TWI846528B - Customizing setting and updating download system with proactive chat response mode and method thereof - Google Patents
Customizing setting and updating download system with proactive chat response mode and method thereof Download PDFInfo
- Publication number
- TWI846528B TWI846528B TW112124260A TW112124260A TWI846528B TW I846528 B TWI846528 B TW I846528B TW 112124260 A TW112124260 A TW 112124260A TW 112124260 A TW112124260 A TW 112124260A TW I846528 B TWI846528 B TW I846528B
- Authority
- TW
- Taiwan
- Prior art keywords
- message
- artificial intelligence
- customized
- state machine
- finite state
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000004044 response Effects 0.000 title claims abstract description 21
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 95
- 238000012549 training Methods 0.000 claims abstract description 82
- 230000006399 behavior Effects 0.000 claims description 34
- 230000008921 facial expression Effects 0.000 claims description 9
- 230000035790 physiological processes and functions Effects 0.000 claims description 9
- 230000001052 transient effect Effects 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 2
- 238000003058 natural language processing Methods 0.000 claims 4
- 238000010586 diagram Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 235000021152 breakfast Nutrition 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000002996 emotional effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000282842 Lama glama Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Information Transfer Between Computers (AREA)
Abstract
Description
本發明涉及一種客製化設定及更新下載之系統及其方法,特別是具主動聊天應答的客製化設定及更新下載系統及其方法。The present invention relates to a system and method for customized settings and update downloads, and in particular to a system and method for customized settings and update downloads with active chat response.
近年來,隨著人工智慧的普及與蓬勃發展,各種人工智慧的應用便如雨後春筍般地湧現。其中,又以聊天機器人最受矚目。In recent years, with the popularization and rapid development of artificial intelligence, various applications of artificial intelligence have emerged like mushrooms after rain. Among them, chatbots have attracted the most attention.
一般而言,傳統基於人工智慧的聊天機器人會使用人工智慧模型輸出對話,然而,通用的人工智慧模型只會單純對使用者的提問進行制式的回答,所以存在對話呆板、擬真性不足等問題,以至於大幅降低使用者與聊天機器人對話的意願。另一方面,由於回答方式對所有使用者皆一視同仁,所以也缺乏專屬性,對於不同的使用者可能存在話不投機的問題。Generally speaking, traditional AI-based chatbots use AI models to output dialogues. However, general AI models only give standardized answers to users' questions, so there are problems such as dull dialogues and lack of authenticity, which greatly reduces users' willingness to talk to chatbots. On the other hand, since the answer method is the same for all users, it lacks exclusivity and may cause problems with different users.
有鑑於此,便有廠商提出訓練人工智慧模型使其回答具有情感的技術手段,舉例來說,在產生回答時,進一步根據回答嵌入具有情感的詞彙、語句等等。然而,此方式雖然能夠使回答不再呆板,但是同樣無法產生具有專屬性的對話,也就是說不會因為使用者的不同而有不同的對話,故仍然無法有效解決模型客製化的便利性不足及專屬性不明顯的問題。另一方面,倘若要客製化訓練人工智慧模型,其伺服端主機需要大量的算力需求也是一個待解決的問題。In view of this, some manufacturers have proposed technical means to train artificial intelligence models to make their answers emotional. For example, when generating answers, they can further embed emotional words and sentences based on the answers. However, although this method can make the answers no longer rigid, it also cannot produce exclusive dialogues, that is, there will not be different dialogues for different users, so it still cannot effectively solve the problem of insufficient convenience and unclear exclusivity of model customization. On the other hand, if the artificial intelligence model is to be customized, the server host needs a lot of computing power, which is also a problem to be solved.
綜上所述,可知先前技術在長期以來一直存在模型客製化的便利性不足及專屬性不明顯,以及伺服端主機的算力負載過重的問題,因此實有必要提出改進的技術手段,來解決此一問題。In summary, it can be seen that the previous technology has long had problems such as insufficient convenience in model customization and unclear exclusivity, as well as excessive computing power load on the server host. Therefore, it is necessary to propose improved technical means to solve this problem.
本發明揭露一種具主動聊天應答的客製化設定及更新下載系統及其方法。The present invention discloses a customized setting and update downloading system with active chat response and its method.
首先,本發明揭露一種具主動聊天應答的客製化設定及更新下載系統,此系統包含:人工智慧平台、客戶端主機及伺服端主機。其中,人工智慧平台用以通過應用程式介面(Application Programming Interface, API)接收精確提問訊息,並且將此精確提問訊息輸入至大型語言模型以產生回答訊息,再通過應用程式介面傳送回答訊息至伺服端主機。接著,在客戶端主機的部分,其包含:傳感器、第一非暫態計算機可讀儲存媒體及第一硬體處理器。其中,傳感器用以持續感測生理狀態、臉部表情及肢體動作至少其中之一以生成用戶行為狀態;第一非暫態計算機可讀儲存媒體用以儲存多個第一計算機可讀指令;第一硬體處理器電性連接第一非暫態計算機可讀儲存媒體及傳感器,用以執行所述多個第一計算機可讀指令,使客戶端主機下載更新套件,以及持續傳送用戶行為狀態及客製化參數,其中,所述更新套件提供狀態模板以允許設定及更新所述客製化參數。另外,在伺服端主機的部分,其連接客戶端主機以接收用戶行為狀態及客製化參數,所述伺服端主機包含:邏輯電路、第二非暫態計算機可讀儲存媒體及第二硬體處理器。其中,邏輯電路包含串接的第一有限狀態機及第二有限狀態機,其中,所述第一有限狀態機接收粗略提問訊息及回答訊息,第一有限狀態機的輸出作為第二有限狀態機的輸入,使第二有限狀態機生成精確提問訊息且通過應用程式介面輸出至人工智慧平台;第二非暫態計算機可讀儲存媒體用以儲存多個第二計算機可讀指令;第二硬體處理器電性連接第二非暫態計算機可讀儲存媒體及邏輯電路,用以執行多個第二計算機可讀指令,使伺服端主機執行:根據接收到的用戶行為狀態生成具有自然語言結構的粗略提問訊息以輸入至邏輯電路;當邏輯電路根據該粗略提問訊息生成相應的精確提問訊息且輸出至人工智慧平台後,自人工智慧平台接收與精確提問訊息相應的回答訊息作為第一訓練資料;將客製化參數作為第二訓練資料,並且將第二訓練資料與第一訓練資料一併輸入至人工智慧模型進行訓練,當訓練完成後,擷取人工智慧模型的多個權重值;以及將所述權重值進行轉譯以分別對應不同的客製化參數,並且將轉譯結果嵌入至更新套件的狀態模板以提供客戶端主機下載。