圖2示例性地呈現第二無線訊號裝置12及16的數量為兩個,然於其他實施例中,第二無線訊號裝置的數量可為更多個,而運算裝置13可以同時參考更多個第二無線訊號裝置所得之無線訊號強度值以進行動作計次的判斷。FIG. 2 exemplarily shows that there are two second
請參考圖3,其中圖3係依據本發明一實施例所繪示的運動狀態評估方法的流程圖。如圖3所示,運動狀態評估方法包含步驟S11:取得設置於運動器材的無線訊號裝置的無線訊號強度變化;步驟S12:判斷無線訊號強度變化與預設訊號強度軌跡是否匹配;當步驟S12的判斷結果為「是」時,執行步驟S13:將動作次數加一次;當步驟S12的判斷結果為「否」時,執行步驟S14:維持該動作次數;以及步驟S15:至少根據動作次數產生並輸出運動狀態訊息。運動狀態評估方法可適用於圖1所示的運動狀態評估系統1及圖2所示的運動狀態評估系統1’,以下示例性地以圖1所示的運動狀態評估系統1來說明圖3所示的運動狀態評估方法。Please refer to FIG. 3, which is a flow chart of a motion state evaluation method according to an embodiment of the present invention. As shown in FIG. 3, the motion state evaluation method includes step S11: obtaining the change in the strength of a wireless signal of a wireless signal device installed on the sports equipment; step S12: determining whether the change in the strength of the wireless signal matches a preset signal strength trajectory; when the determination result of step S12 is "yes", executing step S13: adding the number of actions once; when the determination result of step S12 is "no", executing step S14: maintaining the number of actions; and step S15: generating and outputting a motion state message at least according to the number of actions. The motion state assessment method can be applied to the motion
於步驟S11中,運算裝置13取得設置於運動器材2的無線訊號裝置的無線訊號強度變化。具體而言,無線訊號裝置可以為第一無線訊號裝置11。進一步來說,於一實施態樣中,第二無線訊號裝置12可以連續地輸出無線訊號,第一無線訊號裝置11可以接收第二無線訊號裝置12所輸出的無線訊號並感測無線訊號強度值,再透過第二無線訊號裝置12傳送至運算裝置13,運算裝置13便可據以產生無線訊號強度變化。於另一實施態樣中,第一無線訊號裝置11可以連續地輸出無線訊號,第二無線訊號裝置12可以接收第一無線訊號裝置11所輸出的無線訊號並感測無線訊號強度值,再傳送至運算裝置13,運算裝置13便可據以產生無線訊號強度變化。另外,無線訊號強度變化亦可以為訊號強度衰減值的變化,其中所述訊號強度衰減值即無線訊號輸出強度值與接收訊號強度值之差。In step S11, the
於步驟S12中,運算裝置13判斷無線訊號強度變化與預設訊號強度軌跡是否匹配。具體而言,當無線訊號強度變化與預設訊號強度軌跡匹配時,執行步驟S13,當無線訊號強度變化與預設訊號強度軌跡不匹配時,執行步驟S14。In step S12, the
於步驟S13中,運算裝置13將動作次數加一次。具體而言,動作次數為使用運動器材2的次數加總。In step S13, the
於步驟S14中,運算裝置13維持該動作次數。具體而言,當未執行動作或動作未完整執行時,將不計數。In step S14, the
於步驟S15中,運算裝置13至少根據動作次數產生並輸出運動狀態訊息。具體而言,運算裝置13可以至少透過加總的運動器材2使用次數來產生運動狀態訊息,並輸出以提供使用者即時地確認運動狀態。舉例來說,運算裝置13可以產生聲音、光、影像或其他形式的運動狀態訊息,並透過揚聲器、燈具、顯示器、通訊埠等輸出元件輸出運動狀態訊息,其中所述輸出元件可以為、平板電腦等個人設備所包含的元件,或可以為與運算裝置13各自獨立設置的設備。另外要特別說明的是,圖3僅示例性地繪示步驟S13至步驟S15的執行順序,步驟S13至步驟S14的執行順序亦可以相反的順序執行或同時執行,且步驟S15可以在使用者主動調閱資訊時執行步驟S15,或是在步驟S11開始執行時不斷執行步驟S15,本案不予限制。In step S15, the
於另一實施例中,運動狀態評估方法除了上述步驟S11~S15之外,可更包含產生時間資訊的步驟:當步驟S12的判斷結果為無線訊號強度變化與預設訊號強度軌跡匹配時,分析無線訊號強度變化的至少一極限強度值;以及根據無線訊號強度變化之匹配部分的起始時間點、結束時間點及對應於所述至少一極限強度值的至少一時間點之間的時間差產生一時間資訊。其中,無線訊號強度變化之匹配部分係指無線訊號強度變化中匹配預設訊號強度軌跡的部分。舉例來說,所述至少一極限強度值可以指波峰或波谷的強度值。另外,步驟S15除了根據動作次數,更根據所述時間資訊來產生運動狀態訊息。上述步驟可由運算裝置13執行。進一步來說,運算裝置13可以預存一或多個時間區間的定義,所述定義關聯於無線訊號強度變化的起始時間點、結束時間點及對應於至少一極限強度值的至少一時間點,運算裝置13可以根據所述時間區間的定義及上述多個時間之間的時間差來產生時間資訊。