TWI808695B - Milling real-time monitoring system - Google Patents
Milling real-time monitoring system Download PDFInfo
- Publication number
- TWI808695B TWI808695B TW111111124A TW111111124A TWI808695B TW I808695 B TWI808695 B TW I808695B TW 111111124 A TW111111124 A TW 111111124A TW 111111124 A TW111111124 A TW 111111124A TW I808695 B TWI808695 B TW I808695B
- Authority
- TW
- Taiwan
- Prior art keywords
- real
- cutting
- processing
- sensing
- monitoring system
- Prior art date
Links
- 238000003801 milling Methods 0.000 title claims abstract description 29
- 238000012544 monitoring process Methods 0.000 title claims abstract description 29
- 238000005520 cutting process Methods 0.000 claims abstract description 64
- 238000003754 machining Methods 0.000 claims abstract description 27
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims description 57
- 238000005452 bending Methods 0.000 claims description 20
- 230000008859 change Effects 0.000 claims description 7
- 238000002474 experimental method Methods 0.000 claims description 7
- 238000013178 mathematical model Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000020347 spindle assembly Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Numerical Control (AREA)
Abstract
Description
本發明係關於一種銑削加工監測系統,特別是有關於一種智慧刀具銑削加工行為與感測機制建立模型,實現更高精度的加工即時監測。 The present invention relates to a milling processing monitoring system, in particular to establishing a model of a smart tool milling processing behavior and a sensing mechanism to realize higher-precision real-time monitoring of processing.
目前,金屬銑削仍然是最重要的加工過程,為所有工藝產品提供依據。數十年來,人們對銑削工藝及其產品質量的要求越來越高,導致銑削工藝發生了巨大的變化。 Currently, metal milling remains the most important machining process, providing the basis for all craft products. Over the decades, increasing demands on the milling process and the quality of its products have led to dramatic changes in the milling process.
在金屬加工過程中,刀具扮演著極其重要的角色,刀具數量龐大且應用複雜,使得刀具的使用與管理成為降低生產成本與縮短生產時間的重要因素。現代工廠的發展趨勢,皆朝向自動與智慧化生產方式進行生產,故能即時監控加工狀態與獲得刀具即時資訊,可提升機器設備的稼動率以及產品的競爭力。 In the process of metal processing, cutting tools play an extremely important role. The number of cutting tools is huge and the application is complex, making the use and management of cutting tools an important factor in reducing production costs and shortening production time. The development trend of modern factories is towards automatic and intelligent production methods. Therefore, real-time monitoring of processing status and real-time tool information can improve the utilization rate of machinery and equipment and the competitiveness of products.
就目前的技術而言,可能是將感測機制設計於工具機主軸或工作台的方式,以此即時動態力量感測訊號監控刀具加工狀態,所用感測為應變規式感測器,透過監控特定參數以回饋切削控制的方法,於工作臺與工件之間設置感測器偵測切削力,於夾持具上設置感測器偵測旋轉切削力。但此類監測技術的解耦設計複雜,需藉大量演算法進行分析,準確度較低,各軸向感測易相互干擾。 As far as the current technology is concerned, it may be a way to design the sensing mechanism on the machine tool spindle or the worktable, so as to monitor the machining status of the tool with real-time dynamic force sensing signals. The sensor used is a strain gauge sensor. By monitoring specific parameters to feed back the cutting control method, the sensor is installed between the workbench and the workpiece to detect the cutting force, and the sensor is installed on the fixture to detect the rotating cutting force. However, the decoupling design of this type of monitoring technology is complicated, and a large number of algorithms are required for analysis. The accuracy is low, and the sensing of each axis is easy to interfere with each other.
本發明的目的在於提供一種銑削加工即時監測系統,針對將感測機制裝設於刀把本體的智慧刀把,通過無線傳輸方式將感測數值傳送至後台程 式端,經由建立之演算法以及解耦程序將數值換算成所希望求的物理量(扭矩、彎矩、軸向力),用以偵測加工過程的刀具全域受力情況,實現更高精度的加工即時監測。 The purpose of the present invention is to provide a real-time monitoring system for milling processing. For the smart knife handle with the sensing mechanism installed on the knife handle body, the sensed value is transmitted to the background process through wireless transmission. On the formula side, through the established algorithm and decoupling program, the value is converted into the desired physical quantity (torque, bending moment, axial force), which is used to detect the overall force of the tool during the machining process, and realize higher-precision machining real-time monitoring.
