TWI842945B - Photo-detecting apparatus with subpixels - Google Patents

Photo-detecting apparatus with subpixels Download PDF

Info

Publication number
TWI842945B
TWI842945B TW109129437A TW109129437A TWI842945B TW I842945 B TWI842945 B TW I842945B TW 109129437 A TW109129437 A TW 109129437A TW 109129437 A TW109129437 A TW 109129437A TW I842945 B TWI842945 B TW I842945B
Authority
TW
Taiwan
Prior art keywords
region
detection device
light detection
pixel
sub
Prior art date
Application number
TW109129437A
Other languages
Chinese (zh)
Other versions
TW202137525A (en
Inventor
鄭斯璘
陳建宇
陳書履
那允中
楊閔傑
漢鼎 劉
梁哲夫
Original Assignee
美商光程研創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商光程研創股份有限公司 filed Critical 美商光程研創股份有限公司
Publication of TW202137525A publication Critical patent/TW202137525A/en
Application granted granted Critical
Publication of TWI842945B publication Critical patent/TWI842945B/en

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A photo-detecting apparatus is provided. The photo-detecting apparatus includes at least one pixel, and each pixel includes N subpixels, wherein each of the subpixels comprises a detection region, two first conductive contacts, wherein the detection region is between the two first conductive contacts, wherein N is a positive integer and is ≥2.

Description

具有子像素的光檢測設備Light detection device with sub-pixels

本揭露涉及使用光電二極體檢測光。 The present disclosure relates to detecting light using a photodiode.

光電探測器可用於檢測光學信號,並將光學信號轉換成電信號,該電信號可由另一電路進一步處理。光電探測器可用於消費電子產品、圖像感測器、資料通信、飛行時間測距(TOF)或成像感測器、醫療設備和許多其他合適的應用。然而,當光電探測器以單一個或陣列配置應用於這些產品時,漏電流、暗電流、電/光串擾和功耗會降低性能。 Photodetectors can be used to detect optical signals and convert them into electrical signals that can be further processed by another circuit. Photodetectors can be used in consumer electronics, image sensors, data communications, time-of-flight (TOF) or imaging sensors, medical devices, and many other suitable applications. However, when photodetectors are applied to these products in single or array configurations, leakage current, dark current, electrical/optical crosstalk, and power consumption can degrade performance.

根據本揭露的實施例,提供了一種光檢測設備。光檢測設備包括半導體基底。第一鍺基(germanium-based)光吸收材料由半導體基底所支撐,並被配置為吸收具有大於800奈米的第一波長的第一光學信號。第一金屬線電耦合到第一鍺基光吸收材料的第一區域。第二金屬線電耦合到第一鍺基光吸收材料的第二區域。第一區域未摻雜或摻雜有第一類型的摻雜劑。第二區域摻雜有第二類型的摻雜劑。第一金屬線被配置為控制在第一鍺基光吸收材料內部產生的第一類型光生載流子(photo-generated carriers)的量,以被第二區域收集。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes a semiconductor substrate. A first germanium-based light absorbing material is supported by the semiconductor substrate and is configured to absorb a first optical signal having a first wavelength greater than 800 nanometers. A first metal wire is electrically coupled to a first region of the first germanium-based light absorbing material. A second metal wire is electrically coupled to a second region of the first germanium-based light absorbing material. The first region is undoped or doped with a first type of dopant. The second region is doped with a second type of dopant. The first metal wire is configured to control the amount of a first type of photo-generated carriers generated inside the first germanium-based light absorbing material to be collected by the second region.

根據本揭露的實施例,提供了一種光檢測方法。該光檢測方法包括 發送由第一調變信號調變(modulated)的光學信號,其中該光學信號由第一調變信號在多個時間幀內以一個或多個預定相位被調變。反射的光學信號被光電探測器接收。反射的光學信號由一個或多個解調變信號來解調變(demodulated),其中一個或多個解調變信號是具有多個時間幀的一個或多個預定相位的信號。在電容器上輸出至少一個電壓信號。 According to an embodiment of the present disclosure, a method for optical detection is provided. The method for optical detection includes: Sending an optical signal modulated by a first modulation signal, wherein the optical signal is modulated by the first modulation signal at one or more predetermined phases in multiple time frames. The reflected optical signal is received by a photodetector. The reflected optical signal is demodulated by one or more demodulation signals, wherein the one or more demodulation signals are signals with one or more predetermined phases in multiple time frames. At least one voltage signal is output on a capacitor.

根據本揭露的實施例,提供了一種光檢測設備。光檢測設備包括至少一個像素,每個像素包括N個子像素,其中每個子像素包括檢測區域和兩個第一導電接觸,其中檢測區域位於兩個第一導電接觸之間,其中N為正整數且

Figure 109129437-A0305-02-0004-19
2。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes at least one pixel, each pixel includes N sub-pixels, wherein each sub-pixel includes a detection region and two first conductive contacts, wherein the detection region is located between the two first conductive contacts, wherein N is a positive integer and
Figure 109129437-A0305-02-0004-19
2.

根據本揭露的實施例,提供了一種光檢測設備。光檢測設備包括第一像素和與第一像素相鄰的第二像素,其中第一像素和第二像素中的每一個包括N個檢測區域、有2N個第一導電接觸,每一個第一導電接觸各自耦合到檢測區域之一、有2N個第二導電接觸,每一個第二導電接觸各自耦合到檢測區域之一,其中N是正整數且

Figure 109129437-A0305-02-0004-9
2,以及第一像素和第二像素之間的隔離區域。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes a first pixel and a second pixel adjacent to the first pixel, wherein each of the first pixel and the second pixel includes N detection regions, 2N first conductive contacts, each of which is coupled to one of the detection regions, and 2N second conductive contacts, each of which is coupled to one of the detection regions, wherein N is a positive integer and
Figure 109129437-A0305-02-0004-9
2, and an isolation region between the first pixel and the second pixel.

根據本揭露的實施例,提供了一種光檢測設備。光檢測設備包括光檢測設備,該光檢測設備包括像素,並且該像素包括N個子像素,其中每個子像素包括檢測區域和兩個開關,其中檢測區域在兩個開關之間,其中N是正整數並且

Figure 109129437-A0305-02-0004-11
2。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes a light detection device, the light detection device includes a pixel, and the pixel includes N sub-pixels, wherein each sub-pixel includes a detection area and two switches, wherein the detection area is between the two switches, wherein N is a positive integer and
Figure 109129437-A0305-02-0004-11
2.

根據本揭露的實施例,提供了一種成像系統。成像系統包括能夠發光的發射器單元,以及包括圖像感測器的接收器單元,該圖像感測器包括:光檢測設備,包括:多個像素,其中每個像素包括:N個子像素,其中每個子像素包括檢測區域和兩個第一導電接觸,其中檢測區域在兩個第一導電接觸之間,並且檢測區域被配置為吸收具有某一波長的光子,並且從吸收的光子產生光載流子;其中,N為正整數且

Figure 109129437-A0305-02-0004-13
2。 According to an embodiment of the present disclosure, an imaging system is provided. The imaging system includes an emitter unit capable of emitting light, and a receiver unit including an image sensor, the image sensor including: a light detection device including: a plurality of pixels, wherein each pixel includes: N sub-pixels, wherein each sub-pixel includes a detection region and two first conductive contacts, wherein the detection region is between the two first conductive contacts, and the detection region is configured to absorb photons having a certain wavelength and generate photocarriers from the absorbed photons; wherein N is a positive integer and
Figure 109129437-A0305-02-0004-13
2.

在本文公開的實施例的其他優點和益處中,這些實施例提供了一種能夠至少有效地吸收但不限於近紅外光(NIR)或短波紅外光(SWIR)的光檢測設備。在一些實施例中,光電檢測裝置提供高解調變對比度、低漏電流、低暗電流、低功耗、低電/光串擾和/或用於晶片尺寸小型化的架構。在一些實施例中,光檢測設備能夠處理具有多個波長的入射光學信號,包括不同的調變方案和/或時分(time-division)功能。此外,光檢測設備可以用於飛行時間(ToF)應用,其可以在比可見光波長更長的波長(例如,近紅外光和短波紅外光範圍)下工作。元件/材料實施者可以設計/製造100%鍺或具有預定百分比(例如,大於80%鍺)的鍺的合金(例如,鍺矽),其可以是本征(也就是純粹的半導體材料)的或非本征的,以作為光吸收材料以吸收上述波長的光。 Among other advantages and benefits of the embodiments disclosed herein, these embodiments provide a light detection device capable of effectively absorbing at least but not limited to near infrared light (NIR) or short wave infrared light (SWIR). In some embodiments, the photodetection device provides high demodulation contrast, low leakage current, low dark current, low power consumption, low electrical/optical crosstalk and/or an architecture for chip size miniaturization. In some embodiments, the light detection device is capable of processing incident optical signals with multiple wavelengths, including different modulation schemes and/or time-division functions. In addition, the light detection device can be used for time-of-flight (ToF) applications, which can operate at wavelengths longer than visible light wavelengths (e.g., near infrared and short wave infrared ranges). Component/material implementers can design/fabricate 100% germanium or an alloy (e.g., germanium-silicon) with a predetermined percentage (e.g., greater than 80% germanium) of germanium, which can be intrinsic (i.e., pure semiconductor material) or extrinsic, to act as a light absorbing material to absorb light of the above wavelengths.

本揭露的這些和其他目的,對於本領域的普通技術人員來說,在閱讀了在各種附圖中示出的替代實施例的以下詳細描述之後,將變得顯而易見。 These and other objects of the present disclosure will become apparent to those of ordinary skill in the art after reading the following detailed description of alternative embodiments illustrated in the various accompanying drawings.

在閱讀了在各種附圖和圖示中示出的較佳實施例的以下詳細描述之後,本揭露的這些和其他目的對於本領域普通技術人員來說無疑將變得顯而易見。 These and other objects of the present disclosure will no doubt become apparent to those of ordinary skill in the art after reading the following detailed description of the preferred embodiments illustrated in the various accompanying drawings and illustrations.

100a:光檢測設備 100a: Light detection equipment

100b:光檢測設備 100b: Optical detection equipment

100c:光檢測設備 100c: Optical detection equipment

100d:光檢測設備 100d: Light detection equipment

100e:光檢測設備 100e: Optical detection equipment

100f:光檢測設備 100f: Light detection equipment

101a:摻雜區域 101a: mixed area

101b:摻雜區域 101b: mixed area

102:光吸收材料 102: Light absorbing material

102s:表面 102s: Surface

103a:區域(摻雜區域) 103a: Area (mixed area)

103b:摻雜區域 103b: Doped area

104:半導體基底 104:Semiconductor substrate

105a:未摻雜區域 105a: Undoped area

105b:未摻雜區域 105b: Undoped area

106a:控制金屬線 106a: Control metal wire

106b:控制金屬線 106b: Control metal wire

108a:讀出金屬線 108a: Read the metal wire

108b:讀出金屬線 108b: Reading metal wire

110a:電容器 110a: Capacitor

110b:電容器 110b:Capacitor

200a:光檢測設備 200a: Light detection equipment

200b:光檢測設備 200b: Optical detection equipment

200c:光檢測設備 200c: Optical detection equipment

200d:光檢測設備 200d: Light detection equipment

200e:光檢測設備 200e: Optical detection equipment

200f:光檢測設備 200f: Light detection equipment

200g:光檢測設備 200g: Optical detection equipment

200h:光檢測設備 200h: Light detection equipment

201a:N型區域 201a: N-type region

201b:N型區域 201b: N-type region

202s:表面 202s: Surface

203a:P型區域 203a: P-type region

203b:P型區域 203b: P-type region

204v:矽通孔 204v:Through Silicon Via

206a:控制金屬線 206a: Control metal wire

206b:控制金屬線 206b: Control metal wire

207a:N型區域 207a: N-type region

207b:N型區域 207b: N-type region

208a:讀出金屬線 208a: Reading the metal wire

208b:讀出金屬線 208b: Reading metal wire

300a:光檢測設備 300a: Light detection equipment

300b:光檢測設備 300b: Optical detection equipment

301a:N型區域 301a: N-type region

301b:N型區域 301b: N-type region

302:光吸收材料 302: Light absorbing material

302s:表面 302s: Surface

302ss:表面 302ss: Surface

303a:P型區域 303a: P-type region

303b:P型區域 303b: P-type region

304:半導體基底 304:Semiconductor substrate

306a:控制金屬線 306a: Control metal wire

306b:控制金屬線 306b: Control metal wire

308a:讀出金屬線 308a: Reading metal wire

308b:讀出金屬線 308b: Reading metal wire

309a:空乏區域 309a: Empty area

309b:空乏區域 309b: Empty area

312:介電層 312: Dielectric layer

314v:矽通孔 314v:Through Silicon Via

314u:矽通孔 314u:Through Silicon Via

400a:光檢測設備 400a: Light detection equipment

400b:光檢測設備 400b: Optical detection equipment

400c:光檢測設備 400c: Light detection equipment

400d:光檢測設備 400d: Light detection equipment

401a:N型區域 401a: N-type region

401b:N型區域 401b: N-type region

402:光吸收材料 402: Light absorbing material

402s:表面 402s: Surface

403a:P型區域 403a: P-type region

403b:P型區域 403b: P-type region

404:半導體基底 404:Semiconductor substrate

406a:控制金屬線 406a: Control metal wire

406b:控制金屬線 406b: Control metal wire

408a:讀出金屬線 408a: Read the metal wire

408b:讀出金屬線 408b: Read out metal wire

411a:N阱 411a: N well

411b:N阱 411b: N well

451a:P阱 451a:P well

451b:P阱 451b:P well

500a:光檢測設備 500a: Light detection equipment

501a:N型區域 501a: N-type region

501b:N型區域 501b: N-type region

502:光吸收材料 502: Light absorbing material

502s:表面 502s: Surface

503a:P型區域 503a: P-type region

503b:P型區域 503b: P-type region

504:半導體基底 504:Semiconductor substrate

506a:控制金屬線 506a: Control metal wire

506b:控制金屬線 506b: Control metal wire

508a:讀出金屬線 508a: Reading metal wire

508b:讀出金屬線 508b: Read out metal wire

513a:矽化物 513a: Silicide

513b:矽化物 513b: Silicide

514:鈍化層 514: Passivation layer

515a:矽化物 515a: Silicide

515b:矽化物 515b: Silicide

600a:光檢測設備 600a: Light detection equipment

600b:光檢測設備 600b: Optical detection equipment

600c:光檢測設備 600c: Optical detection equipment

601a:N型區域 601a: N-type region

601b:N型區域 601b: N-type region

602:光吸收材料 602: Light absorbing material

602s:表面 602s: Surface

602ss:表面 602ss:Surface

603a:P型區域 603a: P-type region

603b:P型區域 603b: P-type region

604:半導體基底 604:Semiconductor substrate

604v:矽通孔 604v:Through Silicon Via

606a:控制金屬線 606a: Control metal wire

606b:控制金屬線 606b: Control metal wire

608a:讀出金屬線 608a: Reading metal wire

608b:讀出金屬線 608b: Reading metal wire

617:N型區域 617: N-type region

619:P型區域 619: P-type region

700a:光檢測設備 700a: Light detection equipment

700b:光檢測設備 700b: Optical detection equipment

700c:光檢測設備 700c: Optical detection equipment

700d:光檢測設備 700d: Light detection equipment

701a:N型區域 701a: N-type region

701b:N型區域 701b: N-type region

702:光吸收材料 702: Light absorbing material

702s:表面 702s: Surface

703a:P型區域 703a: P-type region

703b:P型區域 703b: P-type region

704:半導體基底 704:Semiconductor substrate

706a:控制金屬線 706a: Control metal wire

706b:控制金屬線 706b: Control metal wire

708a:讀出金屬線 708a: Reading metal wire

708b:讀出金屬線 708b: Read out metal wire

716a:金屬 716a:Metal

716b:金屬 716b:Metal

716ad:空乏區域 716ad: Empty area

716bd:空乏區域 716bd: Empty area

716ae:極化介電層 716ae: Polarized dielectric layer

716be:極化介電層 716be: Polarized dielectric layer

718a:金屬 718a:Metal

718b:金屬 718b:Metal

718ad:空乏區域 718ad: Empty area

718bd:空乏區域 718bd: Empty area

718ae:極化介電層 718ae: Polarized dielectric layer

718be:極化介電層 718be:Polarized dielectric layer

721:金屬 721:Metal

721d:空乏區域 721d: Empty area

721e:極化介電層 721e: Polarized dielectric layer

723a:金屬 723a:Metal

723b:金屬 723b:Metal

725a:極化介電層 725a: Polarized dielectric layer

725b:極化介電層 725b: Polarized dielectric layer

800a:光檢測設備 800a: Optical detection equipment

800b:光檢測設備 800b: Optical detection equipment

801a:N型區域 801a: N-type region

801b:N型區域 801b: N-type region

802:光吸收材料 802: Light absorbing material

802s:表面 802s: Surface

803a:P型區域 803a: P-type region

803b:P型區域 803b: P-type region

804:半導體基底 804:Semiconductor substrate

806a:控制金屬線 806a: Control metal wire

806b:控制金屬線 806b: Control metal wire

808a:讀出金屬線 808a: Reading metal wire

808b:讀出金屬線 808b: Reading metal wire

829:離子處理區域 829: Ion treatment area

831a:離子處理區域 831a: Ion treatment area

831b:離子處理區域 831b: Ion treatment area

833a:離子處理區域 833a: Ion treatment area

833b:離子處理區域 833b: Ion treatment area

900a:光檢測設備 900a: Light detection equipment

900b:光檢測設備 900b: Optical detection equipment

900c:光檢測設備 900c: Optical detection equipment

900d:光檢測設備 900d: Light detection equipment

900e:光檢測設備 900e: Optical detection equipment

901a:N型區域 901a: N-type region

901b:N型區域 901b: N-type region

902:光吸收材料 902: Light absorbing material

902s:表面 902s: Surface

903a:P型區域 903a: P-type region

903b:P型區域 903b: P-type region

904:半導體基底 904:Semiconductor substrate

906a:控制金屬線 906a: Control metal wire

906b:控制金屬線 906b: Control metal wire

908a:讀出金屬線 908a: Read the metal wire

908b:讀出金屬線 908b: Read out the metal wire

924:隔離區域 924: Isolation area

924a:隔離區域 924a: Isolation area

924b:溝槽隔離區域 924b: Groove isolation area

1000a:光檢測設備 1000a: Light detection equipment

1000b:光檢測設備 1000b: Optical detection equipment

1000c:光檢測設備 1000c: Optical detection equipment

1000d:光檢測設備 1000d: Light detection equipment

1001a:N型區域 1001a: N-type region

1001b:N型區域 1001b: N-type region

1002:光吸收材料 1002: Light absorbing material

1002s:表面 1002s: Surface

1002ss:表面 1002ss:Surface

1003a:P型區域 1003a: P-type region

1003b:P型區域 1003b: P-type region

1004:半導體基底 1004:Semiconductor substrate

1005a:未摻雜區域 1005a: Undoped area

1005b:未摻雜區域 1005b: Undoped area

1006a:控制金屬線 1006a: Control metal wire

1006b:控制金屬線 1006b: Control metal wire

1008a:讀出金屬線 1008a: Read the metal wire

1008b:讀出金屬線 1008b: Read out metal wire

1010a:電容器 1010a:Capacitor

1010b:電容器 1010b:Capacitor

1011a:N阱 1011a: N well

1011b:N阱 1011b: N well

1013a:矽化物 1013a: Silicide

1013b:矽化物 1013b: Silicide

1014:鈍化層 1014: Passivation layer

1015a:矽化物 1015a: Silicide

1015b:矽化物 1015b: Silicide

1019:P型區域 1019: P-type region

1021:金屬 1021: Metal

1024:隔離區域 1024: Isolation area

1100a:光檢測設備 1100a: Light detection equipment

1100b:光檢測設備 1100b: Optical detection equipment

1100c:光檢測設備 1100c: Optical detection equipment

1100d:光檢測設備 1100d: Optical detection equipment

1100e:光檢測設備 1100e: Optical detection equipment

1101a:N型區域 1101a: N-type region

1101b:N型區域 1101b: N-type region

1102:光吸收材料 1102: Light absorbing material

1103a:P型區域 1103a: P-type region

1103b:P型區域 1103b: P-type region

1106a:控制金屬線 1106a: Control metal wire

1106b:控制金屬線 1106b: Control metal wire

1108a:讀出金屬線 1108a: Read out metal wire

1108b:讀出金屬線 1108b: Read out metal wire

1200a:光檢測設備(像素陣列) 1200a: Light detection equipment (pixel array)

1200b:光檢測設備 1200b: Optical detection equipment

12021:像素 12021: pixels

12022:像素 12022: pixels

12023:像素 12023: pixels

12024:像素 12024: pixels

1300a:光檢測設備 1300a: Light detection equipment

1302:像素陣列 1302: Pixel array

1302a:第一像素陣列 1302a: first pixel array

1302b:第二像素陣列 1302b: Second pixel array

1304:雷射二極體驅動器 1304: Laser diode driver

1306:雷射二極體 1306: Laser diode

1308:定時器驅動器 1308:Timer driver

13081:定時器驅動器 13081:Timer driver

13082:定時器驅動器 13082:Timer driver

13083:定時器驅動器 13083:Timer driver

1310:目標物體 1310: Target object

1401:步驟 1401: Steps

1402:步驟 1402: Steps

1403:步驟 1403: Steps

1404:步驟 1404: Steps

1501:基底 1501: Base

1502:光吸收材料 1502: Light absorbing material

1505:電極(N+端子) 1505: Electrode (N+ terminal)

1506:電極(P+端子) 1506: Electrode (P+ terminal)

1507:吸收區域 1507: Absorption area

1508:光學開口 1508: Optical opening

1511:光學信號 1511: Optical signal

1512:光學信號 1512: Optical signal

1515:電極(N+端子) 1515: Electrode (N+ terminal)

1516:P+端子 1516:P+ terminal

1518:吸收區域 1518: Absorption area

1516:電極 1516:Electrode

1525:N+端 1525: N+ terminal

1526:P+端子 1526:P+ terminal

1527:絕緣摻雜阱 1527: Insulation doped trap

1535:N+端子 1535: N+ terminal

1536:P+端子 1536:P+ terminal

1545:絕緣區域 1545: Isolation zone

1600:像素 1600: pixels

1600’:像素 1600’: Pixels

1600a:子像素 1600a: sub-pixel

1600b:子像素 1600b: sub-pixel

1600c:子像素 1600c: Sub-pixel

1600d:子像素 1600d: Sub-pixel

1610:吸收區域 1610: Absorption area

1611a:第一摻雜區域 1611a: First doping region

1611b:第一摻雜區域 1611b: First doping region

1612a:第二摻雜區域 1612a: Second doping area

1612b:第二摻雜區域 1612b: Second doping area

1613:檢測區域 1613: Detection area

1613a:反向摻雜區域 1613a: Reverse doping region

1613b:反向摻雜區域 1613b: Reverse doping region

1614:第三摻雜區域 1614: The third mixed area

1615:第四摻雜區域 1615: The fourth mixed area

1616a:第一邊 1616a: First side

1616b:第一邊 1616b: First side

1617a:第二邊 1617a: Second side

1617b:第二邊 1617b: Second side

1620:基底 1620: Base

1621:上表面 1621: Upper surface

1622:底面 1622: Bottom

1631a:第一導電接觸 1631a: First conductive contact

1631b:第一導電接觸 1631b: First conductive contact

1632a:第二導電接觸 1632a: Second conductive contact

1632b:第二導電接觸 1632b: Second conductive contact

1633a:第一介電層 1633a: First dielectric layer

1633b:第二介電層 1633b: Second dielectric layer

1640:阻擋層 1640: Barrier layer

1650:隔離區域 1650: Isolation area

1660:遮光層 1660: Shading layer

1661:開口 1661: Open mouth

1671a:第一讀出電路 1671a: First readout circuit

1671b:第二讀出電路 1671b: Second readout circuit

1672a:第一控制信號 1672a: First control signal

1672b:第二控制信號 1672b: Second control signal

1673a:第一公共讀出電路 1673a: First public readout circuit

1673b:第二公共讀出電路 1673b: Second public readout circuit

1674:公共控制信號 1674: Public control signal

1674a:第一公共控制信號 1674a: First public control signal

1674b:第二公共控制信號 1674b: Second public control signal

1700:像素 1700: pixels

1710:吸收區域 1710: Absorption area

1711a:第一摻雜區域 1711a: First doping region

1711b:第一摻雜區域 1711b: First doping region

1712a:第二摻雜區域 1712a: Second doping area

1712b:第二摻雜區域 1712b: Second doping area

1713:檢測區域 1713: Detection area

1725:隔離區域 1725: Isolation area

1733:介電層 1733: Dielectric layer

1735:隔離區域 1735: Isolation area

1731a:第一導電接觸 1731a: First conductive contact

1731b:第一導電接觸 1731b: First conductive contact

1732a:第二導電接觸 1732a: Second conductive contact

1732b:第二導電接觸 1732b: Second conductive contact

1740:阻擋層 1740: Barrier layer

1760:短路結構 1760: Short circuit structure

1765:第一阱區域 1765: First well region

1766:第二阱區域 1766: Second well region

1767:導電接觸 1767: Conductive contact

1768:導電接觸 1768: Conductive contact

1771a:第一讀出電路 1771a: First readout circuit

1771b:第二讀出電路 1771b: Second readout circuit

1772a:第一控制信號 1772a: First control signal

1772b:第二控制信號 1772b: Second control signal

1790:開關 1790: Switch

1791:控制區域 1791: Control area

1792:讀出區域 1792: Read out area

AR:吸收區域 AR: Absorption area

AR1:吸收區域 AR1: Absorption area

AR2:吸收區域 AR2: Absorption area

AR3:吸收區域 AR3: Absorption area

AR4:吸收區域 AR4: Absorption area

CLK1:定時器信號 CLK1: timer signal

CLK2:定時器信號 CLK2: timer signal

CLK3:定時器信號 CLK3: timer signal

C1:端點 C1: endpoint

C2:端點 C2: Endpoint

C3:端點 C3: Endpoint

C4:端點 C4: Endpoint

ca1:偏壓 ca1: bias voltage

ca2:偏壓 ca2: bias voltage

ca3:偏壓 ca3: bias voltage

cs1:控制信號 cs1: control signal

cs2:控制信號 cs2: control signal

D1:水平方向 D1: Horizontal direction

d1:深度 d1: depth

d2:深度 d2: depth

IL:光學信號 IL: Optical signal

M1:端點 M1: endpoint

M2:端點 M2: endpoint

M3:端點 M3: Endpoint

M4:端點 M4: Endpoint

TL:透射光 TL: Transmitted light

v1:電壓 v1: voltage

vb1:偏壓 vb1: bias voltage

vb2:偏壓 vb2: bias

vb3:偏壓 vb3: bias

WD:光學開口 WD: Optical opening

w1:寬度 w1: width

w2:寬度 w2: width

當結合附圖時,通過參考以下詳細描述,本申請的前述方面和許多伴隨的優點將變得更容易理解,其中: The foregoing aspects of the present application and many of the attendant advantages will become more readily understood by reference to the following detailed description when taken in conjunction with the accompanying drawings, wherein:

圖1A-1F示出了根據一些實施例的光檢測設備的剖視圖。 Figures 1A-1F show cross-sectional views of light detection devices according to some embodiments.

圖2A-2H示出了根據一些實施例的具有基體空乏(body depletion)模式的光檢測設備的截面圖。 Figures 2A-2H show cross-sectional views of a light detection device having a body depletion mode according to some embodiments.

圖3A-3B示出了根據一些實施例的具有閘極控制體空乏(gated body depletion)模 式的光檢測設備的截面圖。 3A-3B illustrate cross-sectional views of a light detection device having a gated body depletion mode according to some embodiments.

圖4A-4D示出了根據一些實施例的具有較低漏電流和較低暗電流的光電檢測設備的截面圖。 4A-4D illustrate cross-sectional views of photodetection devices with lower leakage current and lower dark current according to some embodiments.

圖5示出了根據一些實施例的具有鈍化層的光檢測設備的截面圖。 FIG5 shows a cross-sectional view of a light detection device having a passivation layer according to some embodiments.

圖6A-6C示出了根據一些實施例的具有提升的電荷轉移速度的光檢測設備的截面圖。 6A-6C illustrate cross-sectional views of a light detection device with enhanced charge transfer speed according to some embodiments.

圖7A-7B示出了根據一些實施例的具有表面空乏(surface depletion)模式的光檢測設備的截面圖。 7A-7B illustrate cross-sectional views of a light detection device having a surface depletion mode according to some embodiments.

圖7C-7D示出了根據一些實施例的具有表面空乏模式的光檢測設備的平面圖。 Figures 7C-7D show plan views of light detection devices with surface depletion modes according to some embodiments.

圖8A示出了根據一些實施例的具有表面離子注入的光檢測設備的截面圖。 FIG8A shows a cross-sectional view of a light detection device with surface ion implantation according to some embodiments.

圖8B示出了根據一些實施例的具有表面離子注入的光檢測設備的平面圖。 FIG8B shows a plan view of a light detection device with surface ion implantation according to some embodiments.

圖9A示出了根據一些實施例的具有像素間隔離的光檢測設備的截面圖。 FIG9A shows a cross-sectional view of a light detection device with inter-pixel isolation according to some embodiments.

圖9B示出了根據一些實施例的具有像素間隔離的光檢測設備的平面圖。 FIG9B shows a plan view of a light detection device with inter-pixel isolation according to some embodiments.

圖9C-9E示出了根據一些實施例的具有像素間隔離的光檢測設備的截面圖。 Figures 9C-9E show cross-sectional views of a light detection device with inter-pixel isolation according to some embodiments.

圖10A-10D示出了根據一些實施例的光檢測設備的剖視圖。 Figures 10A-10D show cross-sectional views of light detection devices according to some embodiments.

圖11A-11E示出了根據一些實施例的晶片尺寸小型化的光檢測設備的平面圖。 Figures 11A-11E show plan views of a wafer-scale miniaturized light detection device according to some embodiments.

圖12A-12B示出了根據一些實施例的光檢測設備的陣列配置的平面圖。 Figures 12A-12B show plan views of array configurations of light detection devices according to some embodiments.

圖13A-13E示出了根據一些實施例的使用具有相位變化的調變方案的光檢測設備的框圖和時序圖。 Figures 13A-13E show block diagrams and timing diagrams of a light detection device using a modulation scheme with phase variation according to some embodiments.

圖14示出了根據一些實施例的使用光檢測設備的過程,該光檢測設備使用具有相位變化的調變方案。 FIG. 14 illustrates a process for using a light detection device that uses a modulation scheme with phase variation according to some embodiments.

圖15A示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 15A shows a cross-sectional view of a light detection device according to some embodiments.

圖15B示出了根據一些實施例的光檢測設備的平面圖。 FIG. 15B shows a plan view of a light detection device according to some embodiments.

圖15C示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 15C shows a cross-sectional view of a light detection device according to some embodiments.

圖15D-15E示出了根據一些實施例的光檢測設備的平面圖。 Figures 15D-15E show plan views of light detection devices according to some embodiments.

圖16A示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 16A shows a cross-sectional view of a light detection device according to some embodiments.

圖16B示出了根據一些實施例的光檢測設備的上視圖。 FIG. 16B shows a top view of a light detection device according to some embodiments.

圖16C示出了根據一些實施例的光檢測設備的上視圖。 FIG. 16C shows a top view of a light detection device according to some embodiments.

圖16D示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 16D shows a cross-sectional view of a light detection device according to some embodiments.

圖16E示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 16E shows a cross-sectional view of a light detection device according to some embodiments.

圖16F示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 16F shows a cross-sectional view of a light detection device according to some embodiments.

圖16G示出了根據一些實施例的光檢測設備的剖視圖。 Figure 16G shows a cross-sectional view of a light detection device according to some embodiments.

圖16H示出了根據一些實施例的光檢測設備的剖視圖。 Figure 16H shows a cross-sectional view of a light detection device according to some embodiments.

圖16I示出了根據一些實施例的光檢測設備的剖視圖。 Figure 16I shows a cross-sectional view of a light detection device according to some embodiments.

圖16J示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 16J shows a cross-sectional view of a light detection device according to some embodiments.

圖16K示出了根據一些實施例的光檢測設備的剖視圖。 Figure 16K shows a cross-sectional view of a light detection device according to some embodiments.

圖16L示出了根據一些實施例的光檢測設備的剖視圖。 Figure 16L shows a cross-sectional view of a light detection device according to some embodiments.

圖16M示出了根據一些實施例的光檢測設備的剖視圖。 Figure 16M shows a cross-sectional view of a light detection device according to some embodiments.

圖16N示出了根據一些實施例的光檢測設備的截面圖。 Figure 16N shows a cross-sectional view of a light detection device according to some embodiments.

圖16O示出了根據一些實施例的光檢測設備的剖視圖。 Figure 16O shows a cross-sectional view of a light detection device according to some embodiments.

圖16P示出了根據一些實施例的光檢測設備的上視圖。 FIG. 16P shows a top view of a light detection device according to some embodiments.

圖16Q示出了圖16P所示的光檢測設備中的一個子像素的截面圖。 FIG. 16Q shows a cross-sectional view of a sub-pixel in the light detection device shown in FIG. 16P .

圖17A示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 17A shows a cross-sectional view of a light detection device according to some embodiments.

圖17B示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 17B shows a cross-sectional view of a light detection device according to some embodiments.

圖17C示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 17C shows a cross-sectional view of a light detection device according to some embodiments.