First, the present invention discloses a customized setting and update downloading system with active chat response, which includes: an artificial intelligence platform, a client host and a server host. Among them, the artificial intelligence platform is used to receive precise question messages through an application programming interface (API), and input the precise question messages into a large language model to generate answer messages, and then send the answer messages to the server host through the application programming interface. Then, in the client host part, it includes: a sensor, a first non-transient computer-readable storage medium and a first hardware processor. The sensor is used to continuously sense at least one of physiological state, facial expression and body movement to generate user behavior state; the first non-transitory computer-readable storage medium is used to store multiple first computer-readable instructions; the first hardware processor is electrically connected to the first non-transitory computer-readable storage medium and the sensor to execute the multiple first computer-readable instructions, so that the client host downloads the update package and continuously transmits the user behavior state and customized parameters, wherein the update package provides a state template to allow the customized parameters to be set and updated. In addition, the server host is connected to the client host to receive user behavior status and customized parameters. The server host includes: a logic circuit, a second non-transitory computer-readable storage medium and a second hardware processor. The logic circuit includes a first finite state machine and a second finite state machine connected in series, wherein the first finite state machine receives a rough question message and an answer message, and the output of the first finite state machine is used as the input of the second finite state machine, so that the second finite state machine generates a precise question message and outputs it to the artificial intelligence platform through the application program interface; the second non-transient computer-readable storage medium is used to store a plurality of second computer-readable instructions; the second hardware processor is electrically connected to the second non-transient computer-readable storage medium and the logic circuit, and is used to execute a plurality of second computer-readable instructions, so that the server host executes: generating a self-generated instruction according to the received user behavior state; A rough question message of a language structure is input into a logic circuit; when the logic circuit generates a corresponding precise question message according to the rough question message and outputs it to an artificial intelligence platform, an answer message corresponding to the precise question message is received from the artificial intelligence platform as a first training data; a customized parameter is used as a second training data, and the second training data and the first training data are input into an artificial intelligence model for training. After the training is completed, a plurality of weight values of the artificial intelligence model are captured; and the weight values are translated to correspond to different customized parameters respectively, and the translated results are embedded into a status template of an update package to provide a client host with download.
另外,本發明還揭露一種具主動聊天應答的客製化設定及更新下載方法,其步驟包括:將伺服端主機分別與人工智慧平台及客戶端主機相互連接;客戶端主機通過傳感器持續感測生理狀態、臉部表情及肢體動作至少其中之一以生成用戶行為狀態;客戶端主機下載更新套件,其中,所述更新套件提供狀態模板以允許設定及更新客製化參數;客戶端主機持續將用戶行為狀態及客製化參數傳送至伺服端主機;伺服端主機根據接收到的用戶行為狀態及客製化參數生成具有自然語言結構的粗略提問訊息,並且將粗略提問訊息輸入串接的第一有限狀態機及第二有限狀態機進行解析及轉換狀態以生成精確提問訊息,其中,第一有限狀態機接收粗略提問訊息及來自人工智慧平台的回答訊息,第一有限狀態機的輸出作為第二有限狀態機的輸入,第二有限狀態機通過人工智慧平台的應用程式介面輸出精確提問訊息至人工智慧平台;人工智慧平台將精確提問訊息輸入至大型語言模型以產生回答訊息,再通過應用程式介面將回答訊息傳送至伺服端主機;伺服端主機自人工智慧平台接收與精確提問訊息相應的回答訊息作為第一訓練資料,以及將接收到的客製化參數作為第二訓練資料,並且將第二訓練資料與第一訓練資料一併輸入至人工智慧模型進行訓練,當訓練完成後,擷取人工智慧模型的多個權重值;伺服端主機將權重值進行轉譯以分別對應不同的客製化參數,並且將轉譯結果嵌入至更新套件的狀態模板以提供客戶端主機下載。In addition, the present invention also discloses a customized setting and update downloading method with active chat response, the steps of which include: connecting the server host to the artificial intelligence platform and the client host respectively; the client host continuously senses at least one of the physiological state, facial expression and body movement through the sensor to generate the user behavior state; the client host downloads the update package, wherein the update package provides a state template to allow the setting and update of the customized The client host continuously transmits the user behavior state and customized parameters to the server host; the server host generates a rough question message with a natural language structure according to the received user behavior state and customized parameters, and inputs the rough question message into the first finite state machine and the second finite state machine connected in series for parsing and state conversion to generate a precise question message, wherein the first finite state machine receives the rough question message and the information from the artificial intelligence. The output of the first finite state machine is used as the input of the second finite state machine, and the second finite state machine outputs the precise question message to the artificial intelligence platform through the application programming interface of the artificial intelligence platform; the artificial intelligence platform inputs the precise question message into the large language model to generate the answer message, and then transmits the answer message to the server host through the application programming interface; the server host receives the precise question message from the artificial intelligence platform. The answer message is used as the first training data, and the received customized parameters are used as the second training data, and the second training data and the first training data are input into the artificial intelligence model for training. When the training is completed, multiple weight values of the artificial intelligence model are extracted; the server host translates the weight values to correspond to different customized parameters respectively, and embeds the translated results into the status template of the update package to provide the client host with download.