為了達成上述目的,本發明提供一種銑削加工即時監測系統,包括:一智慧刀把用於銑削加工,該智慧刀把設有一感測模組透過力學感測其加工刀具在受到對應的負載下產生的應力與應變的壓電感測數值,且透過一傳輸端無線傳輸;以及一程式端裝設於電腦裝置,可透過人機介面將一加工參數輸入,該程式端設有一接收端、一感測數值解耦模組、一切削理論模型及一即時切削模型。 In order to achieve the above object, the present invention provides a real-time monitoring system for milling, comprising: a smart tool handle for milling, the smart tool handle is provided with a sensing module to sense the piezoelectric sensing value of the stress and strain generated by the machining tool under a corresponding load through mechanical sensing, and transmits it wirelessly through a transmission terminal;
該接收端用於接收該傳輸端傳出的壓電感測數值,藉由該感測數值解耦模組將前述壓電感測數值轉換為感測位置下的力訊號數值;該切削理論模型是基於該加工參數為主的基本數學模型,用於模擬切削過程中的大致的變化趨勢;及該即時切削模型是依據前述力訊號數值及該切削理論模型的模擬所建立,用於預測該智慧刀把的加工刀具的切削參數,推算出該加工刀具刀尖的實際加工物理量,即時監測該加工刀具的狀態。 The receiving end is used to receive the piezoelectric sensing value transmitted from the transmitting end, and the sensing value decoupling module converts the aforementioned piezoelectric sensing value into the force signal value at the sensing position; the cutting theoretical model is based on the basic mathematical model of the processing parameters, and is used to simulate the general trend of change in the cutting process; The state of the machining tool.
作為優選方式,該感測模組包含複數個壓電感測元件內嵌在該智慧刀把本體,用以感測該智慧刀把本體在受到對應的該加工刀具負載下產生的應力與應變的壓電感測數值。該些壓電感測元件用以針對該加工刀具的彎矩負載和扭矩負載進行分層感測,且對每個彎矩和扭矩感測各配置兩個對稱內嵌位置的該些感測元件。 As a preferred mode, the sensing module includes a plurality of piezoelectric sensing elements embedded in the smart knife handle body to sense piezoelectric sensing values of stress and strain generated by the smart knife handle body under the load of the corresponding processing tool. The piezoelectric sensing elements are used for layered sensing of the bending moment load and the torque load of the processing tool, and the sensing elements are configured with two symmetrically embedded positions for each bending moment and torque sensing.
作為優選方式,該加工參數包括切削深度、切削寬度、切削刀刃數、工件材質及主軸轉速。該加工刀具刀尖的實際加工物理量包括扭矩、彎矩及軸向力。 As a preferred manner, the processing parameters include cutting depth, cutting width, number of cutting edges, workpiece material and spindle speed. The actual machining physical quantities of the machining tool tip include torque, bending moment and axial force.
作為優選方式,該切削理論模型由於理論與真實狀況會存在一定的 相位差,所以在程式演算過程中需要與該感測數值解耦模組進行相位耦合,以確定切削坐標系,在建立切削坐標系後,將壓電感測數值與坐標系做為參數導入即時預測模型。 As an optimal way, the cutting theoretical model will have certain discrepancies between the theory and the real situation. Phase difference, so phase coupling with the sensing value decoupling module is required during the program calculation process to determine the cutting coordinate system. After the cutting coordinate system is established, the piezoelectric sensing value and coordinate system are imported as parameters into the real-time prediction model.
作為優選方式,該銑削加工即時監測系統包含一實驗端,該實驗端藉由實驗方式於該智慧刀把外部量測物理量,與該即時切削模型推算出該加工刀具刀尖的實際加工物理量進行一模型驗證,且將驗證回饋至該即時切削模型的模型參數的訓練修正。 As a preferred mode, the real-time monitoring system for milling processing includes an experimental end. The experimental end measures the physical quantity outside the smart tool handle by an experimental method, and conducts a model verification with the actual machining physical quantity of the machining tool tip calculated by the real-time cutting model, and feeds the verification back to the training correction of the model parameters of the real-time cutting model.
作為優選方式,該實驗端包括一動力計於該智慧刀把外部量測物理量,透過一轉換矩陣將前述物理量轉換對應該即時切削模型的參數。 As a preferred manner, the experimental end includes a dynamometer to measure physical quantities outside the smart knife handle, and converts the aforementioned physical quantities into parameters corresponding to the real-time cutting model through a conversion matrix.