In another embodiment, the motion state assessment method may further include the step of generating time information in addition to the above steps S11 to S15: when the judgment result of step S12 is that the wireless signal strength change matches the preset signal strength trajectory, at least one extreme strength value of the wireless signal strength change is analyzed; and time information is generated according to the time difference between the start time point, the end time point and at least one time point corresponding to the at least one extreme strength value of the matching portion of the wireless signal strength change. The matching portion of the wireless signal strength change refers to the portion of the wireless signal strength change that matches the preset signal strength trajectory. For example, the at least one extreme strength value may refer to the strength value of a peak or a trough. In addition, step S15 generates the motion status information according to the time information in addition to the number of actions. The above steps can be performed by the
如前所述,圖2的運動狀態評估系統1’亦可執行上述步驟S11~S15或/及時間資訊產生步驟,大致運作內容同於上述故不再贅述。特別來說,運動狀態評估系統1’所執行的步驟S11可以包含運算裝置13透過第二無線訊號裝置12取得連續時間內的多個第一無線訊號強度值;透過第二無線訊號裝置16取得連續時間內的多個第二無線訊號強度值;對所述多個第一無線訊號強度值及所述多個第二無線訊號強度值執行雜訊處理;以及利用經雜訊處理後的所述多個第一無線訊號強度值及所述多個第二無線訊號強度值產生無線訊號強度變化,其中所述雜訊處理可以包含:當所述多個第一無線訊號強度值對時間的第一變化率與所述多個第二無線訊號強度值對時間的第二變化率之間的差異大於預設門檻時,移除所述多個第一無線訊號強度值及所述多個第二無線訊號強度值中對應於第一變化率與第二變化率中較大者的一者。As mentioned above, the motion state evaluation system 1' of FIG. 2 can also execute the above steps S11 to S15 and/or the time information generation step. The general operation content is the same as the above and will not be repeated. In particular, the step S11 executed by the motion state evaluation system 1' may include the
舉例來說,請參考下表1,時刻T0、T1、T2及T3可以為一段連續時間,且預設門檻例如以1.5倍的預設倍率來作為劃分基準,在T1時刻時,第一無線訊號強度值對時間的第一變化率為1.052,而第二無線訊號強度值對時間的第二變化率為2.25,此時第一變化率與第二變化率之間的差異大於預設門檻,運算裝置13可以移除T1時刻的第二無線訊號強度值,也就是移除第二無線訊號強度值-40,並利用經雜訊處理後的第一無線訊號強度值及第二無線訊號強度值產生無線訊號強度變化。具體而言,被移除的T1時刻的第二無線訊號強度值可以替換為T1時刻的第一無線訊號強度值乘以T0時刻的第二無線訊號強度值除以T0時刻的第一無線訊號強度值,例如為-95乘以-90除以-100,替換後的T1時刻的第二無線訊號強度值為85.5。For example, please refer to Table 1 below. The times T0, T1, T2 and T3 can be a continuous period of time, and the preset threshold is, for example, 1.5 times the preset multiple as a division basis. At the time T1, the first change rate of the first wireless signal strength value with respect to time is 1.052, and the second change rate of the second wireless signal strength value with respect to time is 2.25. At this time, the difference between the first change rate and the second change rate is greater than the preset threshold. The
表1
藉由上述兩組或兩組以上的定位點所得之無線訊號強度值,運動狀態評估系統1’可以對在同個時刻不同定位點所得之無線訊號強度值進行比對,藉此減少訊號不穩定的因素、提高動作次數計數的準確度以及降低誤判動作次數的機率。By using the wireless signal strength values obtained from the above two or more sets of positioning points, the motion status assessment system 1' can compare the wireless signal strength values obtained from different positioning points at the same moment, thereby reducing the factors of signal instability, improving the accuracy of counting the number of movements, and reducing the probability of misjudging the number of movements.
