TWI788911B - Motor controller - Google Patents
Motor controller Download PDFInfo
- Publication number
- TWI788911B TWI788911B TW110125491A TW110125491A TWI788911B TW I788911 B TWI788911 B TW I788911B TW 110125491 A TW110125491 A TW 110125491A TW 110125491 A TW110125491 A TW 110125491A TW I788911 B TWI788911 B TW I788911B
- Authority
- TW
- Taiwan
- Prior art keywords
- motor controller
- phase
- motor
- difference
- signal
- Prior art date
Links
Images
Landscapes
- Control Of Electric Motors In General (AREA)
- Valve Device For Special Equipments (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
本發明係關於一種馬達控制器,特別是關於一種可應用於無感測器三相馬達之馬達控制器。 The present invention relates to a motor controller, in particular to a motor controller applicable to a sensorless three-phase motor.
傳統上馬達之驅動方式可分為兩種。一種是藉由霍爾感測器以切換相位進而驅動馬達運轉。另一種則是無需霍爾感測器而驅動馬達運轉。由於霍爾感測器容易受外界環境之影響而造成感測準確度下降,且設置霍爾感測器會增加系統之體積與成本,因而無感測器之驅動方法便被提出以解決上述之問題。 Traditionally, the driving methods of motors can be divided into two types. One is to use the Hall sensor to switch the phase and then drive the motor to run. The other is to drive the motor without Hall sensors. Since the Hall sensor is easily affected by the external environment, the sensing accuracy will decrease, and the installation of the Hall sensor will increase the size and cost of the system, so a sensorless driving method is proposed to solve the above problems. question.
在無感測器之驅動方法下,馬達控制器可藉由比較一浮接相之電壓與一參考電壓以偵測浮接相之反電動勢(Back Electromotive Force,BEMF)進而切換相位。然而,當馬達控制器開啟浮接相以偵測換相點時,會造成輸出電壓之不連續性因而產生噪音。 In the sensorless driving method, the motor controller can detect the back electromotive force (BEMF) of the floating phase by comparing the voltage of a floating phase with a reference voltage to switch the phase. However, when the motor controller turns on the floating phase to detect the commutation point, it will cause discontinuity in the output voltage and thus generate noise.
另外一種先前技術則是利用方程式:V=i×Rm+L×di/dt+BEMF以推估反電動勢,其中Rm為馬達電阻且L為線圈電感。然而,此先前技術需要一複雜之運算電路以推估反電動勢。因此,需要一種新技術可利用一簡單之運算電路以驅動馬達且避免噪音。 Another prior art uses the equation: V=i×Rm+L×di/dt+BEMF to estimate the back EMF, where Rm is the motor resistance and L is the coil inductance. However, this prior art requires a complex arithmetic circuit to estimate the back EMF. Therefore, there is a need for a new technology that can use a simple arithmetic circuit to drive the motor and avoid noise.
有鑑於前述問題,本發明之目的在於提供一種可利用一簡單之運算電路以驅動一馬達且避免噪音之馬達控制器。 In view of the foregoing problems, the object of the present invention is to provide a motor controller which can utilize a simple arithmetic circuit to drive a motor and avoid noise.
依據本發明提供該馬達控制器。該馬達控制器係用以驅動該馬達,其中該馬達可為一三相馬達。該馬達控制器具有一開關電路、一控制單元、一電流偵測單元、一波形處理單元、以及一相位差處理單元。該開關電路可具有一第一電晶體、一第二電晶體、一第三電晶體、一第四電晶體、一第五電晶體、一第六電晶體、一第一端點、一第二端點、以及一第三端點,其中該開關電路耦合至該馬達以驅動該馬達。該第一端點具有一電流信號Iu與一電壓信號Vu以驅動該馬達。該第一電晶體、該第三電晶體、以及該第五電晶體分別為一上側開關。該第二電晶體、該第四電晶體、以及該第六電晶體分別為一下側開關。該控制單元產生一控制信號以控制該開關電路。 The motor controller is provided according to the invention. The motor controller is used to drive the motor, wherein the motor can be a three-phase motor. The motor controller has a switch circuit, a control unit, a current detection unit, a waveform processing unit, and a phase difference processing unit. The switch circuit can have a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a first terminal, a second terminal, and a third terminal, wherein the switch circuit is coupled to the motor to drive the motor. The first terminal has a current signal Iu and a voltage signal Vu to drive the motor. The first transistor, the third transistor, and the fifth transistor are respectively an upper switch. The second transistor, the fourth transistor, and the sixth transistor are respectively lower switches. The control unit generates a control signal to control the switch circuit.