本發明所揭露之系統與方法如上,與先前技術的差異在於本發明是透過用戶行為狀態及客製化參數生成具有自然語言結構的粗略提問訊息,再將粗略提問訊息輸入至邏輯電路以生成精確提問訊息且傳送至人工智慧平台以獲得相應的回答訊息作為第一訓練資料,以及將客製化參數作為第二訓練資料,再將兩種訓練資料輸入至人工智慧模型進行訓練,當訓練完成後擷取權重值進行轉譯以分別對應不同的客製化參數,並且將轉譯結果提供客戶端主機下載,以便進行客製化設定及更新。The system and method disclosed in the present invention are as described above. The difference from the prior art is that the present invention generates a rough question message with a natural language structure through user behavior status and customized parameters, and then inputs the rough question message into a logic circuit to generate a precise question message and transmits it to an artificial intelligence platform to obtain a corresponding answer message as the first training data, and uses the customized parameters as the second training data, and then inputs the two types of training data into an artificial intelligence model for training. After the training is completed, the weight value is extracted and translated to correspond to different customized parameters respectively, and the translated result is provided to the client host for downloading so as to perform customized settings and updates.
透過上述的技術手段,本發明可以達成提高模型客製化的便利性及專屬性之技術功效。Through the above-mentioned technical means, the present invention can achieve the technical effect of improving the convenience and exclusivity of model customization.
以下將配合圖式及實施例來詳細說明本發明之實施方式,藉此對本發明如何應用技術手段來解決技術問題並達成技術功效的實現過程能充分理解並據以實施。The following will be used in conjunction with drawings and embodiments to explain the implementation of the present invention in detail, so that the implementation process of how the present invention applies technical means to solve technical problems and achieve technical effects can be fully understood and implemented accordingly.
首先,請先參閱「第1圖」,「第1圖」為本發明具主動聊天應答的客製化設定及更新下載系統的系統方塊圖,此系統包含:人工智慧平台110、客戶端主機120及伺服端主機130。其中,人工智慧平台110用以通過應用程式介面接收精確提問訊息,並且將此精確提問訊息輸入至大型語言模型以產生回答訊息,再通過應用程式介面傳送回答訊息至伺服端主機130。在實際實施上,所述人工智慧平台110是使用大型語言模型的聊天機器人,所述大型語言模型如:生成型預訓練變換模型(Generative Pre-trained Transformer, GPT)、PaLM、Galactica、LLaMA、LaMDA或其相似物。First, please refer to "Figure 1", which is a system block diagram of the customized setting and update download system with active chat response of the present invention, which includes: an
在客戶端主機120的部分,其包含:傳感器121、第一非暫態計算機可讀儲存媒體122及第一硬體處理器123。其中,傳感器121用以持續感測生理狀態、臉部表情及肢體動作至少其中之一以生成用戶行為狀態。在實際實施上,傳感器121可感測血壓、心跳、脈搏、血糖等生理特徵來判斷生理狀態,如:高興、興奮、沮喪等等;或是通過感測人臉、虹膜等等來判斷臉部表情及心情;或是通過配戴在人體四肢的傳感器,如:三軸加速度感應器、陀螺儀等等來感測使用者的肢體動作。如:行走、跑步、跳舞等等。The
第一非暫態計算機可讀儲存媒體122用以儲存多個第一計算機可讀指令。在實際實施上,所述第一非暫態計算機可讀儲存媒體122可包含硬碟、光碟、快閃記憶體或其相似物。另外,所述第一計算機可讀指令是指可被客戶端主機120,如:客戶端的計算機(或稱之為電腦)解讀和執行的指令。The first non-transitory computer-readable storage medium 122 is used to store a plurality of first computer-readable instructions. In practical implementation, the first non-transitory computer-readable storage medium 122 may include a hard disk, an optical disk, a flash memory or the like. In addition, the first computer-readable instructions refer to instructions that can be interpreted and executed by the
第一硬體處理器123電性連接第一非暫態計算機可讀儲存媒體122及傳感器121,用以執行所述多個第一計算機可讀指令,使客戶端主機120下載更新套件,以及持續傳送用戶行為狀態及客製化參數,其中,所述更新套件提供一狀態模板以允許設定及更新所述客製化參數。在實際實施上,所述客製化參數可包含時間訊息及篩選參數。以時間訊息為例,其可包含年、月、日、時、分、秒,甚至是時間區段等等,用以作為判斷回答訊息與時間相關聯的依據,舉例來說,判斷回答訊息是否已過期、設定定時反饋(如:每天上午十二點傳送提醒用餐的隨選對話訊息),或是其它與時間相關聯的情況,例如:早晨與早餐相關聯、凌晨0點至凌晨4點與睡眠相關聯、國定假日與固定的日期相關聯、生日與指定的日期相關聯等等,所以當時間落在早晨的範圍內時,可篩選出與早餐相關的回答訊息、當時間落在凌晨0點至凌晨4點時,可篩選出與睡眠相關的回答訊息,以及當時間為國定假日時,可篩選出包含此國定假日的回答訊息。另外,以篩選參數為例,所述篩選參數係用以設定同意接收的回答訊息,以及拒絕接收的回答訊息,舉例來說,可由使用者根據自己的喜好所設定,例如:設定過濾掉包含政治、宗教類的聊天內容、設定僅接收娛樂類的聊天內容、設定過濾掉沮喪語氣的內容等等。The
接著,在伺服端主機130的部分,其連接客戶端主機120以接收用戶行為狀態及客製化參數,所述伺服端主機130包含:邏輯電路131、第二非暫態計算機可讀儲存媒體132及第二硬體處理器133。其中,邏輯電路131包含串接的第一有限狀態機及第二有限狀態機,其中,第一有限狀態機接收粗略提問訊息及回答訊息,第一有限狀態機的輸出作為第二有限狀態機的輸入,使第二有限狀態機生成精確提問訊息且通過應用程式介面輸出至人工智慧平台110。在實際實施上,第一有限狀態機可為米利型有限狀態機(Mealy Machine),其輸出受當前狀態、粗略提問訊息及回答訊息影響。另外,第二有限狀態機可為摩爾型有限狀態機(Moore Machine)狀態機,其輸出僅受當前狀態影響。實際上,可以先將各個客製化參數轉成狀態表,然後依照正反器激勵表(Excitation Table)設定正反器之轉態表(Transition Table),接著再利用卡諾圖(Karnaugh Map)求出各正反器的輸入方程式,即可生成最後的有限狀態機之電路圖,進而實現邏輯電路131。Next, in the part of the
第二非暫態計算機可讀儲存媒體132用以儲存多個第二計算機可讀指令。在實際實施上,所述第二非暫態計算機可讀儲存媒體132與第一非暫態計算機可讀儲存媒體122的區別在於前者是伺服端主機130的非暫態計算機可讀儲存媒體,儲存供伺服端主機130執行的計算機可讀指令(即:第二計算機可讀指令),後者是客戶端主機120的非暫態計算機可讀儲存媒體,儲存供客戶端主機120執行的計算機可讀指令(即:第一計算機可讀指令)。The second non-transitory computer-