於另一實施例中,除了步驟S11~S15,運動狀態評估方法可以更包含當步驟S12的判斷結果維持不匹配一段預設時間時,將預設訊號強度軌跡沿預設方向旋轉並繼續執行步驟S12。藉此,在使用者使用運動器材2時,可以不受限於朝向第二無線訊號裝置12,可以以多個面向使用運動器材2,在使用上條件更為寬鬆。In another embodiment, in addition to steps S11 to S15, the motion state evaluation method may further include rotating the preset signal strength trajectory along a preset direction and continuing to execute step S12 when the judgment result of step S12 remains mismatched for a preset period of time. In this way, when the user uses the
請參考圖3及圖4,其中圖4係依據本發明一實施例所繪示的運動狀態評估方法之根據運動器材種類資訊選擇預設訊號強度軌跡的流程圖。如圖4所示,運動狀態評估方法除了圖3所示的步驟S11~S15,可以更包含步驟S21:偵測設置於運動器材的識別元件以取得運動器材的目標種類資訊;以及步驟S22:根據目標種類資訊,從多個候選訊號強度軌跡中選擇預設訊號強度軌跡。以下示例性地以圖2所示的運動狀態評估系統1’來說明圖4所示的運動狀態評估方法之根據運動器材種類資訊選擇預設訊號強度軌跡。Please refer to FIG. 3 and FIG. 4, wherein FIG. 4 is a flow chart of selecting a preset signal strength trajectory according to sports equipment type information of a sports state evaluation method according to an embodiment of the present invention. As shown in FIG. 4, in addition to steps S11 to S15 shown in FIG. 3, the sports state evaluation method may further include step S21: detecting an identification element provided on the sports equipment to obtain target type information of the sports equipment; and step S22: selecting a preset signal strength trajectory from a plurality of candidate signal strength trajectories according to the target type information. The following exemplarily uses the sports state evaluation system 1' shown in FIG. 2 to illustrate the selection of a preset signal strength trajectory according to sports equipment type information of the sports state evaluation method shown in FIG. 4.
於步驟S21中,運算裝置13透過識別元件偵測裝置15偵測設置於運動器材2的識別元件14以取得運動器材2的目標種類資訊。具體而言,步驟S21是由使用者觸發識別元件裝置15偵測識別元件14以取得運動器材2的目標種類資訊,識別元件偵測裝置15再將偵測到的目標種類資訊傳送給運算裝置13,或者由使用者觸發運算裝置13所儲存之應用程式,運算裝置13運行應用程式以致動觸發識別元件偵測裝置15偵測識別元件14以取得運動器材2的目標種類資訊,再將偵測到的目標種類資訊回傳給運算裝置13。In step S21 , the
於步驟S22中,運算裝置13根據目標種類資訊,從多個候選訊號強度軌跡中選擇預設訊號強度軌跡。具體而言,所述多個候選訊號強度軌跡分別對應於多個預設種類資訊。進一步來說,運算裝置13將根據取得的目標種類資訊選擇接續步驟需使用的預設訊號強度軌跡。藉此,根據不同的運動器材2而有分別對應的預設訊號強度軌跡,可以適用於多種不同的運動器材2進行動作計次。In step S22, the
於運動狀態評估系統包含識別元件14及識別元件偵測裝置15的實施例中,除了圖4所示的步驟S21~S22之外,運動狀態評估方法可以更包含運算裝置13透過識別元件偵測裝置15偵測設置於運動器材2的至少一識別元件14以取得運動器材2的重量資訊,其中運動狀態訊息更根據重量資訊而產生。In an embodiment in which the motion state assessment system includes an
請參考圖3及圖5,其中圖5係依據本發明一實施例所繪示的運動狀態評估方法之匹配判斷步驟的流程圖。如圖5所示,圖3所示的步驟S12包含步驟S121:從無線訊號強度變化擷取預設特徵;步驟S122:根據預設特徵從多個無線訊號強度值中選擇一起始強度值;以及步驟S123:依照連續時間的順序,從起始強度值開始比對無線訊號強度變化與預設訊號強度軌跡的相似度是否大於預設門檻。另外,當步驟S123的判斷結果為「是」時,執行圖3的步驟S13;當步驟S123的判斷結果為「否」時,執行圖3的步驟S14。以下示例性地以圖2所示的運動狀態評估系統1’來說明圖5所示的運動狀態評估方法之匹配判斷步驟。Please refer to FIG. 3 and FIG. 5, wherein FIG. 5 is a flow chart of the matching judgment step of the motion state evaluation method according to an embodiment of the present invention. As shown in FIG. 5, step S12 shown in FIG. 3 includes step S121: extracting a preset feature from the wireless signal strength change; step S122: selecting a starting strength value from a plurality of wireless signal strength values according to the preset feature; and step S123: comparing the wireless signal strength change from the starting strength value with the preset signal strength trajectory in the order of continuous time to see whether the similarity is greater than a preset threshold. In addition, when the judgment result of step S123 is "yes", step S13 of Figure 3 is executed; when the judgment result of step S123 is "no", step S14 of Figure 3 is executed. The following exemplarily uses the motion state evaluation system 1' shown in Figure 2 to illustrate the matching judgment step of the motion state evaluation method shown in Figure 5.
