TWI779863B - Electronic system with heat dissipation and feedforward active noise control function - Google Patents
Electronic system with heat dissipation and feedforward active noise control function Download PDFInfo
- Publication number
- TWI779863B TWI779863B TW110137164A TW110137164A TWI779863B TW I779863 B TWI779863 B TW I779863B TW 110137164 A TW110137164 A TW 110137164A TW 110137164 A TW110137164 A TW 110137164A TW I779863 B TWI779863 B TW I779863B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- noise
- frequency
- electronic system
- actual
- Prior art date
Links
- 230000017525 heat dissipation Effects 0.000 title claims description 15
- 230000009467 reduction Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 13
- 230000003044 adaptive effect Effects 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 230000005236 sound signal Effects 0.000 claims description 10
- 230000002441 reversible effect Effects 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 6
- 230000008054 signal transmission Effects 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims 2
- 238000012545 processing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006266 hibernation Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
本發明提供一種具散熱和前饋式主動噪音控制功能之電子系統,尤指一種具散熱和前饋式主動窄頻噪音控制功能之電子系統。 The invention provides an electronic system with heat dissipation and feedforward active noise control functions, especially an electronic system with heat dissipation and feedforward active narrow-band noise control functions.
在現代化的資訊社會,電腦系統已經成為多數人不可或缺的資訊工具。為了避免元件因過熱而發生功率降低或是毀損,電腦系統一般會使用風扇來提供散熱功能,以將裝置內部所產生的熱量排出或是將裝置外部之冷空氣吸入。 In the modern information society, computer systems have become an indispensable information tool for most people. In order to avoid power reduction or damage to components due to overheating, computer systems generally use fans to provide heat dissipation to dissipate the heat generated inside the device or suck in cold air from the outside of the device.
風扇的轉速和靜壓決定了風扇的空氣流量,風扇運轉時的噪音大約和其轉速的五次方根成正比,轉速越快散熱能力越強,但造成的噪音越大。隨著中央處理器的功能越來越強,裝置內部所產生的廢熱也因此增加,加上微型化的趨勢會降低熱流效率,如何兼顧散熱和降噪是重要課題。 The speed and static pressure of the fan determine the air flow of the fan. The noise when the fan is running is approximately proportional to the fifth root of its speed. The faster the speed, the stronger the heat dissipation capability, but the greater the noise. As the CPU becomes more powerful, the waste heat generated inside the device also increases, and the trend of miniaturization will reduce the heat flow efficiency. How to balance heat dissipation and noise reduction is an important issue.
本發明提供一種具散熱和前饋式主動噪音控制功能之電子 系統,其包含一風扇模組、一嵌入式控制器、一誤差麥克風、一主動降噪控制器,以及一揚聲器模組。該風扇模組依據一風扇控制訊號來運作以提供散熱功能。該嵌入式控制器用來提供該風扇控制訊號和一同步訊號,其中該同步訊號包含該風扇模組之結構和運作設定之資訊。該誤差麥克風用來偵測該電子系統運作時所產生的噪音以提供相對應之一誤差訊號。該主動降噪控制器用來求出該風扇模組在每一轉速下運作時之一實際單葉片基頻、一實際葉片通過頻率基頻、一實際葉片通過頻率倍頻,和一相位偏移;依據該同步訊號來提供一相位補償訊號,其中該相位補償訊號包含該風扇模組以一目前轉速運作時之該實際單葉片基頻、該實際葉片通過頻率基頻、該實際葉片通過頻率倍頻,和該相位偏移;以及依據該誤差訊號和該相位補償訊號來產生一揚聲器控制訊號。該揚聲器模組用來依據該揚聲器控制訊號來產生一反相噪音訊號,其中該反相噪音訊號至少包含一第一噪音消除波形和一第二噪音消除波形,該第一噪音消除波形為相關該實際單葉片基頻之反向訊號,而該第二噪音消除波形為相關該實際葉片通過頻率基頻之反向訊號。 The invention provides an electronic device with heat dissipation and feed-forward active noise control functions The system includes a fan module, an embedded controller, an error microphone, an active noise reduction controller, and a speaker module. The fan module operates according to a fan control signal to provide heat dissipation. The embedded controller is used to provide the fan control signal and a synchronous signal, wherein the synchronous signal includes the structure and operation setting information of the fan module. The error microphone is used to detect the noise generated during the operation of the electronic system to provide a corresponding error signal. The active noise reduction controller is used to obtain an actual single-blade fundamental frequency, an actual blade passing frequency fundamental frequency, an actual blade passing frequency multiplier, and a phase offset when the fan module operates at each rotational speed; Provide a phase compensation signal according to the synchronization signal, wherein the phase compensation signal includes the actual single-blade fundamental frequency, the actual blade passing frequency fundamental frequency, and the actual blade passing frequency multiplier when the fan module operates at a current speed , and the phase offset; and generating a loudspeaker control signal according to the error signal and the phase compensation signal. The speaker module is used to generate an anti-phase noise signal according to the speaker control signal, wherein the anti-phase noise signal at least includes a first noise cancellation waveform and a second noise cancellation waveform, the first noise cancellation waveform is related to the An inverse signal of the actual single-blade fundamental frequency, and the second noise cancellation waveform is an inverse signal of the actual blade pass frequency fundamental frequency.