該電流偵測單元耦合至該開關電路與該控制單元,用以偵測一電流相位。該電流偵測單元耦合至該第一端點、該第二端點、以及該第三端點。該電流偵測單元具有一第一比較器、一第二比較器、一多工器、一第一開關、一第二開關、一第三開關、以及一電阻。該電流偵測單元可具有三種偵測方式。舉例來說,第一偵測方式可偵測該電流信號Iu以取得該電流相位。設計者也可藉由偵測該第二端點流至該馬達之電流或該第三端點流至該馬達之電流以取得該電流相位。第二偵測方式可偵測流經該電阻之電流以取得該電流相位。該第一開關耦合至該第一端點、該第一比較器、以及該第二比較器。該第一比較器耦合至該第一電晶體之一端點與該第一開關,用以該偵測第一電晶體之源極與汲極間之電壓差以取得該電流相位。該第二比較器耦合至該第二電晶體之一端點與該第一開關,用以偵測該第二電晶體之源極與汲極間之電壓差以取得該電流相位。該第二開關耦合至該第二端點、該第一比較器、以及該第二比較器。該第一比較器耦合至該第三電晶體之一端點與該第二開關,用以偵測該第三電晶 體之源極與汲極間之電壓差以取得該電流相位。該第二比較器耦合至該第四電晶體之一端點與該第二開關,用以偵測該第四電晶體之源極與汲極間之電壓差以取得該電流相位。該第三開關耦合至該第三端點、該第一比較器、以及該第二比較器。該第一比較器耦合至該第五電晶體之一端點與該第三開關,用以偵測該第五電晶體之源極與汲極間之電壓差以取得該電流相位。該第二比較器耦合至該第六電晶體之一端點與該第三開關,用以偵測該第六電晶體之源極與汲極間之電壓差以取得該電流相位。該多工器耦合至該第一比較器之一輸出端與該第二比較器之一輸出端,用以產生一相位信號。該多工器可根據一選擇信號去輸出一上側開關之相位資訊或一下側開關之相位資訊,用以實現第三偵測方式。此外,該電流偵測單元耦合至該開關電路,用以產生該相位信號至該相位差處理單元,其中該相位信號表示一電流相位。 The current detection unit is coupled to the switch circuit and the control unit for detecting a current phase. The current detection unit is coupled to the first terminal, the second terminal, and the third terminal. The current detection unit has a first comparator, a second comparator, a multiplexer, a first switch, a second switch, a third switch, and a resistor. The current detection unit can have three detection methods. For example, the first detection method can detect the current signal Iu to obtain the current phase. Designers can also obtain the current phase by detecting the current flowing from the second terminal to the motor or the current flowing from the third terminal to the motor. The second detection method can detect the current flowing through the resistor to obtain the current phase. The first switch is coupled to the first terminal, the first comparator, and the second comparator. The first comparator is coupled to one terminal of the first transistor and the first switch, and is used for detecting the voltage difference between the source and the drain of the first transistor to obtain the current phase. The second comparator is coupled to one terminal of the second transistor and the first switch, and is used for detecting the voltage difference between the source and the drain of the second transistor to obtain the current phase. The second switch is coupled to the second terminal, the first comparator, and the second comparator. The first comparator is coupled to one terminal of the third transistor and the second switch for detecting the third transistor The voltage difference between the source and drain of the body is used to obtain the current phase. The second comparator is coupled to one terminal of the fourth transistor and the second switch, and is used for detecting the voltage difference between the source and the drain of the fourth transistor to obtain the current phase. The third switch is coupled to the third terminal, the first comparator, and the second comparator. The first comparator is coupled to one terminal of the fifth transistor and the third switch for detecting the voltage difference between the source and the drain of the fifth transistor to obtain the current phase. The second comparator is coupled to one terminal of the sixth transistor and the third switch for detecting the voltage difference between the source and the drain of the sixth transistor to obtain the current phase. The multiplexer is coupled to an output terminal of the first comparator and an output terminal of the second comparator for generating a phase signal. The multiplexer can output the phase information of the upper switch or the phase information of the lower switch according to a selection signal, so as to realize the third detection method. In addition, the current detection unit is coupled to the switch circuit for generating the phase signal to the phase difference processing unit, wherein the phase signal represents a current phase.