圖17D示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 17D shows a cross-sectional view of a light detection device according to some embodiments.

圖17E示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 17E shows a cross-sectional view of a light detection device according to some embodiments.

圖17F示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 17F shows a cross-sectional view of a light detection device according to some embodiments.

圖17G示出了根據一些實施例的光檢測設備的剖視圖。 Figure 17G shows a cross-sectional view of a light detection device according to some embodiments.

圖17H示出了根據一些實施例的光檢測設備的剖視圖。 Figure 17H shows a cross-sectional view of a light detection device according to some embodiments.

圖17I示出了根據一些實施例的光檢測設備的剖視圖。 Figure 17I shows a cross-sectional view of a light detection device according to some embodiments.

圖17J示出了根據一些實施例的光檢測設備的剖視圖。 FIG. 17J shows a cross-sectional view of a light detection device according to some embodiments.

圖17K示出了根據一些實施例的光檢測設備的上視圖。 Figure 17K shows a top view of a light detection device according to some embodiments.

圖17L示出了根據一些實施例的光檢測設備的上視圖。 FIG. 17L shows a top view of a light detection device according to some embodiments.

圖17M示出了根據一些實施例的光檢測設備的上視圖。 Figure 17M shows a top view of a light detection device according to some embodiments.

圖17N示出了根據本揭露的三個不同實施例中的控制區域的截面結構示意圖。 FIG. 17N shows a schematic diagram of the cross-sectional structure of the control area in three different embodiments of the present disclosure.

圖18是成像系統的示例實施例的框圖。 FIG18 is a block diagram of an example embodiment of an imaging system.

圖19示出了示例接收器單元或控制器的框圖。 FIG19 shows a block diagram of an example receiver unit or controller.

圖1A示出了根據一些實施例的光檢測設備的截面圖。光檢測設備100a包括由半導體基底104支撐的鍺基(germanium-based)的光吸收材料102。在一個實施方式中,半導體基底104由矽、矽鍺、鍺或三-五族化合物製成。本文中鍺基的光吸收材料102是指本征鍺(100%鍺)或包括鍺的元素的合金,例如矽鍺合金,鍺濃度範圍為1%至99%。在一些實施方式中,鍺基的光吸收材料102可以使用毯覆式磊晶(blanket epitaxy)、選擇性磊晶或其他適用技術來生長。在圖1A中,鍺基的光吸收材料102嵌入在半導體基底104中,並且在替代實施例中,鍺基的光吸收材料102可以部分嵌入在半導體基底104中,或者可以位在半導體基底104上。 1A shows a cross-sectional view of a light detection device according to some embodiments. The light detection device 100a includes a germanium-based light absorbing material 102 supported by a semiconductor substrate 104. In one embodiment, the semiconductor substrate 104 is made of silicon, silicon germanium, germanium, or a III-V compound. The germanium-based light absorbing material 102 herein refers to intrinsic germanium (100% germanium) or an alloy of an element including germanium, such as a silicon germanium alloy, with a germanium concentration ranging from 1% to 99%. In some embodiments, the germanium-based light absorbing material 102 can be grown using blanket epitaxy, selective epitaxy, or other applicable techniques. In FIG. 1A , the germanium-based light absorbing material 102 is embedded in the semiconductor substrate 104 , and in alternative embodiments, the germanium-based light absorbing material 102 may be partially embedded in the semiconductor substrate 104 , or may be located on the semiconductor substrate 104 .

光檢測設備100a包括控制金屬線106a和讀出金屬線108a。控制金屬線106a和讀出金屬線108a都電耦合到鍺基的光吸收材料102的表面102s。在該實施例中,控制金屬線106a電耦合到表面102s上的未摻雜區域105a,其中未摻雜 區域105a沒有摻雜劑。讀出金屬線108a電耦合到表面102s上的摻雜區域101a,其中摻雜區域101a具有摻雜劑。 The light detection device 100a includes a control metal wire 106a and a readout metal wire 108a. The control metal wire 106a and the readout metal wire 108a are both electrically coupled to the surface 102s of the germanium-based light absorbing material 102. In this embodiment, the control metal wire 106a is electrically coupled to an undoped region 105a on the surface 102s, wherein the undoped region 105a has no dopant. The readout metal wire 108a is electrically coupled to a doped region 101a on the surface 102s, wherein the doped region 101a has a dopant.

注意,鍺基的光吸收材料102可以形成為本征或非本征(例如,輕摻雜的P型或輕摻雜的N型)。由於鍺材料的缺陷特性,即使沒有引入額外的摻雜工藝,鍺基的光吸收材料102仍然可以是輕摻雜的P型。因此,未摻雜區域105a也可以是輕摻雜的P型。摻雜區域101a可以摻雜有P型摻雜劑或N型摻雜劑,這取決於要收集的光載流子(即電洞或電子)的類型。在一些實施方式中,摻雜區域101a可以通過熱擴散、離子注入或任何其他摻雜製程來摻雜。 Note that the germanium-based light absorbing material 102 can be formed as intrinsic or extrinsic (e.g., lightly doped P-type or lightly doped N-type). Due to the defect characteristics of the germanium material, the germanium-based light absorbing material 102 can still be lightly doped P-type even without introducing an additional doping process. Therefore, the undoped region 105a can also be lightly doped P-type. The doped region 101a can be doped with a P-type dopant or an N-type dopant, depending on the type of photocarriers (i.e., holes or electrons) to be collected. In some embodiments, the doped region 101a can be doped by thermal diffusion, ion implantation, or any other doping process.

控制金屬線106a由控制信號cs1控制,用於控制吸收的光子產生的電子或電洞的移動方向。假設摻雜區域101a是N型的,並且控制信號cs1處於邏輯1。從控制金屬線106a到鍺基的光吸收材料102產生電場。電子將向控制金屬線106a移動,並被摻雜區域101a收集。相反,如果摻雜區域101a是P型的,電洞將被收集。或者,假設當控制信號cs1處於邏輯0時,摻雜區域101a是N型的,則從控制金屬線106a到鍺基的光吸收材料102產生不同的電場。電子不會向控制金屬線106a移動,因此不能被摻雜區域101a收集。相反,如果摻雜區域101a是P型的,電洞將不會被收集。 The control metal wire 106a is controlled by the control signal cs1 and is used to control the movement direction of the electrons or holes generated by the absorbed photons. Assume that the doped region 101a is N-type and the control signal cs1 is in logic 1. An electric field is generated from the control metal wire 106a to the germanium-based light absorbing material 102. The electrons will move toward the control metal wire 106a and be collected by the doped region 101a. On the contrary, if the doped region 101a is P-type, the holes will be collected. Alternatively, assuming that the doped region 101a is N-type when the control signal cs1 is in logic 0, a different electric field is generated from the control metal wire 106a to the germanium-based light absorbing material 102. Electrons do not move toward the control metal wire 106a and therefore cannot be collected by the doped region 101a. On the contrary, if the doped region 101a is P-type, holes will not be collected.

使用圖1A所示的結構,由目標物體(圖1A中未示出)反射並通過光學開口(window)WD進入的光學信號IL可以被鍺基的光吸收材料102所吸收,並產生電子-電洞對,使得電子或電洞(取決於摻雜區域101a是N型還是P型)根據控制信號cs1的斷言(assertion)向電容器110a移動,並被儲存在電容器110a中。吸收區域AR是接收通過光學開口WD進入的光學信號IL的虛擬區域。由於光檢測設備100a和目標物體(圖1A中未示出)之間存在距離,光學信號IL相對於由發射器(圖1A中未示出)發射的入射光具有相位延遲。當透射光被調變信號所調變,並且電子-電洞對通過控制金屬線106a被解調變信號所解調變時,儲存在電容器110a 中的電子或電洞將根據距離而變化。因此,光檢測設備100a可以基於電容器110a上的電壓v1獲得距離資訊。 Using the structure shown in FIG1A , the optical signal IL reflected by the target object (not shown in FIG1A ) and entering through the optical opening (window) WD can be absorbed by the germanium-based light absorbing material 102 and generate electron-hole pairs, so that the electrons or holes (depending on whether the doped region 101a is N-type or P-type) move to the capacitor 110a according to the assertion of the control signal cs1 and are stored in the capacitor 110a. The absorption region AR is a virtual region that receives the optical signal IL entering through the optical opening WD. Due to the distance between the light detection device 100a and the target object (not shown in FIG1A ), the optical signal IL has a phase delay relative to the incident light emitted by the emitter (not shown in FIG1A ). When the transmitted light is modulated by the modulation signal and the electron-hole pairs are demodulated by the demodulation signal through the control metal wire 106a, the electrons or holes stored in the capacitor 110a will change according to the distance. Therefore, the light detection device 100a can obtain distance information based on the voltage v1 on the capacitor 110a.

圖1A的實施例是單抽頭結構(one-tap structure),因為它們僅使用一條控制金屬線106a和一條讀出金屬線108a來獲得距離資訊。所公開的實施例還可以使用兩條或多條控制線或讀出線以及各種注入來獲得距離資訊,這將在下文中詳細描述。 The embodiments of FIG. 1A are one-tap structures because they use only one control metal line 106a and one read metal line 108a to obtain distance information. The disclosed embodiments may also use two or more control lines or read lines and various injections to obtain distance information, which will be described in detail below.

圖1B示出了根據一些實施例的光檢測設備的截面圖。與圖1A的實施例相比,圖1B的光檢測設備100b使用兩條控制金屬線106a、106b來控制鍺基光吸收材料102中吸收的光子所產生的電子或電洞的運動。這種結構被稱為雙抽頭結構(two-tap structure)。光檢測設備100b包括控制金屬線106a、106b和讀出金屬線108a、108b。控制金屬線106a、106b和讀出金屬線108a、108b電耦合到鍺基的光吸收材料102的表面102s。在該實施例中,控制金屬線106a、106b分別電耦合到表面102s上的未摻雜區域105a、105b,其中未摻雜區域105a、105c是沒有摻雜劑的區域;並且讀出金屬線108a、108b分別電耦合到表面102s上的摻雜區域101a、101b,其中摻雜區域101a、101b是具有摻雜劑的區域。摻雜區域101a、101b可以摻雜有P型摻雜劑或N型摻雜劑。 FIG1B shows a cross-sectional view of a light detection device according to some embodiments. Compared to the embodiment of FIG1A , the light detection device 100b of FIG1B uses two control metal wires 106a, 106b to control the movement of electrons or holes generated by photons absorbed in the germanium-based light absorbing material 102. This structure is called a two-tap structure. The light detection device 100b includes control metal wires 106a, 106b and readout metal wires 108a, 108b. The control metal wires 106a, 106b and the readout metal wires 108a, 108b are electrically coupled to the surface 102s of the germanium-based light absorbing material 102. In this embodiment, control metal lines 106a, 106b are electrically coupled to undoped regions 105a, 105b on surface 102s, respectively, where undoped regions 105a, 105c are regions without dopants; and read metal lines 108a, 108b are electrically coupled to doped regions 101a, 101b on surface 102s, respectively, where doped regions 101a, 101b are regions with dopants. Doped regions 101a, 101b may be doped with P-type dopants or N-type dopants.

控制金屬線106a、106b分別由控制信號cs1、cs2控制,用於控制由吸收的光子產生的電子或電洞的移動方向。在一些實施方式中,控制信號cs1和cs2是差分電壓信號(differential voltage signals)。在一些實施方式中,控制信號cs1和cs2之一是恒定電壓信號(例如,0.5v),而另一個控制信號是時變電壓信號(例如,在0V和1V之間操作的正弦信號、定時器信號(clock signal)或脈衝信號)。 The control metal wires 106a and 106b are controlled by control signals cs1 and cs2, respectively, to control the movement direction of electrons or holes generated by absorbed photons. In some embodiments, the control signals cs1 and cs2 are differential voltage signals. In some embodiments, one of the control signals cs1 and cs2 is a constant voltage signal (e.g., 0.5V), and the other control signal is a time-varying voltage signal (e.g., a sinusoidal signal, a clock signal, or a pulse signal operating between 0V and 1V).

假設摻雜區域101a、101b為N型,控制信號cs1、cs2為相位相差180度的定時器信號。當控制信號cs1為邏輯1且控制信號cs2為邏輯0時,光檢測設 備100b產生從控制金屬線106a到鍺基光吸收材料102的電場,並且電子將向控制金屬線106a移動,然後被摻雜區域101a收集。類似地,當控制信號cs1處於邏輯0且控制信號cs2處於邏輯1時,光檢測設備100b產生從控制金屬線106b到鍺基光吸收材料102的電場,並且電子將向控制金屬線106b移動,然後被摻雜區域101b收集。相反,如果摻雜區域101a和101b是P型的,電洞將被收集。 Assuming that the doped regions 101a and 101b are N-type, and the control signals cs1 and cs2 are timer signals with a phase difference of 180 degrees, when the control signal cs1 is logic 1 and the control signal cs2 is logic 0, the light detection device 100b generates an electric field from the control metal wire 106a to the germanium-based light absorbing material 102, and electrons will move toward the control metal wire 106a and then be collected by the doped region 101a. Similarly, when the control signal cs1 is at logic 0 and the control signal cs2 is at logic 1, the light detection device 100b generates an electric field from the control metal wire 106b to the germanium-based light absorbing material 102, and the electrons will move toward the control metal wire 106b and then be collected by the doped region 101b. On the contrary, if the doped regions 101a and 101b are P-type, the holes will be collected.

根據這種雙抽頭結構,根據控制信號cs1和控制信號cs2的斷言(assertions),從目標物體(圖1B中未示出)反射的光學信號IL可以被鍺基的光吸收材料102吸收並產生電子-電洞對,使得電子或電洞(取決於摻雜區域101a是N型還是P型)向電容器110a或電容器110b移動並儲存在電容器110 a或電容器110 b中。由於光檢測設備100b和目標物體(圖1B中未示出)之間存在距離,光學信號IL相對於由發射器(圖1B中未示出)發射的入射光具有相位延遲。當透射光被調變信號所調變並且電子-電洞對通過控制金屬線106a和106b被解調變信號所解調變時,儲存在電容器110a和電容器110b中的電子或電洞將根據距離而變化。因此,光檢測設備100b可以基於電容器110a上的電壓v1和電容器110b上的電壓v2獲得距離資訊。根據一個實施例,可以基於以電壓v1和電壓v2作為輸入變數的計算來匯出距離資訊。例如,在脈衝飛行時間配置中,與電壓v1和電壓v2相關的電壓比被用作輸入變數。在另一個例子中,在連續飛行時間配置中,與電壓v1和電壓v2相關的同相和正交電壓被用作輸入變數。 According to this double-tap structure, according to the assertions of the control signal cs1 and the control signal cs2, the optical signal IL reflected from the target object (not shown in FIG. 1B ) can be absorbed by the germanium-based light absorbing material 102 and generate electron-hole pairs, so that the electrons or holes (depending on whether the doped region 101a is N-type or P-type) move to the capacitor 110a or the capacitor 110b and are stored in the capacitor 110a or the capacitor 110b. Due to the distance between the light detection device 100b and the target object (not shown in FIG. 1B ), the optical signal IL has a phase delay relative to the incident light emitted by the emitter (not shown in FIG. 1B ). When the transmitted light is modulated by the modulation signal and the electron-hole pairs are demodulated by the demodulation signal through the control metal wires 106a and 106b, the electrons or holes stored in the capacitors 110a and 110b will change according to the distance. Therefore, the light detection device 100b can obtain distance information based on the voltage v1 on the capacitor 110a and the voltage v2 on the capacitor 110b. According to one embodiment, the distance information can be derived based on a calculation with the voltage v1 and the voltage v2 as input variables. For example, in a pulse flight time configuration, a voltage ratio related to the voltage v1 and the voltage v2 is used as an input variable. In another example, in a continuous time-of-flight configuration, in-phase and quadrature voltages associated with voltage v1 and voltage v2 are used as input variables.

圖1A中的控制金屬線106a和圖1B中的控制金屬線106a、106b電耦合到鍺基的光吸收材料102的未摻雜區域。在其他實施例中,如下所述,某些結構和控制金屬線106a、106b電耦合到摻雜區域。 The control metal line 106a in FIG. 1A and the control metal lines 106a, 106b in FIG. 1B are electrically coupled to the undoped region of the germanium-based light absorbing material 102. In other embodiments, as described below, certain structures and the control metal lines 106a, 106b are electrically coupled to the doped region.

圖1C示出了根據一些實施例的光檢測設備的剖視圖。類似於圖1A,光檢測設備100c包括控制金屬線106a和讀出金屬線108a。控制金屬線106a和讀出金屬線108a都電耦合到鍺基的光吸收材料102的表面102s。在該實施例 中,控制金屬線106a電耦合到表面102s上的摻雜區域103a,其中摻雜區域103a是具有摻雜劑的區域;並且讀出金屬線108電耦合到表面102s上的摻雜區域101a,其中摻雜區域101a也是具有摻雜劑的區域。在該實施例中,區域101a和區域103a摻雜有不同類型的摻雜劑。例如,如果摻雜區域101a摻雜有N型摻雜劑,則區域103a將摻雜有P型摻雜劑,反之亦然。 FIG1C shows a cross-sectional view of a light detection device according to some embodiments. Similar to FIG1A , the light detection device 100c includes a control metal wire 106a and a readout metal wire 108a. The control metal wire 106a and the readout metal wire 108a are both electrically coupled to the surface 102s of the germanium-based light absorbing material 102. In this embodiment, the control metal wire 106a is electrically coupled to the doped region 103a on the surface 102s, wherein the doped region 103a is a region having a dopant; and the readout metal wire 108 is electrically coupled to the doped region 101a on the surface 102s, wherein the doped region 101a is also a region having a dopant. In this embodiment, region 101a and region 103a are doped with different types of dopants. For example, if region 101a is doped with an N-type dopant, region 103a will be doped with a P-type dopant, and vice versa.

光檢測設備100c的操作類似於圖1A的實施例。控制金屬線106a用於根據控制信號cs1控制由吸收的光子產生的電子或電洞的移動方向,以使電子或電洞被摻雜區域101a收集。通過控制控制信號cs1並讀取電容器110a上的電壓v1,光檢測設備100c可以獲得光檢測設備100c和目標物體(圖1C中未示出)之間的距離資訊。 The operation of the light detection device 100c is similar to the embodiment of FIG. 1A. The control metal wire 106a is used to control the moving direction of the electrons or holes generated by the absorbed photons according to the control signal cs1 so that the electrons or holes are collected by the doped region 101a. By controlling the control signal cs1 and reading the voltage v1 on the capacitor 110a, the light detection device 100c can obtain the distance information between the light detection device 100c and the target object (not shown in FIG. 1C).

圖1D示出了根據一些實施例的光檢測設備的截面圖。光檢測設備100b包括控制金屬線106a、106b和讀出金屬線108a、108b。控制金屬線106a、106b和讀出金屬線108a、108b電耦合到鍺基的光吸收材料102的表面102s。在該實施例中,控制金屬線106a、106b分別電耦合到表面102s上的摻雜區域103a、103b,其中摻雜區域103a、103b是具有摻雜劑的區域。讀出金屬線108a、108b分別電耦合到表面102s上的摻雜區域101a、101b,其中摻雜區域101a、101b也是摻雜區域。區域101a、101b、103a、103b可以摻雜有P型摻雜劑或N型摻雜劑。在該實施例中,摻雜區域101a、101b摻雜有相同類型的摻雜劑;並且摻雜區域103a、103b摻雜有相同類型的摻雜劑。然而,摻雜區域101a、101b的類型不同於摻雜區域103a、103b的類型。例如,如果摻雜區域101a、101b被摻雜為N型,則摻雜區域103a、103b將被摻雜為P型,反之亦然。 1D shows a cross-sectional view of a light detection device according to some embodiments. The light detection device 100b includes control metal wires 106a, 106b and read metal wires 108a, 108b. The control metal wires 106a, 106b and read metal wires 108a, 108b are electrically coupled to the surface 102s of the germanium-based light absorbing material 102. In this embodiment, the control metal wires 106a, 106b are electrically coupled to the doped regions 103a, 103b on the surface 102s, respectively, wherein the doped regions 103a, 103b are regions with dopants. Readout metal lines 108a, 108b are electrically coupled to doped regions 101a, 101b on surface 102s, respectively, where doped regions 101a, 101b are also doped regions. Regions 101a, 101b, 103a, 103b may be doped with a P-type dopant or an N-type dopant. In this embodiment, doped regions 101a, 101b are doped with the same type of dopant; and doped regions 103a, 103b are doped with the same type of dopant. However, the type of doped regions 101a, 101b is different from the type of doped regions 103a, 103b. For example, if doped regions 101a, 101b are doped to N-type, doped regions 103a, 103b will be doped to P-type, and vice versa.

光檢測設備100d的操作類似於圖1B的實施例。控制金屬線106a、106b用於根據控制信號cs1、cs2控制由吸收的光子產生的電子或電洞的移動方向,以使電子或電洞儲存在電容器110a或電容器110b中。通過控制控制信號 cs1、cs2並讀取電容器110a、110b上的電壓v1、v2,光檢測設備100d可以獲得光檢測設備100d和目標物體(圖1D中未示出)之間的距離資訊。 The operation of the light detection device 100d is similar to the embodiment of FIG. 1B. The control metal wires 106a and 106b are used to control the movement direction of the electrons or holes generated by the absorbed photons according to the control signals cs1 and cs2, so that the electrons or holes are stored in the capacitor 110a or the capacitor 110b. By controlling the control signals cs1 and cs2 and reading the voltages v1 and v2 on the capacitors 110a and 110b, the light detection device 100d can obtain the distance information between the light detection device 100d and the target object (not shown in FIG. 1D).

圖1E示出了根據一些實施例的光檢測設備的截面圖。該裝置的操作類似於圖1D,其中該裝置能夠通過產生控制信號cs1、cs2和讀取電容器110a、110b上的電壓v1、v2來獲得光檢測設備100d和目標物體(圖1E中未示出)之間的距離資訊。與圖1D的不同之處在於,讀出金屬線108a、108b和摻雜區域101a、101b佈置在與表面102s相對的表面102ss處。因為控制金屬線106a、106b和讀出金屬線108a、108b佈置在垂直方向上,所以可以相應地減小光檢測設備100e的水平面積。 FIG. 1E shows a cross-sectional view of a light detection device according to some embodiments. The operation of the device is similar to that of FIG. 1D, wherein the device is capable of obtaining distance information between the light detection device 100d and a target object (not shown in FIG. 1E) by generating control signals cs1, cs2 and reading voltages v1, v2 on capacitors 110a, 110b. The difference from FIG. 1D is that the readout metal wires 108a, 108b and the doped regions 101a, 101b are arranged at a surface 102ss opposite to the surface 102s. Because the control metal wires 106a, 106b and the readout metal wires 108a, 108b are arranged in a vertical direction, the horizontal area of the light detection device 100e can be reduced accordingly.

圖1F示出了根據一些實施例的光檢測設備的剖視圖。與圖1E相比,圖1F中的實施例還在與表面102s相對的表面102s處佈置摻雜區域101a、101b,但是讀出金屬線108a、108b朝向表面102s延伸,而不是朝向半導體基底104延伸。這種佈置可以簡化製造過程。 FIG. 1F shows a cross-sectional view of a light detection device according to some embodiments. Compared to FIG. 1E, the embodiment in FIG. 1F also arranges doped regions 101a, 101b at the surface 102s opposite to the surface 102s, but the readout metal lines 108a, 108b extend toward the surface 102s instead of toward the semiconductor substrate 104. This arrangement can simplify the manufacturing process.

在一些實施方式中,如圖1A至圖1F所示的實施方式以及下文的實施方式,控制金屬線106a、106b和表面102s可以通過引入氧化物或高介電常數介電材料作為金屬和半導體之間的絕緣體而製成具有蕭特基能障(Schottky barrier)的金屬-半導體接面(MS接面),或者金屬-絕緣體-半導體電容器(MIS電容器)。 In some embodiments, such as the embodiments shown in FIGS. 1A to 1F and the embodiments described below, the control metal lines 106a, 106b and the surface 102s can be made into a metal-semiconductor junction (MS junction) with a Schottky barrier or a metal-insulator-semiconductor capacitor (MIS capacitor) by introducing an oxide or a high-k dielectric material as an insulator between the metal and the semiconductor.

如在圖1A至圖1F中示出的實施例和下文的實施例,鍺基光吸收材料102從其橫截面視圖被製成矩形,然而,在一些實施方式中,鍺基光吸收材料102可以從其橫截面視圖被製成倒梯形或其他圖案。 As shown in the embodiments shown in FIGS. 1A to 1F and the embodiments described below, the germanium-based light absorbing material 102 is formed into a rectangular shape from its cross-sectional view, however, in some embodiments, the germanium-based light absorbing material 102 may be formed into an inverted trapezoid or other pattern from its cross-sectional view.

本揭露中示出的光檢測設備可以用於飛行時間(ToF)應用,與可見光波長相比,其可以在更長的波長(例如,近紅外或SWIR範圍)下工作。波長可以超過800奈米,例如850奈米、940奈米、1050奈米、1064奈米、1310奈米、1350奈米或1550奈米。另一方面,元件/材料實現者()可以設計/製造100%鍺或 具有預定百分比(例如,大於80%鍺)的鍺的合金(例如,鍺矽),其可以是本征的或非本征的,作為光吸收材料以吸收上述波長的光。 The light detection devices shown in the present disclosure can be used for time-of-flight (ToF) applications, which can operate at longer wavelengths (e.g., near infrared or SWIR ranges) than visible light wavelengths. The wavelengths can be above 800 nm, such as 850 nm, 940 nm, 1050 nm, 1064 nm, 1310 nm, 1350 nm, or 1550 nm. On the other hand, the device/material implementer () can design/manufacture 100% germanium or an alloy (e.g., germanium silicon) with a predetermined percentage (e.g., greater than 80% germanium), which can be intrinsic or extrinsic, as a light absorbing material to absorb light of the above wavelengths.

儘管這裡的實施例示出了光檢測設備從背面吸收光學信號IL,但是,在一些實施方式中,光檢測設備可以被設計成從正面吸收光學信號IL,例如,通過在兩個控制金屬線106a、106b之間創建光學開口WD。 Although the embodiments herein show that the light detection device absorbs the optical signal IL from the back side, in some embodiments, the light detection device may be designed to absorb the optical signal IL from the front side, for example, by creating an optical opening WD between the two control metal wires 106a, 106b.

圖1A至圖1F中示出的實施例包括單個光電探測器,其可以作為一個單元並被應用於像素陣列的每個像素。以下描述是基於圖1F至圖1F中公開的單抽頭或雙抽頭結構的替代實施例。在以下描述中,可以選擇從圖1A到圖1F的一個或兩個實施例作為代表性實施例。本領域技術人員可以改變、修改或組合這裡公開的結構,例如用單抽頭結構代替雙抽頭結構。 The embodiments shown in FIG. 1A to FIG. 1F include a single photodetector, which can be used as a unit and applied to each pixel of a pixel array. The following description is based on an alternative embodiment of the single-tap or double-tap structure disclosed in FIG. 1F to FIG. 1F. In the following description, one or two embodiments from FIG. 1A to FIG. 1F can be selected as representative embodiments. A person skilled in the art can change, modify or combine the structures disclosed herein, such as replacing the double-tap structure with a single-tap structure.

圖2A示出了根據一些實施例的具有基體空乏模式的光檢測設備的截面圖。光檢測設備200a包括控制金屬線206a、206b和讀出金屬線208a、208b。控制金屬線206a、206b和讀出金屬線208a、208b電耦合到鍺基的光吸收材料202的表面202s。控制金屬線206a、206b分別電耦合到表面202s上的P型區域203a、203b,讀出金屬線208a、208b分別電耦合到表面202s上的N型區域201a、201b。在一些實施例中,從表面202s延伸的P型區域203a、203b的深度d1比N型區域201a、201b的深度d2深,並且鍺基的光吸收材料202是輕N型的。對於更深的P型區域203a、203b,在更深的P型區域203a、203b和基於N型鍺的光吸收材料202之間產生更大的空乏區域,當兩個不同的電壓施加到控制金屬線206a、206b時,可以允許電子向N型區域201a、201b移動,因此增加了量子效率和解調變對比度。在其他方面,P型區域203a、203b的寬度w1、N型區域201a、201b的寬度w2、P型區域203a、203b的摻雜濃度和/或N型區域201a、201b的摻雜濃度也是調整空乏區域面積的參數。 2A shows a cross-sectional view of a light detection device with a matrix depletion mode according to some embodiments. The light detection device 200a includes control metal wires 206a, 206b and read metal wires 208a, 208b. The control metal wires 206a, 206b and the read metal wires 208a, 208b are electrically coupled to the surface 202s of the germanium-based light absorbing material 202. The control metal wires 206a, 206b are electrically coupled to the P-type regions 203a, 203b on the surface 202s, respectively, and the read metal wires 208a, 208b are electrically coupled to the N-type regions 201a, 201b on the surface 202s, respectively. In some embodiments, the depth d1 of the P-type regions 203a, 203b extending from the surface 202s is deeper than the depth d2 of the N-type regions 201a, 201b, and the germanium-based light absorbing material 202 is slightly N-type. For the deeper P-type regions 203a, 203b, a larger depletion region is generated between the deeper P-type regions 203a, 203b and the N-type germanium-based light absorbing material 202, and when two different voltages are applied to the control metal wires 206a, 206b, electrons can be allowed to move to the N-type regions 201a, 201b, thereby increasing the quantum efficiency and demodulation contrast. In other aspects, the width w1 of the P-type regions 203a and 203b, the width w2 of the N-type regions 201a and 201b, the doping concentration of the P-type regions 203a and 203b, and/or the doping concentration of the N-type regions 201a and 201b are also parameters for adjusting the area of the depletion region.

在一些實施例中,為了完全空乏基於N型鍺的光吸收材料202的主 體,可以通過其深度、寬度或摻雜濃度設計穿過N型區域201a、201b和/或P型區域203a、203b。此外,鍺基的光吸收材料202的厚度應該相應地設計。 In some embodiments, in order to completely deplete the body of the N-type germanium-based light absorbing material 202, the N-type regions 201a, 201b and/or the P-type regions 203a, 203b may be designed through their depth, width, or doping concentration. In addition, the thickness of the germanium-based light absorbing material 202 should be designed accordingly.

圖2B示出了根據一些實施例的具有基體空乏模式的光檢測設備的截面圖。光檢測設備200b可以設計成具有較淺的P型區域203a、203b。換句話說,從表面202s延伸的P型區域203a、203b的深度d1比N型區域201a、201b的深度d2淺。應用較淺的P型區域203a、203b可以減少P型區域203a和P型區域203b之間的漏電流。 FIG2B shows a cross-sectional view of a light detection device having a matrix depletion mode according to some embodiments. The light detection device 200b can be designed to have shallower P-type regions 203a, 203b. In other words, the depth d1 of the P-type regions 203a, 203b extending from the surface 202s is shallower than the depth d2 of the N-type regions 201a, 201b. Applying shallower P-type regions 203a, 203b can reduce leakage current between the P-type regions 203a and 203b.

圖2C示出了根據一些實施例的具有基體空乏模式的光檢測設備的截面圖。光檢測設備200c的結構類似於光檢測設備200a、200b。光電檢測裝置200c在半導體基底204上施加偏壓vb1。該偏壓vb1被施加用於在基於N型鍺的光吸收材料202和P型區域203a、203b之間的接面上產生反向偏置。結果,P型區域203a、203b下面的空乏區域可以被擴大或者甚至完全空乏。由於在P型區域203a、203b下方產生較大的空乏區域,當兩個不同的電壓施加到控制金屬線206a、206b時,可以允許電子向N型區域201a、201b移動,從而增加量子效率和解調變對比度。 2C shows a cross-sectional view of a light detection device with a substrate depletion mode according to some embodiments. The structure of the light detection device 200c is similar to that of the light detection devices 200a and 200b. The photodetection device 200c applies a bias voltage vb1 on the semiconductor substrate 204. The bias voltage vb1 is applied to generate a reverse bias on the junction between the N-type germanium-based light absorbing material 202 and the P-type regions 203a and 203b. As a result, the depletion region below the P-type regions 203a and 203b can be expanded or even completely depleted. Since a larger depletion region is generated under the P-type regions 203a and 203b, when two different voltages are applied to the control metal wires 206a and 206b, electrons can be allowed to move to the N-type regions 201a and 201b, thereby increasing the quantum efficiency and demodulation contrast.

圖2D示出了根據一些實施例的具有基體空乏模式的光檢測設備的截面圖。類似於光檢測設備200a、200b的結構,該實施例在鍺基的光吸收材料202上施加偏壓vb2,以控制鍺基的光吸收材料202內部的空乏區域。具體地,偏壓vb2是對P型區域203a、203b和N型鍺基光吸收材料202的反向偏置,因此能夠擴大P型區域203a、203b周圍的空乏區域或者甚至完全空乏。 FIG2D shows a cross-sectional view of a light detection device with a matrix depletion mode according to some embodiments. Similar to the structure of the light detection devices 200a and 200b, the embodiment applies a bias voltage vb2 to the germanium-based light absorbing material 202 to control the depletion region inside the germanium-based light absorbing material 202. Specifically, the bias voltage vb2 is a reverse bias to the P-type regions 203a and 203b and the N-type germanium-based light absorbing material 202, so that the depletion region around the P-type regions 203a and 203b can be expanded or even completely depleted.