於步驟S121中,運算裝置13從無線訊號強度變化擷取預設特徵。具體而言,運算裝置13在取得設置於運動器材2的無線訊號裝置的無線訊號強度變化後,從無線訊號強度變化擷取預設特徵。進一步來說,預設特徵可以為無線訊號強度變化中相似於預設訊號強度軌跡的部分,例如可以為連續三個訊號強度大幅變化的區間。In step S121, the
於步驟S122中,運算裝置13根據預設特徵從多個無線訊號強度值中選擇一起始強度值。具體而言,在多個無線訊號強度值中找出在預設特徵出現前一段預設時間的無線訊號強度值,並將所述無線訊號強度值作為起始強度值。In step S122, the
於步驟S123中,運算裝置13依照連續時間的順序,從起始強度值開始比對無線訊號強度變化與預設訊號強度軌跡的相似度是否大於預設門檻。具體而言,運算裝置13從起始強度值開始比對每一時刻的無線訊號強度值與預設訊號強度軌跡中對應於此時刻的無線訊號強度值的差異是否大於預設門檻。In step S123, the
為了進一步說明步驟S12,請一併參考圖5及圖6,其中圖6為依據本發明一實施例所繪示的運動狀態評估方法中比對無線訊號強度變化與預設訊號強度軌跡之無線訊號強度示意圖。To further illustrate step S12, please refer to FIG. 5 and FIG. 6, wherein FIG. 6 is a schematic diagram of wireless signal strength comparing wireless signal strength variation with a preset signal strength trajectory in a motion state evaluation method according to an embodiment of the present invention.
如圖6所示,C1可以為無線訊號強度變化曲線,C2可以為預設訊號強度軌跡曲線,無線訊號強度變化曲線C1的點D11、D12及D13可以為預設特徵,相似於預設訊號強度軌跡曲線C2的點D21、D22及D23。於判斷無線訊號強度變化是否具有預設訊號強度軌跡包含的多個預設特徵的實施態樣中,運算裝置13可以判斷無線訊號強度變化曲線C1具有多個變化率由正變反或由反變正的預設特徵點D11、D12及D13,而判斷無線訊號強度變化匹配於預設訊號強度軌跡。於以圖5所示的流程進行匹配判斷步驟的實施態樣中,運算裝置13可以將無線訊號強度變化曲線C1中,預設特徵點D11出現前一段預設時間,例如為400毫秒(ms)前的無線訊號強度值S1可以作為起始強度值,再依照連續時間的順序從無線訊號強度值S1開始比對無線訊號強度變化曲線C1與預設訊號強度軌跡曲線C2的相似度。As shown in FIG6 , C1 may be a wireless signal strength variation curve, C2 may be a preset signal strength trajectory curve, and points D11, D12, and D13 of the wireless signal strength variation curve C1 may be preset features, similar to points D21, D22, and D23 of the preset signal strength trajectory curve C2. In an implementation of determining whether the wireless signal strength variation has multiple preset features included in the preset signal strength trajectory, the
另外,如前所述,於一實施例中,當步驟S12的判斷結果為無線訊號強度變化與預設訊號強度軌跡匹配時,運動狀態評估方法可更包含產生時間資訊的步驟。舉例來說,運算裝置13可以預存向心力時間及離心力時間的定義,其中向心力時間指示無線訊號強度變化之匹配部分的起始時間點與對應於極限強度值的時間之間的時間差,而離心力時間指示對應於極限強度值的時間與無線訊號強度變化之匹配部分的結束時間點之間的時間差。於圖6所示的例子中,運算裝置13可以將匹配於預設訊號強度軌跡曲線C2的無線訊號強度變化曲線C1的起始強度值S1所對應的起始時間點與極限強度值(點D11)對應的時間點之間的時間差t1判斷為向心力時間,並將結束強度值E1所對應的結束時間點與極限強度值(點D13)對應的時間點之間的時間差t2判斷為離心力時間,並根據時間差t1及時間差t2產生時間資訊,例如透過輸出元件輸出時間差t1及時間差t2。In addition, as mentioned above, in one embodiment, when the judgment result of step S12 is that the wireless signal strength change matches the preset signal strength trajectory, the motion state evaluation method may further include the step of generating time information. For example, the