該波形處理單元可使得該馬達控制器處於一梯形波驅動模式或一正弦波驅動模式。該波形處理單元可根據一轉速資訊以決定該馬達控制器處於該梯形波驅動模式或該正弦波驅動模式。此外,該波形處理單元產生一脈寬調變信號至該控制單元,其中該脈寬調變信號具有一工作週期。該馬達控制器可根據該工作週期以調整該馬達之轉速。 The waveform processing unit can make the motor controller be in a trapezoidal wave driving mode or a sine wave driving mode. The waveform processing unit can determine whether the motor controller is in the trapezoidal wave driving mode or the sine wave driving mode according to a rotational speed information. In addition, the waveform processing unit generates a pulse width modulation signal to the control unit, wherein the pulse width modulation signal has a duty cycle. The motor controller can adjust the rotation speed of the motor according to the duty cycle.
該電流信號Iu與該電壓信號Vu可分別為一正弦波信號。當該電流信號Iu之電流相位處於一預定交越相位時,該馬達控制器計算該電流信號Iu之電流相位與該電壓信號Vu之電壓相位之一差值D,其中該馬達控制器用以控制該差值D。具體而言,該馬達控制器可藉由調變該差值D以穩定該馬達且避免噪音。舉例來說,當該差值D大於一預定相位差時,該馬達控制器逐漸地減小該差值D,使得該差值D等於該預定相位差。當該差值D小於該預定相位差時,該馬達控制器逐漸地增加該差值D,使得該差值D等於該預定相位差。當該差值D等於該預定相位差時,該馬達係處於一穩定狀態。該差值D可受控於一鎖相迴路控制器、 一數位鎖相迴路控制器、一比例積分控制器、一比例微分控制器、或一比例積分微分控制器。舉例來說,該馬達控制器可利用該電流信號Iu之電流相位去調變該電壓信號Vu之電壓相位。該馬達控制器可藉由調整該電壓信號Vu之電氣週期以調變該差值D。當該差值D大於該預定相位差時,該馬達控制器減小該電壓信號Vu之電氣週期。當該差值D小於該預定相位差時,該馬達控制器增加該電壓信號Vu之電氣週期。因此,該馬達控制器可藉由調變該電壓信號Vu之電氣週期而知道何時該切換相位。也就是說,該馬達控制器可不需偵測一換相點而達到一換相之功能。 The current signal Iu and the voltage signal Vu can be a sine wave signal respectively. When the current phase of the current signal Iu is in a predetermined crossing phase, the motor controller calculates the difference D between the current phase of the current signal Iu and the voltage phase of the voltage signal Vu, wherein the motor controller is used to control the Difference D. Specifically, the motor controller can stabilize the motor and avoid noise by adjusting the difference D. For example, when the difference D is greater than a predetermined phase difference, the motor controller gradually reduces the difference D so that the difference D is equal to the predetermined phase difference. When the difference D is smaller than the predetermined phase difference, the motor controller gradually increases the difference D so that the difference D is equal to the predetermined phase difference. When the difference D is equal to the predetermined phase difference, the motor is in a stable state. The difference D can be controlled by a phase-locked loop controller, A digital phase-locked loop controller, a proportional-integral controller, a proportional-derivative controller, or a proportional-integral-derivative controller. For example, the motor controller can utilize the current phase of the current signal Iu to modulate the voltage phase of the voltage signal Vu. The motor controller can adjust the difference D by adjusting the electrical period of the voltage signal Vu. When the difference D is greater than the predetermined phase difference, the motor controller reduces the electrical period of the voltage signal Vu. When the difference D is smaller than the predetermined phase difference, the motor controller increases the electrical period of the voltage signal Vu. Therefore, the motor controller can know when to switch phases by modulating the electrical period of the voltage signal Vu. That is to say, the motor controller can achieve a commutation function without detecting a commutation point.