為了在鍺基的光吸收材料202內部產生甚至更大的空乏區域,公開了圖2E所示的實施例。光檢測設備200e包括一表面上的N型區域207a、207b。該表面與表面202s相對。利用N型區域207a、207b,形成PN接面,其中產生了P型區域203a和N型區域207a之間的空乏區域,以及P型區域203b和N型區域207b 之間的空乏區域。因此,當兩個不同的電壓施加到控制金屬線206a、206b時,在吸收區域中產生電場。因此,所述空乏區域/電場可以由控制信號cs1、cs2控制,以控制電子朝向N型區域201a或N型區域201b的移動方向。 In order to generate an even larger depletion region inside the germanium-based light absorbing material 202, an embodiment shown in FIG. 2E is disclosed. The light detection device 200e includes N-type regions 207a, 207b on a surface. The surface is opposite to the surface 202s. Using the N-type regions 207a, 207b, a PN junction is formed, in which a depletion region between the P-type region 203a and the N-type region 207a, and a depletion region between the P-type region 203b and the N-type region 207b are generated. Therefore, when two different voltages are applied to the control metal wires 206a, 206b, an electric field is generated in the absorption region. Therefore, the depletion region/electric field can be controlled by the control signals cs1, cs2 to control the movement direction of electrons toward the N-type region 201a or the N-type region 201b.

圖2F示出了根據一些實施例的具有基體空乏模式的光檢測設備的截面圖。光檢測設備200f包括一個較寬的N型區域207,它位於P型區域203a、203b的下面。類似地,N型區域207可以增強圍繞P型區域203a、203b的空乏區域的產生,並因此增加量子效率和解調變對比度。注意,N型區域207的寬度是可設計調整的,並且圖2F中的N型區域207的描繪寬度僅用於參考。 FIG2F shows a cross-sectional view of a light detection device with a matrix depletion mode according to some embodiments. The light detection device 200f includes a wider N-type region 207, which is located below the P-type regions 203a, 203b. Similarly, the N-type region 207 can enhance the generation of depletion regions around the P-type regions 203a, 203b, and thus increase the quantum efficiency and demodulation contrast. Note that the width of the N-type region 207 is adjustable and the depicted width of the N-type region 207 in FIG2F is for reference only.

圖2G和圖2H示出了示出偏置N型區域207的方法的替代實施例。圖2G應用矽通孔(TSV)204v來讓N型區域207產生偏壓,圖2G應用從表面202s延伸的鍺通孔204v來偏置N型區域207。 FIG. 2G and FIG. 2H illustrate alternative embodiments of methods for biasing the N-type region 207. FIG. 2G applies a through silicon via (TSV) 204v to bias the N-type region 207, and FIG. 2G applies a germanium through via 204v extending from the surface 202s to bias the N-type region 207.

圖2A至圖2H示出了使用體空乏模式的各種實施例,包括設計P型區域203a、203b的深度,在半導體基底204或鍺基的光吸收材料202上施加偏壓vb1、vb2,在鍺基的光吸收材料202內部添加N型區域207、207a、207b等。這些方法在P型區域203a、203b下方或周圍產生空乏區域,以控制從吸收的光子產生的電子向N型區域201a或N型區域201b的移動。 2A to 2H show various embodiments using the body depletion mode, including designing the depth of the P-type regions 203a and 203b, applying bias voltages vb1 and vb2 to the semiconductor substrate 204 or the germanium-based light absorbing material 202, adding N-type regions 207, 207a, and 207b inside the germanium-based light absorbing material 202, etc. These methods generate depletion regions under or around the P-type regions 203a and 203b to control the movement of electrons generated from absorbed photons to the N-type region 201a or the N-type region 201b.

圖3A-3B示出了根據一些實施例的具有閘極控制體空乏模式的光檢測設備的截面圖。除了圖2A-2H所示的實施例,圖3A-3B公開了介質閘極控制體空乏模式。光檢測設備300a包括控制金屬線306a、306b和讀出金屬線308a、308b。控制金屬線306a、306b和讀出金屬線308a、308b電耦合到鍺基的光吸收材料302的表面302s。控制金屬線306a、306b分別電耦合到表面302s上的P型區域303a、303b,讀出金屬線308a、308b分別電耦合到表面202s上的N型區域301a、301b。鍺基的光吸收材料302是輕N型的。此外,光檢測設備300a包括表面302ss上的N型區域307、形成在鍺基光吸收材料302和半導體基底304之間的 介電層312以及矽通孔(TSV)314(包含矽通孔314v、314u)。在一些實施例中,介電層312佈置在金屬(通孔314)和半導體(鍺基的光吸收材料302)之間,其形成類似金屬氧化物半導體的結構。通過在N型區域307和通孔314之間形成介電層312,可以藉由通孔314減少或防止電子流入N型區域307產生漏電流。 3A-3B show cross-sectional views of a light detection device with a gate-controlled body depletion mode according to some embodiments. In addition to the embodiments shown in FIGS. 2A-2H , FIGS. 3A-3B disclose a dielectric gate-controlled body depletion mode. The light detection device 300a includes control metal wires 306a, 306b and read metal wires 308a, 308b. The control metal wires 306a, 306b and the read metal wires 308a, 308b are electrically coupled to a surface 302s of a germanium-based light absorbing material 302. The control metal wires 306a, 306b are electrically coupled to P-type regions 303a, 303b on the surface 302s, respectively, and the read metal wires 308a, 308b are electrically coupled to N-type regions 301a, 301b on the surface 202s, respectively. The germanium-based light absorbing material 302 is slightly N-type. In addition, the light detection device 300a includes an N-type region 307 on the surface 302ss, a dielectric layer 312 formed between the germanium-based light absorbing material 302 and the semiconductor substrate 304, and a through silicon via (TSV) 314 (including through silicon vias 314v and 314u). In some embodiments, the dielectric layer 312 is arranged between the metal (through hole 314) and the semiconductor (germanium-based light absorbing material 302), which forms a structure similar to a metal oxide semiconductor. By forming the dielectric layer 312 between the N-type region 307 and the through hole 314, the through hole 314 can reduce or prevent the flow of electrons into the N-type region 307 to generate leakage current.

在一些替代實施例中,介電層312可以不必是橫跨整個半導體基底304的連續層,而是可以被圖案化成位於N型區域307下方的不同區域。介電層312可以是薄的或者具有一些預定的厚度,包括多種或多層材料或合金或化合物。例如二氧化矽、氮化矽、高介電常數介電材料或其組合。 In some alternative embodiments, the dielectric layer 312 may not be a continuous layer across the entire semiconductor substrate 304, but may be patterned into different regions located below the N-type region 307. The dielectric layer 312 may be thin or have some predetermined thickness, including multiple or multiple layers of materials or alloys or compounds. For example, silicon dioxide, silicon nitride, high dielectric constant dielectric materials or combinations thereof.

圖3B示出了根據一些實施例的具有閘極控制體空乏模式的光檢測設備的截面圖。該實施例在表面302上沒有N型區域307,但是通過體偏壓vb2和vb3產生空乏區域309a、309b。體偏壓vb2和體偏壓vb3可以一起施加或單獨施加,以控制空乏區域309a、309b的尺寸。其中體偏壓vb2的單獨施加電壓和體偏壓vb3的單獨施加電壓可以相同或不同。 FIG3B shows a cross-sectional view of a light detection device with a gate-controlled body depletion mode according to some embodiments. This embodiment does not have an N-type region 307 on the surface 302, but generates depletion regions 309a, 309b by body biases vb2 and vb3. Body bias vb2 and body bias vb3 can be applied together or separately to control the size of depletion regions 309a, 309b. The separately applied voltage of body bias vb2 and the separately applied voltage of body bias vb3 can be the same or different.

在圖3A或圖3B中,這些實施例在鍺基的光吸收材料302和半導體基底304之間插入介電層312,並且根據控制信號cs1、cs2和體偏壓vb2、vb3在P型區域303a、303b下方產生空乏區域(例如,圖3B中的309a、309b),以便控制鍺基的光吸收材料302內部的電子移動方向。由於介電層312的插入,它可以減少或防止電子藉由矽通孔314流入N型區域307(圖3A)和空乏區域309a、309b(圖3B)以產生漏電流(圖3A和3B)。 In FIG. 3A or FIG. 3B , these embodiments insert a dielectric layer 312 between the germanium-based light absorbing material 302 and the semiconductor substrate 304, and generate a depletion region (e.g., 309a, 309b in FIG. 3B ) under the P-type regions 303a, 303b according to control signals cs1, cs2 and body biases vb2, vb3, so as to control the electron movement direction inside the germanium-based light absorbing material 302. Due to the insertion of the dielectric layer 312, it can reduce or prevent electrons from flowing into the N-type region 307 (FIG. 3A) and the depletion regions 309a, 309b (FIG. 3B) through the silicon through hole 314 to generate leakage current (FIGs. 3A and 3B).

圖4A示出了根據一些實施例的具有較低漏電流和較低暗電流的光電檢測設備的截面圖。光檢測設備400a包括控制金屬線406a、406b和讀出金屬線408a、408b。控制金屬線406a、406b和讀出金屬線408a、408b電耦合到鍺基的光吸收材料402的表面402s。控制金屬線406a、406b分別電耦合到表面402s上的P型區域403a、403b,讀出金屬線408a、408b分別電耦合到表面402s上的N型區 域401a、401b。圖4A中的設備的操作類似於上面公開的實施例。圖4A的實施例增加了完全圍繞P型區域403a、403b的N阱411a、411b。這可以具有降低P型區域403a、403b之間的漏電流的效果。在另一個實施例中,如圖4B所示,可以在部分包圍P型區域403a、403b的周圍增加N阱411a、411b。這也具有降低P型區域403a、403b之間的漏電流的效果。 FIG4A shows a cross-sectional view of a photodetection device with low leakage current and low dark current according to some embodiments. The photodetection device 400a includes control metal wires 406a, 406b and read metal wires 408a, 408b. The control metal wires 406a, 406b and read metal wires 408a, 408b are electrically coupled to a surface 402s of a germanium-based light absorbing material 402. The control metal wires 406a, 406b are electrically coupled to P-type regions 403a, 403b on the surface 402s, respectively, and the read metal wires 408a, 408b are electrically coupled to N-type regions 401a, 401b on the surface 402s, respectively. The operation of the device in FIG4A is similar to the embodiments disclosed above. The embodiment of FIG. 4A adds N-wells 411a and 411b that completely surround the P-type regions 403a and 403b. This can have the effect of reducing the leakage current between the P-type regions 403a and 403b. In another embodiment, as shown in FIG. 4B, N-wells 411a and 411b can be added around the P-type regions 403a and 403b. This also has the effect of reducing the leakage current between the P-type regions 403a and 403b.

除了圖4A和圖4B所示的實施例之外,可以添加P阱。圖4C的實施例增加了完全包圍N型區域401a、401b的P阱451a、451b。這可以具有減少出現在N型區域401a、401b的暗電流的效果。在替代實施例中,如圖4D所示,P阱451a、451b可以部分圍繞N型區域401a、401b添加。這也具有減少出現在N型區域401a、401b的暗電流的效果。 In addition to the embodiments shown in FIG. 4A and FIG. 4B , a P-well may be added. The embodiment of FIG. 4C adds P-wells 451a, 451b that completely surround the N-type regions 401a, 401b. This may have the effect of reducing the dark current that appears in the N-type regions 401a, 401b. In an alternative embodiment, as shown in FIG. 4D , P-wells 451a, 451b may be added partially around the N-type regions 401a, 401b. This also has the effect of reducing the dark current that appears in the N-type regions 401a, 401b.

圖4A-4D中示出的實施例分別應用了N阱和P阱來降低漏電流和暗電流。本領域技術人員可以根據設計要求改變或修改N阱411a、411b和/或P阱451a、451b的圖案。例如,N阱411a可以被設計成以不對稱的方式完全包圍P型區域403a(例如,N阱411a的左側寬度比N阱411a的右側寬度寬)。類似地,N阱411b也可以被設計成以不對稱的方式完全包圍P型區域403b(例如,N阱411b的右側寬度比N阱411b的左側寬度寬)。類似或修改的實施方式也可以應用於P阱451a、451b。 The embodiments shown in FIGS. 4A-4D respectively apply N-well and P-well to reduce leakage current and dark current. A person skilled in the art may change or modify the patterns of N-wells 411a, 411b and/or P-wells 451a, 451b according to design requirements. For example, N-well 411a may be designed to completely surround P-type region 403a in an asymmetric manner (e.g., the left side width of N-well 411a is wider than the right side width of N-well 411a). Similarly, N-well 411b may also be designed to completely surround P-type region 403b in an asymmetric manner (e.g., the right side width of N-well 411b is wider than the left side width of N-well 411b). Similar or modified embodiments may also be applied to P-wells 451a, 451b.

圖5示出了根據一些實施例的具有鈍化層的光檢測設備的截面圖。光檢測設備500a包括控制金屬線506a、506b和讀出金屬線508a、508b。控制金屬線506a、506b和讀出金屬線508a、508b電耦合到鍺基的光吸收材料502的表面502s。控制金屬線506a、506b分別電耦合到表面502s上的P型區域503a、503b,讀出金屬線508a、508b分別電耦合到表面502s上的N型區域501a、501b。圖5的實施例在表面502s上添加鈍化層514(例如,非晶矽(a-Si)、GeOx、Al2O3、二氧化矽),在讀出金屬線508a和N型區域501a之間的連接處添加矽化物(例如, NiSi2、CoSi2)513a,在讀出金屬線508b和N型區域501b之間的連接處添加矽化物513b,在控制金屬線506a和P型區域503a之間的連接處添加矽化物515a,以及在控制金屬線506b和P型區域503b之間的連接處添加矽化物515b。 5 shows a cross-sectional view of a light detection device with a passivation layer according to some embodiments. The light detection device 500a includes control metal wires 506a, 506b and read metal wires 508a, 508b. The control metal wires 506a, 506b and the read metal wires 508a, 508b are electrically coupled to a surface 502s of a germanium-based light absorbing material 502. The control metal wires 506a, 506b are electrically coupled to P-type regions 503a, 503b on the surface 502s, respectively, and the read metal wires 508a, 508b are electrically coupled to N-type regions 501a, 501b on the surface 502s, respectively. The embodiment of FIG. 5 adds a passivation layer 514 (e.g., amorphous silicon (a-Si), GeOx, Al2O3 , silicon dioxide) on the surface 502s , adds a silicide (e.g., NiSi2 , CoSi2 ) 513a at the connection between the readout metal line 508a and the N-type region 501a, adds a silicide 513b at the connection between the readout metal line 508b and the N-type region 501b, adds a silicide 515a at the connection between the control metal line 506a and the P-type region 503a, and adds a silicide 515b at the connection between the control metal line 506b and the P-type region 503b.

根據該實施例,在鍺基的光吸收材料502上形成鈍化層514可以終止表面502s上的懸掛鍵(dangling bonds),從而減少暗電流。另一方面,添加矽化物(例如,NiSi2、CoSi2)也可以降低金屬和半導體之間的接觸或結電阻,這降低了電壓降並相應地降低了功耗。 According to this embodiment, forming a passivation layer 514 on the germanium-based light absorbing material 502 can terminate dangling bonds on the surface 502s, thereby reducing dark current. On the other hand, adding silicide (e.g., NiSi2 , CoSi2 ) can also reduce the contact or junction resistance between the metal and the semiconductor, which reduces the voltage drop and correspondingly reduces the power consumption.

圖6A示出了根據一些實施例的具有提高的電荷轉移速度的光檢測設備的截面圖。光檢測設備600a包括控制金屬線606a、606b和讀出金屬線608a、608b。控制金屬線606a、606b和讀出金屬線608a、608b電耦合到鍺基的光吸收材料602的表面602s。控制金屬線606a、606b分別電耦合到表面602s上的P型區域603a、603b,讀出金屬線608a、608b分別電耦合到表面602s上的N型區域601a、601b。圖6A的實施例在表面602s上增加了N型區域617,在表面602ss上增加了P型區域619。N型區域617和P型區域619基本上形成在鍺基的光吸收材料602的中心,該中心是光學信號IL可以穿過的位置。由於N型區域617和P型區域619共同形成為PN接面,在N型區域617和P型區域619之間建立了內置的垂直電場,這可以幫助分離由吸收的光子產生的電子-電洞對,其中電子傾向於向N型區域617移動,電洞傾向於向P型區域619移動。操作N型區域617來收集電子,操作P型區域619來收集電洞。儲存在N型區域617中的電子可以根據控制信號cs1、cs2移動到N型區域601a或N型區域601b。值得注意的是,取決於光檢測設備600a的操作,金屬線610可以是浮動的或者由偏壓ca1偏置。在一個實施方式中,N型區域601a、601b的摻雜濃度高於N型區域617的摻雜濃度。 FIG6A shows a cross-sectional view of a light detection device with an improved charge transfer speed according to some embodiments. The light detection device 600a includes control metal wires 606a, 606b and read metal wires 608a, 608b. The control metal wires 606a, 606b and the read metal wires 608a, 608b are electrically coupled to a surface 602s of a germanium-based light absorbing material 602. The control metal wires 606a, 606b are electrically coupled to P-type regions 603a, 603b on the surface 602s, respectively, and the read metal wires 608a, 608b are electrically coupled to N-type regions 601a, 601b on the surface 602s, respectively. The embodiment of FIG6A adds an N-type region 617 on the surface 602s and a P-type region 619 on the surface 602ss. The N-type region 617 and the P-type region 619 are formed substantially at the center of the germanium-based light absorbing material 602, which is the location where the optical signal IL can pass through. Since the N-type region 617 and the P-type region 619 are formed together as a PN junction, a built-in vertical electric field is established between the N-type region 617 and the P-type region 619, which can help separate electron-hole pairs generated by absorbed photons, wherein electrons tend to move toward the N-type region 617 and holes tend to move toward the P-type region 619. The N-type region 617 is operated to collect electrons, and the P-type region 619 is operated to collect holes. The electrons stored in the N-type region 617 can move to the N-type region 601a or the N-type region 601b according to the control signals cs1, cs2. It is worth noting that, depending on the operation of the light detection device 600a, the metal line 610 can be floating or biased by the bias ca1. In one embodiment, the doping concentration of the N-type regions 601a, 601b is higher than the doping concentration of the N-type region 617.

圖6B示出了根據一些實施例的具有提高的電荷轉移速度的光檢測設備的截面圖。該實施例類似於光檢測設備600a。不同之處在於,可以通過矽通 孔604v偏置P型區域619,其中收集在P型區域619中的電洞可以通過矽通孔604v放電,矽通孔604v由其上的偏壓ca2偏置。 FIG. 6B shows a cross-sectional view of a light detection device with an improved charge transfer speed according to some embodiments. This embodiment is similar to the light detection device 600a. The difference is that the P-type region 619 can be biased through a silicon through hole 604v, wherein the holes collected in the P-type region 619 can be discharged through the silicon through hole 604v, and the silicon through hole 604v is biased by a bias voltage ca2 thereon.

圖6C示出了根據一些實施例的具有提高的電荷轉移速度的光檢測設備的截面圖。圖6C的實施例類似於光檢測設備600b。不同之處在於,在鍺基的光吸收材料602的下面和周圍形成為U形或井形的P型區域619。此外,該P型區域619電耦合到偏壓ca2。因此,光生電洞可以被P型區域619收集和放電。 FIG6C shows a cross-sectional view of a light detection device with an improved charge transfer speed according to some embodiments. The embodiment of FIG6C is similar to the light detection device 600b. The difference is that a U-shaped or well-shaped P-type region 619 is formed below and around the germanium-based light absorbing material 602. In addition, the P-type region 619 is electrically coupled to the bias voltage ca2. Therefore, photogenerated holes can be collected and discharged by the P-type region 619.

圖7A示出了根據一些實施例的具有表面空乏模式的光檢測設備的截面圖。光檢測設備700a包括控制金屬線706a、706b和讀出金屬線708a、708b。控制金屬線706a、706b和讀出金屬線708a、708b電耦合到鍺基的光吸收材料702的表面702s。控制金屬線706a、706b分別電耦合到表面702s上的P型區域703a、703b,讀出金屬線708a、708b分別電耦合到表面702s上的N型區域701a、701b。該實施例在表面702s上形成層間介電ILD,並在層間介電ILD上形成金屬721、716a、716b、718a、718b。金屬721、716a、716b、718a、718b可以被施加偏壓以產生空乏區域721d、716ad、716bd、718ad、718bd。施加在金屬721、716a、716b、718a、718b上的偏壓可以不同或相同,或者使一些金屬721、716a、716b、718a、718b浮動。 7A shows a cross-sectional view of a light detection device with a surface depletion mode according to some embodiments. The light detection device 700a includes control metal wires 706a, 706b and read metal wires 708a, 708b. The control metal wires 706a, 706b and the read metal wires 708a, 708b are electrically coupled to a surface 702s of a germanium-based light absorbing material 702. The control metal wires 706a, 706b are electrically coupled to P-type regions 703a, 703b on the surface 702s, respectively, and the read metal wires 708a, 708b are electrically coupled to N-type regions 701a, 701b on the surface 702s, respectively. This embodiment forms an interlayer dielectric ILD on the surface 702s, and forms metals 721, 716a, 716b, 718a, 718b on the interlayer dielectric ILD. The metals 721, 716a, 716b, 718a, 718b can be biased to produce depletion regions 721d, 716ad, 716bd, 718ad, 718bd. The biases applied to the metals 721, 716a, 716b, 718a, 718b can be different or the same, or some of the metals 721, 716a, 716b, 718a, 718b can be floated.

空乏區域712d可以減少P型區域703a和P型區域703b之間的暗電流。空乏區域716ad可以減少P型區域703a和N型區域701a之間的暗電流。空乏區域716bd可以減少P型區域703b和N型區域701b之間的暗電流。空乏區域718a可以減少N型區域701a和另一個像素(圖7A中未示出)之間的暗電流。空乏區域718b可以減少N型區域701b和另一個像素(圖7A中未示出)之間的暗電流。因此,通過形成這些表面空乏區域,可以降低功耗和雜訊產生。 Depletion region 712d can reduce the dark current between P-type region 703a and P-type region 703b. Depletion region 716ad can reduce the dark current between P-type region 703a and N-type region 701a. Depletion region 716bd can reduce the dark current between P-type region 703b and N-type region 701b. Depletion region 718a can reduce the dark current between N-type region 701a and another pixel (not shown in FIG. 7A). Depletion region 718b can reduce the dark current between N-type region 701b and another pixel (not shown in FIG. 7A). Therefore, by forming these surface depletion regions, power consumption and noise generation can be reduced.

如上所述,金屬721、716a、716b、718a、718b可以被施加偏壓以產生空乏區域721d、716ad、716bd、718ad和718bd。在其他應用中,金屬721、 716a、716b、718a、718b可以被施加偏壓,以使相應的區域721d、716ad、716bd、718ad、718bd變成累積或反轉,而不是空乏。 As described above, metals 721, 716a, 716b, 718a, 718b can be biased to produce depletion regions 721d, 716ad, 716bd, 718ad, and 718bd. In other applications, metals 721, 716a, 716b, 718a, 718b can be biased to cause corresponding regions 721d, 716ad, 716bd, 718ad, 718bd to become accumulation or inversion instead of depletion.

除了減少漏電流之外,金屬721、716a、716b、718a、718b可以將殘餘光學信號IL反射到鍺基的光吸收材料702中,從而相應地被轉換成電子-電洞對。這些金屬721、716a、716b、718a、718b用作反射鏡,將未被鍺基的光吸收材料702完全吸收和轉換的光反射回鍺基的光吸收材料702以再次吸收。這將提高整體吸收效率,從而提高系統性能。 In addition to reducing leakage current, metals 721, 716a, 716b, 718a, 718b can reflect the residual optical signal IL into the germanium-based light absorbing material 702, thereby being converted into electron-hole pairs accordingly. These metals 721, 716a, 716b, 718a, 718b act as reflectors to reflect light that is not completely absorbed and converted by the germanium-based light absorbing material 702 back to the germanium-based light absorbing material 702 for reabsorption. This will increase the overall absorption efficiency, thereby improving system performance.

此外,圖7B示出了本揭露的替代實施例。與圖7A相比,該實施例增加了極化介電層721e、716ae、716be、718ae、718be(例如,二氧化鉿),如圖7B所示。因為在極化介電層721e、716ae、716be、718ae、718be中存在偶極子(dipole),所以可以產生空乏/累積/反轉區域721d、716ad、716bd、718ad、718bd,而不用偏置或以小偏置偏置金屬721、716a、716b、718a、718b。 In addition, FIG. 7B shows an alternative embodiment of the present disclosure. Compared with FIG. 7A, the embodiment adds polarized dielectric layers 721e, 716ae, 716be, 718ae, 718be (e.g., einsteinium dioxide), as shown in FIG. 7B. Because there are dipoles in the polarized dielectric layers 721e, 716ae, 716be, 718ae, 718be, depletion/accumulation/inversion regions 721d, 716ad, 716bd, 718ad, 718bd can be generated without biasing or biasing the metals 721, 716a, 716b, 718a, 718b with a small bias.

圖7C示出了光檢測設備700b的平面圖。注意,金屬721、716a、716b、718a、718b和極化介電層721e、716ae、716be、718ae、718be可以可選地形成。設備實現者(製作者)可以基於不同的場景來設計包括或不包括這些元素的光檢測設備。此外,除了如圖7C所示在垂直方向添加金屬和極化介電之外,還有如圖7D所示的替代實施例,其中在水平方向添加金屬723a、723b和極化介電層725a、725b。 FIG7C shows a plan view of the light detection device 700b. Note that metals 721, 716a, 716b, 718a, 718b and polarized dielectric layers 721e, 716ae, 716be, 718ae, 718be can be optionally formed. The device implementer (fabricator) can design a light detection device including or excluding these elements based on different scenarios. In addition, in addition to adding metal and polarized dielectric in the vertical direction as shown in FIG7C, there is an alternative embodiment as shown in FIG7D, in which metals 723a, 723b and polarized dielectric layers 725a, 725b are added in the horizontal direction.

圖8A示出了根據一些實施例的具有表面離子注入的光檢測設備的截面圖。光檢測設備800a包括控制金屬線806a、806b和讀出金屬線808a、808b。控制金屬線806a、806b和讀出金屬線808a、808b電耦合到鍺基的光吸收材料802的表面802s。控制金屬線806a、806b分別電耦合到表面802s上的P型區域803a、803b,讀出金屬線808a、808b分別電耦合到表面802s上的N型區域801a、801b。為了具有抑制表面漏電流的高表面電阻,該實施例利用中性離子注入作 為表面處理。如該圖所示,離子處理區域829、831a、831b、833a、833b被離子注入(例如,矽、鍺、碳、氫氣),其中加速的離子與物質碰撞,並對注入區域中的原子週期性或晶體結構造成損害。原子空位和空隙等晶格損傷破壞了電子包絡(envelope)函數所看到的週期勢,因此電子/電洞獲得了更高的被散射的概率。這種效應導致較低的遷移率,從而導致較高的電阻。 FIG8A shows a cross-sectional view of a light detection device with surface ion implantation according to some embodiments. The light detection device 800a includes control metal wires 806a, 806b and read metal wires 808a, 808b. The control metal wires 806a, 806b and the read metal wires 808a, 808b are electrically coupled to a surface 802s of a germanium-based light absorbing material 802. The control metal wires 806a, 806b are electrically coupled to P-type regions 803a, 803b on the surface 802s, respectively, and the read metal wires 808a, 808b are electrically coupled to N-type regions 801a, 801b on the surface 802s, respectively. In order to have a high surface resistance that suppresses surface leakage current, the embodiment uses neutral ion implantation as a surface treatment. As shown in the figure, ion treated regions 829, 831a, 831b, 833a, 833b are implanted with ions (e.g., silicon, germanium, carbon, hydrogen) where the accelerated ions collide with the species and cause damage to the atomic periodicity or crystal structure in the implanted region. Lattice damage such as atomic vacancies and interstitials destroys the periodic potential seen by the electron envelope function, so the electron/hole gains a higher probability of being scattered. This effect results in lower mobility and thus higher resistance.

圖8B示出了根據一些實施例的具有表面離子注入的光檢測設備800a的平面圖。如圖所示,離子處理區域829、831a、831b、833a、833b垂直形成在摻雜區域801a、801b、803a、803b之間。在一些實施方式中,離子處理區域可以在其他地方形成,因此本實施例僅是參考而不是限制。 FIG8B shows a plan view of a light detection device 800a with surface ion implantation according to some embodiments. As shown, ion treatment regions 829, 831a, 831b, 833a, 833b are vertically formed between doping regions 801a, 801b, 803a, 803b. In some embodiments, the ion treatment region can be formed elsewhere, so this embodiment is only for reference and not limitation.

圖9A示出了具有像素間隔離的光檢測設備的截面圖。光檢測設備900a包括控制金屬線906a、906b和讀出金屬線908a、908b。控制金屬線906a、906b和讀出金屬線908a、908b電耦合到鍺基的光吸收材料902的表面902s。控制金屬線906a、906b分別電耦合到表面902s上的P型區域903a、903b,讀出金屬線908a、908b分別電耦合到表面902s上的N型區域901a、901b。該實施例包括隔離區域924,其形成為圍繞鍺基的光吸收材料902的環。在一次注入中,隔離區域924是N型區域。它取決於鍺基的光吸收材料902、半導體基底904和其他因素的類型,並且隔離區域924可以由P型區域實現。利用該隔離區域924,光檢測設備900a具有減少串擾信號和/或對相鄰設備供電的效果。 9A shows a cross-sectional view of a light detection device with inter-pixel isolation. The light detection device 900a includes control metal lines 906a, 906b and readout metal lines 908a, 908b. The control metal lines 906a, 906b and the readout metal lines 908a, 908b are electrically coupled to a surface 902s of a germanium-based light absorbing material 902. The control metal lines 906a, 906b are electrically coupled to P-type regions 903a, 903b on the surface 902s, respectively, and the readout metal lines 908a, 908b are electrically coupled to N-type regions 901a, 901b on the surface 902s, respectively. This embodiment includes an isolation region 924 formed as a ring surrounding the germanium-based light absorbing material 902. In one implantation, the isolation region 924 is an N-type region. It depends on the type of the germanium-based light absorbing material 902, the semiconductor substrate 904 and other factors, and the isolation region 924 can be realized by a P-type region. With the isolation region 924, the light detection device 900a has the effect of reducing crosstalk signals and/or powering adjacent devices.

圖9B示出了具有像素間隔離的光檢測設備900a的平面圖。如圖所示,隔離區域924形成整個環。在其他實施方式中,隔離區域924可以被分割或截斷。 FIG9B shows a plan view of a light detection device 900a with inter-pixel isolation. As shown, the isolation region 924 forms a whole ring. In other embodiments, the isolation region 924 may be segmented or truncated.

圖9C示出了具有像素間隔離的光檢測設備的截面圖。光檢測設備900c在隔離區域924內形成一個附加的窄而淺的隔離區域924a。隔離區域924的摻雜濃度和隔離區域924a的摻雜濃度不同。這可用於抑制通過表面傳導路徑的 串擾。 FIG9C shows a cross-sectional view of a light detection device with inter-pixel isolation. The light detection device 900c forms an additional narrow and shallow isolation region 924a within the isolation region 924. The doping concentration of the isolation region 924 is different from the doping concentration of the isolation region 924a. This can be used to suppress crosstalk through the surface conduction path.

圖9D示出了具有像素間隔離的光檢測設備的截面圖。光檢測設備900d形成從隔離區域924a延伸到半導體基底904的底表面的附加溝槽隔離區域924b。溝槽隔離區域924b可以是氧化物溝槽,其中阻擋了鍺基的光吸收材料902和相鄰元件之間的電路徑。 FIG9D shows a cross-sectional view of a light detection device with inter-pixel isolation. The light detection device 900d forms an additional trench isolation region 924b extending from the isolation region 924a to the bottom surface of the semiconductor substrate 904. The trench isolation region 924b may be an oxide trench in which the electrical path between the germanium-based light absorbing material 902 and the adjacent element is blocked.

圖9E示出了具有像素間隔離的光檢測設備的截面圖。光檢測設備900e形成從半導體基底904的頂表面延伸到半導體基底904的底表面的溝槽隔離區域924b。溝槽隔離區域924a可以是氧化物溝槽,其阻擋鍺基的光吸收材料902和相鄰元件之間的電路徑。 FIG9E shows a cross-sectional view of a light detection device with inter-pixel isolation. The light detection device 900e forms a trench isolation region 924b extending from the top surface of the semiconductor substrate 904 to the bottom surface of the semiconductor substrate 904. The trench isolation region 924a may be an oxide trench that blocks an electrical path between the germanium-based light absorbing material 902 and an adjacent element.