以下將說明運算裝置13可透過影像擷取裝置17取得運動器材2的影像,並透過影像分析的方式取得運動器材2的重量資訊的具體實施方式。The following will describe a specific implementation method in which the
當運動器材2包含主體及配重塊時,運動狀態評估方法可以更包含運算裝置13透過影像擷取裝置17取得運動器材2的影像;分析影像中對應於主體的基準像素區域;根據基準像素區域取得影像中對應於配重塊的多個目標像素區域;以及至少根據多個目標像素區域的像素面積,取得配重塊的重量資訊;其中運動狀態訊息更根據重量資訊而產生。When the
具體而言,影像擷取裝置17例如為攝影機,運算裝置13可以透過辨識出影像中的運動器材2的主體及配重塊後,分析主體的基準像素區域及配重塊的多個目標像素區域,並至少根據多個目標像素區域的像素面積,取得配重塊的重量資訊。進一步來說,運算裝置13可以根據重量資訊產生運動狀態訊息,因此,運算裝置13輸出的運動狀態訊息除了動作次數,可以更包含重量資訊。Specifically, the
請參考圖2、圖7及圖8,其中圖7係依據本發明一實施例所繪示的運動狀態評估方法之利用影像辨識取得重量資訊的示意圖,圖8係依據本發明另一實施例所繪示的運動狀態評估方法之利用影像辨識取得重量資訊的示意圖。Please refer to Figures 2, 7 and 8, wherein Figure 7 is a schematic diagram of obtaining weight information by using image recognition according to a method for evaluating movement status according to one embodiment of the present invention, and Figure 8 is a schematic diagram of obtaining weight information by using image recognition according to another embodiment of the present invention.
於一實施例中,運動器材2可以包含如圖7所示之主體L10及配重塊L11~L13,運算裝置13透過影像擷取裝置17取得運動器材2的影像I1後,分析影像I1中對應於主體L10的基準像素區域P10,並根據基準像素區域取得影像I1中對應於配重塊L11~L13的多個目標像素區域P11~P13,接著藉由多個目標像素區域P11~P13的像素面積,取得配重塊L11~L13的重量資訊,再根據重量資訊產生運動狀態訊息。具體而言,運算裝置13取得多個配重塊L11~L13的重量資訊可以包含判斷多個目標像素區域P11~P13的像素面積屬於多個預設範圍中的目標範圍;以及從多個預設重量中取得對應於目標範圍的目標重量,其中重量資訊包含目標重量。進一步來說,多個預設範圍係根據主體的基準像素區域產生對應的像素區域範圍,運算裝置13對照目標像素區域P11~P13的像素面積與多個預設範圍可以獲得多個目標像素區域P11~P13所對應的目標範圍為多個預設範圍中的哪一者,根據目標範圍可以取得對應的目標重量。In one embodiment, the
於另一實施例中,運動器材2可以包含如圖8所示之主體L20及配重塊L21~L25,運算裝置13透過影像擷取裝置17取得運動器材2的影像I2後,分析影像I2中對應於主體L20的基準像素區域P20,並根據基準像素區域取得影像I2中對應於配重塊L21~L25的多個目標像素區域P21~P25,接著藉由多個目標像素區域P21~P25的像素面積,取得配重塊L21~L25的重量資訊,再根據重量資訊產生運動狀態訊息。具體而言,運算裝置13取得多個配重塊L21~L25的重量資訊可以包含判斷多個目標像素區域P21~P25的像素面積屬於多個預設範圍中的目標範圍;判斷多個目標像素區域P21~P25的顏色屬於多個預設顏色中的目標顏色;以及從多個預設重量中取得對應於目標範圍及目標顏色的目標重量;其中重量資訊包含目標重量。進一步來說,當判斷多個目標像素區域P21~P25的像素面積所屬的目標範圍後,判斷所屬的目標顏色為多個預設顏色中哪一者,根據目標範圍及目標顏色可以取得對應的目標重量。In another embodiment, the
進一步來說,於上述圖7及圖8的二實施例中,多個預設範圍可以為一個查找表,根據主體L10或L20的基準像素區域的面積大小而有對應不同的目標範圍,查找表中亦可以包含對應不同目標範圍的目標重量,而根據主體L20的查找表可以更包含對應不同顏色的目標重量。Furthermore, in the two embodiments of Figures 7 and 8 above, the multiple preset ranges can be a lookup table, with different target ranges corresponding to the area size of the benchmark pixel area of the subject L10 or L20. The lookup table can also include target weights corresponding to different target ranges, and the lookup table based on the subject L20 can further include target weights corresponding to different colors.