第二硬體處理器133電性連接第二非暫態計算機可讀儲存媒體132及邏輯電路131,用以執行多個第二計算機可讀指令,使伺服端主機130執行:根據接收到的用戶行為狀態生成具有自然語言結構的粗略提問訊息以輸入至邏輯電路131;當邏輯電路131根據粗略提問訊息生成相應的精確提問訊息且輸出至人工智慧平台110後,自人工智慧平台110接收與精確提問訊息相應的回答訊息作為第一訓練資料;將客製化參數作為第二訓練資料,並且將第二訓練資料與第一訓練資料一併輸入至人工智慧模型進行訓練,當訓練完成後,擷取人工智慧模型的多個權重值;以及將權重值進行轉譯以分別對應不同的客製化參數,並且將轉譯結果嵌入至更新套件的狀態模板以提供客戶端主機120下載。舉例來說,假設伺服端主機130接收到的用戶行為狀態為「興奮」、客製化參數包含時間訊息「AM 08:00」及篩選參數「排除沮喪的語句」,此時,第二硬體處理器133會根據「興奮」、「AM 08:00」及「排除沮喪的語句」產生相應的粗略提問訊息,如:「興奮、AM 08:00、排除沮喪的語句」,接著,將此粗略提問訊息輸入至邏輯電路131的有限狀態機進行解析及轉換狀態,例如:根據「興奮」定義問題類型,根據「AM 08:00」定義問題的具體時間狀態,以及根據「排除沮喪的語句」定義問題的範圍,然後使用預定義的模板或語法規則生成精確提問訊息,例如:「請列出早上八點心情興奮不沮喪的五種原因」、「現在是早上八點,心情非常興奮,請問有何建議?」。接下來,將精確提問訊息傳送至人工智慧平台110以獲得相應的回答訊息。此時,獲得的回答訊息將反饋至邏輯電路131以自動化識別提問與回答的關聯性,進而動態調整有限狀態機的狀態設定,進一步改善提問的精確性,舉例來說,自動設定以關聯性較佳的提問取代關聯性不佳的提問來生成精確提問訊息。除此之外,所述回答訊息亦會作為第一訓練資料,而所述客製化參數則作為第二訓練資料,並且將第一訓練資料與第二訓練資料一併輸入至人工智慧模型進行訓練,當訓練完成後,擷取人工智慧模型的多個權重值。最後,第二硬體處理器133會將所述權重值進行轉譯以分別對應不同的客製化參數,並且將轉譯結果嵌入至更新套件的狀態模板以提供客戶端主機120下載,以轉譯為例,可以使用解釋性技術,如:局部可解釋性模型(Local Interpretable Model-agnostic Explanations, LIME)、夏普利加法解釋(SHapley Additive exPlanationsl, SHAP)等等來獲得權重值在特定實例(Instance)上的影響,並將這些影響轉譯為人可以理解的解釋或參數,例如:人工智慧模型輸出此資料是受到客製化參數的某些關鍵字影響,故將權重值與這些關鍵字進行對應且嵌入至狀態模板,如此一來,使用者可以從狀態模板輕易理解哪一些客製化參數對人工智慧模型的輸出結果影響較大,以及哪一些客製化參數的影響較小,進而根據影響性控制客製化參數,例如:避免使用影響較小的客製化參數。The
特別要說明的是,在實際實施上,本發明可部分地或完全地基於硬體來實現,例如,系統中的一個或多個元件可以透過積體電路晶片、系統單晶片(System on Chip, SoC)、複雜可程式邏輯裝置(Complex Programmable Logic Device, CPLD)、現場可程式邏輯閘陣列(Field Programmable Gate Array, FPGA)等硬體處理器(Hardware Processor)來實現。本發明所述的非暫態計算機可讀儲存媒體,其上載有用於使處理器實現本發明的各個方面的計算機可讀指令(或稱為電腦程式指令),非暫態計算機可讀儲存媒體可以是可以保持和儲存由指令執行設備使用的指令的有形設備。非暫態計算機可讀儲存媒體可以是但不限於電儲存設備、磁儲存設備、光儲存設備、電磁儲存設備、半導體儲存設備或上述的任意合適的組合。計算機可讀儲存媒體的更具體的例子(非窮舉的列表)包括:硬碟、隨機存取記憶體、唯讀記憶體、快閃記憶體、光碟、軟碟以及上述的任意合適的組合。此處所使用的非暫態計算機可讀儲存媒體不被解釋爲瞬時訊號本身,諸如無線電波或者其它自由傳播的電磁波、通過波導或其它傳輸媒介傳播的電磁波(例如,通過光纖電纜的光訊號)、或者通過電線傳輸的電訊號。另外,此處所描述的計算機可讀指令可以從非暫態計算機可讀儲存媒體下載到各個計算/處理設備,或者通過網路,例如:網際網路、區域網路、廣域網路及/或無線網路下載到外部電腦設備或外部儲存設備。所述網路可以包括銅傳輸電纜、光纖傳輸、無線傳輸、路由器、防火牆、交換器、集線器及/或閘道器。每一個計算/處理設備中的網路卡或者網路介面從網路接收計算機可讀指令,並轉發此計算機可讀指令,以供儲存在各個計算/處理設備中的非暫態計算機可讀儲存媒體中。執行本發明操作的計算機可讀指令可以是組合語言指令、指令集架構指令、機器指令、機器相關指令、微指令、韌體指令、或者以一種或多種程式語言的任意組合編寫的原始碼或目的碼(Object Code),所述程式語言包括物件導向的程式語言,如:Common Lisp、Python、C++、Objective-C、Smalltalk、Delphi、Java、Swift、C#、Perl、Ruby與PHP等,以及常規的程序式(Procedural)程式語言,如:C語言或類似的程式語言。It should be particularly noted that, in actual implementation, the present invention may be partially or completely implemented based on hardware. For example, one or more components in the system may be implemented through hardware processors such as integrated circuit chips, system on chip (SoC), complex programmable logic devices (CPLD), field programmable gate arrays (FPGA), etc. The non-transitory computer-readable storage medium described in the present invention is loaded with computer-readable instructions (or computer program instructions) that are useful for the processor to implement various aspects of the present invention. The non-transitory computer-readable storage medium may be a tangible device that can retain and store instructions used by an instruction execution device. The non-transitory computer-readable storage medium may be, but is not limited to, an electric storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. More specific examples of computer-readable storage media (a non-exhaustive list) include: hard drive, random access memory, read-only memory, flash memory, optical disk, floppy disk, and any suitable combination of the above. As used herein, non-transitory computer-readable storage media is not to be construed as a transient signal per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (e.g., optical signals through optical fiber cables), or electrical signals transmitted through wires. In addition, the computer-readable instructions described herein may be downloaded from a non-transitory computer-readable storage medium to various computing/processing devices, or downloaded to an external computer device or external storage device through a network, such as the Internet, a local area network, a wide area network, and/or a wireless network. The network may include copper transmission cables, optical fiber transmission, wireless transmission, routers, firewalls, switches, hubs, and/or gateways. The network card or network interface in each computing/processing device receives the computer readable instructions from the network and forwards the computer readable instructions for storage in the non-transitory computer readable storage medium in each