圖10A示出了根據一些實施例的光檢測設備的剖視圖。圖10A的實施例包括並組合了來自上述實施例的元素。光檢測設備1000a包括控制金屬線1006a、1006b和讀出金屬線1008a、1008b。控制金屬線1006a、1006b和讀出金屬線1008a、1008b電耦合到鍺基的光吸收材料1002的表面1002s。控制金屬線1006a、1006b分別電耦合到表面1002s上的P型區域1003a、1003b。讀出金屬線1008a、1008b分別電耦合到表面1002s上的N型區域1001a、1001b。類似地,光檢測設備1000a能夠通過光學信號IL獲得距離資訊。具體地,當光學信號IL進入吸收區域AR時,它將被轉換成電子-電洞對,然後被在P型區域1003a、1003b之間產生的電場分離。根據控制信號cs1、cs2,電子可以向N型區域1001a或N型區域1001b移動。在一些實施方式中,控制信號cs1和cs2是差分電壓信號。在一些實施方式中,控制信號cs1和cs2之一是恒定電壓信號(例如,0.5v),而另一個控制信號是時變電壓信號(例如,正弦信號、定時器信號或脈衝信號;在0V和1V之間)。由於光檢測設備1000a和目標物體(圖10A中未示出)之間存在距離,光學信號IL相對於由發射器(圖10A中未示出)發射的入射光具有相位延遲。透射光由調變信號調變,電子-電洞對由另一調變信號通過控制金屬線1006a和1006b解 調變。儲存在電容器1010a和電容器1010b中的電子或電洞將根據距離而變化。因此,光檢測設備1000a可以基於電容器1010a上的電壓v1和電容器1010b上的電壓v2獲得距離資訊。根據一個實施例,可以基於以電壓v1和電壓v2作為輸入變數的計算來匯出距離資訊。例如,在脈衝飛行時間配置中,與電壓v1和電壓v2相關的電壓比被用作輸入變數。在另一個例子中,在連續波飛行時間配置中,與電壓v1和電壓v2相關的同相和正交電壓被用作輸入變數。 FIG10A shows a cross-sectional view of a light detection device according to some embodiments. The embodiment of FIG10A includes and combines elements from the above-described embodiments. The light detection device 1000a includes control metal wires 1006a, 1006b and read metal wires 1008a, 1008b. The control metal wires 1006a, 1006b and read metal wires 1008a, 1008b are electrically coupled to a surface 1002s of a germanium-based light absorbing material 1002. The control metal wires 1006a, 1006b are electrically coupled to P-type regions 1003a, 1003b on the surface 1002s, respectively. The read metal wires 1008a, 1008b are electrically coupled to N-type regions 1001a, 1001b on the surface 1002s, respectively. Similarly, the light detection device 1000a is able to obtain distance information through the optical signal IL. Specifically, when the optical signal IL enters the absorption region AR, it will be converted into electron-hole pairs and then separated by the electric field generated between the P-type regions 1003a, 1003b. According to the control signals cs1, cs2, the electrons can move to the N-type region 1001a or the N-type region 1001b. In some embodiments, the control signals cs1 and cs2 are differential voltage signals. In some embodiments, one of the control signals cs1 and cs2 is a constant voltage signal (e.g., 0.5v), and the other control signal is a time-varying voltage signal (e.g., a sinusoidal signal, a timer signal, or a pulse signal; between 0V and 1V). Due to the distance between the light detection device 1000a and the target object (not shown in FIG. 10A ), the optical signal IL has a phase delay relative to the incident light emitted by the emitter (not shown in FIG. 10A ). The transmitted light is modulated by the modulation signal, and the electron-hole pairs are demodulated by another modulation signal through the control metal wires 1006a and 1006b. The electrons or holes stored in the capacitor 1010a and the capacitor 1010b will change according to the distance. Therefore, the light detection device 1000a can obtain distance information based on the voltage v1 on the capacitor 1010a and the voltage v2 on the capacitor 1010b. According to one embodiment, the distance information can be derived based on the calculation with the voltage v1 and the voltage v2 as input variables. For example, in a pulse time-of-flight configuration, a voltage ratio related to voltage v1 and voltage v2 is used as an input variable. In another example, in a continuous wave time-of-flight configuration, in-phase and quadrature voltages related to voltage v1 and voltage v2 are used as input variables.

除了檢測距離之外,該光電檢測裝置1000a還包括用於N型區域1001a、1001b和P型區域1003a、1003b的不同深度設計,並且還增加了N阱1011a、1011b,這可以減少P型區域1003a和P型區域1003b之間的漏電流。第二,光檢測設備1000a包括覆蓋鍺基的光吸收材料1002的良好形狀的P型區域1019,其可以通過偏壓ca2收集和放電電洞。第三,光檢測設備1000a包括鈍化層1014和層間介電ILD,以將表面1002s處理成存在於表面1002s上的缺陷。第四,光檢測設備1000a包括金屬1021,其可以被施加偏壓或不被施加偏壓以在表面1002s上產生累積、反轉或空乏。此外,金屬1021可以用作反射鏡,以將剩餘光學信號IL反射回鍺基的光吸收材料1002中,以被轉換成電子-電洞對。第五,光檢測設備1000a添加矽化物1013a、1013b、1015a、1015b以降低電壓降。第六,光檢測設備1000a可以添加隔離區域1024,或者通過摻雜材料或者絕緣氧化物來實現。隔離區域1024可以電耦合到偏壓ca3。在一些實施方式中,隔離區域1024和P型區域1019可以通過金屬層電耦合在一起,並且金屬層保持浮動或者電耦合到電壓源。 In addition to the detection distance, the photodetection device 1000a also includes different depth designs for the N-type regions 1001a, 1001b and the P-type regions 1003a, 1003b, and also adds N-wells 1011a, 1011b, which can reduce the leakage current between the P-type region 1003a and the P-type region 1003b. Second, the photodetection device 1000a includes a well-shaped P-type region 1019 covering the germanium-based light absorbing material 1002, which can collect and discharge holes through a bias voltage ca2. Third, the photodetection device 1000a includes a passivation layer 1014 and an interlayer dielectric ILD to process the surface 1002s into defects existing on the surface 1002s. Fourth, the light detection device 1000a includes a metal 1021, which can be biased or unbiased to produce accumulation, inversion or depletion on the surface 1002s. In addition, the metal 1021 can be used as a reflector to reflect the residual optical signal IL back into the germanium-based light absorbing material 1002 to be converted into electron-hole pairs. Fifth, the light detection device 1000a adds silicides 1013a, 1013b, 1015a, 1015b to reduce voltage drops. Sixth, the light detection device 1000a can add an isolation region 1024, or it can be realized by doping materials or insulating oxides. The isolation region 1024 can be electrically coupled to the bias ca3. In some embodiments, the isolation region 1024 and the P-type region 1019 can be electrically coupled together through a metal layer, and the metal layer remains floating or electrically coupled to a voltage source.

圖10B示出了根據一些實施例的光檢測設備的剖視圖。光檢測設備1000b的結構類似於光檢測設備1000a。不同之處在於,圖10B中的控制金屬線1006a、1006b電耦合到未摻雜區域1005a、1005b。 FIG10B shows a cross-sectional view of a light detection device according to some embodiments. The structure of the light detection device 1000b is similar to that of the light detection device 1000a. The difference is that the control metal lines 1006a, 1006b in FIG10B are electrically coupled to the undoped regions 1005a, 1005b.

此外,儘管上述實施例使用鍺基的光吸收材料1002來吸收光學信號 IL,但是可以實現一個沒有鍺基的光吸收材料1002的實施例。如圖10C所示,光檢測設備1000c可以使用半導體基底1004作為光吸收材料。在一些實施方式中,半導體基底1004可以是矽、矽鍺、鍺或釩化合物。此外,如圖10D所示的實施例,可以在半導體基底1004的表面1002s上添加P型區域1003a、1003b和N阱1011a、1011b。 In addition, although the above-mentioned embodiment uses the germanium-based light absorbing material 1002 to absorb the optical signal IL, an embodiment without the germanium-based light absorbing material 1002 can be realized. As shown in FIG. 10C, the light detection device 1000c can use a semiconductor substrate 1004 as a light absorbing material. In some embodiments, the semiconductor substrate 1004 can be silicon, silicon germanium, germanium or vanadium compound. In addition, as shown in the embodiment of FIG. 10D, P-type regions 1003a, 1003b and N-wells 1011a, 1011b can be added on the surface 1002s of the semiconductor substrate 1004.

光檢測設備1000a、1000b、1000c和1000d被示出以示出上述實施例(圖1A至圖9E)的可能組合。應當理解,設備實現者可以任意組合兩個或多個上述實施例來實現其他光檢測設備,並且可以實現多種組合。 Light detection devices 1000a, 1000b, 1000c, and 1000d are shown to illustrate possible combinations of the above-mentioned embodiments (FIG. 1A to FIG. 9E). It should be understood that the device implementer can arbitrarily combine two or more of the above-mentioned embodiments to implement other light detection devices, and multiple combinations can be implemented.

注意,實施例中所示的摻雜區域的摻雜濃度可以被適當地設計。以圖10A的實施例為例,N型區域1001a、1001b的摻雜濃度和P型區域1003a、1003b的摻雜濃度可以不同。在一個實施方式中,P型區域1003a、1003b是輕摻雜的,而N型區域1001a、1001b是重摻雜的。通常,輕度摻雜的摻雜濃度可以在1016/cm3或更低至1018/cm3的範圍內,而高度摻雜的摻雜濃度可以在1018/cm3至1020/cm3或更高的範圍內。通過調整摻雜濃度,可以在控制金屬線1006a、1006b和P型區域1003a、1003b之間分別形成蕭特基接觸;並且歐姆接觸可以分別形成在讀出金屬線1008a、1008b和N型區域1001a、1001b之間。在這種情況下,控制金屬線1006a、1006b和P型區域1003a、1003b之間的電阻高於讀出金屬線1008a、1008b和N型區域1001a、1001b之間的電阻。 Note that the doping concentration of the doped regions shown in the embodiments can be appropriately designed. Taking the embodiment of FIG. 10A as an example, the doping concentration of the N-type regions 1001a, 1001b and the doping concentration of the P-type regions 1003a, 1003b can be different. In one embodiment, the P-type regions 1003a, 1003b are lightly doped, while the N-type regions 1001a, 1001b are heavily doped. Typically, the doping concentration of light doping can be in the range of 10 16 /cm 3 or lower to 10 18 /cm 3 , while the doping concentration of high doping can be in the range of 10 18 /cm 3 to 10 20 /cm 3 or higher. By adjusting the doping concentration, Schottky contacts can be formed between the control metal lines 1006a, 1006b and the P-type regions 1003a, 1003b, respectively; and ohmic contacts can be formed between the readout metal lines 1008a, 1008b and the N-type regions 1001a, 1001b, respectively. In this case, the resistance between the control metal lines 1006a, 1006b and the P-type regions 1003a, 1003b is higher than the resistance between the read metal lines 1008a, 1008b and the N-type regions 1001a, 1001b.

另一方面,該些摻雜區域的摻雜類型也可以以不同的方式實現。以圖10A的實施例為例,如果區域1003a、1003b摻雜有N型摻雜劑,則P型區域1003a、1003b可以被N型取代。類似地,如果區域1001a、1001b摻雜有P型摻雜劑,則N型區域1001a、1001b可以由P型代替。因此,可以實現摻雜區域1001a、1001b、1003a和1003b都摻雜有相同類型的摻雜劑的實施例。 On the other hand, the doping types of these doping regions can also be implemented in different ways. Taking the embodiment of FIG. 10A as an example, if regions 1003a, 1003b are doped with N-type dopants, then P-type regions 1003a, 1003b can be replaced by N-type. Similarly, if regions 1001a, 1001b are doped with P-type dopants, then N-type regions 1001a, 1001b can be replaced by P-type. Therefore, an embodiment can be implemented in which doping regions 1001a, 1001b, 1003a and 1003b are all doped with the same type of dopant.

請參考圖11A,其示出了根據一些實施例的光檢測設備的平面圖。 光檢測設備1100a包括鍺基光吸收材料1102上的控制金屬線1106a、1106b、讀出金屬線1108a、1108b、N型區域1001a、1001b和P型區域1003a、1003b的佈局位置。在該實施例中,控制金屬線1106a、1106b位於X軸上,然而,讀出金屬線1108a、1108b不位於X軸上。在該實施例中,四個端子不在同一軸線上,這可以減小光檢測設備1100a的面積。每個元件之間的幾何關係如圖11A所示。 Please refer to FIG. 11A, which shows a plan view of a light detection device according to some embodiments. The light detection device 1100a includes control metal wires 1106a, 1106b, read metal wires 1108a, 1108b, N-type regions 1001a, 1001b, and P-type regions 1003a, 1003b on a germanium-based light absorbing material 1102. In this embodiment, the control metal wires 1106a, 1106b are located on the X-axis, however, the read metal wires 1108a, 1108b are not located on the X-axis. In this embodiment, the four terminals are not on the same axis, which can reduce the area of the light detection device 1100a. The geometric relationship between each element is shown in FIG. 11A.

圖11B示出了根據一些實施例的光檢測設備的平面圖。與圖11A相比,控制金屬線1106a、1106b不位於X軸上,而是在垂直於X軸的方向上分別與讀出金屬線1108a、1108b對準。類似地,每個元件之間的幾何關係如圖11B所示。 FIG11B shows a plan view of a light detection device according to some embodiments. Compared with FIG11A , the control metal wires 1106a and 1106b are not located on the X-axis, but are aligned with the readout metal wires 1108a and 1108b in a direction perpendicular to the X-axis, respectively. Similarly, the geometric relationship between each element is shown in FIG11B .

圖11C示出了根據一些實施例的光檢測設備的平面圖。控制金屬線1106a、1106b形成在吸收區域AR上方,並且在光學開口WD中沿對角線方向彼此相對。讀出金屬線1108a、1108b形成在X軸上。 FIG. 11C shows a plan view of a light detection device according to some embodiments. Control metal wires 1106a, 1106b are formed above the absorption region AR and are diagonally opposite to each other in the optical opening WD. Readout metal wires 1108a, 1108b are formed on the X-axis.

圖11D示出了根據一些實施例的光檢測設備的平面圖。圖11D中的光檢測設備類似於圖11C中的光檢測設備,但是鍺基的光吸收材料1102被旋轉,使得鍺基的光吸收材料1102中的軸X軸在對角線方向上。它還可以減少光檢測設備的總面積。 FIG. 11D shows a plan view of a light detection device according to some embodiments. The light detection device in FIG. 11D is similar to the light detection device in FIG. 11C , but the germanium-based light absorbing material 1102 is rotated so that the axis X in the germanium-based light absorbing material 1102 is in a diagonal direction. It can also reduce the total area of the light detection device.

圖11E示出了根據一些實施例的光檢測設備的平面圖。該實施例與先前實施例之間的區域別在於光學開口WD可以設計成八邊形。也可以設計成其他形狀(如圓形、六邊形等)。)。 FIG. 11E shows a plan view of a light detection device according to some embodiments. The difference between this embodiment and the previous embodiment is that the optical opening WD can be designed as an octagon. It can also be designed into other shapes (such as a circle, a hexagon, etc.).

圖11A-圖11D示出了通過調整控制金屬線1106a、1106b、讀出金屬線1108a、1108b、N型區域1001a、1001b和P型區域1003a、1003b的佈局位置的一些實施例。實施者還可以為這些元件設計不同的幾何關係,以減少或最小化晶片面積。這些替代實施例被示為參考,而不是限制。 Figures 11A-11D show some embodiments by adjusting the layout positions of the control metal lines 1106a, 1106b, the read metal lines 1108a, 1108b, the N-type regions 1001a, 1001b, and the P-type regions 1003a, 1003b. The implementer can also design different geometric relationships for these elements to reduce or minimize the chip area. These alternative embodiments are shown as references, not limitations.

上述光檢測設備使用單個光電探測器作為實施例,其用於單像素應 用。下面描述的光檢測設備是用於多像素應用(例如,圖像像素陣列或圖像感測器)的實施例。 The above-described light detection device uses a single photodetector as an embodiment, which is used for a single pixel application. The light detection device described below is an embodiment for a multi-pixel application (e.g., an image pixel array or an image sensor).

在一些實施方式中,光檢測設備可以被設計成接收相同或不同的光學信號,例如,具有相同或不同的波長,具有相同或多個調變,或者在不同的時間幀操作。 In some embodiments, the light detection device can be designed to receive the same or different optical signals, for example, having the same or different wavelengths, having the same or multiple modulations, or operating in different time frames.

請參考圖12A。光檢測設備1200a包括像素陣列,作為示例,該像素陣列包括四個像素12021、12022、12023、12024。根據這裡描述的實施例,每個像素是光電探測器。在一個實施例中,包含波長λ1的光學信號IL由該陣列中的像素12021、12024接收,包含波長λ2光學信號IL由該陣列中的像素12022、12023接收。在另一個實施例中,只有一個波長λ,但具有多個調變頻率fmod1和fmod2(或更多)。例如,像素12021、12024被施加調變頻率fmod1以解調變光學信號IL中的該頻率分量,像素12022、12023被施加調變頻率fmod2以解調變光學信號IL中的該頻率分量。在另一個實施例中,類似地,只有一個光波長,但具有多個調變頻率fmod1和fmod2(或更多)。然而,在時間t1,陣列中的像素由調變頻率fmod1驅動以解調變光學信號中的該頻率分量,而在另一時間t2,陣列中的像素由調變頻率fmod2驅動以解調變光學信號IL中的該頻率分量,因此像素陣列1200a在時分複用模式下操作。 Please refer to FIG. 12A. The light detection device 1200a includes a pixel array, which, as an example, includes four pixels 12021, 12022, 12023, and 12024. According to the embodiment described herein, each pixel is a photodetector. In one embodiment, an optical signal IL containing a wavelength λ1 is received by pixels 12021 and 12024 in the array, and an optical signal IL containing a wavelength λ2 is received by pixels 12022 and 12023 in the array. In another embodiment, there is only one wavelength λ, but there are multiple modulation frequencies f mod1 and f mod2 (or more). For example, the pixels 12021 and 12024 are applied with the modulation frequency f mod1 to demodulate the frequency component in the optical signal IL, and the pixels 12022 and 12023 are applied with the modulation frequency f mod2 to demodulate the frequency component in the optical signal IL. In another embodiment, similarly, there is only one light wavelength, but there are multiple modulation frequencies f mod1 and f mod2 (or more). However, at time t1, the pixels in the array are driven by the modulation frequency f mod1 to demodulate the frequency component in the optical signal, and at another time t2, the pixels in the array are driven by the modulation frequency f mod2 to demodulate the frequency component in the optical signal IL, so the pixel array 1200a operates in a time division multiplexing mode.

在替代實施例中,光波長λ1和λ2分別由fmod1和fmod2調變,然後由像素陣列1200a收集。在時間t1,像素陣列1200a在fmod1操作以解調變λ1中的光學信號;而在時間t2,像素陣列1200a工作在fmod2,以解調變λ2中的光學信號。在替代實施例中,光波長為λ1和λ2的光學信號IL分別由fmod1和fmod2調變,像素12021、12024由fmod1驅動,而像素12022、12023由fmod2驅動,以同時解調變輸入的調變光學信號IL。本領域技術人員將容易認識到,可以實現光波長、調變方案和時分的其他組合。 In an alternative embodiment, light wavelengths λ1 and λ2 are modulated by f mod1 and f mod2 , respectively, and then collected by pixel array 1200a. At time t1, pixel array 1200a operates at f mod1 to demodulate the optical signal in λ1; and at time t2, pixel array 1200a operates at f mod2 to demodulate the optical signal in λ2. In an alternative embodiment, optical signals IL having light wavelengths λ1 and λ2 are modulated by f mod1 and f mod2 , respectively, pixels 12021, 12024 are driven by f mod1 , and pixels 12022, 12023 are driven by f mod2 to simultaneously demodulate the input modulated optical signals IL. Those skilled in the art will readily recognize that other combinations of light wavelengths, modulation schemes, and time divisions can be implemented.

請參考圖12B。光檢測設備1200b包括四個像素12021、12022、12023、12024。每個像素是光電探測器,並且可以使用上面公開的實施例。除了圖12A所示的佈局之外,像素12021、12022、12023、12024可以如圖12B所示的交錯佈局排列,其中每個像素的寬度和長度被放置在垂直於相鄰像素的寬度和長度的方向上。 Please refer to FIG. 12B. The light detection device 1200b includes four pixels 12021, 12022, 12023, 12024. Each pixel is a photodetector and the embodiments disclosed above can be used. In addition to the layout shown in FIG. 12A, the pixels 12021, 12022, 12023, 12024 can be arranged in a staggered layout as shown in FIG. 12B, where the width and length of each pixel are placed in a direction perpendicular to the width and length of the adjacent pixels.

圖13A示出了根據一些實施例的使用具有相位變化的調變方案的光檢測設備1300a的框圖。光檢測設備1300a是能夠檢測與目標物體1310的距離資訊的基於間接飛行時間的深度圖像感測器。光檢測設備1300a包括像素陣列1302、雷射二極體驅動器1304、雷射二極體1306和包括定時器驅動器13081、13082的定時器驅動電路1308。根據本文公開的實施例,像素陣列1302包括多個光電探測器。通常,感測器晶片產生並發送定時器信號,用於λ1)通過雷射二極體驅動器1304調變傳輸的光學信號,以及λ2)通過像素陣列1302解調變接收/吸收的光學信號。為了獲得深度資訊,通過參考相同的定時器來解調變整個像素陣列中的所有光電探測器,該定時器以時間順序改變為可能的四個正交相位,例如0°、90°、180°和270°,並且在發射器側沒有相位改變。然而,在該實施例中,4個正交相位變化在發射機側實現,並且在接收側沒有相位變化,如下所述。 13A shows a block diagram of a light detection device 1300a using a modulation scheme with phase variation according to some embodiments. The light detection device 1300a is an indirect time-of-flight based depth image sensor capable of detecting distance information to a target object 1310. The light detection device 1300a includes a pixel array 1302, a laser diode driver 1304, a laser diode 1306, and a timer driver circuit 1308 including timer drivers 13081, 13082. According to embodiments disclosed herein, the pixel array 1302 includes a plurality of photodetectors. Typically, the sensor chip generates and sends a timing signal that is used to λ1) modulate the transmitted optical signal through the laser diode driver 1304, and λ2) demodulate the received/absorbed optical signal through the pixel array 1302. To obtain depth information, all photodetectors in the entire pixel array are demodulated by referencing the same timer, which is changed in time sequence to four possible orthogonal phases, such as 0°, 90°, 180°, and 270°, and there is no phase change on the transmitter side. However, in this embodiment, the 4 orthogonal phase changes are implemented on the transmitter side, and there is no phase change on the receiving side, as described below.

請參考圖13B,其繪示分別由定時器驅動器13081、13082產生的定時器信號CLK1、CLK2的時序圖。定時器信號CLK1是具有4個正交相位變化的調變信號,例如0°、90°、180°和270°,並且定時器信號CLK2是沒有相位變化的解調變信號。具體地,定時器信號CLK1驅動雷射二極體驅動器1304,使得雷射二極體1306可以產生調變的透射光TL。定時器信號CLK2及其反轉信號CLK2’(圖13B中未示出)分別用作控制信號cs1和控制信號cs2(在上述實施例中示出),用於解調變。換句話說,本實施例中的控制信號cs1和控制信號cs2是差分 信號。該實施例可以避免圖像感測器中由於寄生電阻-電容引起的儲存效應而固有的可能的時間相干性。 Please refer to FIG. 13B, which shows a timing diagram of timer signals CLK1 and CLK2 generated by timer drivers 13081 and 13082, respectively. The timer signal CLK1 is a modulation signal with four orthogonal phase changes, such as 0°, 90°, 180° and 270°, and the timer signal CLK2 is a demodulation signal without phase change. Specifically, the timer signal CLK1 drives the laser diode driver 1304 so that the laser diode 1306 can generate modulated transmission light TL. The timer signal CLK2 and its inverted signal CLK2' (not shown in FIG. 13B) are used as the control signal cs1 and the control signal cs2 (shown in the above embodiment) for demodulation, respectively. In other words, the control signal cs1 and the control signal cs2 in this embodiment are differential signals. This embodiment can avoid the possible time coherence inherent in the image sensor due to the storage effect caused by the parasitic resistor-capacitor.

請參考圖13C和圖13D。在圖13C中。與圖13A相比,光電檢測設備1300c在接收側使用兩種解調變方案。像素陣列1302包括兩個部分,第一像素陣列1302a和第二像素陣列1302b。應用於第一像素陣列1302a的第一解調變方案和應用於第二像素陣列1302b的第二解調變方案在時間順序上不同。例如,第一像素陣列1302a應用第一解調變方案,其中時間序列中的相位變化是0°、90°、180°和270°。第二像素陣列1302a應用第二解調變方案,其中時間序列中的相位變化是90°、180°、270°和0°。淨效應是第一像素陣列1302a中的相位變化與第二像素陣列1302b中的相位變化同相,而在發射側沒有相位變化。如果解調變波形不是理想的方波,此操作可能會降低從電源汲取的最大暫態電流。 Please refer to Figures 13C and 13D. In Figure 13C. Compared with Figure 13A, the photodetection device 1300c uses two demodulation schemes on the receiving side. The pixel array 1302 includes two parts, a first pixel array 1302a and a second pixel array 1302b. The first demodulation scheme applied to the first pixel array 1302a and the second demodulation scheme applied to the second pixel array 1302b are different in time sequence. For example, the first pixel array 1302a applies the first demodulation scheme, in which the phase changes in the time sequence are 0°, 90°, 180°, and 270°. The second pixel array 1302a applies the second demodulation scheme, in which the phase changes in the time sequence are 90°, 180°, 270°, and 0°. The net effect is that the phase change in the first pixel array 1302a is in phase with the phase change in the second pixel array 1302b, with no phase change on the transmit side. This operation may reduce the maximum transient current drawn from the power supply if the demodulated waveform is not a perfect square wave.

請參考圖13E,其示出了使用光檢測設備1300c的調變方案。與圖13D相比,該實施例將相位改變應用於發送側,但是不將相位改變應用於接收側的兩個不同的像素陣列1302a、1302b,除了將兩個不同的恒定相位設置到兩個不同的像素陣列1302a、1302b,並且兩個不同的恒定相位彼此正交。例如,發送側的調變信號是定時器信號CLK1,其中時間序列中的相位變化是0°、90°、180°和270°。接收側的解調變信號是定時器信號CLK2、CLK3。定時器信號CLK2用於解調變由像素陣列1302a吸收的入射光學信號IL,其具有0的恒定相位。定時器信號CLK3用於解調變由像素陣列1302b吸收的入射光學信號IL,其具有90°的恒定相位。 Please refer to Figure 13E, which shows a modulation scheme using a light detection device 1300c. Compared with Figure 13D, this embodiment applies a phase change to the transmission side, but does not apply a phase change to the two different pixel arrays 1302a, 1302b on the receiving side, except that two different constant phases are set to the two different pixel arrays 1302a, 1302b, and the two different constant phases are orthogonal to each other. For example, the modulation signal on the transmission side is a timer signal CLK1, where the phase changes in the time series are 0°, 90°, 180° and 270°. The demodulation signal on the receiving side is a timer signal CLK2, CLK3. The timer signal CLK2 is used to demodulate the incident optical signal IL absorbed by the pixel array 1302a, which has a constant phase of 0. The timer signal CLK3 is used to demodulate the incident optical signal IL absorbed by the pixel array 1302b, which has a constant phase of 90°.

儘管圖13A-13E所示的實施例使用具有50%佔空比(duty cycle)的定時器信號作為調變和解調變信號,但是在其他可能的實現中,佔空比可以不同(例如,30%佔空比)。在一些實施方式中,正弦波代替方波被用作調變和解調變信號。 Although the embodiments shown in FIGS. 13A-13E use a timer signal with a 50% duty cycle as the modulation and demodulation signals, in other possible implementations, the duty cycle may be different (e.g., 30% duty cycle). In some embodiments, a sine wave is used as the modulation and demodulation signals instead of a square wave.

圖14示出了根據一些實施例的使用光檢測設備的過程,該光檢測設備使用具有相位變化的調變方案。在其他實施例中,其他實體執行該過程的一些或所有步驟。同樣,實施例可以包括不同的和/或附加的步驟,或者以不同的循序執行這些步驟。 FIG. 14 illustrates a process using a light detection device that uses a modulation scheme with phase variation according to some embodiments. In other embodiments, other entities perform some or all steps of the process. Likewise, embodiments may include different and/or additional steps, or perform the steps in a different order.

在圖14的實施例中,光檢測方法包括步驟1401:發送由第一調變信號調變的光學信號,其中該光學信號由第一調變信號以一個或多個預定相位調變多個時間幀;步驟1402:光電探測器接收反射光學信號;步驟1403:通過一個或多個解調變信號解調變反射光學信號,其中一個或多個解調變信號是多個時間幀的具有一個或多個預定相位的信號;以及步驟1404:在電容器上輸出至少一個電壓信號。在該方法中,光電探測器可以使用本揭露中提到的實施例或其變型。 In the embodiment of FIG. 14 , the optical detection method includes step 1401: sending an optical signal modulated by a first modulation signal, wherein the optical signal is modulated by the first modulation signal with one or more predetermined phases for multiple time frames; step 1402: the photodetector receives the reflected optical signal; step 1403: demodulating the reflected optical signal by one or more demodulation signals, wherein the one or more demodulation signals are signals with one or more predetermined phases for multiple time frames; and step 1404: outputting at least one voltage signal on the capacitor. In the method, the photodetector can use the embodiments mentioned in the present disclosure or variations thereof.

在一些實施例中,參考圖9A-9E描述的像素隔離區域,即像素隔離區域924,在x方向上,例如在平行於基底表面的方向上被消除。通過去除像素隔離區域,可以減小像素尺寸。圖15A示出了根據一些實施例的相鄰像素結構的光檢測設備的截面圖。 In some embodiments, the pixel isolation region described with reference to FIGS. 9A-9E , i.e., pixel isolation region 924, is eliminated in the x-direction, e.g., in a direction parallel to the substrate surface. By removing the pixel isolation region, the pixel size can be reduced. FIG. 15A shows a cross-sectional view of a light detection device with adjacent pixel structures according to some embodiments.

如圖15A所示,光檢測設備包括在平行於設備表面的x方向上沒有隔離的兩個相鄰像素結構。光學信號Ψ1聚焦到吸收區域108,例如圖15A中的吸收區域208,在那裡產生的光電流將流入所有電極205、206、216、215。換句話說,由於光學信號Ψ1從吸收區域208產生的光生電子將被N+端子205、215以及N+端子225、235收集。在一些實施例中,由於光學信號Ψ1而在吸收區域208中產生的光生電子主要由N+端子205、215收集,其次由N+端子225、235收集。 As shown in FIG. 15A , the light detection device includes two adjacent pixel structures without isolation in the x direction parallel to the device surface. The optical signal Ψ1 is focused to the absorption region 108, such as the absorption region 208 in FIG. 15A , where the photocurrent generated will flow into all electrodes 205 , 206 , 216 , 215 . In other words, the photogenerated electrons generated from the absorption region 208 due to the optical signal Ψ1 will be collected by the N+ terminals 205 , 215 and the N+ terminals 225 , 235 . In some embodiments, the photogenerated electrons generated in the absorption region 208 due to the optical signal Ψ1 are mainly collected by the N+ terminals 205 , 215 , and secondarily by the N+ terminals 225 , 235 .

類似地,光學信號Ψ2入射到吸收區域218,在那裡產生的光電流將被N+端子225、235和205、215收集。在一些實施例中,來自吸收區域218的光 生電子主要由N+端子225、235收集,其次由N+端子205、215收集。 Similarly, the optical signal Ψ2 is incident on the absorption region 218, where the photocurrent generated will be collected by the N+ terminals 225, 235 and 205, 215. In some embodiments, the photogenerated electrons from the absorption region 218 are mainly collected by the N+ terminals 225, 235, and secondarily by the N+ terminals 205, 215.

在一些實施例中,N+端子215、225被施加偏壓以提供一空乏區域,從而減少由N+端子225、235收集的由Ψ1光學信號在吸收區域1507中產生的光生電子的數量。 In some embodiments, the N+ terminals 215, 225 are biased to provide a depletion region, thereby reducing the number of photogenerated electrons generated by the Ψ1 optical signal in the absorption region 1507 that are collected by the N+ terminals 225, 235.

圖15B示出了根據一些實施例的光檢測設備的平面圖。在圖15B中描繪的結構中,圖15A中描繪的兩個像素示例沿著設備平面中的水平線。 FIG15B illustrates a plan view of a light detection device according to some embodiments. In the structure depicted in FIG15B, the two pixel examples depicted in FIG15A are along a horizontal line in the plane of the device.

在一些實施例中,上面參考圖15A和15B描述的系統可以衍伸到多個像素,因為該系統在數學上是線性的。例如,所提出的演算法可以衍伸到水平線中的多個像素(>3個像素)。 In some embodiments, the system described above with reference to Figures 15A and 15B can be extended to multiple pixels because the system is mathematically linear. For example, the proposed algorithm can be extended to multiple pixels (>3 pixels) in a horizontal line.

圖15C示出了根據一些實施例的光檢測設備的剖視圖。圖15C描繪了排成一行的像素之間沒有隔離的n像素的結構。光學信號,例如Ψ1、Ψ2、Ψn的光學信號,通過陣列開口進入各自的吸收區域,以防止照射在吸收開口外的光被吸收。可選地,在一些實施例中,可以在端點C2和端點C3之間的光檢測設備中插入浮動p區域,以減少像素之間的串擾。 FIG. 15C shows a cross-sectional view of a light detection device according to some embodiments. FIG. 15C depicts a structure of n pixels arranged in a row without isolation between pixels. Optical signals, such as optical signals of Ψ1, Ψ2, and Ψn, enter respective absorption regions through array openings to prevent light irradiated outside the absorption openings from being absorbed. Optionally, in some embodiments, a floating p region may be inserted in the light detection device between terminal C2 and terminal C3 to reduce crosstalk between pixels.