於又一實施例中,請參考圖2及圖9,其中圖9係依據所述又一實施例所繪示的運動狀態評估方法之利用影像辨識取得重量資訊的示意圖。運動器材2可以包含如圖9所示之主體L30及配重塊L31~L33,配重塊L31~L33分別設置有識別圖案P31~P33,運算裝置13透過影像擷取裝置17取得運動器材2的影像I3,根據多個預存圖案辨識影像I3中對應於識別圖案P31~P33的區塊所對應的重量資訊,再根據重量資訊產生運動狀態訊息。具體而言,運算裝置13可儲存多個預存圖案與多個重量的對應關係。以圖9為例,運算裝置13可以儲存三角形圖案對應於第一重量的關係、圓形圖案對應於第二重量的關係以及菱形圖案對應於第三重量的關係。運算裝置13辨識影像I3包含對應於三角形圖案、圓形圖案及菱形圖案的區塊,根據上述對應關係得到第一重量、第二重量及第三重量,並據以產生重量資訊。進一步來說,上述對應關係例如為查找表。上述以圖9舉例之例子以不同形狀的圖案對應至不同重量,然於其他實施例中,或可以不同顏色的圖案來對應至不同重量,即上述多個預存圖案可以為具有不同顏色的圖案,而運算裝置13的執行內容同理於上述便不再贅述。另要特別說明的是,圖9示例性地呈現本實施例的重量資訊取得方式應用於具有主體L30及多個配重塊L31~L33的運動器材2,然本實施例的重量資訊取得方式亦適用於啞鈴、多功能機或其他可以設置至少一識別圖案的運動器材,具體的執行內容同理於上述便不再贅述。In another embodiment, please refer to FIG. 2 and FIG. 9, wherein FIG. 9 is a schematic diagram of obtaining weight information by using image recognition according to the motion state evaluation method described in the another embodiment. The
另外,於一些實施例中,上列實施例所述的運動狀態評估方法,可以至少一電腦可執行程序的形式包含於非暫態電腦可讀取媒體,例如光碟片、隨身碟、記憶卡、雲端伺服器的硬碟等電腦可讀取之非暫態的儲存媒體中。當所述至少一電腦可執行程序由電腦之處理器執行時,將實施前列實施例所述的運動狀態評估方法。In addition, in some embodiments, the motion state evaluation method described in the above embodiments can be included in a non-transient computer-readable medium in the form of at least one computer-executable program, such as a non-transient computer-readable storage medium such as an optical disk, a flash drive, a memory card, a hard drive of a cloud server, etc. When the at least one computer-executable program is executed by a processor of a computer, the motion state evaluation method described in the above embodiments will be implemented.
藉由上述結構,本案所揭示的運動狀態評估方法及系統以及儲存所述方法的非暫態電腦可讀取媒體,可以透過判斷無線訊號強度變化與預設訊號強度軌跡是否匹配來進行運動次數的計數,藉此,不需要針對運動軌跡進行實際的距離換算,可以低成本的完成運動次數的計數,且可靠性高。另外,藉由偵測識別元件及影像辨識取得重量資訊,本案所揭示的運動狀態評估方法及系統以及儲存所述方法的非暫態電腦可讀取媒體更可以根據重量資訊產生運動狀態訊息,除了動作次數之外還可以提供使用者動作的重量資訊,以提供使用者次數上及重量上完整的運動資訊,且使用者可以利用這些資訊來監控運動狀態。Through the above structure, the motion state evaluation method and system disclosed in this case and the non-transitory computer-readable medium storing the method can count the number of movements by judging whether the change in wireless signal strength matches the preset signal strength trajectory. In this way, there is no need to convert the actual distance of the motion trajectory, and the counting of the number of movements can be completed at a low cost and with high reliability. In addition, by obtaining weight information through detection and identification elements and image recognition, the exercise status evaluation method and system disclosed in this case and the non-transitory computer-readable medium storing the method can generate exercise status information based on weight information. In addition to the number of movements, it can also provide the user with weight information of the movement, so as to provide the user with complete exercise information in terms of number and weight, and the user can use this information to monitor the exercise status.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention is disclosed as above with the aforementioned embodiments, it is not intended to limit the present invention. Any changes and modifications made without departing from the spirit and scope of the present invention are within the scope of patent protection of the present invention. Please refer to the attached patent application for the scope of protection defined by the present invention.