根據本發明之一實施例,該馬達控制器可執行一流程圖之步驟S41-S44以使該馬達順利地運轉。首先,該馬達控制器檢測該電流信號Iu之電流相位(步驟S41)。接著該馬達控制器檢查該電流信號Iu之電流相位是否處於一預定交越相位(步驟S42)。該預定交越相位可為0度、60度、120度、180度、240度、或300度。設計者可根據所需之一頻寬以決定選擇6個預定交越相位、3個預定交越相位、2個預定交越相位、或1個預定交越相位。也就是說,該馬達控制器可利用複數個預定交越相位以驅動該馬達。舉例來說,當設計者選擇6個預定之交越相位時,該頻寬為最大且因而該馬達控制器可快速地穩定該馬達。當設計者只選擇1個預定之交越相位時,該頻寬為最小且因而該馬達控制器需要較長之時間以穩定該馬達。當該電流信號Iu之電流相位處於該預定交越相位時,該馬達控制器計算該電流信號Iu之電流相位與該電壓信號Vu之電壓相位之差值D(步驟S43)。當該電流信號Iu之電流相位並非處於該預定交越相位時,該馬達控制器繼續檢測該電流信號Iu之電流相位(步驟S41)。該相位差處理單元可用以計算該電流信號Iu之電流相位與該電壓信號Vu之電壓相位之該差值D。接著該馬達控制器使得該差值D等於一預定相位差(步驟S44)。最後該馬達控制器繼續檢測該電流信號Iu之電流相位(步驟S41)。該相位差處理單元可用以調變該差值D,使得該差值D 等於該預定相位差。該相位差處理單元接收該相位信號,用以產生一時間信號至該波形處理單元。藉由該時間信號之資訊,該波形處理單元可調變該電壓信號Vu之電氣週期而知道何時該切換相位。因此,該馬達控制器可不需開啟一浮接相以偵測一換相點,因而可避免噪音。此外,該馬達控制器可利用一簡單之運算電路以驅動該馬達。 According to an embodiment of the present invention, the motor controller can execute steps S41-S44 of a flow chart to make the motor run smoothly. First, the motor controller detects the current phase of the current signal Iu (step S41). Then the motor controller checks whether the current phase of the current signal Iu is in a predetermined crossover phase (step S42). The predetermined crossover phase can be 0 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, or 300 degrees. Designers can choose 6 predetermined crossover phases, 3 predetermined crossover phases, 2 predetermined crossover phases, or 1 predetermined crossover phase according to a required bandwidth. That is to say, the motor controller can use a plurality of predetermined crossover phases to drive the motor. For example, when the designer selects 6 predetermined crossover phases, the bandwidth is maximum and thus the motor controller can quickly stabilize the motor. When the designer selects only 1 predetermined crossover phase, the bandwidth is the smallest and thus the motor controller takes a longer time to stabilize the motor. When the current phase of the current signal Iu is at the predetermined crossing phase, the motor controller calculates the difference D between the current phase of the current signal Iu and the voltage phase of the voltage signal Vu (step S43 ). When the current phase of the current signal Iu is not in the predetermined crossover phase, the motor controller continues to detect the current phase of the current signal Iu (step S41 ). The phase difference processing unit can be used to calculate the difference D between the current phase of the current signal Iu and the voltage phase of the voltage signal Vu. Then the motor controller makes the difference D equal to a predetermined phase difference (step S44). Finally, the motor controller continues to detect the current phase of the current signal Iu (step S41). The phase difference processing unit can be used to adjust the difference D, so that the difference D equal to the predetermined phase difference. The phase difference processing unit receives the phase signal to generate a time signal to the waveform processing unit. With the information of the time signal, the waveform processing unit can adjust the electrical period of the voltage signal Vu to know when to switch the phase. Therefore, the motor controller does not need to turn on a floating phase to detect a commutation point, thereby avoiding noise. In addition, the motor controller can use a simple arithmetic circuit to drive the motor.