圖15D-15E示出了根據一些實施例的光檢測設備的平面圖。圖15D示出了陣列佈局,並且是圖15B所示陣列佈局的替代佈局,其可以比圖15B所示佈局減少更多由陣列佔據的面積。如圖15D所示,端點,例如圖15C中的端點C1、端點M1、端點M2、端點C2,在同一水平線中。 Figures 15D-15E show plan views of light detection devices according to some embodiments. Figure 15D shows an array layout, and is an alternative layout to the array layout shown in Figure 15B, which can reduce the area occupied by the array more than the layout shown in Figure 15B. As shown in Figure 15D, the endpoints, such as endpoint C1, endpoint M1, endpoint M2, and endpoint C2 in Figure 15C, are in the same horizontal line.

圖15E是圖15D的替代結構設計。這裡僅示出了陣列的其中一行。在這種設計中,收集端點C1和C2,例如圖15C中的端點C1和C2,可以在橫向(y)方向上移動(相對於基底的平面),而端點M1和M2(例如圖15C中的端點M1和M2),可以移動得更靠近或進入吸收區域,例如更靠近或進入光學開口108。與圖15D相比,這種設計增加了端點C2和C3之間的有效距離,從而可以減少端點C2和C3之間的串擾。在一些實施例中,N+端子的交錯佈局導致一些N+端子沒 有被相應的空乏區域完全阻擋,因此產生的光電流將被更多的相鄰像素端子收集。 FIG. 15E is an alternative structural design to FIG. 15D . Only one row of the array is shown here. In this design, the collection terminals C1 and C2, such as the terminals C1 and C2 in FIG. 15C , can be moved in the lateral (y) direction (relative to the plane of the substrate), and the terminals M1 and M2 (such as the terminals M1 and M2 in FIG. 15C ) can be moved closer to or into the absorption region, such as closer to or into the optical opening 108. Compared with FIG. 15D , this design increases the effective distance between the terminals C2 and C3, thereby reducing the crosstalk between the terminals C2 and C3. In some embodiments, the staggered layout of the N+ terminals causes some N+ terminals to not be completely blocked by the corresponding depletion regions, so the generated photocurrent will be collected by more adjacent pixel terminals.

此外,如上文參考圖15D所述,可注入浮動p摻雜區域以抑制n對n型串擾(n-to-n type crosstalk)。與圖15D相比,圖15E中描繪的佈局包括在x方向上的附加空間,例如,平行於基底,以放置浮動p區域。 Additionally, as described above with reference to FIG. 15D , a floating p-doped region may be implanted to suppress n-to-n type crosstalk. Compared to FIG. 15D , the layout depicted in FIG. 15E includes additional space in the x-direction, e.g., parallel to the substrate, to place the floating p region.

類似地,如上文參考圖15A、15B所述,圖15C-15E的裝置可以例如使用設備對稱性來假設包括多於4個像素單元的像素陣列。例如,可以設想為完全交錯的2n×2n陣列,而不包括像素之間的隔離。此外,可以利用元件對稱性來假設校準陣列的製造非理想性。例如,端點C1和C2之間的設備偏移或光入射角傾斜,可以在調變方案的期間被平均,例如,如參考圖13A-13E所述,其中0度和180度的交替相位同相(例如,對於方波)。類似地,n像素陣列中的兩個或n個合併像素可以遵循相同的校準。 Similarly, as described above with reference to Figures 15A and 15B, the apparatus of Figures 15C-15E can, for example, use device symmetry to assume a pixel array including more than 4 pixel elements. For example, a fully interleaved 2n×2n array can be envisioned without isolation between pixels. In addition, component symmetry can be used to assume manufacturing non-idealities of the calibration array. For example, device offsets or light incidence angle tilts between endpoints C1 and C2 can be averaged during the modulation scheme, for example, as described with reference to Figures 13A-13E, where the alternating phases of 0 degrees and 180 degrees are in phase (e.g., for a square wave). Similarly, two or n merged pixels in an n-pixel array can follow the same calibration.

圖16A示出了根據一些實施例的光檢測設備的剖視圖。光檢測設備包括像素1600,像素1600包括一吸收區域1610、耦合到同一吸收區域1610的兩個子像素1600a、1600b。在一些實施例中,子像素的數量是正整數並且

Figure 109129437-A0305-02-0032-14
2。光檢測設備還包括支撐吸收區域1610的基底1620。每個子像素1600a、1600b包括一檢測區域1613和位於檢測區域1613兩邊的兩個開關(未標記)。每個開關包括一第一導電接觸和一第二導電接觸。例如,如圖16A所示,子像素1600a或1600b的一第一開關(未標記)包括一第一導電接觸1631a和一第二導電接觸1632a。子像素1600a或1600b的第二開關(未標記)包括一第一導電接觸1631b和一第二導電接觸1632b。子像素的兩個開關的電荷收集可以隨時間改變,使得成像系統可以確定感測光的相位資訊。成像系統可以使用相位資訊來分析與立體物件相關聯的特徵,包括深度資訊或材料成分。成像系統還可以使用相位資訊來分析與面部識別、眼睛跟蹤、手勢識別、立體模型掃描/視頻記錄、運動跟 蹤和/或增強/虛擬實境應用相關聯的特徵。 FIG16A shows a cross-sectional view of a light detection device according to some embodiments. The light detection device includes a pixel 1600, the pixel 1600 includes an absorption region 1610, and two sub-pixels 1600a, 1600b coupled to the same absorption region 1610. In some embodiments, the number of sub-pixels is a positive integer and
Figure 109129437-A0305-02-0032-14
2. The light detection device also includes a substrate 1620 that supports the absorption region 1610. Each sub-pixel 1600a, 1600b includes a detection region 1613 and two switches (not labeled) located on both sides of the detection region 1613. Each switch includes a first conductive contact and a second conductive contact. For example, as shown in Figure 16A, a first switch (not labeled) of the sub-pixel 1600a or 1600b includes a first conductive contact 1631a and a second conductive contact 1632a. The second switch (not labeled) of the sub-pixel 1600a or 1600b includes a first conductive contact 1631b and a second conductive contact 1632b. The charge collection of the two switches of the sub-pixel can change over time, so that the imaging system can determine the phase information of the sensed light. Imaging systems can use phase information to analyze features associated with three-dimensional objects, including depth information or material composition. Imaging systems can also use phase information to analyze features associated with facial recognition, eye tracking, gesture recognition, stereo model scanning/video recording, motion tracking, and/or augmented/virtual reality applications.

在一些實施例中,檢測區域1613位於兩個第二導電接觸1632a、1632b之間。兩個第二導電接觸1632a、1632b比第一導電接觸1631a、1631b更靠近檢測區域1613。在一些實施例中,兩個子像素1600a、1600b的兩個檢測區域1613在相同的吸收區域1610中。第一導電接觸1631a、1631b和第二導電接觸1632a、1632b形成在同一吸收區域1610上。 In some embodiments, the detection region 1613 is located between the two second conductive contacts 1632a, 1632b. The two second conductive contacts 1632a, 1632b are closer to the detection region 1613 than the first conductive contacts 1631a, 1631b. In some embodiments, the two detection regions 1613 of the two sub-pixels 1600a, 1600b are in the same absorption region 1610. The first conductive contacts 1631a, 1631b and the second conductive contacts 1632a, 1632b are formed on the same absorption region 1610.

在一些實施例中,像素1600包括多個讀出電路和多個控制信號。例如,像素1600可以包括四個讀出電路和四個控制信號。例如,像素1600包括兩個第一讀出電路1671a和兩個第二讀出電路1671b。像素1600包括兩個第一控制信號1672a和兩個第二控制信號1672b。一組第一控制信號1672a和第二控制信號1672b電耦合到兩個開關,並且用於控制單個子像素中的兩個開關。一組第一讀出電路1671a和第二讀出電路1671b的電耦合到兩個開關,並用於處理收集的電荷。換句話說,第一控制信號1672a和第二控制信號1672b控制由檢測區域1613中吸收的光子產生的電子或電洞由單個子像素1600a或1600b中的第一讀出電路1671a或第二讀出電路1671b處理。在一些實施例中,第一控制信號1672a可以固定在一電壓值Vi,第二控制信號1672b可以在電壓值Vi±△V之間交替。在一些實施例中,第一控制信號1672a和第二控制信號1672b可以是彼此不同的電壓。在一些實施例中,控制信號之一是恆定電壓信號(例如,0.5v),而另一個控制信號是時變電壓信號(例如,在0V和1V之間操作的正弦信號、定時器信號(clock signal)或脈衝信號)。偏置值的方向決定了從吸收區域1610產生的電荷的漂移方向。 In some embodiments, pixel 1600 includes multiple readout circuits and multiple control signals. For example, pixel 1600 may include four readout circuits and four control signals. For example, pixel 1600 includes two first readout circuits 1671a and two second readout circuits 1671b. Pixel 1600 includes two first control signals 1672a and two second control signals 1672b. A set of first control signals 1672a and second control signals 1672b are electrically coupled to two switches and used to control two switches in a single sub-pixel. A set of first readout circuits 1671a and second readout circuits 1671b are electrically coupled to two switches and used to process the collected charge. In other words, the first control signal 1672a and the second control signal 1672b control the electrons or holes generated by the photons absorbed in the detection region 1613 to be processed by the first readout circuit 1671a or the second readout circuit 1671b in the single sub-pixel 1600a or 1600b. In some embodiments, the first control signal 1672a can be fixed at a voltage value Vi, and the second control signal 1672b can alternate between the voltage values Vi±△V. In some embodiments, the first control signal 1672a and the second control signal 1672b can be different voltages from each other. In some embodiments, one of the control signals is a constant voltage signal (e.g., 0.5V) and the other control signal is a time-varying voltage signal (e.g., a sinusoidal signal, a clock signal, or a pulse signal operating between 0V and 1V). The direction of the bias value determines the drift direction of the charge generated from the absorption region 1610.

兩個第一讀出電路1671a以一對一的關係電耦合到子像素1600a、1600b的兩個第一導電接觸1631a。兩個第二讀出電路1671b以一對一的關係電耦合到子像素1600a、1600b的兩個第一導電接觸1631b。第一導電接觸1631a、 1631b可以是讀出接觸。兩個第一控制信號1672a以一對一的關係電耦合到子像素1600a、1600b的兩個第二導電接觸1632a。兩個第二控制信號1672b以一對一的關係電耦合到子像素1600a、1600b的兩個第二導電接觸1632b。第二導電接觸1632a、1632b可以是控制接觸。 Two first readout circuits 1671a are electrically coupled to two first conductive contacts 1631a of sub-pixels 1600a and 1600b in a one-to-one relationship. Two second readout circuits 1671b are electrically coupled to two first conductive contacts 1631b of sub-pixels 1600a and 1600b in a one-to-one relationship. The first conductive contacts 1631a and 1631b may be readout contacts. Two first control signals 1672a are electrically coupled to two second conductive contacts 1632a of sub-pixels 1600a and 1600b in a one-to-one relationship. Two second control signals 1672b are electrically coupled to two second conductive contacts 1632b of sub-pixels 1600a and 1600b in a one-to-one relationship. The second conductive contacts 1632a, 1632b may be control contacts.

在一些實施例中,吸收區域1610在第二導電接觸1632a、1632b正下方的部分可以是本徵的或者包括峰值濃度低於大約1×1015cm3的摻雜劑。術語“本徵”是指半導體材料在第二導電接觸1632a、1632b正下方的部分沒有有意添加摻雜劑。在一些實施例中,吸收區域1610上的第二導電接觸1632a、1632b可導致形成蕭特基接觸、歐姆接觸或二者之間具有中間特性的組合,這取決於各種因素,包括吸收區域1610的材料、第二導電接觸1632a、1632b以及吸收區域1610的雜質或缺陷水平。 In some embodiments, the portion of the absorption region 1610 directly below the second conductive contacts 1632a, 1632b can be intrinsic or include a dopant having a peak concentration of less than about 1×10 15 cm 3. The term “intrinsic” means that the portion of the semiconductor material directly below the second conductive contacts 1632a, 1632b has no intentional addition of dopants. In some embodiments, the second conductive contacts 1632a, 1632b on the absorption region 1610 can result in the formation of a Schottky contact, an Ohmic contact, or a combination of the two with intermediate characteristics, depending on various factors, including the material of the absorption region 1610, the second conductive contacts 1632a, 1632b, and the level of impurities or defects in the absorption region 1610.

第一控制信號1672a和第二控制信號1672b用於控制由來自檢測區域1613的吸收光子產生的電子的收集。例如,當使用電壓時,如果第一控制信號1672a相對於第二控制信號1672b偏置,則在第二導電接觸1632a、1632b正下方的兩個部分之間產生電場,並且根據電場的方向,自由電荷朝向第二導電接觸1632a、1632b正下方的兩個部分之一漂移。 The first control signal 1672a and the second control signal 1672b are used to control the collection of electrons generated by absorbed photons from the detection region 1613. For example, when voltage is used, if the first control signal 1672a is biased relative to the second control signal 1672b, an electric field is generated between the two portions directly below the second conductive contacts 1632a, 1632b, and free charges drift toward one of the two portions directly below the second conductive contacts 1632a, 1632b depending on the direction of the electric field.

在一些實施例中,子像素1600a、1600b的每個開關分別包括在第一導電接觸1631a、1631b下方的兩個第一摻雜區域1611a、1611b,並且形成在相同的吸收區域1610中。換句話說,兩個子像素1600a、1600b的四個第一摻雜區域1611a、1611b形成在同一吸收區域1610中。在一些實施例中,兩個相鄰子像素的第一導電接觸之間的最小寬度w1小於吸收區域1610的寬度。例如,子像素1600a的第一導電接觸1631a和子像素1600b的第一導電接觸1631b之間的最小寬度小於吸收區域1610的寬度。 In some embodiments, each switch of the sub-pixels 1600a and 1600b includes two first doped regions 1611a and 1611b respectively under the first conductive contacts 1631a and 1631b, and is formed in the same absorption region 1610. In other words, the four first doped regions 1611a and 1611b of the two sub-pixels 1600a and 1600b are formed in the same absorption region 1610. In some embodiments, the minimum width w1 between the first conductive contacts of two adjacent sub-pixels is smaller than the width of the absorption region 1610. For example, the minimum width between the first conductive contact 1631a of sub-pixel 1600a and the first conductive contact 1631b of sub-pixel 1600b is less than the width of the absorption region 1610.

在一些實施例中,第一摻雜區域1611a、1611b具有第一導電型態。 在一些實施例中,第一摻雜區域1611a、1611b包括一摻雜劑。第一摻雜區域1611a、1611b的摻雜劑的峰值濃度取決於第一導電接觸1631a、1631b的材料和吸收區域1610的材料,例如,在5×1018cm-3至5×1020cm-3之間。第一摻雜區域1611a、1611b用於收集從吸收區域1610產生的載流子,這些載流子分別基於第一控制信號1672a和第二控制信號1672b的控制由第一讀出電路1671a和第二讀出電路1671b進一步處理。 In some embodiments, the first doped regions 1611a, 1611b have a first conductivity type. In some embodiments, the first doped regions 1611a, 1611b include a dopant. The peak concentration of the dopant in the first doped regions 1611a, 1611b depends on the material of the first conductive contacts 1631a, 1631b and the material of the absorption region 1610, for example, between 5×10 18 cm -3 and 5×10 20 cm -3 . The first doped regions 1611a, 1611b are used to collect carriers generated from the absorption region 1610, and these carriers are further processed by the first readout circuit 1671a and the second readout circuit 1671b based on the control of the first control signal 1672a and the second control signal 1672b, respectively.

在本揭露中,在同一光檢測設備中,由第一摻雜區域1611a收集的載流子的類型和由第一摻雜區域1611b收集的載流子的類型相同。例如,當光檢測設備被配置為收集電子時,當單個子像素的第一開關接通並且同一子像素的第二開關斷開時,第一摻雜區域1611a收集從檢測區域1613產生的光載流子的電子,並且當第二開關接通並且第一開關斷開時,第一摻雜區域1611b也收集從檢測區域1613產生的光載流子的電子。 In the present disclosure, in the same light detection device, the type of carriers collected by the first doped region 1611a and the type of carriers collected by the first doped region 1611b are the same. For example, when the light detection device is configured to collect electrons, when the first switch of a single sub-pixel is turned on and the second switch of the same sub-pixel is turned off, the first doped region 1611a collects electrons of photocarriers generated from the detection region 1613, and when the second switch is turned on and the first switch is turned off, the first doped region 1611b also collects electrons of photocarriers generated from the detection region 1613.

在一些實施例中,光檢測設備可以包括具有多個開口1661的遮光層1660,用於定義每個子像素1600a、1600b的檢測區域1613的位置。換句話說,開口1661用於允許入射光學信號進入吸收區域1610並定義出檢測區域1613的位置。在一些實施例中,當入射光從基底1620的底表面進入吸收區域1610時,遮光層位於遠離吸收區域1610的基底1620的底表面上。在一些實施例中,從開口1661的上視圖來看,開口1661的形狀可以是橢圓形、圓形、矩形、正方形、菱形、八邊形或任何其他合適的形狀。 In some embodiments, the light detection device may include a light shielding layer 1660 having a plurality of openings 1661 for defining the position of the detection region 1613 of each sub-pixel 1600a, 1600b. In other words, the opening 1661 is used to allow the incident optical signal to enter the absorption region 1610 and define the position of the detection region 1613. In some embodiments, when the incident light enters the absorption region 1610 from the bottom surface of the substrate 1620, the light shielding layer is located on the bottom surface of the substrate 1620 away from the absorption region 1610. In some embodiments, from the top view of the opening 1661, the shape of the opening 1661 may be an ellipse, a circle, a rectangle, a square, a rhombus, an octagon, or any other suitable shape.

在一些實施例中,光檢測設備還包括在多個子像素上以一對一對應的多個光學元件(未示出)。光學元件會聚集入射光學信號以進入檢測區域1613。 In some embodiments, the light detection device further includes a plurality of optical elements (not shown) corresponding one-to-one on the plurality of sub-pixels. The optical elements gather the incident optical signal to enter the detection area 1613.

在一些實施例中,由於多個子像素1600a、1600b與單個吸收區域1610整合在一起,所以光檢測設備的尺寸減小,並且來自基底1620和吸收區域 1610的介面處的暗電流減小。此外,提高了光檢測設備的空間解析度,並且減小了單個光檢測設備單元1600的尺寸。 In some embodiments, since multiple sub-pixels 1600a, 1600b are integrated with a single absorption region 1610, the size of the light detection device is reduced, and the dark current from the interface of the substrate 1620 and the absorption region 1610 is reduced. In addition, the spatial resolution of the light detection device is improved, and the size of a single light detection device unit 1600 is reduced.

圖16B示出了根據一些實施例的光檢測設備的上視圖。圖16A示出了沿著圖16B中的A-A’線的截面圖。在一些實施例中,兩個子像素1600a、1600b的第一導電接觸1631a、1631b和第二導電接觸1632a、1632b沿著吸收區域1610的較長邊對齊。 FIG. 16B shows a top view of a light detection device according to some embodiments. FIG. 16A shows a cross-sectional view along line A-A' in FIG. 16B. In some embodiments, the first conductive contacts 1631a, 1631b and the second conductive contacts 1632a, 1632b of the two sub-pixels 1600a, 1600b are aligned along the longer side of the absorption region 1610.

圖16C示出了根據一些實施例的光檢測設備的上視圖。在一些實施例中,圖16A示出了沿著圖16C中的A-A’線的截面圖。在一些實施例中,圖16A所示的截面圖可以是沿著光檢測設備的任何可能的截面線的截面圖。在一些實施例中,兩個子像素1600a之一的兩個第一導電接觸1631a、1631b相對於檢測區域1613對角佈置。在一些實施例中,吸收區域1610包括兩個第一邊1616a、1616b和兩個第二邊1617a、1617b。每個第一邊1616a、1616b的長度比每個第二邊1617a、1617b的長度長。子像素1600a的第一導電接觸1631b比子像素1600b的第一導電接觸1631a更靠近第一邊1616a。子像素1600b的第一導電接觸1631a比子像素1600a的第一導電接觸1631b更靠近第一邊1616b。在一些實施例中,子像素1600a的第一導電接觸1631b位於第一邊1616a和子像素1600b的第一導電接觸1631a之間。在一些實施例中,子像素1600b的第一導電接觸1631a位於第一邊1616b和子像素1600a的第一導電接觸1631b之間。在一些實施例中,子像素1600a的第二導電接觸1631b沿著水平方向D1與子像素1600b的第一導電接觸1631a對準。結果是,可以進一步減小光檢測設備的尺寸。 FIG16C shows a top view of a light detection device according to some embodiments. In some embodiments, FIG16A shows a cross-sectional view along line A-A' in FIG16C. In some embodiments, the cross-sectional view shown in FIG16A can be a cross-sectional view along any possible cross-sectional line of the light detection device. In some embodiments, the two first conductive contacts 1631a, 1631b of one of the two sub-pixels 1600a are arranged diagonally relative to the detection region 1613. In some embodiments, the absorption region 1610 includes two first sides 1616a, 1616b and two second sides 1617a, 1617b. The length of each first side 1616a, 1616b is longer than the length of each second side 1617a, 1617b. The first conductive contact 1631b of subpixel 1600a is closer to the first side 1616a than the first conductive contact 1631a of subpixel 1600b. The first conductive contact 1631a of subpixel 1600b is closer to the first side 1616b than the first conductive contact 1631b of subpixel 1600a. In some embodiments, the first conductive contact 1631b of subpixel 1600a is located between the first side 1616a and the first conductive contact 1631a of subpixel 1600b. In some embodiments, the first conductive contact 1631a of subpixel 1600b is located between the first side 1616b and the first conductive contact 1631b of subpixel 1600a. In some embodiments, the second conductive contact 1631b of the sub-pixel 1600a is aligned with the first conductive contact 1631a of the sub-pixel 1600b along the horizontal direction D1. As a result, the size of the light detection device can be further reduced.

圖16D示出了根據一些實施例的光檢測設備的剖視圖。圖16D中的光檢測設備類似於圖16A中的光檢測設備,不同之處描述如下。 FIG. 16D shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 16D is similar to the light detection device in FIG. 16A , and the differences are described as follows.

在一些實施例中,像素1600還包括圍繞吸收區域1610的阻擋層1640,即,子像素1600a、1600b的檢測區域1613被相同的阻擋層1640圍繞。在 一些實施例中,阻擋層1640的導電型態不同於每個第一摻雜區域1611a、1611b的第一導電型態。阻擋層1640可以阻擋吸收區域1610中的光生載流子到達基底1620,增加了子像素1600a、1600b的光生載流子的收集效率。阻擋層1640還可以阻擋基底1620中的光生載流子到達吸收區域1610,這增加了子像素的光生載流子的速度。阻擋層1640可以包括與吸收區域1610的材料相同、與基底1620的材料相同或者不同於吸收區域1610的材料和不同於基底1620的材料的材料。在一些實施例中,阻擋層1640的形狀可以是但不限於環形。 In some embodiments, the pixel 1600 further includes a blocking layer 1640 surrounding the absorption region 1610, that is, the detection region 1613 of the sub-pixels 1600a and 1600b is surrounded by the same blocking layer 1640. In some embodiments, the conductivity type of the blocking layer 1640 is different from the first conductivity type of each first doped region 1611a and 1611b. The blocking layer 1640 can block the photogenerated carriers in the absorption region 1610 from reaching the substrate 1620, increasing the collection efficiency of the photogenerated carriers of the sub-pixels 1600a and 1600b. The blocking layer 1640 can also block the photogenerated carriers in the substrate 1620 from reaching the absorption region 1610, which increases the speed of the photogenerated carriers of the sub-pixels. The blocking layer 1640 may include a material that is the same as the material of the absorption region 1610, the same as the material of the substrate 1620, or a material that is different from the material of the absorption region 1610 and the material of the substrate 1620. In some embodiments, the shape of the blocking layer 1640 may be, but is not limited to, a ring shape.

在一些實施例中,阻擋層1640包括峰值濃度範圍從1015cm-3到1020cm-3的摻雜劑。阻擋層1640可以減少兩個相鄰像素1600之間的串擾。 In some embodiments, the blocking layer 1640 includes a dopant having a peak concentration ranging from 10 15 cm −3 to 10 20 cm −3 . The blocking layer 1640 can reduce crosstalk between two adjacent pixels 1600.

在一些實施例中,光檢測設備可以進一步包括電連接到阻擋層1640的第三導電接觸(未示出)。阻擋層1640可以通過第三導電接觸被偏壓,以釋放未被子像素1600a、1600b的第一摻雜區域1611a、1611b收集的載流子。 In some embodiments, the light detection device may further include a third conductive contact (not shown) electrically connected to the blocking layer 1640. The blocking layer 1640 may be biased through the third conductive contact to release carriers that are not collected by the first doped regions 1611a, 1611b of the sub-pixels 1600a, 1600b.

圖16E示出了根據一些實施例的光檢測設備的剖視圖。圖16E中的光檢測設備類似於圖16A中的光檢測設備,不同之處描述如下。 FIG16E shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG16E is similar to the light detection device in FIG16A, and the differences are described as follows.

在一些實施例中,光檢測設備還包括隔離區域1650,從光檢測設備的截面圖來看,隔離區域1650設置在吸收區域1610的兩個相對側。隔離區域1650在吸收區域1610之外,並且與吸收區域1610實體分離。在一些實施例中,子像素1600a、1600b的檢測區域1613被相同的隔離區域1650包圍。在一些實施例中,兩個相鄰子像素的第一導電接觸之間的最小寬度w1小於隔離區域1650的寬度。例如,子像素1600a的第一導電接觸1631a和子像素1600b的第一導電接觸1631b之間的最小寬度,小於隔離區域1650的寬度w2。在一些實施例中,隔離區域1650是填充有介電材料或絕緣材料的溝槽,以用作兩個相鄰像素之間的電阻區域,阻止電流流過隔離區域1650並改善相鄰像素1600之間的絕緣性。介電材料或絕緣材料可以包括但不限於包括二氧化矽(SiO2)的氧化物材料、或包括 氮化矽(Si3N4)的氮化物材料。在一些實施例中,溝槽用矽填充。 In some embodiments, the light detection device further includes an isolation region 1650, which is disposed at two opposite sides of the absorption region 1610 from the cross-sectional view of the light detection device. The isolation region 1650 is outside the absorption region 1610 and physically separated from the absorption region 1610. In some embodiments, the detection regions 1613 of the sub-pixels 1600a and 1600b are surrounded by the same isolation region 1650. In some embodiments, the minimum width w1 between the first conductive contacts of two adjacent sub-pixels is smaller than the width of the isolation region 1650. For example, the minimum width between the first conductive contact 1631a of the sub-pixel 1600a and the first conductive contact 1631b of the sub-pixel 1600b is smaller than the width w2 of the isolation region 1650. In some embodiments, the isolation region 1650 is a trench filled with a dielectric material or an insulating material to serve as a resistance region between two adjacent pixels, preventing current from flowing through the isolation region 1650 and improving the insulation between adjacent pixels 1600. The dielectric material or the insulating material may include, but is not limited to, an oxide material including silicon dioxide (SiO 2 ), or a nitride material including silicon nitride (Si 3 N 4 ). In some embodiments, the trench is filled with silicon.

在一些實施例中,隔離區域1650從基底1620的上表面1621延伸,並從上表面1621延伸到預定深度。在一些實施例中,隔離區域1650從基底1620的底面1622延伸,並從底面1622延伸到預定深度。在一些實施例中,隔離區域1650從上表面1621和下表面1622穿透基底1620。 In some embodiments, the isolation region 1650 extends from the upper surface 1621 of the substrate 1620 and extends from the upper surface 1621 to a predetermined depth. In some embodiments, the isolation region 1650 extends from the bottom surface 1622 of the substrate 1620 and extends from the bottom surface 1622 to a predetermined depth. In some embodiments, the isolation region 1650 penetrates the substrate 1620 from the upper surface 1621 and the lower surface 1622.

在一些實施例中,隔離區域1650是具有導電型態的摻雜區域。隔離區域1650的導電型態可以與第一摻雜區域1611a、1611b的第一導電型態不同或相同。隔離區域1650的峰值濃度可以在1015cm-3到1020cm-3的範圍內。 In some embodiments, the isolation region 1650 is a doped region having a conductivity type. The conductivity type of the isolation region 1650 may be different from or the same as the first conductivity type of the first doped regions 1611a, 1611b. The peak concentration of the isolation region 1650 may be in the range of 10 15 cm -3 to 10 20 cm -3 .

隔離區域1650的摻雜可以產生能隙偏移所致位能障(bandgap offset-induced potential energy barrier),該位能障阻止電流流過隔離區域1650並改善相鄰像素1600之間的電隔離。在一些實施例中,隔離區域1650包括不同於基底1620的材料的半導體材料。在基底1620和隔離區域1650之間形成的兩種不同半導體材料之間的介面可以產生能隙偏移所致位能障,其阻止電流流過隔離區域1650並改善相鄰像素1600之間的電隔離。在一些實施例中,隔離區域1650的形狀可以是環形。在一些實施例中,隔離區域1650可以包括設置在吸收區域1610的兩個相對側的兩個分開區域。 The doping of the isolation region 1650 may generate a bandgap offset-induced potential energy barrier that prevents current from flowing through the isolation region 1650 and improves electrical isolation between adjacent pixels 1600. In some embodiments, the isolation region 1650 includes a semiconductor material different from the material of the substrate 1620. The interface between the two different semiconductor materials formed between the substrate 1620 and the isolation region 1650 may generate a bandgap offset-induced potential energy barrier that prevents current from flowing through the isolation region 1650 and improves electrical isolation between adjacent pixels 1600. In some embodiments, the shape of the isolation region 1650 may be a ring. In some embodiments, the isolation region 1650 may include two separate regions disposed on two opposite sides of the absorption region 1610.

圖16F示出了根據一些實施例的光檢測設備的剖視圖。圖16F中的光檢測設備類似於圖16E中的光檢測設備,不同之處描述如下。 FIG16F shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG16F is similar to the light detection device in FIG16E, and the differences are described as follows.

在一些實施例中,光檢測設備包括圖16D中的阻擋層1640和圖16E中的隔離區域1650。隔離區域1650的導電型態不同於阻擋層1640的導電型態。例如,當阻擋層1640的導電型態是P型時,隔離區域1650的導電型態是N型。 In some embodiments, the light detection device includes a blocking layer 1640 in FIG. 16D and an isolation region 1650 in FIG. 16E. The conductivity type of the isolation region 1650 is different from the conductivity type of the blocking layer 1640. For example, when the conductivity type of the blocking layer 1640 is P-type, the conductivity type of the isolation region 1650 is N-type.

在一些實施例中,子像素1600a、1600b的每個開關分別包括兩個第二摻雜區域1612a、1612b,這兩個第二摻雜區域1612 a、1612 b分別位於第二導電接觸1632a、1632b之下,並且形成在相同的吸收區域1610中。換句話說,兩 個子像素1600a、1600b的四個第二摻雜區域1612a、1612b形成在同一吸收區域1610中。 In some embodiments, each switch of the sub-pixels 1600a and 1600b includes two second doped regions 1612a and 1612b, respectively, which are located under the second conductive contacts 1632a and 1632b, respectively, and are formed in the same absorption region 1610. In other words, the four second doped regions 1612a and 1612b of the two sub-pixels 1600a and 1600b are formed in the same absorption region 1610.

在一些實施例中,第二摻雜區域1612a、1612b具有不同於第一導電型態的第二導電型態。在一些實施例中,每個第二摻雜區域1612a、1612b摻雜有摻雜劑。第二摻雜區域1612a、1612b的摻雜劑的峰值濃度取決於第二導電接觸1632a、1632b的材料和吸收區域1610的材料,例如在1×1017cm-3至5×1020cm-3之間。第二摻雜區域1612a、1612b與第二導電接觸1632a、1632b形成蕭特基或歐姆接觸。第二摻雜區域1612a、1612b用於基於第一控制信號1672a和第二控制信號1672b的控制來調變(modulate)從吸收區域1610產生的載流子。 In some embodiments, the second doped regions 1612a, 1612b have a second conductivity type different from the first conductivity type. In some embodiments, each second doped region 1612a, 1612b is doped with a dopant. The peak concentration of the dopant in the second doped regions 1612a, 1612b depends on the material of the second conductive contacts 1632a, 1632b and the material of the absorption region 1610, for example, between 1×10 17 cm -3 and 5×10 20 cm -3 . The second doped regions 1612a, 1612b form a Schottky or Ohmic contact with the second conductive contacts 1632a, 1632b. The second doped regions 1612a and 1612b are used to modulate carriers generated from the absorption region 1610 based on the control of the first control signal 1672a and the second control signal 1672b.

圖16G示出了根據一些實施例的光檢測設備的剖視圖。圖16G中的光檢測設備類似於圖16E中的光檢測設備,不同之處描述如下。 FIG16G shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG16G is similar to the light detection device in FIG16E, and the differences are described as follows.

在一些實施例中,光檢測設備包括圖16D中的阻擋層1640和圖16E中的隔離區域1650。 In some embodiments, the light detection device includes a blocking layer 1640 in FIG. 16D and an isolation region 1650 in FIG. 16E .

在一些實施例中,每個子像素還可以包括位於吸收區域1610和兩個子像素1600a、1600b的第二導電接觸1632a之間的第一介電層1633a。每個子像素還可以包括位於吸收區域1610和兩個子像素1600a、1600b的第二導電接觸1632b之間的第二介電層1633b。 In some embodiments, each sub-pixel may further include a first dielectric layer 1633a between the absorption region 1610 and the second conductive contact 1632a of the two sub-pixels 1600a, 1600b. Each sub-pixel may further include a second dielectric layer 1633b between the absorption region 1610 and the second conductive contact 1632b of the two sub-pixels 1600a, 1600b.