本發明加工動態監控系統的建立包含三個功能模塊,分別為智慧刀把、程式端、實驗端,智慧刀把的作用是利用本體所擁有的感測能力及無線傳輸功能,通過無線傳輸方式將感測數值傳送至後台程式端,再經由建立之演算法以及解耦程序將數值換算成所希望求的物理量(扭矩、彎矩、軸向力),針對銑削加工行為與感測機制進行建立數學模型,並結合AI演算法進行模型參數修正,實現更高精度的切削力預測模型,推算出該加工刀具刀尖的實際加工物理量,即時監測該加工刀具的狀態。 The establishment of the processing dynamic monitoring system of the present invention includes three functional modules, which are the smart knife handle, the program end, and the experiment end. The function of the smart knife handle is to use the sensing ability and wireless transmission function of the main body to transmit the sensed value to the background program end through wireless transmission, and then convert the value into the desired physical quantity (torque, bending moment, and axial force) through the established algorithm and decoupling program. Establish a mathematical model for the milling behavior and sensing mechanism, and use the AI algorithm to correct the model parameters to achieve higher precision cutting force prediction. The model calculates the actual machining physical quantity of the tool tip and monitors the status of the tool in real time.
100:智慧刀把 100: Wisdom Knife Handle
101:主軸組接部 101:Spindle assembly part
102:夾持部 102: clamping part
103:連接部 103: Connecting part
104:加工刀具 104: Processing tools
110:感測模組 110:Sensing module
111:壓電感測數值 111: Piezoelectric sensing value
112:壓電感測元件 112: Piezoelectric sensing element
120:傳輸端 120: transmission end
130:套殼 130: shell
200:程式端 200: terminal
210:接收端 210: Receiver
220:感測數值解耦模組 220: Sensing value decoupling module
230:加工參數 230: Processing parameters
231:切削深度 231: depth of cut
232:切削寬度 232: Cutting width
233:切削刀刃數 233: Number of cutting edges
234:工件材質 234: Workpiece material
235:主軸轉速 235:Spindle speed
240:切削理論模型 240: Cutting theory model
250:即時切削模型 250: instant cutting model
260:實際加工物理量 260: Actual processing physical quantity
261:扭矩 261: Torque
262:彎矩(X) 262: Bending moment (X)
263:彎矩(Y) 263: Bending moment (Y)
264:軸向力 264: axial force
300:實驗端 300: Experimental end
310:動力計 310: Dynamometer
320:轉換矩陣 320: Transformation matrix
400:模型驗證 400: Model Validation
[圖1]為本案加工即時監測系統的方塊圖一。 [Figure 1] is the block diagram 1 of the real-time monitoring system for processing in this case.
[圖2]為本案加工即時監測系統的方塊圖二。 [Fig. 2] is the second block diagram of the real-time processing monitoring system in this case.
[圖3]為本案演算法的結構示意圖。 [Figure 3] is a schematic diagram of the structure of the algorithm in this case.
[圖4]為本案智慧刀把的示意圖。 [Figure 4] is a schematic diagram of the smart knife handle in this case.
以下將詳述本發明的實施例,並配合圖式作為例示。除了這些詳細 說明之外,本發明亦可廣泛地施行於其它的實施例中,任何所述實施例的輕易替代、修改、等效變化都包含在本發明之範圍內,並以申請專利範圍為準。在說明書的描述中,為了使讀者對本發明有較完整的瞭解,提供了許多特定細節;然而,本發明可能在省略部分或全部特定細節的前提下,仍可實施。此外,眾所周知的步驟或元件並未描述於細節中,以避免對本發明形成不必要之限制。圖式中相同或類似之元件將以相同或類似符號來表示。特別注意的是,圖式僅為示意之用,並非代表元件實際之尺寸或數量,有些細節可能未完全繪出,以求圖式之簡潔。 Embodiments of the present invention will be described in detail below and illustrated with accompanying drawings. In addition to these detailed In addition to the description, the present invention can also be widely implemented in other embodiments, and any easy replacement, modification, and equivalent change of any of the embodiments are included in the scope of the present invention, and the scope of the patent application shall prevail. In the description of the specification, many specific details are provided in order to enable readers to have a more complete understanding of the present invention; however, the present invention may still be practiced under the premise of omitting some or all of the specific details. Furthermore, well-known steps or elements have not been described in detail in order to avoid unnecessarily limiting the invention. The same or similar elements in the drawings will be denoted by the same or similar symbols. It should be noted that the drawings are for illustrative purposes only, and do not represent the actual size or quantity of components, and some details may not be fully drawn for the sake of simplicity of the drawings.