computing/processing device. The computer-readable instructions for executing the operations of the present invention may be assembly language instructions, instruction set architecture instructions, machine instructions, machine-related instructions, microinstructions, firmware instructions, or source code or object code written in any combination of one or more programming languages, wherein the programming languages include object-oriented programming languages such as Common Lisp, Python, C++, Objective-C, Smalltalk, Delphi, Java, Swift, C#, Perl, Ruby and PHP, as well as conventional procedural programming languages such as C or similar programming languages.
請參閱「第2A圖」及「第2B圖」,「第2A圖」及「第2B圖」為本發明具主動聊天應答的客製化設定及更新下載方法的方法流程圖,其步驟包括:將伺服端主機130分別與人工智慧平台110及客戶端主機120相互連接(步驟210);客戶端主機120通過傳感器121持續感測生理狀態、臉部表情及肢體動作至少其中之一以生成用戶行為狀態(步驟220);客戶端主機120下載更新套件,其中,所述更新套件提供狀態模板以允許設定及更新客製化參數(步驟230);客戶端主機120持續將用戶行為狀態及客製化參數傳送至伺服端主機130(步驟240);伺服端主機130根據接收到的用戶行為狀態及客製化參數生成具有自然語言結構的粗略提問訊息,並且將粗略提問訊息輸入串接的第一有限狀態機及第二有限狀態機進行解析及轉換狀態以生成精確提問訊息,其中,第一有限狀態機接收粗略提問訊息及來自人工智慧平台110的回答訊息,第一有限狀態機的輸出作為第二有限狀態機的輸入,第二有限狀態機通過人工智慧平台110的應用程式介面輸出精確提問訊息至人工智慧平台110(步驟250);人工智慧平台110將精確提問訊息輸入至大型語言模型以產生回答訊息,再通過應用程式介面將回答訊息傳送至伺服端主機130(步驟260);伺服端主機130自人工智慧平台110接收與精確提問訊息相應的回答訊息作為第一訓練資料,以及將接收到的客製化參數作為第二訓練資料,並且將第二訓練資料與第一訓練資料一併輸入至人工智慧模型進行訓練,當訓練完成後,擷取人工智慧模型的多個權重值(步驟270);伺服端主機130將權重值進行轉譯以分別對應不同的客製化參數,並且將轉譯結果嵌入至更新套件的狀態模板以提供客戶端主機120下載(步驟280)。透過上述步驟,即可透過用戶行為狀態及客製化參數生成具有自然語言結構的粗略提問訊息,再將粗略提問訊息輸入至邏輯電路以生成精確提問訊息且傳送至人工智慧平台110以獲得相應的回答訊息作為第一訓練資料,以及將客製化參數作為第二訓練資料,再將兩種訓練資料輸入至人工智慧模型進行訓練,當訓練完成後擷取權重值進行轉譯以分別對應不同的客製化參數,並且將轉譯結果提供客戶端主機120下載,以便進行客製化設定及更新。Please refer to "FIG. 2A" and "FIG. 2B", which are the method flow charts of the method for customized setting and update downloading of active chat response of the present invention, and the steps include: connecting the server host 130 to the artificial intelligence platform 110 and the client host 120 respectively (step 210); the client host 120 continuously senses at least one of the physiological state, facial expression and body movement through the sensor 121 to generate the user behavior state (step 220); the client host 120 downloads the update package , wherein the update kit provides a state template to allow setting and updating of customized parameters (step 230); the client host 120 continuously transmits the user behavior state and customized parameters to the server host 130 (step 240); the server host 130 generates a rough question message with a natural language structure according to the received user behavior state and customized parameters, and inputs the rough question message into the first finite state machine and the second finite state machine connected in series for parsing and state conversion to generate a precise question message, wherein the first finite state machine The rough question message and the answer message from the artificial intelligence platform 110 are received, the output of the first finite state machine is used as the input of the second finite state machine, and the second finite state machine outputs the precise question message to the artificial intelligence platform 110 through the application programming interface of the artificial intelligence platform 110 (step 250); the artificial intelligence platform 110 inputs the precise question message into the large language model to generate the answer message, and then transmits the answer message to the server host 130 through the application programming interface (step 260); the server host 130 receives the answer message from the artificial intelligence platform The station 110 receives the answer message corresponding to the precise question message as the first training data, and the received customized parameters as the second training data, and inputs the second training data and the first training data into the artificial intelligence model for training. After the training is completed, multiple weight values of the artificial intelligence model are extracted (step 270); the