1,1’:運動狀態評估系統1,1’: Sports status assessment system
2:運動器材2: Sports equipment
11:第一無線訊號裝置11: First wireless signal device
12,16:第二無線訊號裝置12,16: Second wireless signal device
13:運算裝置13: Computing device
14:識別元件14: Identification Components
15:識別元件偵測裝置15: Identification Component Detection Device
17:影像擷取裝置17: Image capture device
S11,S12,S13,S14,S15,S21,S22,S121,S122,S123:步驟S11,S12,S13,S14,S15,S21,S22,S121,S122,S123: Steps
C1,C2:曲線C1,C2: Curve
D11,D12,D13,D21,D22,D23:點D11,D12,D13,D21,D22,D23: points
t1,t2:時間差t1,t2: time difference
S1,E1:強度值S1, E1: Strength value
I1,I2,I3:影像I1,I2,I3:Image
L10,L20,L30:主體L10,L20,L30: Main body
L11,L12,L13,L21,L22,L23,L24,L25,L31,L32,L33:配重塊L11,L12,L13,L21,L22,L23,L24,L25,L31,L32,L33: Counterweight
P10,P11,P12,P13,P20,P21,P22,P23,P24,P25:像素區域P10, P11, P12, P13, P20, P21, P22, P23, P24, P25: Pixel area
P31,P32,P33:識別圖案P31, P32, P33: Identification pattern
圖1係依據本發明一實施例所繪示的運動狀態評估系統的功能方塊圖。 圖2係依據本發明另一實施例所繪示的運動狀態評估系統的功能方塊圖。 圖3係依據本發明一實施例所繪示的運動狀態評估方法的流程圖。 圖4係依據本發明一實施例所繪示的運動狀態評估方法之根據運動器材種類資訊選擇預設訊號強度軌跡的流程圖。 圖5係依據本發明一實施例所繪示的運動狀態評估方法之匹配判斷步驟的流程圖。 圖6係依據本發明一實施例所繪示的運動狀態評估方法中比對無線訊號強度變化與預設訊號強度軌跡之無線訊號強度示意圖。 圖7係依據本發明一實施例所繪示的運動狀態評估方法之利用影像辨識取得重量資訊的示意圖。 圖8係依據本發明另一實施例所繪示的運動狀態評估方法之利用影像辨識取得重量資訊的示意圖。 圖9係依據本發明又一實施例所繪示的運動狀態評估方法之利用影像辨識取得重量資訊的示意圖。 FIG. 1 is a functional block diagram of a motion state evaluation system according to an embodiment of the present invention. FIG. 2 is a functional block diagram of a motion state evaluation system according to another embodiment of the present invention. FIG. 3 is a flow chart of a motion state evaluation method according to an embodiment of the present invention. FIG. 4 is a flow chart of selecting a preset signal strength trajectory according to sports equipment type information in a motion state evaluation method according to an embodiment of the present invention. FIG. 5 is a flow chart of a matching judgment step in a motion state evaluation method according to an embodiment of the present invention. FIG. 6 is a schematic diagram of wireless signal strength in a motion state evaluation method according to an embodiment of the present invention for comparing wireless signal strength changes with preset signal strength trajectories. FIG. 7 is a schematic diagram of obtaining weight information by using image recognition according to a method for evaluating movement status according to an embodiment of the present invention. FIG. 8 is a schematic diagram of obtaining weight information by using image recognition according to another embodiment of the present invention. FIG. 9 is a schematic diagram of obtaining weight information by using image recognition according to another embodiment of the present invention.