請參照圖1至圖3,為本案加工即時監測系統的方塊圖及本案演算法的結構示意圖,及圖4為本案智慧刀把的示意圖。本實施例銑削加工即時監測系統,包括:一智慧刀把100用於銑削加工,該智慧刀把100設有一感測模組110透過力學感測其加工刀具104在受到對應的負載下產生的應力與應變的壓電感測數值111,且透過一傳輸端120無線傳輸。
Please refer to Figures 1 to 3, which are the block diagram of the real-time processing monitoring system of this case and the structural diagram of the algorithm of this case, and Figure 4 is the schematic diagram of the smart knife handle of this case. The real-time monitoring system for milling processing in this embodiment includes: a smart knife handle 100 for milling processing. The smart knife handle 100 is provided with a
實施應用上,該智慧刀把100包括一主軸組接部101、一夾持部102與一連接部103,其中該加工刀具104連接於該連接部103末端。該主軸組接部101係用以連接加工機之主軸,加工機例如為銑床、鑽床、車床或鋸床。該夾持部102連接該主軸組接部101,該夾持部102用以供刀庫夾持或換刀之用;該夾持部102連接該連接部103,該連接部103連接於該加工刀具104,該加工刀具104例如為銑刀、鑽頭、車刀、鋸片等。
In terms of implementation, the smart knife handle 100 includes a
實施應用上,該智慧刀把100的連接部103設有一套殼130包覆感測模組110及無線傳輸的傳輸端120。該感測模組110包含複數個壓電感測元件112內嵌在該智慧刀把100本體的該連接部103上,利用力學感測該智慧刀把100在受到對應的該加工刀具104負載下產生的應力與應變的壓電感測數值111;該些壓電感測元件112用以針對該加工刀具104的彎矩負載和
扭矩負載進行分層感測,且對每個彎矩和扭矩感測各配置兩個對稱內嵌位置的該些壓電感測元件112。
In terms of implementation, the connecting
實施應用上,本案利用力學分析找出該智慧刀把100的本體在受到對應的該加工刀具104刀尖負載下能夠產生最大應力、應變的位置。其結果可知靠近該主軸組接部101會擁有最大的彎矩負載之應力,為了能夠將該些壓電感測元件112的力訊號輸出進行解耦,本案針對彎矩負載和扭矩負載的感測進行分層設計,並採取對稱性設計,為每個彎矩(Mx、My)和扭矩(Tz)各配置兩個對稱內嵌位置的該些壓電感測元件112,以提升對於該加工刀具104刀尖受力的感測精度。且透過力學分析也可得知,當在刀尖處施加Mx或My彎矩作用時,雖然在彎矩的壓電感測元件112能夠輸出其相應的電壓訊號,但對於扭矩的壓電感測元件112也會受其影響而輸出部分電壓訊號。所以在實施上為了進一步獲取更好的解耦效果,而將上下兩組的該些壓電感測元件112的內嵌孔洞位置彼此錯開,例如45度,可用以改善力量耦合效應。
In terms of implementation and application, this case uses mechanical analysis to find out the position where the body of the smart knife handle 100 can generate the maximum stress and strain under the load of the
本實施例銑削加工即時監測系統,包括一程式端200,該程式端200裝設於電腦裝置,可透過人機介面將一加工參數230輸入,該程式端200設有一接收端210、一感測數值解耦模組220、一切削理論模型240及一即時切削模型250。
The real-time monitoring system for milling processing in this embodiment includes a
該接收端210為一無線傳輸的接收端,用於接收該傳輸端120傳出的壓電感測數值111,藉由該感測數值解耦模組220將前述壓電感測數值111轉換為感測位置下的力訊號數值。如前面所述壓電感測元件112的配置,解耦就是在原本的多變數感測系統中,需要建置出適當的機制以消除系統中各個變數之間的相互耦合,使得各項輸入只會影響相應的輸出,而每項輸出又各自只受到該輸入的控制作用,從而讓原本的多變數系統轉換為多個
單輸入單輸出的系統。而本案的感測模組透過壓電感測只要將其PZT壓電片的極化方向,放置於我們希望能夠感測的負載作用下之壓電受力方向,便能夠直接產生對應負載的電壓訊號輸出,無須像是應變規感測系統所需的大量解耦計算。因此只要設計其內嵌位置與偏擺角度便可得到足夠優秀的解耦效果。
The receiving
該切削理論模型240是基於該加工參數230為主的基本數學模型,用於模擬刀具切削過程中的大致的變化趨勢;該加工參數230包括切削深度231、切削寬度232、切削刀刃數233、工件材質234及主軸轉速235。
The cutting
該即時切削模型250是依據前述力訊號數值及該切削理論模型240的模擬所建立,用於預測該智慧刀把100的加工刀具104的切削參數,推算出該加工刀具104刀尖的實際加工物理量260,即時監測該加工刀具的狀態。該加工刀具104刀尖的實際加工物理量260包括扭矩(Tz)261、彎矩(X)262、彎矩(Y)263及軸向力264。
The real-