以下配合「第3圖」及「第4圖」以實施例的方式進行如下說明,如「第3圖」所示意,「第3圖」為應用本發明的客戶端主機、伺服端主機及人工智慧平台之示意圖。首先,伺服端主機130分別與人工智慧平台110及客戶端主機120相互連接。客戶端主機120通過傳感器持續感測使用者的生理狀態、臉部表情及肢體動作至少其中之一以生成用戶行為狀態,以及下載更新套件,其中,所述更新套件提供狀態模板以允許設定及更新多個客製化參數。接著,客戶端主機120通過輸入介面持續將用戶行為狀態及客製化參數傳送至伺服端主機130。伺服端主機130的狀態管理模組會根據接收到的用戶行為狀態及客製化參數生成具有自然語言結構的粗略提問訊息,並且將已生成的粗略提問訊息輸入串接的第一有限狀態機(如:米利型有限狀態機)及第二有限狀態機(如:摩爾型有限狀態機)進行解析及轉換狀態以生成精確提問訊息。接著,伺服端主機130通過人工智慧平台110的 API 傳送精確提問訊息至人工智慧平台110。此時,人工智慧平台110會將精確提問訊息輸入至大型語言模型以產生回答訊息,再通過 API 將回答訊息傳送至伺服端主機130。當伺服端主機130從人工智慧平台110接收到與精確提問訊息相應的回答訊息後,會將回答訊息輸入第一有限狀態機,用以確認提問與回答的相關性,以便進一步優化粗略提問訊息成為精確提問訊息。除此之外,伺服端主機130還會將接收到的回答訊息作為第一訓練資料,以及將接收到的客製化參數作為第二訓練資料,並且將這兩種訓練資料一併輸入至人工智慧模型進行訓練,當訓練完成後,擷取人工智慧模型的多個權重值進行轉譯,以便分別與不同的客製化參數進行對應,並且將轉譯結果嵌入至更新套件的狀態模板以提供客戶端主機120下載。至此,客戶端主機120即可獲得經過客製化的人工智慧模型之權重值,之後,即使人工智慧模型被重置或初始化,使用者仍然可以通過狀態模板將客製化參數及權重值上傳至伺服端主機130,用以更新及設定人工智慧模型,如此一來,在無須重新訓練人工智慧模型的情況下,人工智慧模型的輸出結果仍然會與先前經過訓練的人工智慧模型相同。特別要說明的是,所述狀態管理模組及人工智慧模型是通過硬體處理器執行計算機可讀指令來實現。在實際實施上,所述人工智慧模型係搭配類神經網路,如:卷積神經網路(Convolutional Neural Networks, CNN)、循環神經網路(Recurrent Neural Network, RNN)、長短期記憶網路(Long Short-Term Memory, LSTM)、轉換器(Transformer)或其相似物所訓練而成。另外,在訓練過程中還可利用反向傳播演算法和梯度下降等方法進行最佳化。The following is explained in the form of an example with reference to "Figure 3" and "Figure 4". As shown in "Figure 3", "Figure 3" is a schematic diagram of the client host, server host and artificial intelligence platform to which the present invention is applied. First, the
如「第4圖」所示意,「第4圖」為應用本發明通過狀態模板設定及更新客製化參數之示意圖。在實際實施上,當客戶端主機120從伺服端主機130下載更新套件後,客戶端主機120可通過設定視窗410來檢視更新套件所提供的狀態模板。如「第4圖」所示意,設定視窗410可顯示客製化參數及其對權重值之影響,舉例來說,使用長條圖的方式,當線條越長代表影響越大,反之線條越短代表影響越小。在此例中,客製化參數「A」對權重值影響大於客製化參數「C」,而客製化參數「C」對權重值影響又大於客製化參數「B」。也就是說,使用者可以透過篩選元件411選擇刪除對於人工智慧模型的輸出結果影響最小的客製化參數「B」。假設使用者刪除客製化參數「B」,可以點選確定元件413儲存設定。特別要說明的是,在實際實施上,狀態模板除了允許設定及更新客製化參數之外,更可允許設定及更新超參數(Hyperparameter),所述超參數通常決定了人工智慧模型的架構和訓練過程的各種細節,例如:學習率、正則化參數、樹的深度、神經網路的層數等等。使用者可以通過輸入區塊412進行設定,並且在設定完成後,客戶端主機120可將其上傳至伺服端主機130,使伺服端主機130直接根據狀態模板的設定,將與客製化參數相應的權重值,甚至是超參數等等,直接應用在人工智慧模型,換句話說,更新後的套件經設定後無須經過訓練即可將人工智慧模型客製化為專屬客戶端主機120的人工智慧模型,而且由於這些權重值的產生都是受到客戶端主機120的用戶行為狀態及客製化參數所影響,例如:第一訓練資料受到用戶行為狀態和客製化參數影響;第二訓練資料本身為客製化參數。因此,這些權重值專屬於客戶端主機120,應用這些權重值的人工智慧模型將非常適用於客戶端主機120。而且,經更新後的套件設定是伺服端主機130依據先前客戶端主機120感測到的用戶行為狀態及傳送的客製化參數所訓練出的權重值進行萃取,可有效降低伺服端主機130訓練模型算力的負載。As shown in "Figure 4", "Figure 4" is a schematic diagram of applying the present invention to set and update customized parameters through a status template. In actual implementation, after the
綜上所述,可知本發明與先前技術之間的差異在於透過用戶行為狀態及客製化參數生成具有自然語言結構的粗略提問訊息,再將粗略提問訊息輸入至邏輯電路以生成精確提問訊息且傳送至人工智慧平台以獲得相應的回答訊息作為第一訓練資料,以及將客製化參數作為第二訓練資料,再將兩種訓練資料輸入至人工智慧模型進行訓練,當訓練完成後擷取權重值進行轉譯以分別對應不同的客製化參數,並且將轉譯結果提供客戶端主機下載,以便進行客製化設定及更新,實務上,客戶端主機下載的更新套件,會再依據其在伺服端主機所訓練完成的權重值反饋給用戶進行客製化的設定,但首次使用的客戶仍須仰賴伺服端主機的學習/訓練過程,因此更新套件的另一實質意義在於萃取學習/訓練後客製化的權重值來降低伺服端主機反覆學習的算力負載,藉由此一技術手段可以解決先前技術所存在的問題,進而達成提高模型客製化的便利性及專屬性之技術功效。In summary, the difference between the present invention and the prior art is that a rough question message with a natural language structure is generated through user behavior status and customized parameters, and then the rough question message is input into the logic circuit to generate a precise question message and sent to the artificial intelligence platform to obtain the corresponding answer message as the first training data, and the customized parameters are used as the second training data, and then the two training data are input into the artificial intelligence model for training. After the training is completed, the weight value is extracted for translation to correspond to different customized parameters respectively, and the translation result is provided to the client host. Download for customized settings and updates. In practice, the update package downloaded by the client host will be fed back to the user for customized settings based on the weight values trained on the server host. However, first-time users still need to rely on the learning/training process of the server host. Therefore, another practical significance of the update package is to extract the customized weight values after learning/training to reduce the computing power load of the server host's repeated learning. This technical means can solve the problems existing in previous technologies, thereby achieving the technical effect of improving the convenience and exclusivity of model customization.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。Although the present invention is disclosed as above by the aforementioned embodiments, they are not used to limit the present invention. Anyone skilled in similar techniques can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of patent protection of the present invention shall be subject to the scope of the patent application attached to this specification.