第一介電層1633a防止電流從第二導電接觸1632a直接傳導到吸收區域1610的,但是回應於向第二導電接觸1632a施加的電壓,而允許在吸收區域1610內建立電場。第二介電層1633b防止電流從第二導電接觸1632b直接傳導到吸收區域1610,但是回應於向第二導電接觸1632b施加的電壓,而允許在吸收區域1610內建立電場。建立的電場可以吸引或排斥吸收區域1610內的電荷載流子。 The first dielectric layer 1633a prevents current from being directly conducted from the second conductive contact 1632a to the absorption region 1610, but allows an electric field to be established in the absorption region 1610 in response to a voltage applied to the second conductive contact 1632a. The second dielectric layer 1633b prevents current from being directly conducted from the second conductive contact 1632b to the absorption region 1610, but allows an electric field to be established in the absorption region 1610 in response to a voltage applied to the second conductive contact 1632b. The established electric field can attract or repel electric carriers in the absorption region 1610.

圖16H示出了根據一些實施例的光檢測設備的截面圖。圖16H中的 光檢測設備類似於圖16F中的光檢測設備,不同之處描述如下。 FIG. 16H shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 16H is similar to the light detection device in FIG. 16F, and the differences are described as follows.

每個第一摻雜區域1611a、1611b的第一導電型態和每個第二摻雜區域1612a、1612b的第二導電型態相同。 The first conductivity type of each first doped region 1611a, 1611b is the same as the second conductivity type of each second doped region 1612a, 1612b.

在一些實施例中,第二導電接觸1632a位於單一個子像素中的開關的第一摻雜區域1611a和第二摻雜區域1612a之間。在一些實施例中,第二導電接觸1632b在單一個子像素中的另一開關的第一摻雜區域1611b和第二摻雜區域1612b之間。 In some embodiments, the second conductive contact 1632a is located between the first doped region 1611a and the second doped region 1612a of a switch in a single sub-pixel. In some embodiments, the second conductive contact 1632b is located between the first doped region 1611b and the second doped region 1612b of another switch in a single sub-pixel.

在一些實施例中,當第二導電接觸1632a與吸收區域1610蕭特基接觸時,第一摻雜區域1611a、第二摻雜區域1612a和第二導電接觸1632a被視為第一第一金屬半導體場效應電晶體(metal semiconductor field effect transistor,MESFET)。在一些實施例中,當第二導電接觸1632b與吸收區域1610蕭特基接觸時,第一摻雜區域1611b、第二摻雜區域1612b和第二導電接觸1632b被視為第二金屬半導體場效應電晶體。 In some embodiments, when the second conductive contact 1632a is in Schottky contact with the absorption region 1610, the first doped region 1611a, the second doped region 1612a, and the second conductive contact 1632a are considered as a first metal semiconductor field effect transistor (MESFET). In some embodiments, when the second conductive contact 1632b is in Schottky contact with the absorption region 1610, the first doped region 1611b, the second doped region 1612b, and the second conductive contact 1632b are considered as a second metal semiconductor field effect transistor.

圖16I示出了根據一些實施例的光檢測設備的剖視圖。圖16I中的光檢測設備類似於圖16G中的光檢測設備,不同之處描述如下。 FIG. 16I shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 16I is similar to the light detection device in FIG. 16G , and the differences are described as follows.

每個第一摻雜區域1611a、1611b的第一導電型態和每個第二摻雜區域1612a、1612b的第二導電型態相同。 The first conductivity type of each first doped region 1611a, 1611b is the same as the second conductivity type of each second doped region 1612a, 1612b.

在一些實施例中,第一介電層1633a位於吸收區域1610和第二導電接觸1632a之間。第二介電層1633b位於吸收區域1610和第二導電接觸1632b之間。 In some embodiments, the first dielectric layer 1633a is located between the absorption region 1610 and the second conductive contact 1632a. The second dielectric layer 1633b is located between the absorption region 1610 and the second conductive contact 1632b.

第一介電層1633a和第二介電層1633b分別防止電流直接從第二導電接觸1632a傳導到吸收區域1610和直接從第二導電接觸1632b傳導到吸收區域1610,但是回應於施加到第二導電接觸1632a和第二導電接觸1632b的電壓而允許在吸收區域1610內建立電場。建立的電場吸引或排斥吸收區域1610內的電荷 載流子。在一些實施例中,第二導電接觸1632a、第一介電層1633a、第一摻雜區域1611a和第二摻雜區域1612a被視為第一金屬氧化物半導體場效應電晶體(metal oxide semiconductor field-effect transistor,MOSFET)。在一些實施例中,第二導電接觸1632b、第二介電層1633b、第一摻雜區域1611b和第二摻雜區域1612b被視為第二金屬氧化物半導體場效應電晶體。在一些實施例中,第一金屬氧化物半導體場效應電晶體和第二金屬氧化物半導體場效應電晶體可以是增強模式。在一些實施例中,第一金屬氧化物半導體場效應電晶體和第二金屬氧化物半導體場效應電晶體可以是空乏型。 The first dielectric layer 1633a and the second dielectric layer 1633b prevent current from being conducted directly from the second conductive contact 1632a to the absorption region 1610 and directly from the second conductive contact 1632b to the absorption region 1610, respectively, but allow an electric field to be established in the absorption region 1610 in response to a voltage applied to the second conductive contact 1632a and the second conductive contact 1632b. The established electric field attracts or repels charge carriers in the absorption region 1610. In some embodiments, the second conductive contact 1632a, the first dielectric layer 1633a, the first doped region 1611a, and the second doped region 1612a are considered to be a first metal oxide semiconductor field-effect transistor (MOSFET). In some embodiments, the second conductive contact 1632b, the second dielectric layer 1633b, the first doped region 1611b, and the second doped region 1612b are considered as a second metal oxide semiconductor field effect transistor. In some embodiments, the first metal oxide semiconductor field effect transistor and the second metal oxide semiconductor field effect transistor may be enhancement mode. In some embodiments, the first metal oxide semiconductor field effect transistor and the second metal oxide semiconductor field effect transistor may be depletion type.

圖16J示出了根據一些實施例的光檢測設備的剖視圖。圖16J中的光檢測設備類似於圖16F中的光檢測設備,不同之處描述如下。 FIG16J shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG16J is similar to the light detection device in FIG16F, and the differences are described as follows.

在一些實施例中,子像素1600a、1600b中的每一個還包括兩個反向摻雜區域1613a、1613b。每個反向摻雜區域1613a、1613b具有不同於第一摻雜區域1611a、1611b的第一導電型態的導電型態。例如,如果光檢測設備被配置為處理收集的電子用於進一步應用,則第一摻雜區域1611a、1611b是N型的,第二摻雜區域1612a、1612b是P型的,並且反向摻雜區域1613a、1613b是P型的。在一些實施例中,反向摻雜區域1613a、1613b分別圍繞第一摻雜區域1611a、1611b的遠離第二摻雜區域1612a、1612b的一部分或與其重疊,並且第一摻雜區域1611a、1611b的另一部分未被反向摻雜區域1613a、1613b圍繞或未與其重疊。在一些實施例中,第一摻雜區域1611a、1611b分別與反向摻雜區域1613a、1613b完全重疊或被反向摻雜區域1613 a、1613 b完全包圍。在一些實施例中,反向摻雜區域1613a、1613b作為暗電流減少區域,以用於減少子像素1600a、1600b的暗電流。與沒有包含分別與第一摻雜區域1611a、1611b重疊的反向摻雜區域1613a、1613b的光檢測設備相比,本實施例包含有與第一摻雜區域1611a、1611b重疊的反向摻雜區域1613a、1613b的光檢測設備具有更薄的空 乏層,降低了光檢測設備的暗電流。 In some embodiments, each of the sub-pixels 1600a, 1600b further includes two reverse doped regions 1613a, 1613b. Each reverse doped region 1613a, 1613b has a conductivity type different from the first conductivity type of the first doped region 1611a, 1611b. For example, if the light detection device is configured to process the collected electrons for further applications, the first doped regions 1611a, 1611b are N-type, the second doped regions 1612a, 1612b are P-type, and the reverse doped regions 1613a, 1613b are P-type. In some embodiments, the reverse doped regions 1613a and 1613b respectively surround or overlap a portion of the first doped regions 1611a and 1611b that is far from the second doped regions 1612a and 1612b, and another portion of the first doped regions 1611a and 1611b is not surrounded or overlapped by the reverse doped regions 1613a and 1613b. In some embodiments, the first doped regions 1611a and 1611b completely overlap or are completely surrounded by the reverse doped regions 1613a and 1613b, respectively. In some embodiments, the reverse doped regions 1613a and 1613b serve as dark current reduction regions to reduce the dark current of the sub-pixels 1600a and 1600b. Compared with the light detection device that does not include the reverse doped regions 1613a and 1613b overlapping the first doped regions 1611a and 1611b, the light detection device of this embodiment including the reverse doped regions 1613a and 1613b overlapping the first doped regions 1611a and 1611b has a thinner depletion layer, thereby reducing the dark current of the light detection device.

在一些實施例中,反向摻雜區域1613a、1613b可以減少兩個子像素1600a、1600b之間的串擾。例如,比子像素1600a的反向摻雜區域1613a更靠近子像素1600b的子像素1600a的反向摻雜區域1613b和比子像素1600b的反向摻雜區域1613b更靠近子像素1600a的子像素1600b的反向摻雜區域1613a,可以增強子像素1600a的第一摻雜區域1611b和子像素1600b的第一摻雜區域1611a之間的電阻,如此可以減少兩個子像素1600a、1600b之間的串擾。 In some embodiments, the reverse doped regions 1613a, 1613b can reduce crosstalk between the two sub-pixels 1600a, 1600b. For example, the reverse doping region 1613b of sub-pixel 1600a that is closer to sub-pixel 1600b than the reverse doping region 1613a of sub-pixel 1600a and the reverse doping region 1613a of sub-pixel 1600b that is closer to sub-pixel 1600a than the reverse doping region 1613b of sub-pixel 1600b can enhance the resistance between the first doping region 1611b of sub-pixel 1600a and the first doping region 1611a of sub-pixel 1600b, thereby reducing the crosstalk between the two sub-pixels 1600a and 1600b.

在一些實施例中,每個反向摻雜區域1613a、1613b摻雜有具有峰值濃度的摻雜劑。峰值濃度不小於1×1016cm-3。在一些實施例中,反向摻雜區域1613a、1613b的摻雜劑的峰值濃度低於第一摻雜區域331的摻雜劑的峰值濃度。在一些實施例中,反向摻雜區域1613a、1613b的摻雜劑的峰值濃度在1×1016cm-3和1×1018cm-3之間。 In some embodiments, each reverse doped region 1613a, 1613b is doped with a dopant having a peak concentration. The peak concentration is not less than 1×10 16 cm -3 . In some embodiments, the peak concentration of the dopant of the reverse doped regions 1613a, 1613b is lower than the peak concentration of the dopant of the first doped region 331. In some embodiments, the peak concentration of the dopant of the reverse doped regions 1613a, 1613b is between 1×10 16 cm -3 and 1×10 18 cm -3 .

圖16K示出了根據一些實施例的光檢測設備的剖視圖。圖16K中的光檢測設備類似於圖16F中的光檢測設備,不同之處描述如下。 FIG. 16K shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 16K is similar to the light detection device in FIG. 16F, and the differences are described as follows.

在一些實施例中,像素還包括在吸收區域1610中並且在兩個相鄰子像素1600a、1600b之間的第三摻雜區域1614,並且第三摻雜區域1614與子像素1600a的第一摻雜區域1611b和子像素1600b的第一摻雜區域1611a實體分離。第三摻雜區域1614具有不同於每個第一摻雜區域1611a、1611b的第一導電型態的導電型態。在一些實施例中,第三摻雜區域1614包括具有峰值濃度的摻雜劑。峰值濃度不小於1×1016cm-3。在一些實施例中,第三摻雜區域1614的摻雜劑的峰值濃度低於第一摻雜區域1611a、1611b的摻雜劑的峰值濃度。在一些實施例中,第三摻雜區域1614的摻雜劑的峰值濃度在1x 1018cm-3和5x 1020cm-3之間。 In some embodiments, the pixel further includes a third doped region 1614 in the absorption region 1610 and between two adjacent sub-pixels 1600a, 1600b, and the third doped region 1614 is physically separated from the first doped region 1611b of the sub-pixel 1600a and the first doped region 1611a of the sub-pixel 1600b. The third doped region 1614 has a conductivity type different from the first conductivity type of each first doped region 1611a, 1611b. In some embodiments, the third doped region 1614 includes a dopant having a peak concentration. The peak concentration is not less than 1×10 16 cm -3 . In some embodiments, the peak concentration of the dopant in the third doped region 1614 is lower than the peak concentration of the dopant in the first doped regions 1611a and 1611b. In some embodiments, the peak concentration of the dopant in the third doped region 1614 is between 1 x 10 18 cm -3 and 5 x 10 20 cm -3 .

在一些實施例中,第三摻雜區域1614可以減少兩個子像素1600a、1600b之間的串擾。 In some embodiments, the third doped region 1614 can reduce the crosstalk between the two sub-pixels 1600a, 1600b.

在一些實施例中,光檢測設備可以包括第三摻雜區域1614和反向摻雜區域1613a、1613b,如圖16J所示。 In some embodiments, the light detection device may include a third doped region 1614 and reverse doped regions 1613a, 1613b, as shown in FIG. 16J.

圖16L示出了根據一些實施例的光檢測設備的剖視圖。圖16L中的光檢測設備類似於圖16J中的光檢測設備,不同之處描述如下。 FIG. 16L shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 16L is similar to the light detection device in FIG. 16J , and the differences are described as follows.

在一些實施例中,像素1600包括兩個公共讀出電路和兩個公共控制信號。例如,像素1600包括第一公共讀出電路1673a、第二公共讀出電路1673b、第一公共控制信號1674a和第二公共控制信號1674b。第一公共讀出電路1673a電耦合到子像素1600a的第一導電接觸1631a和子像素1600b的第一導電接觸1631b兩者。因此,由子像素1600a的第一摻雜區域1611a和子像素1600b的第一摻雜區域1611b收集的電荷,可以由相同的第一公共讀出電路1673a處理。第二公共讀出電路1673b電耦合到子像素1600a的第一導電接觸1631b和子像素1600b的第一導電接觸1631a兩者。因此,由子像素1600a的第一摻雜區域1611b和子像素1600b的第一摻雜區域1611a收集的電荷,可以由相同的第二公共讀出電路1673b處理。 In some embodiments, pixel 1600 includes two common readout circuits and two common control signals. For example, pixel 1600 includes a first common readout circuit 1673a, a second common readout circuit 1673b, a first common control signal 1674a, and a second common control signal 1674b. The first common readout circuit 1673a is electrically coupled to both the first conductive contact 1631a of sub-pixel 1600a and the first conductive contact 1631b of sub-pixel 1600b. Therefore, the charge collected by the first doped region 1611a of sub-pixel 1600a and the first doped region 1611b of sub-pixel 1600b can be processed by the same first common readout circuit 1673a. The second common readout circuit 1673b is electrically coupled to both the first conductive contact 1631b of subpixel 1600a and the first conductive contact 1631a of subpixel 1600b. Therefore, the charge collected by the first doped region 1611b of subpixel 1600a and the first doped region 1611a of subpixel 1600b can be processed by the same second common readout circuit 1673b.

第一公共控制信號1674a電耦合到子像素1600a的第二導電接觸1632a和子像素1600b的第二導電接觸1632b兩者。因此,子像素1600a的第一開關和子像素1600b的第二開關可以由相同的第一公共控制信號1674a同時控制。第二公共控制信號1674b電耦合到子像素1600a的第二導電接觸1632b和子像素1600b的第二導電接觸1632a兩者。因此,子像素1600a的第二開關和子像素1600b的第一開關可以由相同的第二公共控制信號1674b同時控制。 The first common control signal 1674a is electrically coupled to both the second conductive contact 1632a of subpixel 1600a and the second conductive contact 1632b of subpixel 1600b. Therefore, the first switch of subpixel 1600a and the second switch of subpixel 1600b can be simultaneously controlled by the same first common control signal 1674a. The second common control signal 1674b is electrically coupled to both the second conductive contact 1632b of subpixel 1600a and the second conductive contact 1632a of subpixel 1600b. Therefore, the second switch of subpixel 1600a and the first switch of subpixel 1600b can be simultaneously controlled by the same second common control signal 1674b.

第一公共控制信號1674a可以固定在電壓值Vi,第二公共控制信號1674b可以在電壓值Vi±△V之間交替。在一些實施例中,第一公共控制信號1674a和第二公共控制信號1674b可以是彼此不同的電壓。在一些實施例中,控制信號之一是恆定電壓信號(例如,0.5v),而另一個控制信號是時變電壓信號 (例如,在0V和1V之間操作的正弦信號、定時器信號或脈衝信號)。 The first common control signal 1674a can be fixed at a voltage value Vi, and the second common control signal 1674b can alternate between voltage values Vi±△V. In some embodiments, the first common control signal 1674a and the second common control signal 1674b can be different voltages from each other. In some embodiments, one of the control signals is a constant voltage signal (e.g., 0.5v), and the other control signal is a time-varying voltage signal (e.g., a sinusoidal signal, a timer signal, or a pulse signal operating between 0V and 1V).

圖16M示出了根據一些實施例的光檢測設備的剖視圖。圖16M中的光檢測設備類似於圖16J中的光檢測設備,不同之處描述如下。 FIG. 16M shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 16M is similar to the light detection device in FIG. 16J , and the differences are described as follows.

在一些實施例中,像素1600包括電耦合到子像素1600a的第二導電接觸1632b和子像素1600b的第二導電接觸1632a兩者的公共控制信號1674。結果是,子像素1600a的第二開關和子像素1600b的第一開關可以由相同的第二公共控制信號1674a同時控制。子像素1600a的第一開關由第一控制信號1672a獨立控制。子像素1600b的第二開關由第一控制信號1672b獨立控制。 In some embodiments, pixel 1600 includes a common control signal 1674 electrically coupled to both second conductive contact 1632b of subpixel 1600a and second conductive contact 1632a of subpixel 1600b. As a result, the second switch of subpixel 1600a and the first switch of subpixel 1600b can be simultaneously controlled by the same second common control signal 1674a. The first switch of subpixel 1600a is independently controlled by first control signal 1672a. The second switch of subpixel 1600b is independently controlled by first control signal 1672b.

圖16N示出了根據一些實施例的光檢測設備的截面圖。圖16N中的光檢測設備類似於圖16K中的光檢測設備,不同之處描述如下。 FIG. 16N shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 16N is similar to the light detection device in FIG. 16K, and the differences are described as follows.

在一些實施例中,第一導電接觸1631a、1631b、第二導電接觸1632a、1632b形成在基底1620的上表面上。第一摻雜區域1611a、1611b和第二摻雜區域1612a、1612b形成在基底1620中。每個子像素1600a、1600b包括彼此分離的吸收區域1610。由開口1661限定的檢測區域1613分別對應於吸收區域1610。在一些實施例中,兩個相鄰子像素的第一導電接觸之間的最小寬度w1小於隔離區域1650的寬度。例如,子像素1600a的第一導電接觸1631a和子像素1600b的第一導電接觸1631b之間的最小寬度w1小於隔離區域1650的寬度w2。 In some embodiments, first conductive contacts 1631a, 1631b and second conductive contacts 1632a, 1632b are formed on the upper surface of substrate 1620. First doped regions 1611a, 1611b and second doped regions 1612a, 1612b are formed in substrate 1620. Each sub-pixel 1600a, 1600b includes absorption regions 1610 separated from each other. Detection regions 1613 defined by openings 1661 correspond to the absorption regions 1610, respectively. In some embodiments, a minimum width w1 between first conductive contacts of two adjacent sub-pixels is smaller than a width of isolation region 1650. For example, the minimum width w1 between the first conductive contact 1631a of sub-pixel 1600a and the first conductive contact 1631b of sub-pixel 1600b is smaller than the width w2 of the isolation region 1650.

圖16N中的光檢測設備沒有圖16K中描述的阻擋層1640 The light detection device in FIG. 16N does not have the blocking layer 1640 described in FIG. 16K

由於每個子像素的兩個開關形成在吸收區域1610的外部,所以光檢測設備具有較低的暗電流。 Since the two switches of each sub-pixel are formed outside the absorption region 1610, the light detection device has a lower dark current.

圖16O示出了根據一些實施例的光檢測設備的剖視圖。像素1600、1600’可以是本揭露的任何實施例。 FIG. 16O shows a cross-sectional view of a light detection device according to some embodiments. Pixels 1600, 1600' can be any embodiment of the present disclosure.

圖16P示出了根據一些實施例的光檢測設備的上視圖。光檢測設備包括像素1600,像素1600包括四個子像素1600a、100b、1600c和1600d。圖16Q 示出了圖16P所示的光檢測設備中的其中一個子像素的截面圖。子像素1600a、1600b、1600c和1600d中的每一個都包括與另一個吸收區域1610分離的吸收區域1610。子像素1600a、1600b、1600c和1600d的第二導電接觸1632a電耦合到第一公共控制信號,如圖16L所示。也就是說,子像素1600a、1600b、1600c和1600d的第一開關由第一公共控制信號同時控制,如圖16L所示。子像素1600a、1600b、1600c和1600d的第二導電接觸1632b電耦合到第二公共控制信號,如圖16L所示。也就是說,子像素1600a、1600b、1600c和1600d的第二開關由第二公共控制信號同時控制,如圖16L所示。 FIG16P shows a top view of a light detection device according to some embodiments. The light detection device includes a pixel 1600, and the pixel 1600 includes four sub-pixels 1600a, 1600b, 1600c, and 1600d. FIG16Q shows a cross-sectional view of one of the sub-pixels in the light detection device shown in FIG16P. Each of the sub-pixels 1600a, 1600b, 1600c, and 1600d includes an absorption region 1610 separated from another absorption region 1610. The second conductive contact 1632a of the sub-pixels 1600a, 1600b, 1600c, and 1600d is electrically coupled to a first common control signal, as shown in FIG16L. That is, the first switches of sub-pixels 1600a, 1600b, 1600c, and 1600d are simultaneously controlled by the first common control signal, as shown in FIG16L. The second conductive contacts 1632b of sub-pixels 1600a, 1600b, 1600c, and 1600d are electrically coupled to the second common control signal, as shown in FIG16L. That is, the second switches of sub-pixels 1600a, 1600b, 1600c, and 1600d are simultaneously controlled by the second common control signal, as shown in FIG16L.

子像素1600a、1600b、1600c和1600d的第一導電接觸1631a電耦合到第一公共讀出電路,如圖16L所示。即,由所有子像素1600a、1600b、1600c和1600d的第一摻雜區域1611a收集的電荷可以由相同的第一公共讀出電路1673a處理。子像素1600a、1600b、1600c和1600d的第一導電接觸1631b電耦合到第二公共讀出電路,如圖16L所示。即,由所有子像素1600a、1600b、1600c和1600d的第一摻雜區域1611b收集的電荷可以由相同的第二公共讀出電路1673b處理。 The first conductive contacts 1631a of the sub-pixels 1600a, 1600b, 1600c, and 1600d are electrically coupled to a first common readout circuit, as shown in FIG. 16L. That is, the charges collected by the first doped regions 1611a of all the sub-pixels 1600a, 1600b, 1600c, and 1600d can be processed by the same first common readout circuit 1673a. The first conductive contacts 1631b of the sub-pixels 1600a, 1600b, 1600c, and 1600d are electrically coupled to a second common readout circuit, as shown in FIG. 16L. That is, the charges collected by the first doped regions 1611b of all the sub-pixels 1600a, 1600b, 1600c, and 1600d can be processed by the same second common readout circuit 1673b.

在一些實施例中,子像素之一可以進一步包括兩個第二摻雜區域1612a、1612b之間的一第四摻雜區域1615。第四摻雜區域1615具有不同於阻擋層1640的導電型態的導電型態。第四摻雜區域1615和阻擋層1640可以是PN接面,因此在第四摻雜區域1615和阻擋層1640之間建立了垂直電場。從吸收區域1610產生的光載流子的電洞和電子可以被第四摻雜區域1615和阻擋層1640之間的垂直電場分離,並且待收集的載流子可以朝向第四摻雜區域1615聚集,然後基於第一公共控制信號或第二公共控制信號的控制朝向第一摻雜區域1611a或第一摻雜區域1611b移動。結果是,光檢測設備具有改善的解調變對比度。 In some embodiments, one of the sub-pixels may further include a fourth doped region 1615 between the two second doped regions 1612a, 1612b. The fourth doped region 1615 has a conductivity type different from the conductivity type of the blocking layer 1640. The fourth doped region 1615 and the blocking layer 1640 may be a PN junction, so a vertical electric field is established between the fourth doped region 1615 and the blocking layer 1640. Holes and electrons of photocarriers generated from the absorption region 1610 can be separated by the vertical electric field between the fourth doped region 1615 and the blocking layer 1640, and the carriers to be collected can be gathered toward the fourth doped region 1615 and then move toward the first doped region 1611a or the first doped region 1611b based on the control of the first common control signal or the second common control signal. As a result, the light detection device has an improved demodulation contrast.

圖17A示出了根據一些實施例的光檢測設備的剖視圖。光檢測設備 包括像素1700,像素1700包括吸收區域1710。光檢測設備還包括支撐吸收區域1710的基底1720。像素1700包括一檢測區域1713和將檢測區域1713夾在中間的兩個開關1790。每個開關1790包括一控制區域1791和一讀出區域1792。在此實施例中,每個讀出區域1792包括在吸收區域1710的第一表面上的第一導電接觸1731a、1731b,並且每個控制區域1791包括在吸收區域1710的第一表面上的第二導電接觸1732a、1732b。 FIG. 17A shows a cross-sectional view of a light detection device according to some embodiments. The light detection device includes a pixel 1700, and the pixel 1700 includes an absorption region 1710. The light detection device also includes a substrate 1720 supporting the absorption region 1710. The pixel 1700 includes a detection region 1713 and two switches 1790 sandwiching the detection region 1713. Each switch 1790 includes a control region 1791 and a readout region 1792. In this embodiment, each readout region 1792 includes a first conductive contact 1731a, 1731b on a first surface of the absorption region 1710, and each control region 1791 includes a second conductive contact 1732a, 1732b on a first surface of the absorption region 1710.

在一些實施例中,像素1700包括兩個讀出電路和兩個控制信號。例如,像素1700包括一第一讀出電路1771a和一第二讀出電路1771b。像素1700包括一第一控制信號1772a和一第二控制信號1772b。第一控制信號1772a和第二控制信號1772b電耦合到兩個開關1790的兩個控制區域1791,並且用於控制像素中的兩個開關。第一讀出電路1771a和第二讀出電路1771b電耦合到兩個開關的讀出區域1792,並用於處理收集的電荷。換句話說,第一控制信號1772a和第二控制信號1772b控制由檢測區域1713中吸收的光子產生的電子或電洞由像素1700中的第一讀出電路1771a或第二讀出電路1771b處理。在一些實施例中,第一控制信號1772a可以固定在電壓值Vi,第二控制信號1772b可以在電壓值Vi±△V之間交替。在一些實施例中,第一控制信號1772a和第二控制信號1772b可以是彼此不同的電壓。在一些實施例中,控制信號之一是恒定電壓信號(例如,0.5v),而另一個控制信號是時變電壓信號(例如,在0V和1V之間操作的正弦信號、定時器信號或脈衝信號)。偏置值的方向決定了從吸收區域1710產生的電荷的漂移方向。 In some embodiments, the pixel 1700 includes two readout circuits and two control signals. For example, the pixel 1700 includes a first readout circuit 1771a and a second readout circuit 1771b. The pixel 1700 includes a first control signal 1772a and a second control signal 1772b. The first control signal 1772a and the second control signal 1772b are electrically coupled to two control regions 1791 of two switches 1790 and are used to control the two switches in the pixel. The first readout circuit 1771a and the second readout circuit 1771b are electrically coupled to the readout region 1792 of the two switches and are used to process the collected charge. In other words, the first control signal 1772a and the second control signal 1772b control the electrons or holes generated by the photons absorbed in the detection area 1713 to be processed by the first readout circuit 1771a or the second readout circuit 1771b in the pixel 1700. In some embodiments, the first control signal 1772a can be fixed at a voltage value Vi, and the second control signal 1772b can alternate between the voltage value Vi±△V. In some embodiments, the first control signal 1772a and the second control signal 1772b can be different voltages from each other. In some embodiments, one of the control signals is a constant voltage signal (e.g., 0.5v), and the other control signal is a time-varying voltage signal (e.g., a sinusoidal signal, a timer signal, or a pulse signal operating between 0V and 1V). The direction of the bias value determines the drift direction of the charge generated from the absorption region 1710.

在一些實施例中,檢測區域1713位於第二導電接觸1732a、1732b之間。兩個第二導電接觸1732a、1732b比第一導電接觸1731a、1731b更靠近檢測區域1713。第一導電接觸1731a、1731b和第二導電接觸1732a、1732b形成在同一吸收區域1710上。 In some embodiments, the detection region 1713 is located between the second conductive contacts 1732a and 1732b. The two second conductive contacts 1732a and 1732b are closer to the detection region 1713 than the first conductive contacts 1731a and 1731b. The first conductive contacts 1731a and 1731b and the second conductive contacts 1732a and 1732b are formed on the same absorption region 1710.

第一讀出電路1771a以一對一的關係電耦合到像素1700的第一導電接觸1731a。第二讀出電路1771b以一對一的關係電耦合到像素1700的第一導電接觸1731b。第一導電接觸1731a、1731b可以用作讀出接觸。第一控制信號1772a以一對一的關係電耦合到像素1700的第二導電接觸1732a。第二控制信號1772b以一對一的關係電耦合到像素1700的第二導電接觸1732b。第二導電接觸1732a、1732b可以用作控制接觸。 The first readout circuit 1771a is electrically coupled to the first conductive contact 1731a of the pixel 1700 in a one-to-one relationship. The second readout circuit 1771b is electrically coupled to the first conductive contact 1731b of the pixel 1700 in a one-to-one relationship. The first conductive contacts 1731a, 1731b can be used as readout contacts. The first control signal 1772a is electrically coupled to the second conductive contact 1732a of the pixel 1700 in a one-to-one relationship. The second control signal 1772b is electrically coupled to the second conductive contact 1732b of the pixel 1700 in a one-to-one relationship. The second conductive contacts 1732a, 1732b can be used as control contacts.

在一些實施例中,第二導電接觸1732a、1732b正下方的吸收區域1710的部分可以是本徵的或者包括峰值濃度低於大約1×1015cm3的摻雜劑。術語“本徵”是指半導體材料在第二導電接觸1732a、1732b正下方的部分沒有添加摻雜劑。在一些實施例中,吸收區域1710上的第二導電接觸1732a、1732b可導致形成蕭特基接觸、歐姆接觸或二者之間具有中間特性的組合,這取決於各種因素,包括吸收區域1710的材料、第二導電接觸1732a、1732b以及吸收區域1710的雜質或缺陷。 In some embodiments, the portion of the absorption region 1710 directly below the second conductive contacts 1732a, 1732b can be intrinsic or include a dopant having a peak concentration less than about 1×10 15 cm 3. The term "intrinsic" refers to the portion of the semiconductor material directly below the second conductive contacts 1732a, 1732b having no dopant added. In some embodiments, the second conductive contacts 1732a, 1732b on the absorption region 1710 can result in the formation of a Schottky contact, an Ohmic contact, or a combination of the two with intermediate characteristics, depending on various factors, including the material of the absorption region 1710, the second conductive contacts 1732a, 1732b, and impurities or defects in the absorption region 1710.

第一控制信號1772a和第二控制信號1772b用於控制由來自檢測區域1713的吸收光子產生的電子的收集。例如,當使用電壓時,如果第一控制信號1772a相對於第二控制信號1772b有偏壓,則在第二導電接觸1732a、1732b正下方的兩個部分之間產生電場,並且根據電場的方向,自由電荷朝向第二導電接觸1732a、1732b正下方的兩個部分之一漂移。 The first control signal 1772a and the second control signal 1772b are used to control the collection of electrons generated by absorbed photons from the detection region 1713. For example, when voltage is used, if the first control signal 1772a is biased relative to the second control signal 1772b, an electric field is generated between the two portions directly below the second conductive contacts 1732a, 1732b, and free charges drift toward one of the two portions directly below the second conductive contacts 1732a, 1732b depending on the direction of the electric field.

在一些實施例中,光檢測設備可以包括具有多個開口(未示出)的一遮光層(未示出),開口用於定義每個像素1700的檢測區域1713的位置。換句話說,該開口用於允許入射光學信號進入吸收區域1710並限定檢測區域1713。在一些實施例中,當入射光從基底1720的底表面進入吸收區域1710時,遮光層位於遠離吸收區域1710的基底1720的底表面上。在一些實施例中,從開口的上視圖來看,開口的形狀可以是橢圓形、圓形、矩形、正方形、菱形、八邊形或任 何其他合適的形狀。 In some embodiments, the light detection device may include a light shielding layer (not shown) having a plurality of openings (not shown), the openings being used to define the position of the detection region 1713 of each pixel 1700. In other words, the opening is used to allow the incident optical signal to enter the absorption region 1710 and define the detection region 1713. In some embodiments, when the incident light enters the absorption region 1710 from the bottom surface of the substrate 1720, the light shielding layer is located on the bottom surface of the substrate 1720 away from the absorption region 1710. In some embodiments, the shape of the opening may be an ellipse, a circle, a rectangle, a square, a rhombus, an octagon, or any other suitable shape, as viewed from the top view of the opening.