10:馬達控制器 10: Motor controller
100:開關電路 100: switch circuit
110:控制單元 110: Control unit
120:電流偵測單元 120: Current detection unit
130:波形處理單元 130: Waveform processing unit
140:相位差處理單元 140: Phase difference processing unit
Vc:控制信號 Vc: control signal
Vpu:脈寬調變信號 Vpu: pulse width modulation signal
Vt:時間信號 Vt: time signal
Vph:相位信號 Vph: phase signal
U:第一端點 U: first endpoint
V:第二端點 V: second endpoint
W:第三端點 W: the third endpoint
VCC:第四端點 VCC: the fourth terminal
GND:第五端點 GND: the fifth terminal
101:第一電晶體 101: The first transistor
102:第二電晶體 102: second transistor
103:第三電晶體 103: The third transistor
104:第四電晶體 104: The fourth transistor
105:第五電晶體 105: fifth transistor
106:第六電晶體 106: The sixth transistor
121:第一比較器 121: The first comparator
122:第二比較器 122: Second comparator
123:多工器 123: multiplexer
S1:第一開關 S1: first switch
S2:第二開關 S2: second switch
S3:第三開關 S3: The third switch
R:電阻 R: resistance
M:馬達 M: motor
Vs:選擇信號 Vs: select signal
Iu:電流信號 Iu: current signal
Vu:電壓信號 Vu: voltage signal
D:差值 D: difference
S41,S42,S43,S44:步驟 S41, S42, S43, S44: steps
第1圖係本發明一實施例之馬達控制器之示意圖。 Fig. 1 is a schematic diagram of a motor controller according to an embodiment of the present invention.
第2圖係本發明一實施例之開關電路與電流偵測單元之示意圖。 Fig. 2 is a schematic diagram of a switch circuit and a current detection unit according to an embodiment of the present invention.
第3圖係本發明一實施例之時序圖。 Fig. 3 is a timing diagram of an embodiment of the present invention.
第4圖係本發明一實施例之流程圖。 Fig. 4 is a flowchart of an embodiment of the present invention.
下文中之說明將使本發明之目的、特徵、與優點更明顯。茲將參考圖式詳細說明依據本發明之較佳實施例。 The following description will make the objects, features and advantages of the present invention more apparent. Preferred embodiments according to the present invention will be described in detail with reference to the drawings.
第1圖係本發明一實施例之馬達控制器10之示意圖。馬達控制器10係用以驅動一馬達M,其中馬達M可為一三相馬達。馬達控制器10具有一開關電路100、一控制單元110、一電流偵測單元120、一波形處理單元130、以及一相位差處理單元140。第2圖係本發明一實施例之開關電路100與電流偵測單元120之示意圖。如第2圖所示,開關電路100可具有一第一電晶體101、一第二電晶體102、一第三電晶體103、一第四電晶體104、一第五電晶體105、一第六電晶體106、一第一端點U、一第二端點V、以及一第三端點W,其中開關電路100耦合至馬達M以驅動馬達M。第一端點U具有一電流信號Iu與一電壓信號Vu以驅動馬達M。第一
電晶體101耦合至一第四端點VCC與第一端點U而第二電晶體102耦合至第一端點U與一電阻R。第三電晶體103耦合至第四端點VCC與第二端點V而第四電晶體104耦合至第二端點V與電阻R。第五電晶體105耦合至第四端點VCC與第三端點W而第六電晶體106耦合至第三端點W與電阻R。電阻R之一端點耦合至第二電晶體102、第四電晶體104、以及第六電晶體106。電阻R之另一端點耦合至一第五端點GND。第一電晶體101、第三電晶體103、以及第五電晶體105可分別為一P型金氧半電晶體。第二電晶體102、第四電晶體104、以及第六電晶體106可分別為一N型金氧半電晶體。此外,第一電晶體101、第三電晶體103、以及第五電晶體105分別為一上側開關。第二電晶體102、第四電晶體104、以及第六電晶體106分別為一下側開關。控制單元110產生一控制信號Vc以控制開關電路100。也就是說,控制單元110可用以分別控制第一電晶體101、第二電晶體102、第三電晶體103、第四電晶體104、第五電晶體105、以及第六電晶體106之導通情形。
FIG. 1 is a schematic diagram of a
電流偵測單元120耦合至開關電路100與控制單元110,用以偵測一電流相位。如第1圖或第2圖所示,電流偵測單元120耦合至第一端點U、第二端點V、以及第三端點W。電流偵測單元120具有一第一比較器121、一第二比較器122、一多工器123、一第一開關S1、一第二開關S2、一第三開關S3、以及電阻R。電流偵測單元120可具有三種偵測方式。舉例來說,第一偵測方式可偵測電流信號Iu以取得電流相位。設計者也可藉由偵測第二端點V流至馬達M之電流或第三端點W流至馬達M之電流以取得電流相位。第二偵測方式可偵測流經電阻R之電流以取得電流相位。第一開關S1耦合至第一端點U、第一比較器121、以及第二比較器122。第一比較器121耦合至第一電晶體101之一端點與第一開關S1,用以偵測第一電晶體101之源極與汲極間之電壓差以取得電流相位。第二比較器122耦合至第二電晶體102之一端點與第一開關S1,用以偵測第二電晶體102之源極與汲極間之電壓差以取得電流相位。第二開關S2耦合至第二端點V、第一比較器121、