110:人工智慧平台 120:客戶端主機 121:傳感器 122:第一非暫態計算機可讀儲存媒體 123:第一硬體處理器 130:伺服端主機 131:邏輯電路 132:第二非暫態計算機可讀儲存媒體 133:第二硬體處理器 410:設定視窗 411:篩選元件 412:輸入區塊 413:確定元件 步驟210:將一伺服端主機分別與一人工智慧平台及一客戶端主機相互連接 步驟220:該客戶端主機通過至少一傳感器持續感測生理狀態、臉部表情及肢體動作至少其中之一以生成一用戶行為狀態 步驟230:該客戶端主機下載一更新套件,其中,所述更新套件提供一狀態模板以允許設定及更新至少一客製化參數 步驟240:該客戶端主機持續將該用戶行為狀態及所述客製化參數傳送至該伺服端主機 步驟250:該伺服端主機根據接收到的所述用戶行為狀態及所述客製化參數生成具有自然語言結構的一粗略提問訊息,並且將該粗略提問訊息輸入串接的一第一有限狀態機及一第二有限狀態機進行解析及轉換狀態以生成一精確提問訊息,其中,該第一有限狀態機接收該粗略提問訊息及來自該人工智慧平台的一回答訊息,該第一有限狀態機的輸出作為該第二有限狀態機的輸入,該第二有限狀態機通過該人工智慧平台的一應用程式介面(Application Programming Interface, API)輸出該精確提問訊息至該人工智慧平台 步驟260:該人工智慧平台將該精確提問訊息輸入至大型語言模型(Large Language Model, LLM)以產生該回答訊息,再通過該應用程式介面將該回答訊息傳送至該伺服端主機 步驟270:該伺服端主機自該人工智慧平台接收與所述精確提問訊息相應的所述回答訊息作為一第一訓練資料,以及將接收到的所述客製化參數作為一第二訓練資料,並且將該第二訓練資料與該第一訓練資料一併輸入至一人工智慧模型進行訓練,當訓練完成後,擷取該人工智慧模型的多個權重值 步驟280:該伺服端主機將所述權重值進行轉譯以分別對應不同的所述客製化參數,並且將轉譯結果嵌入至該更新套件的該狀態模板以提供該客戶端主機下載 110: artificial intelligence platform 120: client host 121: sensor 122: first non-transient computer-readable storage medium 123: first hardware processor 130: server host 131: logic circuit 132: second non-transient computer-readable storage medium 133: second hardware processor 410: setting window 411: filter component 412: input block 413: determine component Step 210: connect a server host to an artificial intelligence platform and a client host respectively Step 220: The client host continuously senses at least one of physiological state, facial expression and body movement through at least one sensor to generate a user behavior state Step 230: The client host downloads an update package, wherein the update package provides a state template to allow setting and updating at least one customized parameter Step 240: The client host continuously transmits the user behavior state and the customized parameter to the server host Step 250: The server host generates a rough question message with a natural language structure according to the received user behavior state and the customized parameters, and inputs the rough question message into a first finite state machine and a second finite state machine connected in series for parsing and state conversion to generate a precise question message, wherein the first finite state machine receives the rough question message and an answer message from the artificial intelligence platform, the output of the first finite state machine is used as the input of the second finite state machine, and the second finite state machine outputs the precise question message to the artificial intelligence platform through an application programming interface (API) of the artificial intelligence platform Step 260: The artificial intelligence platform inputs the precise question message into a large language model (Large Language Model, LLM) to generate the answer message, and then transmit the answer message to the server host through the application program interface Step 270: The server host receives the answer message corresponding to the precise question message from the artificial intelligence platform as a first training data, and uses the received customized parameters as a second training data, and inputs the second training data and the first training data into an artificial intelligence model for training. After the training is completed, multiple weight values of the artificial intelligence model are extracted Step 280: The server host translates the weight values to correspond to different customized parameters, and embeds the translated results into the status template of the update package to provide the client host with download
第1圖為本發明具主動聊天應答的客製化設定及更新下載系統的系統方塊圖。 第2A圖及第2B圖為本發明具主動聊天應答的客製化設定及更新下載方法的方法流程圖。 第3圖為應用本發明的客戶端主機、伺服端主機及人工智慧平台之示意圖。 第4圖為應用本發明通過狀態模板設定及更新客製化參數之示意圖。 Figure 1 is a system block diagram of the system for customized setting and updating downloading of active chat response of the present invention. Figure 2A and Figure 2B are method flow charts of the method for customized setting and updating downloading of active chat response of the present invention. Figure 3 is a schematic diagram of the client host, server host and artificial intelligence platform of the present invention. Figure 4 is a schematic diagram of the application of the present invention to set and update customized parameters through status templates.