在一些實施例中,光檢測設備還包括在多個位於像素上以一對一對應的多個光學元件(未示出)。光學元件會聚集入射光學信號以進入檢測區域1713。 In some embodiments, the light detection device further includes a plurality of optical elements (not shown) located one-to-one on the pixels. The optical elements gather the incident optical signal to enter the detection area 1713.

在該實施例中,導電接觸1731a和導電接觸1732a類似於圖16A中提到的第一導電接觸1631a和第二導電接觸1632a。這些部件的其他特徵將不再詳細描述。 In this embodiment, conductive contact 1731a and conductive contact 1732a are similar to the first conductive contact 1631a and the second conductive contact 1632a mentioned in FIG. 16A. Other features of these components will not be described in detail.

圖17B示出了根據一些實施例的光檢測設備的剖視圖。圖17B中的光檢測設備類似於圖17A中的光檢測設備,不同之處描述如下。 FIG17B shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG17B is similar to the light detection device in FIG17A, and the differences are described as follows.

在一些實施例中,像素1700還包括基底1720中的第一阱區域1765和第二阱區域1766,第一阱區域1765和第二阱區域1766設置在吸收區域1710旁邊。第一阱區域1765的導電型態不同於第二阱區域1766的導電型態。導電接觸1767形成並設置在第一阱區域1765上並電連接到第一阱區域1765,導電接觸1768形成並設置在第二阱區域1766上並電連接到第二阱區域1766。此外,導電接觸1767和導電接觸1768彼此電連接(這意味著第一阱區域1765和第二阱區域1766也彼此電連接)。在一些實施方式中,第一阱區域1765的摻雜濃度可以在1016cm-3到1020cm-3的範圍內。第二阱區域1766的摻雜濃度可以在1016cm-3到1020cm-3的範圍內。 In some embodiments, pixel 1700 further includes a first well region 1765 and a second well region 1766 in substrate 1720, and first well region 1765 and second well region 1766 are disposed next to absorption region 1710. The conductivity type of first well region 1765 is different from the conductivity type of second well region 1766. Conductive contact 1767 is formed and disposed on first well region 1765 and electrically connected to first well region 1765, and conductive contact 1768 is formed and disposed on second well region 1766 and electrically connected to second well region 1766. In addition, conductive contact 1767 and conductive contact 1768 are electrically connected to each other (which means that first well region 1765 and second well region 1766 are also electrically connected to each other). In some embodiments, the doping concentration of the first well region 1765 may be in the range of 10 16 cm -3 to 10 20 cm -3 . The doping concentration of the second well region 1766 may be in the range of 10 16 cm -3 to 10 20 cm -3 .

在一些實施方式中,吸收區域1710可能不完全吸收光學信號中的入射光子。例如,如果吸收區域1710沒有完全吸收近紅外光學信號(未示出)中的入射光子,則近紅外光學信號可能會穿透到基底1720中,基底1720可以吸收穿透的光子並在基底1720的深處產生光載流子,這些光載流子緩慢地復合。這些緩慢的光載子對光檢測設備的操作速度有負面影響。 In some embodiments, the absorption region 1710 may not completely absorb incident photons in the optical signal. For example, if the absorption region 1710 does not completely absorb incident photons in a near-infrared optical signal (not shown), the near-infrared optical signal may penetrate into the substrate 1720, which may absorb the penetrating photons and generate photocarriers deep in the substrate 1720, which slowly recombine. These slow photocarriers have a negative impact on the operating speed of the light detection device.

為了進一步去除緩慢的光載子,像素1700可以包括使第一阱區域 1765與第二阱區域1766短路的連接。例如,連接可以通過矽化物工藝或沉積的金屬墊形成,例如導電接觸1767和導電接觸1768,其將第一阱區域1765與第二阱區域1766連接。第一阱區域1765和第二阱區域1766之間的短路,允許基底1720中產生的光載流子在短路節點處復合,因此提高了像素的操作速度。 To further remove slow photocarriers, pixel 1700 may include a connection that shorts first well region 1765 to second well region 1766. For example, the connection may be formed by a silicide process or deposited metal pads, such as conductive contact 1767 and conductive contact 1768, which connect first well region 1765 to second well region 1766. The short circuit between first well region 1765 and second well region 1766 allows photocarriers generated in substrate 1720 to recombine at the short circuit node, thereby increasing the operating speed of the pixel.

在該實施例中,其中第一阱區域1765和第二阱區域1766連接在一起的結構可以簡單地稱為“短路結構”1760,在隨後的實施例中,如果提到“短路結構”,則意味著這種結構存在(至少包括彼此電連接的具有不同導電型態的一個第一阱區域和一個第二阱區域)。 In this embodiment, the structure in which the first well region 1765 and the second well region 1766 are connected together can be simply referred to as a "short circuit structure" 1760. In subsequent embodiments, if a "short circuit structure" is mentioned, it means that such a structure exists (at least including a first well region and a second well region with different conductivity types electrically connected to each other).

此外,在此實施例中,僅公開了一個短路結構1760,但是在其他實施例中,像素可以包括分別設置在吸收區域1710兩側的兩個或更多個短路結構。兩個短路結構1760可以沿著吸收區域1710的長軸對稱佈置排列,或者兩個短路結構1760可以沿著吸收區域1710的短軸對稱佈置排列,這也應該在本揭露的範圍內。 In addition, in this embodiment, only one short-circuit structure 1760 is disclosed, but in other embodiments, the pixel may include two or more short-circuit structures respectively arranged on both sides of the absorption region 1710. The two short-circuit structures 1760 may be arranged symmetrically along the long axis of the absorption region 1710, or the two short-circuit structures 1760 may be arranged symmetrically along the short axis of the absorption region 1710, which should also be within the scope of the present disclosure.

圖17C示出了根據一些實施例的光檢測設備的剖視圖。圖17C中的光檢測設備類似於圖17B中的光檢測設備,不同之處描述如下。 FIG. 17C shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 17C is similar to the light detection device in FIG. 17B , and the differences are described as follows.

在一些實施例中,光檢測設備還包括隔離區域1725,從光檢測設備的截面圖來看,隔離區域1725設置在吸收區域1710的兩個相對側。隔離區域1725在吸收區域1710的外部,並且與吸收區域1710實體分離。在一些實施例中,短路結構1760位於隔離區域1725和吸收區域1710之間。在一些實施例中,隔離區域1725是填充有介電材料或絕緣材料的溝槽,以用作兩個相鄰像素之間的高電阻區域,阻止電流流過隔離區域1725並改善像素1700和其他相鄰像素(未示出)之間的電絕緣。介電材料或絕緣材料可以包括但不限於包括二氧化矽的氧化物材料、或包括氮化矽(Si3N4)的氮化物材料。在一些實施例中,溝槽用矽填充。 In some embodiments, the light detection device further includes an isolation region 1725, which is disposed at two opposite sides of the absorption region 1710, as viewed from a cross-sectional view of the light detection device. The isolation region 1725 is outside the absorption region 1710 and physically separated from the absorption region 1710. In some embodiments, a short circuit structure 1760 is located between the isolation region 1725 and the absorption region 1710. In some embodiments, the isolation region 1725 is a trench filled with a dielectric material or an insulating material to serve as a high resistance region between two adjacent pixels, preventing current from flowing through the isolation region 1725 and improving electrical insulation between the pixel 1700 and other adjacent pixels (not shown). The dielectric material or insulating material may include, but is not limited to, an oxide material including silicon dioxide, or a nitride material including silicon nitride (Si 3 N 4 ). In some embodiments, the trench is filled with silicon.

在一些實施例中,隔離區域1725從基底1720的上表面延伸,並從上表面延伸到預定深度。在一些實施例中,隔離區域1725從基底1720的底面延伸,並從底面延伸到預定深度。在一些實施例中,隔離區域1725從上表面和下表面穿透基底1720。 In some embodiments, the isolation region 1725 extends from the upper surface of the substrate 1720 and extends from the upper surface to a predetermined depth. In some embodiments, the isolation region 1725 extends from the bottom surface of the substrate 1720 and extends from the bottom surface to a predetermined depth. In some embodiments, the isolation region 1725 penetrates the substrate 1720 from the upper surface and the lower surface.

在一些實施例中,隔離區域1725是具有導電型態的摻雜區域。隔離區域1650的峰值濃度可以在1015cm-3到1020cm-3的範圍內。在一些實施例中,窄且淺的隔離區域1735形成在隔離區域1725內部。淺隔離區域1735的峰值濃度和隔離區域1725的峰值濃度不同。這可用於抑制通過表面傳導路徑的串擾。 In some embodiments, the isolation region 1725 is a doped region having a conductive type. The peak concentration of the isolation region 1650 may be in the range of 10 15 cm -3 to 10 20 cm -3 . In some embodiments, a narrow and shallow isolation region 1735 is formed inside the isolation region 1725. The peak concentration of the shallow isolation region 1735 is different from the peak concentration of the isolation region 1725. This can be used to suppress crosstalk through the surface conduction path.

隔離區域1725的摻雜可以產生能隙偏移所致位能障(bandgap offset-induced potential energy barrier),該位能障阻止電流流過隔離區域1725,並改善像素1700和其他相鄰像素(未示出)之間的電隔離。在一些實施例中,隔離區域1725包括不同於基底1720的材料的半導體材料。在基底1720和隔離區域1725之間形成的兩種不同半導體材料之間的介面,可以產生能隙偏移所致位能障,該位能障阻止電流流過隔離區域1725,並改善像素1700和其他相鄰像素(未示出)之間的電隔離。在一些實施例中,隔離區域1725的形狀可以是環形。在一些實施例中,隔離區域1725可以包括設置在吸收區域1710的兩個相對側的兩個分開區域。在一些實施例中,兩個分開區域可以都從基底1720的上表面延伸,並且從上表面延伸到預定深度。在一些實施例中,兩個離散區域可以都從基底1720的底面延伸,並且從底面延伸到預定深度。 The doping of the isolation region 1725 can generate a bandgap offset-induced potential energy barrier that prevents current from flowing through the isolation region 1725 and improves electrical isolation between the pixel 1700 and other adjacent pixels (not shown). In some embodiments, the isolation region 1725 includes a semiconductor material different from the material of the substrate 1720. The interface between the two different semiconductor materials formed between the substrate 1720 and the isolation region 1725 can generate a bandgap offset-induced potential energy barrier that prevents current from flowing through the isolation region 1725 and improves electrical isolation between the pixel 1700 and other adjacent pixels (not shown). In some embodiments, the shape of the isolation region 1725 can be a ring. In some embodiments, the isolation region 1725 may include two separate regions disposed on two opposite sides of the absorption region 1710. In some embodiments, both separate regions may extend from the upper surface of the substrate 1720 and extend from the upper surface to a predetermined depth. In some embodiments, both discrete regions may extend from the bottom surface of the substrate 1720 and extend from the bottom surface to a predetermined depth.

圖17D示出了根據一些實施例的光檢測設備的剖視圖。圖17D中的光檢測設備類似於圖17C中的光檢測設備,不同之處描述如下。 FIG. 17D shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 17D is similar to the light detection device in FIG. 17C, and the differences are described as follows.

在一些實施例中,像素1700的每個開關1790包括兩個第一摻雜區域1711a、1711b,分別位於第一導電接觸1731a、1731b下方並形成在吸收區域1710中。換句話說,像素1700的兩個第一摻雜區域1711a、1711b形成在吸收區 域1710中。 In some embodiments, each switch 1790 of the pixel 1700 includes two first doped regions 1711a, 1711b, respectively located below the first conductive contacts 1731a, 1731b and formed in the absorption region 1710. In other words, the two first doped regions 1711a, 1711b of the pixel 1700 are formed in the absorption region 1710.

在一些實施例中,第一摻雜區域1711a、1711b是第一導電型態。在一些實施例中,每個第一摻雜區域1711a、1711b摻雜有摻雜劑。每個第一摻雜區域1711a、1711b的摻雜劑的峰值濃度分別取決於第一導電接觸1731a、1731b的材料和吸收區域1710的材料,例如,在5×1018cm-3至5×1020cm-3之間。第一摻雜區域1711a、1711b用於收集從吸收區域1710產生的載流子,這些載流子分別基於第一控制信號1772a和第二控制信號1772b的控制,由第一讀出電路1771a和第二讀出電路1771b進一步處理。 In some embodiments, the first doped regions 1711a, 1711b are of the first conductivity type. In some embodiments, each of the first doped regions 1711a, 1711b is doped with a dopant. The peak concentration of the dopant in each of the first doped regions 1711a, 1711b depends on the material of the first conductive contacts 1731a, 1731b and the material of the absorption region 1710, for example, between 5×10 18 cm -3 and 5×10 20 cm -3 . The first doped regions 1711a and 1711b are used to collect carriers generated from the absorption region 1710, and these carriers are further processed by the first readout circuit 1771a and the second readout circuit 1771b based on the control of the first control signal 1772a and the second control signal 1772b, respectively.

在本揭露中,在同一光檢測設備中,由第一摻雜區域1711a收集的載流子的類型和由第一摻雜區域1711b收集的載流子的類型相同。例如,當光檢測設備被配置為收集電子時,當一個像素的第一開關接通並且同一像素的第二開關斷開時,第一摻雜區域1711a收集從檢測區域1713產生的光載流子的電子,並且當第二開關接通並且第一開關斷開時,第一摻雜區域1711b也收集從檢測區域1713產生的光載流子的電子。 In the present disclosure, in the same light detection device, the type of carriers collected by the first doped region 1711a and the type of carriers collected by the first doped region 1711b are the same. For example, when the light detection device is configured to collect electrons, when the first switch of a pixel is turned on and the second switch of the same pixel is turned off, the first doped region 1711a collects electrons of photocarriers generated from the detection region 1713, and when the second switch is turned on and the first switch is turned off, the first doped region 1711b also collects electrons of photocarriers generated from the detection region 1713.

圖17E示出了根據一些實施例的光檢測設備的剖視圖。圖17E中的光檢測設備類似於圖17D中的光檢測設備,不同之處描述如下。 FIG. 17E shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 17E is similar to the light detection device in FIG. 17D , and the differences are described as follows.

在一些實施例中,像素1700的每個開關1790包括兩個第二摻雜區域1712a、1712b,分別位於第二導電接觸1732a、1732b之下並形成在吸收區域1710中。 In some embodiments, each switch 1790 of the pixel 1700 includes two second doped regions 1712a, 1712b, respectively located under the second conductive contacts 1732a, 1732b and formed in the absorption region 1710.

在一些實施例中,第二摻雜區域1712a、1712b具有不同於第一摻雜區域1711a、1711b的第一導電型態的第二導電型態。在一些實施例中,第二摻雜區域1712a、1712b包括摻雜劑。每個第二摻雜區域1712a、1712b的摻雜劑的峰值濃度分別取決於第二導電接觸1732a、1732b的材料和吸收區域1710的材料,例如在1×1017cm-3至5×1020cm-3之間。第二摻雜區域1712a、1712b與第二導 電接觸1732a、1732b形成蕭特基或歐姆接觸。第二摻雜區域1712a、1712b基於第一控制信號1772a和第二控制信號1772b的控制,來調變從吸收區域1710產生的載流子。 In some embodiments, the second doped regions 1712a, 1712b have a second conductivity type different from the first conductivity type of the first doped regions 1711a, 1711b. In some embodiments, the second doped regions 1712a, 1712b include a dopant. The peak concentration of the dopant of each second doped region 1712a, 1712b depends on the material of the second conductive contacts 1732a, 1732b and the material of the absorption region 1710, for example, between 1×10 17 cm -3 and 5×10 20 cm -3 . The second doped regions 1712a, 1712b form a Schottky or Ohmic contact with the second conductive contacts 1732a, 1732b. The second doped regions 1712a and 1712b modulate the carriers generated from the absorption region 1710 based on the control of the first control signal 1772a and the second control signal 1772b.

圖17F示出了根據一些實施例的光檢測設備的剖視圖。圖17F中的光檢測設備類似於圖17C中的光檢測設備,不同之處描述如下。 FIG. 17F shows a cross-sectional view of a light detection device according to some embodiments. The light detection device in FIG. 17F is similar to the light detection device in FIG. 17C, and the differences are described as follows.

在一些實施例中,如果隔離區域1725是具有導電型態(例如N型)的摻雜區域,則隔離區域1725可以用來代替圖17B中提到的第一阱區域1765,並且隔離區域1725和第二阱區域1766可以彼此電連接以形成短路結構。更準確地說,在該實施例中,導電接觸1736形成在隔離區域1725上(或淺隔離區域1735上),並且導電接觸1736和導電接觸1768彼此電連接(這意味著N型摻雜隔離區域1725和第二阱區域1766(例如P型)也彼此電連接)。在此實施例中,可以省略第一阱區域1765。 In some embodiments, if the isolation region 1725 is a doped region having a conductive type (e.g., N-type), the isolation region 1725 may be used to replace the first well region 1765 mentioned in FIG. 17B , and the isolation region 1725 and the second well region 1766 may be electrically connected to each other to form a short circuit structure. More precisely, in this embodiment, the conductive contact 1736 is formed on the isolation region 1725 (or on the shallow isolation region 1735), and the conductive contact 1736 and the conductive contact 1768 are electrically connected to each other (which means that the N-type doped isolation region 1725 and the second well region 1766 (e.g., P-type) are also electrically connected to each other). In this embodiment, the first well region 1765 may be omitted.

圖17G-17H示出了根據一些實施例的光檢測設備的剖視圖。圖17G-17H中的光檢測設備類似於圖17C中的光檢測設備,不同之處描述如下。 Figures 17G-17H show cross-sectional views of a light detection device according to some embodiments. The light detection device in Figures 17G-17H is similar to the light detection device in Figure 17C, and the differences are described as follows.

在一些實施例中,可以調整隔離區域1725(有或沒有淺隔離區域1735)、第一阱區域1765和第二阱區域1766的位置。例如,如圖17G所示,隔離區域1725(可能包含有或不包含淺隔離區域1735)可以設置在吸收區域1710和短路結構1760之間。在一些實施例中,第一阱區域1765在第二阱區域1766和隔離區域1725之間。在一些實施例中,第一阱區域1765和第二阱區域1766都設置在環形隔離區域1725之外。 In some embodiments, the positions of the isolation region 1725 (with or without the shallow isolation region 1735), the first well region 1765, and the second well region 1766 can be adjusted. For example, as shown in FIG. 17G, the isolation region 1725 (which may or may not include the shallow isolation region 1735) can be disposed between the absorption region 1710 and the short circuit structure 1760. In some embodiments, the first well region 1765 is between the second well region 1766 and the isolation region 1725. In some embodiments, the first well region 1765 and the second well region 1766 are both disposed outside the annular isolation region 1725.

在一些實施例中,如圖17H所示,隔離區域1725(可能包含有或不包含淺隔離區域1735)可以設置在第一阱區域1765和第二阱區域1766之間。換句話說,第一阱區域1765設置在吸收區域1710和隔離區域1725之間。在一些實施例中,第二阱區域1766設置在吸收區域1710和隔離區域1725之間。 In some embodiments, as shown in FIG. 17H , the isolation region 1725 (which may or may not include the shallow isolation region 1735) may be disposed between the first well region 1765 and the second well region 1766. In other words, the first well region 1765 is disposed between the absorption region 1710 and the isolation region 1725. In some embodiments, the second well region 1766 is disposed between the absorption region 1710 and the isolation region 1725.

圖17I-17J示出了根據一些實施例的光檢測設備的剖視圖。圖17I-17J中的光檢測設備類似於圖17B中的光檢測設備,不同之處描述如下。 Figures 17I-17J show cross-sectional views of a light detection device according to some embodiments. The light detection device in Figures 17I-17J is similar to the light detection device in Figure 17B, and the differences are described as follows.

圖17I-17J中的光檢測設備還包括隔離區域1725,其類似於圖17C中描述的隔離區域1725。在一些實施例中,隔離區域1725從基底1720的底面延伸,並從底面延伸到預定深度。也就是說,隔離區域1725不穿透基底1720的上表面。在一些實施例中,沿著大致平行於基底1720的上表面的方向,短路結構1760可以比隔離區域1725更靠近吸收區域1710。在一些實施例中,沿著基本平行於基底1720的上表面的方向,隔離區域1725可以比短路結構1760更靠近吸收區域1710。 The light detection device in Figures 17I-17J also includes an isolation region 1725, which is similar to the isolation region 1725 described in Figure 17C. In some embodiments, the isolation region 1725 extends from the bottom surface of the substrate 1720 and extends from the bottom surface to a predetermined depth. That is, the isolation region 1725 does not penetrate the upper surface of the substrate 1720. In some embodiments, along a direction substantially parallel to the upper surface of the substrate 1720, the short-circuit structure 1760 can be closer to the absorption region 1710 than the isolation region 1725. In some embodiments, along a direction substantially parallel to the upper surface of the substrate 1720, the isolation region 1725 can be closer to the absorption region 1710 than the short-circuit structure 1760.

在一些實施例中,像素1700還包括圍繞吸收區域1710的阻擋層1740,其中阻擋層的導電型態(例如P型)不同於第一摻雜區域1711a、1711b中的每一個的第一導電型態(例如N型)。阻擋層1740可以阻擋吸收區域1710中的光生載流子到達基底1720,如此增加了像素的光生載流子的收集效率。阻擋層1740還可以阻擋基底1720中的光生載流子到達吸收區域1710,增加了像素的光生載流子的速度。阻擋層1740所包含的材料,可能與吸收區域1710的材料相同、與基底1720的材料相同、或者不同於吸收區域1710的材料和基底1720的材料。在一些實施例中,阻擋層1740的形狀可能是但不限於環形。在一些實施例中,如圖17J所示,阻擋層1740可以延伸到基底1720的上表面。在一些實施例中,阻擋層1740可以與第一阱區域1765和第二阱區域1766重疊,因為隔離區域1725從基底1720的底表面延伸,並且不穿透基底1720的上表面。 In some embodiments, the pixel 1700 further includes a blocking layer 1740 surrounding the absorption region 1710, wherein the conductivity type of the blocking layer (e.g., P-type) is different from the first conductivity type (e.g., N-type) of each of the first doped regions 1711a, 1711b. The blocking layer 1740 can block the photogenerated carriers in the absorption region 1710 from reaching the substrate 1720, thereby increasing the collection efficiency of the photogenerated carriers of the pixel. The blocking layer 1740 can also block the photogenerated carriers in the substrate 1720 from reaching the absorption region 1710, thereby increasing the speed of the photogenerated carriers of the pixel. The material included in the blocking layer 1740 may be the same as the material of the absorption region 1710, the same as the material of the substrate 1720, or different from the material of the absorption region 1710 and the material of the substrate 1720. In some embodiments, the shape of the blocking layer 1740 may be, but is not limited to, a ring. In some embodiments, as shown in FIG. 17J , the blocking layer 1740 may extend to the upper surface of the substrate 1720. In some embodiments, the blocking layer 1740 may overlap with the first well region 1765 and the second well region 1766 because the isolation region 1725 extends from the bottom surface of the substrate 1720 and does not penetrate the upper surface of the substrate 1720.

在一些實施例中,阻擋層1740摻雜有峰值濃度範圍從1015cm-3到1020cm-3的摻雜劑。阻擋層1740可以減少像素1700和相鄰的其他像素(未示出)之間的串擾。 In some embodiments, the blocking layer 1740 is doped with a dopant having a peak concentration ranging from 10 15 cm -3 to 10 20 cm -3 . The blocking layer 1740 can reduce crosstalk between the pixel 1700 and other adjacent pixels (not shown).

在一些實施例中,光檢測設備可以進一步包括電連接到阻擋層1740 的第三導電接觸(未示出)。阻擋層1740可以通過第三導電接觸被偏壓,以釋放未被第一摻雜區域1711a、1711b收集的載流子。 In some embodiments, the light detection device may further include a third conductive contact (not shown) electrically connected to the blocking layer 1740. The blocking layer 1740 may be biased through the third conductive contact to release carriers that are not collected by the first doped regions 1711a, 1711b.

請參考圖17K、圖17L和圖17M。圖17K-17M示出了根據一些實施例的光檢測設備的上視圖。在一些實施例中,光檢測設備包括多個像素1700,即包括多個重複像素的像素陣列。在一些實施例中,像素陣列可以是一維或二維像素陣列。每個像素是光電探測器,並且可以使用上面公開的實施例。參考圖17K和圖17L所示的佈局,像素1700可以交錯佈局排列,其中每個像素的寬度和長度被排列在垂直於相鄰像素的寬度和長度的方向上。如圖17M所示,像素1700可以沿傾斜方向排列(例如沿45度排列)。圖17K-17M所示像素佈局可以帶來像素間距減小的優點。 Please refer to Figures 17K, 17L and 17M. Figures 17K-17M show a top view of a light detection device according to some embodiments. In some embodiments, the light detection device includes a plurality of pixels 1700, i.e., a pixel array including a plurality of repeated pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional pixel array. Each pixel is a photodetector, and the embodiments disclosed above may be used. Referring to the layout shown in Figures 17K and 17L, the pixels 1700 may be arranged in a staggered layout, wherein the width and length of each pixel are arranged in a direction perpendicular to the width and length of adjacent pixels. As shown in Figure 17M, the pixels 1700 may be arranged in an inclined direction (e.g., arranged at 45 degrees). The pixel layout shown in Figures 17K-17M may bring the advantage of reduced pixel spacing.

此外,在上述一些實施例中(例如圖17B-17H中提到的實施例),短路結構1760包括彼此連接的一個第一阱區域1765和一個第二阱區域1766。然而,在一些實施例中,短路結構1760還可以包括彼此連接的一個第一阱區域1765和兩個第二阱區域1766,並且第一阱區域1765設置在兩個第二阱區域1766之間。 In addition, in some of the above embodiments (such as the embodiments mentioned in Figures 17B-17H), the short-circuit structure 1760 includes a first well region 1765 and a second well region 1766 connected to each other. However, in some embodiments, the short-circuit structure 1760 may also include a first well region 1765 and two second well regions 1766 connected to each other, and the first well region 1765 is disposed between the two second well regions 1766.

此外,如上所述,在一些實施例中,每個像素1700可以包括一個以上的短路結構1760,如圖17K、圖17L和圖17M所示,每個像素1700包括兩個短路結構1760。 In addition, as described above, in some embodiments, each pixel 1700 may include more than one short-circuit structure 1760, as shown in FIG. 17K, FIG. 17L, and FIG. 17M, each pixel 1700 includes two short-circuit structures 1760.

在圖17K中,兩個短路結構1760沿著吸收區域1710的長軸對稱佈置排列,換句話說,兩個短路結構1760分別佈置在吸收區域1710的兩個長邊旁。 In FIG. 17K , the two short-circuit structures 1760 are arranged symmetrically along the long axis of the absorption region 1710. In other words, the two short-circuit structures 1760 are arranged beside the two long sides of the absorption region 1710.

在圖17L中,兩個短路結構1760沿著吸收區域1710的短軸對稱佈置排列,換句話說,兩個短路結構1760分別佈置在吸收區域1710的兩個短邊旁。 In FIG. 17L , the two short-circuit structures 1760 are arranged symmetrically along the short axis of the absorption region 1710. In other words, the two short-circuit structures 1760 are arranged beside the two short sides of the absorption region 1710.

在圖17M中,像素1700可以沿傾斜方向排列(例如沿45度排列)。作為示例,兩個短路結構1760沿著吸收區域1710的短軸對稱佈置排列。然而,在 其他實施例中,兩個短路結構1760也可以沿著吸收區域1710的長軸對稱佈置排列。 In FIG. 17M, the pixels 1700 may be arranged along an inclined direction (e.g., arranged at 45 degrees). As an example, the two short-circuit structures 1760 are arranged symmetrically along the short axis of the absorption region 1710. However, in other embodiments, the two short-circuit structures 1760 may also be arranged symmetrically along the long axis of the absorption region 1710.

在上述一些實施例中,每個開關1790包括控制區域1791和讀出區域1792,並且控制區域1791可以包括設置在其中的不同元件。在本揭露中,控制區域1791可以包括不同的元件,以形成不同的實施例。 In some of the above embodiments, each switch 1790 includes a control area 1791 and a readout area 1792, and the control area 1791 may include different components disposed therein. In the present disclosure, the control area 1791 may include different components to form different embodiments.

圖17N示出了根據本揭露的三個不同實施例中的控制區域1791的截面結構示意圖。在一些實施例中,請參考圖17O的左側部分,第二導電接觸件1732a設置在吸收區域1710的上表面上。該結構類似於圖17A所示的結構,不再描述。 FIG. 17N shows a schematic diagram of a cross-sectional structure of a control region 1791 in three different embodiments of the present disclosure. In some embodiments, referring to the left side of FIG. 17O , a second conductive contact 1732a is disposed on the upper surface of the absorption region 1710. This structure is similar to that shown in FIG. 17A and will not be described again.

在一些實施例中,請參考圖17O的中部,除了第二導電接觸1732a之外,控制區域1791還包括設置在第二導電接觸1732a下方的第二摻雜區域1712a。該結構類似於圖17E所示的結構,不再描述。 In some embodiments, referring to the middle of FIG. 17O , in addition to the second conductive contact 1732a, the control region 1791 further includes a second doping region 1712a disposed below the second conductive contact 1732a. This structure is similar to the structure shown in FIG. 17E and will not be described again.

在一些實施例中,請參考圖17O的右側部分,除了第二導電接觸1732a和第二摻雜區域1712a之外,控制區域1791還包括設置在第二導電接觸1732a和第二摻雜區域1712a之間的介電層1733。介電層1733防止電流直接從第二導電接觸1732a傳導到吸收區域,但是對於第二導電接觸1732a施加電壓允許在吸收區域內建立電場。建立的電場可以吸引或排斥吸收區域內的電荷載流子。 In some embodiments, referring to the right side of FIG. 17O , in addition to the second conductive contact 1732a and the second doped region 1712a, the control region 1791 further includes a dielectric layer 1733 disposed between the second conductive contact 1732a and the second doped region 1712a. The dielectric layer 1733 prevents current from being conducted directly from the second conductive contact 1732a to the absorption region, but applying a voltage to the second conductive contact 1732a allows an electric field to be established in the absorption region. The established electric field can attract or repel electric carriers in the absorption region.

在一些實施例中,圖16A至16Q中描述的光檢測設備還可以包括短路結構1760。以圖16E中描述的光檢測設備為例,光檢測設備還可以包括短路結構,該短路結構包括基底1620中的第一阱區域和第二阱區域。在一些實施例中,短路結構位在隔離區域1650和其中一個子像素1600a、1600b之間。在一些實施例中,隔離區域1650位在短路結構和其中一個子像素1600a、1600b之間。 In some embodiments, the light detection device described in FIGS. 16A to 16Q may further include a short circuit structure 1760. Taking the light detection device described in FIG. 16E as an example, the light detection device may further include a short circuit structure, which includes a first well region and a second well region in the substrate 1620. In some embodiments, the short circuit structure is located between the isolation region 1650 and one of the sub-pixels 1600a, 1600b. In some embodiments, the isolation region 1650 is located between the short circuit structure and one of the sub-pixels 1600a, 1600b.

在一些實施例中,圖16A至16Q中描述的光檢測設備還可以包括多 個短路結構1760。在一些實施例中,每個短路結構位於最外面的其中一個子像素和隔離區域之間。在一些實施例中,隔離區域在短路結構和最外面的子像素之間。以圖16E中描述的光檢測設備為例,光檢測設備還可以在基底1620中包括兩個短路結構。在一些實施例中,兩個短路結構位於各自的子像素1600a、1600b和隔離區域1650之間。在一些實施例中,隔離區域在短路結構和相應的子像素1600a、1600b之間。 In some embodiments, the light detection device described in Figures 16A to 16Q may also include multiple short-circuit structures 1760. In some embodiments, each short-circuit structure is located between one of the outermost sub-pixels and the isolation region. In some embodiments, the isolation region is between the short-circuit structure and the outermost sub-pixel. Taking the light detection device described in Figure 16E as an example, the light detection device may also include two short-circuit structures in the substrate 1620. In some embodiments, the two short-circuit structures are located between the respective sub-pixels 1600a, 1600b and the isolation region 1650. In some embodiments, the isolation region is between the short-circuit structure and the corresponding sub-pixel 1600a, 1600b.

圖18是成像系統的示例實施例的框圖。成像系統可以包括成像模組和軟體模組,軟體模組被配置為重建被檢測物件的3D模型。成像系統或成像模組可以用於行動裝置(例如,智慧手機、平板電腦、車輛、無人機等),或用於行動裝置的輔助裝置(例如,可穿戴設備)、車輛上或固定設施(例如,工廠)中的計算系統、機器人系統、監視系統,或任何其他合適的設備和/或系統。 FIG18 is a block diagram of an example embodiment of an imaging system. The imaging system may include an imaging module and a software module configured to reconstruct a 3D model of a detected object. The imaging system or imaging module may be used in a mobile device (e.g., a smartphone, a tablet, a vehicle, a drone, etc.), or in an auxiliary device for a mobile device (e.g., a wearable device), a computing system on a vehicle or in a fixed facility (e.g., a factory), a robotic system, a surveillance system, or any other suitable device and/or system.