以及第二比較器122。第一比較器121耦合至第三電晶體103之一端點與第二開關S2,用以偵測第三電晶體103之源極與汲極間之電壓差以取得電流相位。第二比較器122耦合至第四電晶體104之一端點與第二開關S2,用以偵測第四電晶體104之源極與汲極間之電壓差以取得電流相位。第三開關S3耦合至第三端點W、第一比較器121、以及第二比較器122。第一比較器121耦合至第五電晶體105之一端點與第三開關S3,用以偵測第五電晶體105之源極與汲極間之電壓差以取得電流相位。第二比較器122耦合至第六電晶體106之一端點與第三開關S3,用以偵測第六電晶體106之源極與汲極間之電壓差以取得電流相位。多工器123耦合至第一比較器121之一輸出端與第二比較器122之一輸出端,用以產生一相位信號Vph。多工器123可根據一選擇信號Vs去輸出一上側開關之相位資訊或一下側開關之相位資訊,用以實現第三偵測方式。設計者可根據實際需求去實現三種偵測方式、三種偵測方式之其中兩種偵測方式、或三種偵測方式之其中一種偵測方式。此外,電流偵測單元120耦合至開關電路100,用以產生相位信號Vph至相位差處理單元140,其中相位信號Vph表示一電流相位。
The
波形處理單元130可使得馬達控制器10處於一梯形波驅動模式或一正弦波驅動模式。波形處理單元130可根據一轉速資訊以決定馬達控制器10處於梯形波驅動模式或正弦波驅動模式。此外,波形處理單元130產生一脈寬調變信號Vpu至控制單元110,其中脈寬調變信號Vpu具有一工作週期(Duty Cycle)。馬達控制器10可根據工作週期以調整馬達M之轉速。
The
第3圖係本發明一實施例之時序圖,其中電流信號Iu與電壓信號Vu分別為一正弦波信號。當電流信號Iu之電流相位處於一預定交越相位時,馬達控制器10計算電流信號Iu之電流相位與電壓信號Vu之電壓相位之差值D,其中馬達控制器10用以控制差值D。具體而言,馬達控制器10可藉由調變差值D以穩定馬達M且避免噪音。舉例來說,當差值D大於一預定相位差時,馬達控制器10逐漸地
減小差值D,使得差值D等於預定相位差。當差值D小於預定相位差時,馬達控制器10逐漸地增加差值D,使得差值D等於預定相位差。當差值D等於預定相位差時,馬達M係處於一穩定狀態。差值D可受控於一鎖相迴路(Phase Lock Loop)控制器、一數位鎖相迴路(Digital Phase Lock Loop)控制器、一比例積分(Proportional-Integral)控制器、一比例微分(Proportional-Derivative)控制器、或一比例積分微分(Proportional-Integral-Derivative)控制器。設計者可採用上述其中一種控制器以調變差值D。舉例來說,馬達控制器10可利用電流信號Iu之電流相位去調變電壓信號Vu之電壓相位。馬達控制器10可藉由調整電壓信號Vu之電氣週期以調變差值D。設計者亦可藉由調整其他參數以調變差值D。當差值D大於預定相位差時,馬達控制器10減小電壓信號Vu之電氣週期。當差值D小於預定相位差時,馬達控制器10增加電壓信號Vu之電氣週期。因此,馬達控制器10可藉由調變電壓信號Vu之電氣週期而知道何時該切換相位。也就是說,馬達控制器10可不需偵測換相點而達到一換相之功能。此外,預定相位差與馬達之轉速相關。一般來說,當馬達之轉速越大時,預定相位差越小。馬達控制器10可利用一查表法(Look-Up Table)以儲存預定相位差與馬達之轉速之關係。綜上所述,馬達控制器10可不需開啟浮接相,因而可避免噪音。也就是說,馬達控制器10可不需偵測一反電動勢且電壓信號Vu可與反電動勢無關,因而本發明之技術可與反電動勢無關。馬達控制器10可利用一簡單之運算電路以驅動馬達M。
FIG. 3 is a timing diagram of an embodiment of the present invention, wherein the current signal Iu and the voltage signal Vu are respectively a sine wave signal. When the current phase of the current signal Iu is in a predetermined crossing phase, the
第4圖係本發明一實施例之流程圖。首先,馬達控制器10檢測電流信號Iu之電流相位(步驟S41)。接著馬達控制器10檢查電流信號Iu之電流相位是否處於一預定交越相位(步驟S42)。預定交越相位可為0度、60度、120度、180度、240度、或300度。設計者可根據所需之頻寬以決定選擇6個預定交越相位、3個預定交越相位、2個預定交越相位、或1個預定交越相位。也就是說,馬達控制器10可利用複數個預定交越相位以驅動馬達M。舉例來說,當設計者選擇6個預定之
交越相位時,頻寬為最大且因而馬達控制器10可快速地穩定馬達M。當設計者只選擇1個預定之交越相位時,頻寬為最小且因而馬達控制器10需要較長之時間以穩定馬達M。當電流信號Iu之電流相位處於預定交越相位時,馬達控制器10計算電流信號Iu之電流相位與電壓信號Vu之電壓相位之差值D(步驟S43)。當電流信號Iu之電流相位並非處於預定交越相位時,馬達控制器10繼續檢測電流信號Iu之電流相位(步驟S41)。相位差處理單元140可用以計算電流信號Iu之電流相位與電壓信號Vu之電壓相位之差值D。接著馬達控制器10使得差值D等於一預定相位差(步驟S44)。最後馬達控制器10繼續檢測電流信號Iu之電流相位(步驟S41)。相位差處理單元140可用以調變差值D,使得差值D等於預定相位差。也就是說,相位差處理單元140可具有鎖相迴路控制器、數位鎖相迴路控制器、比例積分控制器、比例微分控制器、或比例積分微分控制器以控制差值D。此外,相位差處理單元140亦可具有查表法以儲存預定相位差與馬達之轉速之關係。相位差處理單元140接收相位信號Vph,用以產生一時間信號Vt至波形處理單元130。藉由時間信號Vt之資訊,波形處理單元130可調變電壓信號Vu之電氣週期而知道何時該切換相位。具體而言,當馬達M之轉速改變時,馬達控制器10會再次執行流程圖之步驟S41-S44以使馬達M順利地運轉。