S11,S12,S13,S14,S15:步驟 S11, S12, S13, S14, S15: Steps
Claims (22)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112134379A TWI860839B (en) | 2023-09-08 | 2023-09-08 | Method and system for exercise status assessment and non-transitory computer-readable medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112134379A TWI860839B (en) | 2023-09-08 | 2023-09-08 | Method and system for exercise status assessment and non-transitory computer-readable medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI860839B true TWI860839B (en) | 2024-11-01 |
| TW202512751A TW202512751A (en) | 2025-03-16 |
Family
ID=94379663
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112134379A TWI860839B (en) | 2023-09-08 | 2023-09-08 | Method and system for exercise status assessment and non-transitory computer-readable medium |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI860839B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWM253386U (en) * | 2004-04-14 | 2004-12-21 | Chang Yow Technologies Interna | Instrument for exercise device |
| TW202124960A (en) * | 2019-12-25 | 2021-07-01 | 財團法人工業技術研究院 | Method, device and system for using fitness equipment to recognize limb movement and calculate limb movement power |
| TW202142291A (en) * | 2020-05-06 | 2021-11-16 | 光旴科技股份有限公司 | Fitness equipment measurement and management system to achieve the efficacies of real time measuring, analyzing, and managing the fitness equipment |
| TWM622555U (en) * | 2021-09-17 | 2022-01-21 | 意想科技有限公司 | Fitness motion detection system combining fitness equipment and auxiliary wearable devices |
| CN114732375A (en) * | 2022-03-04 | 2022-07-12 | 深圳市华屹医疗科技有限公司 | Method, device, computer program product and storage medium for detecting motion information |
-
2023
- 2023-09-08 TW TW112134379A patent/TWI860839B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWM253386U (en) * | 2004-04-14 | 2004-12-21 | Chang Yow Technologies Interna | Instrument for exercise device |
| TW202124960A (en) * | 2019-12-25 | 2021-07-01 | 財團法人工業技術研究院 | Method, device and system for using fitness equipment to recognize limb movement and calculate limb movement power |
| TW202142291A (en) * | 2020-05-06 | 2021-11-16 | 光旴科技股份有限公司 | Fitness equipment measurement and management system to achieve the efficacies of real time measuring, analyzing, and managing the fitness equipment |
| TWM622555U (en) * | 2021-09-17 | 2022-01-21 | 意想科技有限公司 | Fitness motion detection system combining fitness equipment and auxiliary wearable devices |
| CN114732375A (en) * | 2022-03-04 | 2022-07-12 | 深圳市华屹医疗科技有限公司 | Method, device, computer program product and storage medium for detecting motion information |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202512751A (en) | 2025-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wang et al. | On spatial diversity in WiFi-based human activity recognition: A deep learning-based approach | |
| AU2009227717B2 (en) | Object and movement detection | |
| Chen et al. | Rapid: A multimodal and device-free approach using noise estimation for robust person identification | |
| Xin et al. | FreeSense: Indoor human identification with Wi-Fi signals | |
| KR102061434B1 (en) | Systems and Methods for Spoof Detection and Liveness Analysis | |
| JP6030184B2 (en) | Touchless sensing and gesture recognition using continuous wave ultrasound signals | |
| Shang et al. | A robust sign language recognition system with multiple Wi-Fi devices | |
| WO2021172949A1 (en) | Method and apparatus of radar-based activity detection | |
| US10043064B2 (en) | Method and apparatus of detecting object using event-based sensor | |
| CN109446942A (en) | Method for tracking target, device and system | |
| WO2018191972A1 (en) | Touch control method and apparatus | |
| Hao et al. | CSI‐HC: a WiFi‐based indoor complex human motion recognition method | |
| JP2017091249A (en) | Automatic analyzer and analytic method | |
| CN116304915B (en) | WiFi-based contactless action recognition method, system and laboratory device | |
| Cheng et al. | Push the limit of device-free acoustic sensing on commercial mobile devices | |
| US10013069B2 (en) | Methods and apparatus to detect vibration inducing hand gestures | |
| Pan et al. | Dynamic hand gesture detection and recognition with WiFi signal based on 1d-CNN | |
| Liu et al. | Wi-CR: Human action counting and recognition with Wi-Fi signals | |
| Xin et al. | FreeSense: human-behavior understanding using Wi-Fi signals | |
| TWI860839B (en) | Method and system for exercise status assessment and non-transitory computer-readable medium | |
| CN106452687A (en) | System and method for recognizing motion direction in motion sensing game | |
| EP3485461A1 (en) | Techniques for determining proximity based on image blurriness | |
| WO2025129374A1 (en) | Method and system for method for exercise status assessmentand non-transitory computer-readable medium | |
| Guo et al. | WiRoI: Spatial region of interest human sensing with commodity WiFi | |
| CN103399634A (en) | Gesture recognition system and gesture recognition method |