成像模組包括發射器單元、接收器單元和控制器。在操作期間,發射器單元可以向目標物體發射入射光。接收器單元可以接收從目標物體反射的反射光。控制器可以至少驅動發射器單元和接收器單元。在一些實現中,接收器單元和控制器位在一個半導體晶片上,例如系統單晶片(system-on-a-chip,SoC)。在某些情況下,發射器單元包含兩個不同的半導體晶片,例如在三-五族基底上的雷射發射器晶片,和在矽基底上的矽雷射驅動器晶片。 The imaging module includes an emitter unit, a receiver unit, and a controller. During operation, the emitter unit may emit incident light toward a target object. The receiver unit may receive reflected light reflected from the target object. The controller may drive at least the emitter unit and the receiver unit. In some implementations, the receiver unit and the controller are located on a semiconductor chip, such as a system-on-a-chip (SoC). In some cases, the emitter unit includes two different semiconductor chips, such as a laser emitter chip on a III-V substrate, and a silicon laser driver chip on a silicon substrate.

發射器單元可以包括一個或多個光源、控制一個或多個光源的控制電路和/或用於操縱從一個或多個光源發射的光的光學結構。在一些實施例中,光源可以包括一個或多個發光二極體或垂直腔面發射雷射(Vertical-Cavity Surface-Emitting Laser,VCSEL)器,這些發光二極體或垂直腔面發射雷射器發射的光,可以被光檢測設備中的吸收區域吸收。例如,一個或多個發光二極體或垂直腔面發射雷射器,可以發射峰值波長在可見波長範圍(例如,人眼可見的波長)內的光,例如570奈米、670奈米或任何其他適用的波長。作為另一個例 子,一個或多個發光二極體或垂直腔面發射雷射器,可以發射峰值波長高於可見波長範圍的光,例如850奈米、940奈米、1050奈米、1064奈米、1310奈米、1350奈米、1550奈米或任何其他適用的波長。 The emitter unit may include one or more light sources, control circuitry for controlling the one or more light sources, and/or an optical structure for manipulating light emitted from the one or more light sources. In some embodiments, the light source may include one or more light emitting diodes or vertical-cavity surface-emitting lasers (VCSELs), which emit light that can be absorbed by an absorption region in the light detection device. For example, one or more light emitting diodes or vertical-cavity surface-emitting lasers can emit light with a peak wavelength in the visible wavelength range (e.g., a wavelength visible to the human eye), such as 570 nanometers, 670 nanometers, or any other applicable wavelength. As another example, one or more LEDs or VCSELs can emit light having a peak wavelength above the visible wavelength range, such as 850 nm, 940 nm, 1050 nm, 1064 nm, 1310 nm, 1350 nm, 1550 nm, or any other applicable wavelength.

在一些實施例中,來自光源的入射光可以被一個或多個光學結構准直(collimated)。例如,光學結構可以包括一個或多個准直透鏡(collimating lens)。 In some embodiments, incident light from a light source may be collimated by one or more optical structures. For example, the optical structure may include one or more collimating lenses.

接收器單元可以包括根據上述任何實施例的一個或多個光檢測設備。接收器單元還可以包括控制電路,用於控制控制電路和/或光學結構,以操縱從目標物體反射之光朝向一個或多個光檢測設備的光。在一些實施方式中,光學結構包括接收准直光並將准直光聚焦到一個或多個光檢測設備的一個或多個透鏡。 The receiver unit may include one or more light detection devices according to any of the above embodiments. The receiver unit may also include a control circuit for controlling the control circuit and/or the optical structure to manipulate the light reflected from the target object toward the one or more light detection devices. In some embodiments, the optical structure includes one or more lenses that receive collimated light and focus the collimated light to the one or more light detection devices.

在一些實施例中,控制器包括時序產生器(timing generator)和處理單元。時序產生器接收參考定時器信號,並向發射器單元提供定時信號,用於調變發射的光。定時器信號也被提供給接收器單元,用於控制光載子的收集。處理單元處理由接收器單元產生和收集的光載子,並確定目標物件的原始資料。處理單元可以包括控制電路、用於處理從光檢測設備輸出的資訊的一個或多個信號處理器、和/或可以儲存用於確定目標物件的原始資料的指令或儲存目標物件的原始資料的電腦儲存介質。例如,間接飛行時間測距(i-ToF)感測器中的控制器通過使用由發射器單元發射的光和由接收器單元接收的光之間的相位差來確定兩點之間的距離。 In some embodiments, the controller includes a timing generator and a processing unit. The timing generator receives a reference timer signal and provides a timing signal to the transmitter unit for modulating the emitted light. The timer signal is also provided to the receiver unit for controlling the collection of photocarriers. The processing unit processes the photocarriers generated and collected by the receiver unit and determines the raw data of the target object. The processing unit may include a control circuit, one or more signal processors for processing information output from the light detection device, and/or a computer storage medium that can store instructions for determining the raw data of the target object or store the raw data of the target object. For example, a controller in an indirect time-of-flight (i-ToF) sensor determines the distance between two points by using the phase difference between the light emitted by the transmitter unit and the light received by the receiver unit.

軟體模組可以被實現為在諸如面部識別、眼睛跟蹤、手勢識別、立體模型掃描/視頻記錄、運動跟蹤、自動車輛和/或增強/虛擬實境的應用中執行。 The software module can be implemented to run in applications such as facial recognition, eye tracking, gesture recognition, stereo model scanning/video recording, motion tracking, autonomous vehicles, and/or augmented/virtual reality.

圖19示出了示例接收器單元或控制器的框圖。這裡,圖像感測器陣 列(例如,240×180)可以使用參考圖3A至8E、圖14C至14L描述的光檢測設備的任何實現來實現。鎖相迴路(Phase-locked loops,PLL)電路(例如,整數倍分頻鎖相迴路(integer-N PLL))可以產生用於調變和解調變的定時器信號(例如,四相系統時脈)。在發送到像素陣列和外部照明驅動器之前,這些定時器信號可以由時序產生器針對預設的積分時間和不同的操作模式,來進行閘極控制和/或調節。可以在照明驅動器路徑中添加可程式化延遲線來延遲定時器信號。 FIG19 shows a block diagram of an example receiver unit or controller. Here, an array of image sensors (e.g., 240×180) can be implemented using any implementation of the light detection device described with reference to FIGS. 3A to 8E, 14C to 14L. A phase-locked loop (PLL) circuit (e.g., an integer-N PLL) can generate timer signals (e.g., a four-phase system clock) for modulation and demodulation. These timer signals can be gate-controlled and/or adjusted by a timing generator for preset integration times and different operating modes before being sent to the pixel array and external lighting driver. A programmable delay line can be added in the lighting driver path to delay the timer signal.

電壓調節器可用於控制圖像感測器的工作電壓。例如,圖像感測器可以使用多個電壓域。溫度感測器可以被實現用於深度校準和功率控制的可能用途。 Voltage regulators can be used to control the operating voltage of image sensors. For example, image sensors can use multiple voltage domains. Temperature sensors can be implemented for possible uses such as depth calibration and power control.

光檢測設備的讀出電路將圖像感測器陣列的每個光電檢測元件橋接到一列類比-數位轉換器(analog-to-digital converter(ADC)),其中類比-數位轉換器的輸出可以在到達輸出介面之前,由信號處理器在數位域中進一步處理和積分。記憶體可用於儲存信號處理器的輸出。在一些實施方式中,輸出介面可以使用2通道、1.2GB/s PHY-MIPI發射機來實現,或者使用用於低速/低成本系統的CMOS輸出來實現。 The readout circuitry of the light detection device bridges each photodetection element of the image sensor array to an array of analog-to-digital converters (ADCs), where the output of the analog-to-digital converters can be further processed and integrated in the digital domain by a signal processor before reaching the output interface. Memory can be used to store the output of the signal processor. In some embodiments, the output interface can be implemented using a 2-lane, 1.2GB/s PHY-MIPI transmitter, or using CMOS outputs for low-speed/low-cost systems.

積體電路間(inter-integrated circuit,I2C)介面可用於存取這裡描述的所有功能塊。 An inter-integrated circuit (I2C) interface can be used to access all functional blocks described here.

在本揭露中,如果沒有具體提及,吸收區域可能完全嵌入在基底中、部分嵌入在基底中、或者完全在基底的第一表面上。類似地,如果沒有具體提及,鍺基光吸收材料可能完全嵌入半導體基底中、部分嵌入半導體基底中、或者完全在半導體基底的第一表面上。 In the present disclosure, if not specifically mentioned, the absorption region may be completely embedded in the substrate, partially embedded in the substrate, or completely on the first surface of the substrate. Similarly, if not specifically mentioned, the germanium-based light absorbing material may be completely embedded in the semiconductor substrate, partially embedded in the semiconductor substrate, or completely on the first surface of the semiconductor substrate.

在本揭露中,如果沒有具體提及,吸收區域可能被配置為吸收峰值波長在不小於800奈米的不可見波長範圍內的光子,例如850奈米、940奈米、1050奈米、1064奈米、1310奈米、1350奈米或1550奈米。在一些實施例中,不 可見波長範圍不超過2000奈米。在一些實施例中,吸收區域接收光學信號,並將光學信號轉換成電信號。 In the present disclosure, if not specifically mentioned, the absorption region may be configured to absorb photons with a peak wavelength in the non-visible wavelength range of not less than 800 nm, such as 850 nm, 940 nm, 1050 nm, 1064 nm, 1310 nm, 1350 nm or 1550 nm. In some embodiments, the non-visible wavelength range does not exceed 2000 nm. In some embodiments, the absorption region receives an optical signal and converts the optical signal into an electrical signal.

在本揭露中,如果沒有具體提及,基底由第一材料或第一材料複合物製成。吸收區域由第二材料或第二材料複合物製成。第二材料或第二材料複合物不同於第一材料或第一材料複合物。在一些實施例中,吸收區域包括半導體材料。在一些實施例中,吸收區域包括多晶材料。在一些實施例中,基底包括半導體材料。在一些實施例中,吸收區域包括三-五族半導體材料。在一些實施例中,基底包括三-五族半導體材料。三-五族半導體材料可包括但不限於砷化鎵/砷化鋁(GaAs/AlAs)、磷化銦/銦鎵砷(InP/InGaAs)、銻化鎵/砷化銦(GaSb/InAs)、或銻化銦(InSb)。在一些實施例中,吸收區域包括包含四族元素的半導體材料。例如鍺、矽或錫。在一些實施例中,吸收區域包括GexSi1-x,其中0<x<1。在一些實施例中,吸收區域包括SixGeySn1-x-y,其中0

Figure 109129437-A0305-02-0059-1
x
Figure 109129437-A0305-02-0059-4
1,0
Figure 109129437-A0305-02-0059-5
y
Figure 109129437-A0305-02-0059-6
1。在一些實施例中,吸收區域包括Ge1-aSna,其中0
Figure 109129437-A0305-02-0059-7
a
Figure 109129437-A0305-02-0059-8
0.1。在一些實施例中,基底包括矽。在一些實施例中,基底由矽組成。在一些實施例中,吸收區域由鍺、矽或鍺矽(GexSi1-x)組成。在一些實施例中,由於在吸收區域形成期間形成的材料缺陷,由本徵鍺組成的吸收區域為P型,其中缺陷密度為1x 1014cm-3至1x 1016cm-3。 In the present disclosure, if not specifically mentioned, the substrate is made of a first material or a first material composite. The absorption region is made of a second material or a second material composite. The second material or the second material composite is different from the first material or the first material composite. In some embodiments, the absorption region includes a semiconductor material. In some embodiments, the absorption region includes a polycrystalline material. In some embodiments, the substrate includes a semiconductor material. In some embodiments, the absorption region includes a III-V semiconductor material. In some embodiments, the substrate includes a III-V semiconductor material. The III-V semiconductor material may include but is not limited to gallium arsenide/aluminum arsenide (GaAs/AlAs), indium phosphide/indium gallium arsenide (InP/InGaAs), gallium asbide/indium arsenide (GaSb/InAs), or indium asbide (InSb). In some embodiments, the absorption region includes a semiconductor material containing a Group IV element. For example, germanium, silicon or tin. In some embodiments, the absorption region comprises Ge x Si 1-x , where 0<x<1. In some embodiments, the absorption region comprises Si x Ge y Sn 1-xy , where 0
Figure 109129437-A0305-02-0059-1
x
Figure 109129437-A0305-02-0059-4
1,0
Figure 109129437-A0305-02-0059-5
y
Figure 109129437-A0305-02-0059-6
1. In some embodiments, the absorption region includes Ge 1-a Sn a , where 0
Figure 109129437-A0305-02-0059-7
a
Figure 109129437-A0305-02-0059-8
0.1. In some embodiments, the substrate includes silicon. In some embodiments, the substrate is composed of silicon. In some embodiments, the absorption region is composed of germanium, silicon, or germanium silicon ( GexSi1 -x ). In some embodiments, due to material defects formed during the formation of the absorption region, the absorption region composed of intrinsic germanium is p-type, wherein the defect density is 1x 1014 cm -3 to 1x 1016 cm -3 .

在本揭露中,如果沒有具體提及,吸收區域具有取決於待檢測光子的波長和吸收區域的材料的厚度。在一些實施例中,當吸收區域包括鍺,並且被設計成吸收波長不小於800奈米的光子時,吸收區域具有不小於0.1um的厚度。在一些實施例中,吸收區域包括鍺,並且被設計成吸收波長在800奈米和2000奈米之間的光子,吸收區域具有0.1um和2.5um之間的厚度。在一些實施例中,為了更高的量子效率,吸收區域的厚度在1um和2.5um之間。在一些實施例中,可以使用覆蓋磊晶(blanket epitaxy)、選擇性磊晶(selective epitaxy)或其 他適用技術來生長吸收區域。 In the present disclosure, if not specifically mentioned, the absorption region has a thickness that depends on the wavelength of the photons to be detected and the material of the absorption region. In some embodiments, when the absorption region includes germanium and is designed to absorb photons with a wavelength of not less than 800 nanometers, the absorption region has a thickness of not less than 0.1um. In some embodiments, the absorption region includes germanium and is designed to absorb photons with a wavelength between 800 nanometers and 2000 nanometers, and the absorption region has a thickness between 0.1um and 2.5um. In some embodiments, for higher quantum efficiency, the thickness of the absorption region is between 1um and 2.5um. In some embodiments, blanket epitaxy, selective epitaxy, or other applicable techniques can be used to grow the absorption region.

在本揭露中,如果沒有具體提及,第一讀出電路、第二讀出電路、第一公共讀出電路或第二公共讀出電路可以是由重置閘極(reset gate)、源極跟隨器(source-follower)和選擇閘極(selection gate)、組成的三電晶體配置或包括四個或更多個電晶體的電路或用於處理電荷的任何合適的電路。在一些實施例中,第一讀出電路和第二讀出電路可以製造在基底上。在一些其他實施例中,第一讀出電路和第二讀出電路可以製造在另一基底上,並且通過裸晶/晶片鍵合或堆疊與吸收區域整合/共同封裝。在一些實施例中,光檢測設備包括讀出電路和吸收區域之間的結合層(未示出)。結合層可以包括任何合適的材料,例如氧化物或半導體或金屬或合金。 In the present disclosure, if not specifically mentioned, the first readout circuit, the second readout circuit, the first common readout circuit or the second common readout circuit may be a three-transistor configuration consisting of a reset gate, a source follower and a selection gate, or a circuit including four or more transistors, or any suitable circuit for processing charge. In some embodiments, the first readout circuit and the second readout circuit may be fabricated on a substrate. In some other embodiments, the first readout circuit and the second readout circuit may be fabricated on another substrate and integrated/co-packaged with the absorption region by die/wafer bonding or stacking. In some embodiments, the light detection device includes a bonding layer (not shown) between the readout circuit and the absorption region. The bonding layer may comprise any suitable material, such as an oxide or a semiconductor or a metal or an alloy.

在本揭露中,如果沒有具體提及,第一讀出電路包括第一電容器。第一電容器被配置為儲存由第一摻雜區域之一收集的光載流子。在一些實施例中,第一電容器電耦合到第一讀出電路的重置閘極。在一些實施例中,第一電容器位於第一讀出電路的源極跟隨器和第一讀出電路的重置閘極之間。在一些實施例中,第二讀出電路包括第二電容器。在一些實施例中,第二電容器被配置成儲存由另一個第一摻雜區域中收集的光載流子。在一些實施例中,第二電容器電耦合到第二讀出電路的重置閘極。在一些實施例中,第二電容器位於第二讀出電路的源極跟隨器和第二讀出電路的重置閘極之間。第一電容器和第二電容器的例子包括但不限於浮動擴散電容器(floating-diffusion capacitors)、金屬氧化物金屬電容器、金屬絕緣體金屬電容器和金屬氧化物半導體電容器。 In the present disclosure, if not specifically mentioned, the first readout circuit includes a first capacitor. The first capacitor is configured to store photocarriers collected by one of the first doped regions. In some embodiments, the first capacitor is electrically coupled to a reset gate of the first readout circuit. In some embodiments, the first capacitor is located between a source follower of the first readout circuit and the reset gate of the first readout circuit. In some embodiments, the second readout circuit includes a second capacitor. In some embodiments, the second capacitor is configured to store photocarriers collected by another first doped region. In some embodiments, the second capacitor is electrically coupled to a reset gate of the second readout circuit. In some embodiments, the second capacitor is located between the source follower of the second readout circuit and the reset gate of the second readout circuit. Examples of the first capacitor and the second capacitor include but are not limited to floating-diffusion capacitors, metal oxide metal capacitors, metal insulator metal capacitors, and metal oxide semiconductor capacitors.

在本揭露中,如果沒有具體提及,在同一像素中,由一個開關的第一摻雜區域收集的載流子的類型和由另一個開關的第一摻雜區域收集的載流子的類型是相同的。例如,當光檢測設備被配置為收集電子時,當第一開關接通並且第二開關斷開時,第一開關中的第一摻雜區域收集從吸收區域產生的光載 流子的電子,並且當第二開關接通並且第一開關斷開時,第二開關中的第一摻雜區域也收集從吸收區域產生的光載流子的電子。 In the present disclosure, if not specifically mentioned, in the same pixel, the type of carriers collected by the first doped region of one switch and the type of carriers collected by the first doped region of another switch are the same. For example, when the light detection device is configured to collect electrons, when the first switch is turned on and the second switch is turned off, the first doped region in the first switch collects electrons of photocarriers generated from the absorption region, and when the second switch is turned on and the first switch is turned off, the first doped region in the second switch also collects electrons of photocarriers generated from the absorption region.

在一些實施例中,本揭露中的第一介電層、第二介電層包括但不限於二氧化矽。在一些實施例中,第一介電層、第二介電層、第三介電層、第四介電層和第五介電層包括高k材料,包括但不限於氮化矽(Si3N4)、氮氧化矽(SiON)、氮化矽(SiNx)、氧化矽(SiOx)、氧化鍺(GeOx)、氧化鋁(Al2O3)、氧化釔(Y2O3)、二氧化鈦(TiO2)、二氧化鉿(HfO2)或二氧化鋯(ZrO2)。在一些實施例中,本揭露中的第一介電層、第二介電層、第三介電層、第四介電層和第五介電層包括半導體材料,但不限於非晶矽、多晶矽、晶體矽或其組合。 In some embodiments, the first dielectric layer and the second dielectric layer in the present disclosure include but are not limited to silicon dioxide. In some embodiments, the first dielectric layer, the second dielectric layer, the third dielectric layer, the fourth dielectric layer and the fifth dielectric layer include high-k materials, including but not limited to silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON), silicon nitride (SiNx), silicon oxide (SiOx), germanium oxide (GeOx), aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), titanium dioxide (TiO 2 ), helium dioxide (HfO 2 ) or zirconium dioxide (ZrO 2 ). In some embodiments, the first dielectric layer, the second dielectric layer, the third dielectric layer, the fourth dielectric layer, and the fifth dielectric layer in the present disclosure include semiconductor materials, but are not limited to amorphous silicon, polysilicon, crystalline silicon, or a combination thereof.

在本揭露中,如果沒有具體提及,第一導電接觸、第二導電接觸、第三導電接觸包括金屬或合金。例如,第一導電接觸、第二導電接觸、第三導電接觸包括鋁、銅、鎢、鈦、鉭-氮化鉭-銅堆疊層(Ta-TaN-Cu stack)或鈦-氮化鈦-鎢堆疊層(Ti-TiN-W stack)。 In the present disclosure, if not specifically mentioned, the first conductive contact, the second conductive contact, and the third conductive contact include metal or alloy. For example, the first conductive contact, the second conductive contact, and the third conductive contact include aluminum, copper, tungsten, titanium, Ta-TaN-Cu stack or Ti-TiN-W stack.

雖然已經通過示例並根據較佳實施例描述了本揭露,但是應當理解,本揭露不限於此。相反,其旨在描述各種修改和類似的佈置和過程,因此所附權利要求的範圍應當符合最廣泛的解釋,以便包含所有這些修改和類似的佈置和過程。 Although the present disclosure has been described by way of example and according to preferred embodiments, it should be understood that the present disclosure is not limited thereto. Rather, it is intended to describe various modifications and similar arrangements and processes, and the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and processes.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

1600:像素1600: Pixels

1600a:子像素1600a: Sub-pixel

1600b:子像素1600b: Sub-pixel

1610:吸收區域1610: Absorption area

1611a:第一摻雜區域1611a: First doping region

1611b:第一摻雜區域1611b: First doping region

1613:檢測區域1613: Detection area

1620:基底1620: Base

1631a:第一導電接觸1631a: First conductive contact

1631b:第一導電接觸1631b: First conductive contact

1632a:第二導電接觸1632a: Second conductive contact

1632b:第二導電接觸1632b: Second conductive contact

1660:遮光層1660:Shade layer

1661:開口1661: Open

1671a:第一讀出電路1671a: First readout circuit

1671b:第二讀出電路1671b: Second readout circuit

1672a:第一控制信號1672a: First control signal

1672b:第二控制信號1672b: Second control signal

Claims (17)

一種光檢測設備,包括:一像素,所述像素包括:N個子像素,其中每個子像素包括一檢測區域和兩個第一導電接觸,其中各所述檢測區域位於所述兩個第一導電接觸之間,其中各所述子像素還包括位於對應的所述第一導電接觸下的兩個第一摻雜區域,其中,各所述第一摻雜區域具有第一導電型態,以及其中,N為正整數且
Figure 109129437-A0305-02-0078-15
2;以及一隔離區域,該隔離區域圍繞所述N個子像素的該些檢測區域,其中,於截面中通過所述像素,所述兩個相鄰子像素的所述第一導電接觸之間的一最小寬度係小於所述隔離區域的一寬度。
A light detection device comprises: a pixel, the pixel comprising: N sub-pixels, wherein each sub-pixel comprises a detection region and two first conductive contacts, wherein each of the detection regions is located between the two first conductive contacts, wherein each of the sub-pixels further comprises two first doped regions located under the corresponding first conductive contacts, wherein each of the first doped regions has a first conductive type, and wherein N is a positive integer and
Figure 109129437-A0305-02-0078-15
2; and an isolation region surrounding the detection regions of the N sub-pixels, wherein, in a cross section through the pixel, a minimum width between the first conductive contacts of the two adjacent sub-pixels is smaller than a width of the isolation region.
如請求項第1項所述的光檢測設備,其中各所述子像素還包括兩個第二導電接觸,其中所述檢測區域位在所述兩個第二導電接觸之間。 A light detection device as described in claim 1, wherein each of the sub-pixels further comprises two second conductive contacts, wherein the detection region is located between the two second conductive contacts. 如請求項第1項所述的光檢測設備,其中每個子像素還包括位於對應的兩個所述第二導電接觸下的兩個第二摻雜區域,並且,各所述第二摻雜區域具有第二導電型態,且所述第一導電型態不同於所述第二導電型態。 A light detection device as described in claim 1, wherein each sub-pixel further includes two second doped regions located under two corresponding second conductive contacts, and each of the second doped regions has a second conductive type, and the first conductive type is different from the second conductive type. 如請求項第1項所述的光檢測設備,其中所述像素還包括一吸收區域,其中所述N個子像素的所述檢測區域位於同一個吸收區域中。 A light detection device as described in claim 1, wherein the pixel further includes an absorption region, wherein the detection regions of the N sub-pixels are located in the same absorption region. 如請求項第4項所述的光檢測設備,其中從所述光檢測設備的一截面圖來看,兩個相鄰的所述子像素各自包含的所述第一導電接觸之間的一最小寬度,小於所述吸收區域的一寬度。 A light detection device as described in claim 4, wherein from a cross-sectional view of the light detection device, a minimum width between the first conductive contacts contained in each of two adjacent sub-pixels is smaller than a width of the absorption region. 如請求項第3項所述的光檢測設備,其中所述像素還包括一吸收區域,其中所述N個子像素的所述第一摻雜區域和所述第二摻雜區域位在同一個 吸收區域中。 The light detection device as described in claim 3, wherein the pixel further includes an absorption region, wherein the first doped region and the second doped region of the N sub-pixels are located in the same absorption region. 如請求項第6項所述的光檢測設備,其中所述像素還包括圍繞所述吸收區域的一阻擋層,其中所述阻擋層的一導電型態不同於每個所述第一摻雜區域所包含的所述第一導電型態。 A light detection device as described in claim 6, wherein the pixel further includes a blocking layer surrounding the absorption region, wherein a conductivity type of the blocking layer is different from the first conductivity type contained in each of the first doped regions. 如請求項第1項所述的光檢測設備,其中所述隔離區域在所述檢測區域之外,並且與所述吸收區域實體分離。 A light detection device as described in claim 1, wherein the isolation region is outside the detection region and is physically separated from the absorption region. 如請求項第3項所述的光檢測設備,其中所述像素還包括在所述N個子像素中的所述兩個相鄰的子像素之間的一第三摻雜區域,並且所述第三摻雜區域與所述兩個相鄰的子像素的所述第一摻雜區域分開,其中所述第三摻雜區域具有不同於所述第一導電型態的一導電型態。 A light detection device as described in claim 3, wherein the pixel further includes a third doped region between the two adjacent sub-pixels in the N sub-pixels, and the third doped region is separated from the first doped regions of the two adjacent sub-pixels, wherein the third doped region has a conductivity type different from the first conductivity type. 如請求項第3項所述的光檢測設備,其中所述子像素之一還包括與所述子像素的所述第一摻雜區域之一的一部分重疊的一反向摻雜區域,其中所述反向摻雜區域具有不同於所述第一導電型態的一導電型態。 A light detection device as described in claim 3, wherein one of the sub-pixels further includes a reverse doped region overlapping with a portion of one of the first doped regions of the sub-pixel, wherein the reverse doped region has a conductivity type different from the first conductivity type. 如請求項第2項所述的光檢測設備,其中所述像素包括2N個讀出電路和2N個控制信號,所述讀出電路中的其中兩個分別電耦合到所述子像素之一的所述第一導電接觸,並且所述控制信號電路中的兩個分別電耦合到所述子像素之一的所述第二導電接觸。 A light detection device as described in claim 2, wherein the pixel includes 2N readout circuits and 2N control signals, two of the readout circuits are electrically coupled to the first conductive contact of one of the sub-pixels, and two of the control signal circuits are electrically coupled to the second conductive contact of one of the sub-pixels. 如請求項第1項所述的光檢測設備,其中所述像素包括一公共讀出電路,其中所述公共讀出電路電耦合到其中一個所述子像素的所述第一導電接觸之一,以及電耦合到另一個所述子像素的所述第一導電接觸之一。 A light detection device as described in claim 1, wherein the pixel includes a common readout circuit, wherein the common readout circuit is electrically coupled to one of the first conductive contacts of one of the sub-pixels, and is electrically coupled to one of the first conductive contacts of another of the sub-pixels. 如請求項第2項所述的光檢測設備,其中所述像素包括一公共控制信號,其中所述的公共控制信號電耦合到其中一個子像素的所述第二導電接觸之一,以及電耦合到另一個所述子像素的所述第二導電接觸之一。 A light detection device as described in claim 2, wherein the pixel includes a common control signal, wherein the common control signal is electrically coupled to one of the second conductive contacts of one of the sub-pixels, and electrically coupled to one of the second conductive contacts of another of the sub-pixels. 如請求項第1項所述的光檢測設備,其中所述光檢測設備還包括 位在各所述子像素上的多個光學元件。 A light detection device as described in claim 1, wherein the light detection device further comprises a plurality of optical elements located on each of the sub-pixels. 一種光檢測設備,包括:一第一像素,以及與所述第一像素相鄰的一第二像素,其中所述第一像素和所述第二像素中的每一個包括:N個檢測區域;2N個第一導電接觸,每個都耦合到其中一個所述檢測區域;以及2N個第二導電接觸,每個都耦合到其中一個所述檢測區域,其中N為正整數,且
Figure 109129437-A0305-02-0080-17
2;以及一隔離區域,位於所述第一像素和所述第二像素之間,其中,於截面中通過所述光檢測設備,所述第一像素的其中一個所述2N個第一導電接觸與所述第二像素的其中一個所述2N個第一導電接觸之間的一最小寬度係小於所述隔離區域的一寬度。
A light detection device comprises: a first pixel, and a second pixel adjacent to the first pixel, wherein each of the first pixel and the second pixel comprises: N detection regions; 2N first conductive contacts, each coupled to one of the detection regions; and 2N second conductive contacts, each coupled to one of the detection regions, wherein N is a positive integer, and
Figure 109129437-A0305-02-0080-17
2; and an isolation region between the first pixel and the second pixel, wherein, in a cross section through the light detection device, a minimum width between one of the 2N first conductive contacts of the first pixel and one of the 2N first conductive contacts of the second pixel is smaller than a width of the isolation region.
一種成像系統,包括:能夠發光的一發射器單元;和包括一圖像感測器的一接收器單元,包括:一光檢測設備,包括:多個像素,其中每個像素包括:N個子像素,其中每個子像素包括一檢測區域和兩個第一導電接觸,其中所述檢測區域位於所述兩個第一導電接觸之間,並且所述檢測區域被配置為吸收具有一特定波長的光子,並且從吸收的所述光子產生一光載流子,其中,N為正整數且
Figure 109129437-A0305-02-0080-18
2;以及一隔離區域,該隔離區域圍繞所述N個子像素的該些檢測區域,其中,於截面中通過所述像素,所述兩個相鄰子像素的所述第一導 電接觸之間的一最小寬度係小於所述隔離區域的一寬度。
An imaging system, comprising: an emitter unit capable of emitting light; and a receiver unit including an image sensor, comprising: a light detection device, comprising: a plurality of pixels, wherein each pixel comprises: N sub-pixels, wherein each sub-pixel comprises a detection region and two first conductive contacts, wherein the detection region is located between the two first conductive contacts, and the detection region is configured to absorb a photon having a specific wavelength and generate a photocarrier from the absorbed photon, wherein N is a positive integer and
Figure 109129437-A0305-02-0080-18
2; and an isolation region surrounding the detection regions of the N sub-pixels, wherein, in a cross section through the pixel, a minimum width between the first conductive contacts of the two adjacent sub-pixels is smaller than a width of the isolation region.
如請求項第16項所述的成像系統,還包括一處理單元,所述處理單元能夠處理由所述接收器單元所生成的光載流子。The imaging system of claim 16 further comprises a processing unit capable of processing photocarriers generated by the receiver unit.
TW109129437A 2020-03-16 2020-08-28 Photo-detecting apparatus with subpixels TWI842945B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062989901P 2020-03-16 2020-03-16
US62/989,901 2020-03-16

Publications (2)

Publication Number Publication Date
TW202137525A TW202137525A (en) 2021-10-01
TWI842945B true TWI842945B (en) 2024-05-21

Family

ID=79601394

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129437A TWI842945B (en) 2020-03-16 2020-08-28 Photo-detecting apparatus with subpixels

Country Status (1)

Country Link
TW (1) TWI842945B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806274B (en) * 2021-12-06 2023-06-21 國立臺灣大學 Photo detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180102389A1 (en) * 2016-10-12 2018-04-12 Samsung Electronics Co., Ltd. Image sensor
US20180175091A1 (en) * 2016-12-20 2018-06-21 Samsung Electronics Co., Ltd. Image sensor
US20190131328A1 (en) * 2017-10-31 2019-05-02 Samsung Electronics Co., Ltd. Image Sensor
TW202133426A (en) * 2020-02-27 2021-09-01 台灣積體電路製造股份有限公司 Image sensors and forming method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180102389A1 (en) * 2016-10-12 2018-04-12 Samsung Electronics Co., Ltd. Image sensor
US20180175091A1 (en) * 2016-12-20 2018-06-21 Samsung Electronics Co., Ltd. Image sensor
US20190131328A1 (en) * 2017-10-31 2019-05-02 Samsung Electronics Co., Ltd. Image Sensor
TW202133426A (en) * 2020-02-27 2021-09-01 台灣積體電路製造股份有限公司 Image sensors and forming method thereof

Also Published As

Publication number Publication date
TW202137525A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
TWI788246B (en) Photo-detecting apparatus
US11482553B2 (en) Photo-detecting apparatus with subpixels
TWI836135B (en) Photo-detecting apparatus with low dark current
US12013463B2 (en) Light-sensing apparatus and light-sensing method thereof
TWI780007B (en) Photo-detecting apparatus and system thereof
US12477856B2 (en) Photo-detecting apparatus with low dark current
KR102484157B1 (en) Systems and methods for capturing modulated images
CN114556570A (en) Stacked electromagnetic radiation sensor for visible image sensing and infrared depth sensing, or for visible image sensing and infrared image sensing
TW202038462A (en) Semiconductor device with low dark noise
TWI831982B (en) Light-sensing apparatus and imaging system
TWI842945B (en) Photo-detecting apparatus with subpixels
EP4064351B1 (en) Photo-detecting apparatus