Fig. 4 is a flowchart of an embodiment of the present invention. First, the
根據本發明之一實施例,馬達控制器10可應用於一無感測器馬達。此外,馬達控制器10亦可應用於一單相馬達、一多相馬達、一無刷馬達、或一直流馬達。總結來說,當電流信號Iu之電流相位處於一預定交越相位時,馬達控制器10計算電流信號Iu之電流相位與電壓信號Vu之電壓相位之差值D。馬達控制器10調變差值D,使得差值D等於一預定相位差。馬達控制器10可不需開啟一浮接相而達到一換相之功能。馬達控制器10可不需偵測一反電動勢而達到一換相之功能。因此,馬達控制器10可利用一簡單之運算電路以驅動馬達M且避免噪音。
According to an embodiment of the present invention, the
雖然本發明業已藉由較佳實施例作為例示加以說明,應瞭解者為: 本發明不限於此被揭露的實施例。相反地,本發明意欲涵蓋對於熟習此項技藝之人士而言係明顯的各種修改與相似配置。因此,申請專利範圍應根據最廣的詮釋,以包含所有此類修改與相似配置。 While the invention has been described by way of illustration of preferred embodiments, it should be understood that: The invention is not limited to the disclosed embodiments. On the contrary, the invention is intended to cover various modifications and similar arrangements apparent to those skilled in the art. Accordingly, the scope of claims should be construed in the broadest way to encompass all such modifications and similar arrangements.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
10:馬達控制器 10: Motor controller
100:開關電路 100: switch circuit
110:控制單元 110: Control unit
120:電流偵測單元 120: Current detection unit
130:波形處理單元 130: Waveform processing unit
140:相位差處理單元 140: Phase difference processing unit
Vc:控制信號 Vc: control signal
Vpu:脈寬調變信號 Vpu: pulse width modulation signal
Vt:時間信號 Vt: time signal
Vph:相位信號 Vph: phase signal
U:第一端點 U: first endpoint
V:第二端點 V: second endpoint
W:第三端點 W: the third endpoint
M:馬達 M: motor
Claims (27)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110125491A TWI788911B (en) | 2021-07-12 | 2021-07-12 | Motor controller |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110125491A TWI788911B (en) | 2021-07-12 | 2021-07-12 | Motor controller |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI788911B true TWI788911B (en) | 2023-01-01 |
| TW202304125A TW202304125A (en) | 2023-01-16 |
Family
ID=86657978
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110125491A TWI788911B (en) | 2021-07-12 | 2021-07-12 | Motor controller |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI788911B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200423529A (en) * | 2003-04-25 | 2004-11-01 | Univ Nat Chiao Tung | Speed control device and method of three-phase brushless DC motor |
| US8310188B2 (en) * | 2006-08-30 | 2012-11-13 | Rohm Co., Ltd. | Motor drive circuit with short startup time |
| US9154063B2 (en) * | 2013-03-25 | 2015-10-06 | Seiko Epson Corporation | Circuit device and electronic apparatus |
| US20190067267A1 (en) * | 2017-08-30 | 2019-02-28 | Seiko Epson Corporation | Motor drive circuit, semiconductor apparatus, and electronic device |
| US10644629B2 (en) * | 2018-02-16 | 2020-05-05 | Rohm Co., Ltd. | Fan motor driving circuit, driving method, and cooling device and electronic machine using the same |
-
2021