實施應用上,因為該切削理論模型240是基於該加工參數230為主的基本數學模型,目的在於模擬切削過程中的大致的變化趨勢,並且由於理論與真實狀況會存在一定的相位差,因此在該程式端200中需要進行相位耦合以確定切削坐標系(如圖3所示)。在程式演算過程中需要與該感測數值解耦模組220進行相位耦合,以確定切削坐標系,在建立切削坐標系後,將壓電感測數值111與坐標系做為參數導入該即時預測模型250,根據切削時域,修正切削參數。該即時預測模型250的目標在於預測切削參數(K項:切削力係數N/mm2,e項:修正係數N),切削參數的預測是藉由感測器力訊號(刀體)推算實際物理量(刀尖),兩者間包含刀把材料及加工干擾等因素,因此需要藉由預測模型的方式進行。
In terms of implementation and application, because the cutting
實施應用上,本案的銑削加工即時監測系統包含一實驗端300,該
實驗端300藉由實驗方式於該智慧刀把100外部量測物理量,與該即時切削模型250推算出該加工刀具104刀尖的實際加工物理量進行一模型驗證400,且將驗證回饋至該即時切削模型250的模型參數的訓練修正,根據模型準確度修正演算法參數,修正該即時切削模型250的建立。
In terms of implementation and application, the real-time monitoring system for milling processing in this case includes an
實施應用上,該實驗端300包括一動力計310於該智慧刀把100外部量測物理量,且透過一轉換矩陣320將前述物理量轉換對應該即時切削模型250的參數。
In terms of implementation, the
本發明加工動態監控系統的建立包含三個功能模塊,分別為智慧刀把、程式端、實驗端,智慧刀把的作用是利用本體所擁有的感測能力及無線傳輸功能,通過無線傳輸方式將感測數值傳送至後台程式端,再經由建立之演算法以及解耦程序將數值換算成所希望求的物理量(扭矩、彎矩、軸向力),針對銑削加工行為與感測機制進行建立數學模型,並結合AI演算法進行模型參數修正,實現更高精度的切削力預測模型,推算出該加工刀具刀尖的實際加工物理量,即時監測該加工刀具的狀態。 The establishment of the processing dynamic monitoring system of the present invention includes three functional modules, which are the smart knife handle, the program end, and the experiment end. The function of the smart knife handle is to use the sensing ability and wireless transmission function of the main body to transmit the sensed value to the background program end through wireless transmission, and then convert the value into the desired physical quantity (torque, bending moment, and axial force) through the established algorithm and decoupling program. Establish a mathematical model for the milling behavior and sensing mechanism, and use the AI algorithm to correct the model parameters to achieve higher precision cutting force prediction. The model calculates the actual machining physical quantity of the tool tip and monitors the status of the tool in real time.
上述揭示的實施形態僅例示性說明本發明之原理、特點及其功效,並非用以限制本發明之可實施範疇,任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施形態進行修飾與改變。任何運用本發明所揭示內容而完成之等效改變及修飾,均仍應為下述之申請專利範圍所涵蓋。 The embodiments disclosed above are only illustrative of the principles, features and effects of the present invention, and are not intended to limit the scope of the present invention. Anyone skilled in the art can modify and change the above embodiments without departing from the spirit and scope of the present invention. Any equivalent change and modification accomplished by using the content disclosed in the present invention should still be covered by the scope of the following patent application.