110:人工智慧平台 110: Artificial Intelligence Platform
120:客戶端主機 120: Client host
121:傳感器 121:Sensor
122:第一非暫態計算機可讀儲存媒體 122: First non-transitory computer-readable storage medium
123:第一硬體處理器 123: First hardware processor
130:伺服端主機 130: Server host
131:邏輯電路 131:Logic circuit
132:第二非暫態計算機可讀儲存媒體 132: Second non-transitory computer-readable storage medium
133:第二硬體處理器 133: Second hardware processor
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112124260A TWI846528B (en) | 2023-06-29 | 2023-06-29 | Customizing setting and updating download system with proactive chat response mode and method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112124260A TWI846528B (en) | 2023-06-29 | 2023-06-29 | Customizing setting and updating download system with proactive chat response mode and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI846528B true TWI846528B (en) | 2024-06-21 |
| TW202501310A TW202501310A (en) | 2025-01-01 |
Family
ID=92541944
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112124260A TWI846528B (en) | 2023-06-29 | 2023-06-29 | Customizing setting and updating download system with proactive chat response mode and method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI846528B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI868037B (en) * | 2024-06-27 | 2024-12-21 | 愛因創新股份有限公司 | Teaching content generation method |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170180294A1 (en) * | 2015-12-21 | 2017-06-22 | Google Inc. | Automatic suggestions for message exchange threads |
| CN106910513A (en) * | 2015-12-22 | 2017-06-30 | 微软技术许可有限责任公司 | Emotional intelligence chat engine |
| US10013504B2 (en) * | 2012-11-28 | 2018-07-03 | BloomReach Inc. | Search with autosuggest and refinements |
| CN110211582A (en) * | 2019-05-31 | 2019-09-06 | 量子动力(深圳)计算机科技有限公司 | A kind of real-time, interactive intelligent digital virtual actor's facial expression driving method and system |
| TW202014980A (en) * | 2018-09-29 | 2020-04-16 | 香港商阿里巴巴集團服務有限公司 | Method and apparatus for detecting security awareness of user |
| TW202022647A (en) * | 2018-12-04 | 2020-06-16 | 財團法人工業技術研究院 | Controlling system and controlling method for social network |
| WO2021196920A1 (en) * | 2020-04-03 | 2021-10-07 | 腾讯科技(深圳)有限公司 | Intelligent question answering method, apparatus and device, and computer-readable storage medium |
-
2023
- 2023-06-29 TW TW112124260A patent/TWI846528B/en active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10013504B2 (en) * | 2012-11-28 | 2018-07-03 | BloomReach Inc. | Search with autosuggest and refinements |
| US20170180294A1 (en) * | 2015-12-21 | 2017-06-22 | Google Inc. | Automatic suggestions for message exchange threads |
| CN106910513A (en) * | 2015-12-22 | 2017-06-30 | 微软技术许可有限责任公司 | Emotional intelligence chat engine |
| TW202014980A (en) * | 2018-09-29 | 2020-04-16 | 香港商阿里巴巴集團服務有限公司 | Method and apparatus for detecting security awareness of user |
| TW202022647A (en) * | 2018-12-04 | 2020-06-16 | 財團法人工業技術研究院 | Controlling system and controlling method for social network |
| CN110211582A (en) * | 2019-05-31 | 2019-09-06 | 量子动力(深圳)计算机科技有限公司 | A kind of real-time, interactive intelligent digital virtual actor's facial expression driving method and system |
| WO2021196920A1 (en) * | 2020-04-03 | 2021-10-07 | 腾讯科技(深圳)有限公司 | Intelligent question answering method, apparatus and device, and computer-readable storage medium |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI868037B (en) * | 2024-06-27 | 2024-12-21 | 愛因創新股份有限公司 | Teaching content generation method |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202501310A (en) | 2025-01-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN117178274B (en) | Generate intermediate text analysis to serve machine learning language models for contextual text generation | |
| CN110347817B (en) | Intelligent response method and device, storage medium and electronic equipment | |
| CN114528898A (en) | Scene graph modification based on natural language commands | |
| Dhanasekar et al. | A chatbot to promote students mental health through emotion recognition | |
| US20250021610A1 (en) | Human-machine interaction method and apparatus, electronic device and storage medium | |
| WO2018192567A1 (en) | Method for determining emotional threshold and artificial intelligence device | |
| TWI846528B (en) | Customizing setting and updating download system with proactive chat response mode and method thereof | |
| US20240428042A1 (en) | Active Chatbot System with Composite Finite State Machine and Method Thereof | |
| CN117216223A (en) | Dialogue text generation method and device, storage medium and electronic equipment | |
| CN117216553A (en) | Pre-training method, adjusting method, recommending method and related products of recommending model | |
| CN113569017A (en) | Model processing method and device, electronic equipment and storage medium | |
| US20240428043A1 (en) | Active Chatbot System with Customized Setting and Updating Download and Method Thereof | |
| CN113553413A (en) | Method, device, electronic device and storage medium for generating dialog state | |
| CN108229640B (en) | Emotional expression method, device and robot | |
| Gupta et al. | Neuromorphic time-multiplexed reservoir computing with on-the-fly weight generation for edge devices | |
| CN112925894B (en) | Method, system and device for matching bid-asking questions in conversation | |
| TWI884472B (en) | Active chatbot system with composite finite state machines and method thereof | |
| KR20200094853A (en) | Electronic device and Method for controlling the electronic device thereof | |
| TWI851306B (en) | Active chatbot system with behavioral awareness and on-demand conversational and method thereof | |
| CN111090740B (en) | A knowledge graph generation method for dialogue systems | |
| CN118692450A (en) | Question and answer processing method, device, equipment, storage medium and program product | |
| CN116955553A (en) | System and method for active chat robot with behavior perception and on-demand dialogue | |
| US12493637B2 (en) | Active chatbot system with behavioral awareness and on-demand conversation and method thereof | |
| CN117609795A (en) | Model training method, text description method, device, equipment and medium of action | |
| Wang et al. | Big Data Mining Analysis Technology For Natural Language Processing Robot Design |