- 2021-07-12 TW TW110125491A patent/TWI788911B/en not_active IP Right Cessation
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200423529A (en) * | 2003-04-25 | 2004-11-01 | Univ Nat Chiao Tung | Speed control device and method of three-phase brushless DC motor |
| US8310188B2 (en) * | 2006-08-30 | 2012-11-13 | Rohm Co., Ltd. | Motor drive circuit with short startup time |
| US9154063B2 (en) * | 2013-03-25 | 2015-10-06 | Seiko Epson Corporation | Circuit device and electronic apparatus |
| US20190067267A1 (en) * | 2017-08-30 | 2019-02-28 | Seiko Epson Corporation | Motor drive circuit, semiconductor apparatus, and electronic device |
| US10644629B2 (en) * | 2018-02-16 | 2020-05-05 | Rohm Co., Ltd. | Fan motor driving circuit, driving method, and cooling device and electronic machine using the same |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202304125A (en) | 2023-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10644629B2 (en) | Fan motor driving circuit, driving method, and cooling device and electronic machine using the same | |
| CN112350623B (en) | Motor driving circuit and method | |
| US10924040B2 (en) | Operational mode control of a motor | |
| JP6231357B2 (en) | MOTOR DRIVE DEVICE, DRIVE METHOD, COOLING DEVICE, ELECTRONIC DEVICE | |
| JP2012165603A (en) | Drive unit of sensorless brushless motor | |
| US6806663B2 (en) | Motor driving circuit | |
| JP2011114995A (en) | Drive circuit for motor and motor equipped with the same | |
| CN103004081A (en) | Method and device for controlling a multi-phase electronically commutated electric machine and a motor system | |
| US11901851B2 (en) | Motor drive control device, motor unit, and motor drive control method | |
| JP2000083397A (en) | Motor control device and motor unit having the control device | |
| TWI788911B (en) | Motor controller | |
| CN115632578B (en) | Motor controller | |
| TW202224335A (en) | Motor controller | |
| TW201720046A (en) | System and way for No sensor Three-phase motor | |
| TWI751086B (en) | Motor controller | |
| US11876478B2 (en) | Motor controller | |
| JP2008043158A (en) | Motor driving apparatus and motor driving method | |
| JP2002084777A (en) | Control method and device for brushless motor | |
| KR102238456B1 (en) | Driving Circuit for driving switched reluctance motor | |
| KR100308005B1 (en) | Position sensing device of sensorless and brushless direct current(bldc) motor without sensor | |
| JP7763147B2 (en) | Motor drive control device, motor unit, and motor drive control method | |
| CN114257144B (en) | Motor controller | |
| JPH0880083A (en) | Driving method of brushless DC motor | |
| KR100250108B1 (en) | Conduction angle control apparatus of an interior permanent magnet bldc motor | |
| JP4380296B2 (en) | Motor control device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MC4A | Revocation of granted patent |