100:智慧刀把 100: Wisdom Knife Handle
110:感測模組 110:Sensing module
120:傳輸端 120: transmission end
200:程式端 200: terminal
210:接收端 210: Receiver
220:感測數值解耦模組 220: Sensing value decoupling module
230:加工參數 230: Processing parameters
240:切削理論模型 240: Cutting theory model
250:即時切削模型 250: instant cutting model
260:實際加工物理量 260: Actual processing physical quantity
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111111124A TWI808695B (en) | 2022-03-24 | 2022-03-24 | Milling real-time monitoring system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111111124A TWI808695B (en) | 2022-03-24 | 2022-03-24 | Milling real-time monitoring system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI808695B true TWI808695B (en) | 2023-07-11 |
| TW202337621A TW202337621A (en) | 2023-10-01 |
Family
ID=88149258
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111111124A TWI808695B (en) | 2022-03-24 | 2022-03-24 | Milling real-time monitoring system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI808695B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104139322A (en) * | 2014-07-18 | 2014-11-12 | 哈尔滨工业大学 | Capacitive intelligent knife handle system for detection of four-dimensional cutting force |
| EP2103379B1 (en) * | 2008-03-19 | 2016-11-16 | pro.micron GmbH & Co.KG | Chuck-integrated force measurement system |
| TW202020698A (en) * | 2018-11-28 | 2020-06-01 | 財團法人工業技術研究院 | Simulation method for milling by use of dynamic position error |
| CN113534741A (en) * | 2021-07-13 | 2021-10-22 | 哈尔滨理工大学 | A control method and system for milling thin-walled parts |
-
2022
- 2022-03-24 TW TW111111124A patent/TWI808695B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2103379B1 (en) * | 2008-03-19 | 2016-11-16 | pro.micron GmbH & Co.KG | Chuck-integrated force measurement system |
| CN104139322A (en) * | 2014-07-18 | 2014-11-12 | 哈尔滨工业大学 | Capacitive intelligent knife handle system for detection of four-dimensional cutting force |
| TW202020698A (en) * | 2018-11-28 | 2020-06-01 | 財團法人工業技術研究院 | Simulation method for milling by use of dynamic position error |
| CN113534741A (en) * | 2021-07-13 | 2021-10-22 | 哈尔滨理工大学 | A control method and system for milling thin-walled parts |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202337621A (en) | 2023-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107111298B (en) | Method for optimizing productivity of computer numerical control machine process | |
| CN104139322B (en) | A kind of condenser type intelligence handle of a knife system for the detection of four-dimensional cutting power | |
| CN112705998B (en) | Automatic compensation method and device for numerical control machine tool cutter, production line controller and storage medium | |
| CN102785127A (en) | Microminiature machining cutting force real-time wireless detection and control system | |
| CN104267667B (en) | Embedded thermal error real-time compensation controller of numerical control machine tool | |
| CN111273605A (en) | Intelligent electric spindle system of numerical control machine tool | |
| CN204462795U (en) | A kind of intelligent monitor system of metal cutting process | |
| CN101437634A (en) | Die cushion control device for press machine | |
| CN105458330A (en) | Self-adaption control system and method for cutting of deep hole boring machine | |
| TWM632979U (en) | Milling real-time monitoring system | |
| CN118778543A (en) | A method, system and program product for intelligent control of numerical control machining process | |
| TWI808695B (en) | Milling real-time monitoring system | |
| CN106873524A (en) | A kind of Digit Control Machine Tool closed-loop control system based on PC | |
| TWI651152B (en) | Smart knife handle | |
| JP6921941B2 (en) | Methods and production systems for monitoring at least one machine tool | |
| CN203579290U (en) | Automatic tool changing control system | |
| CN103786093A (en) | Graphical detection display method for real-time monitoring of grinding state | |
| CN115014678B (en) | Flutter suppression method and system driven by digital twin | |
| CN117075537A (en) | Lathe monitoring method, system, electronic equipment and storage medium | |
| CN112705997B (en) | Automatic compensation system and method for numerical control machine tool cutter | |
| CN104460513A (en) | Volume error compensation device for two-turntable five-axis machine tool | |
| TWI556075B (en) | The system and method of thermal deformation correction for CNC machine | |
| CN202684126U (en) | Anti-collision cutter | |
| CN206366863U (en) | The intelligent cutting tool unit of gradient piezoelectric ceramics that cutting force self is known | |
| CN105988416A (en) | Thermal deformation compensating and correcting system and method for CNC machine tool |