10:處理器 10: Processor
20:風扇模組 20: Fan module
30:嵌入式控制器 30: Embedded controller
40:揚聲器模組 40:Speaker module
50:誤差麥克風 50: error microphone
60:主動降噪控制器 60: Active noise reduction controller
62:頻率計算器 62: Frequency calculator
64:訊號產生器 64: Signal generator
66:數位濾波器 66: Digital filter
68:揚聲器驅動電路 68: Speaker drive circuit
70:次級路徑補償轉移函數模組 70:Secondary Path Compensation Transfer Function Module
72:次級路徑轉移函數模組 72: Secondary path transfer function module
74:噪音加權和轉換模組 74:Noise Weighting and Transformation Module
76:適應性濾波器 76: Adaptive filter
100:電子系統 100: Electronic system
310-340、410-450:步驟 310-340, 410-450: steps
SFG:風扇控制訊號 S FG : Fan control signal
SMIC:揚聲器控制訊號 S MIC : speaker control signal
SSYN:同步訊號 S SYN : Synchronization signal
x(n):相位補償訊號 x(n): phase compensation signal
x’(n):校正相位補償訊號 x’(n): correction phase compensation signal
y(n):反相噪音訊號 y(n): anti-phase noise signal
y’(n):校正反相噪音訊號 y'(n): Correction of anti-phase noise signal
e(n):誤差訊號 e(n): error signal
e’(n):處理後誤差訊號 e’(n): Error signal after processing
d(n):噪音訊號 d(n): noise signal
第1圖為本發明實施例中一種具散熱和前饋式主動噪音控制功能之電子系統的功能方塊圖。 FIG. 1 is a functional block diagram of an electronic system with heat dissipation and feed-forward active noise control functions in an embodiment of the present invention.
第2圖為本發明實施例中主動降噪控制器實作方式之示意圖。 Fig. 2 is a schematic diagram of the implementation of the active noise reduction controller in the embodiment of the present invention.
第3圖為本發明實施例中電子系統運作時之流程圖。 Fig. 3 is a flow chart of the operation of the electronic system in the embodiment of the present invention.
第4為本發明實施例中電子系統運作時之流程圖。 No. 4 is a flowchart of the operation of the electronic system in the embodiment of the present invention.
第1圖為本發明實施例中一種具散熱和前饋式主動噪音控制功能之電子系統100的功能方塊圖。電子系統100包含一處理器10、一風扇模組20、一嵌入式控制器(embedded controller,EC)30、一揚聲器模組40、一誤差麥克風50,以及一主動降噪(active noise cancellation,ANC)控制器60。
FIG. 1 is a functional block diagram of an
處理器10可為一中央處理器(Central Processing Unit,CPU)或一圖形處理器(Graphics Processing Unit,GPU),其為電子系統100中關鍵的運算引擎,負責執行作業系統所需的指令與程序,也是電子系統100中廢熱的主要來源。
The
風扇模組20視其類型可具備不同結構,主要都是利用馬達帶動扇葉轉動,以將較冷的空氣帶到機箱內部,並將內部較熱的空氣排出,進而達到散熱效果。在本發明中,風扇模組20會依據嵌入式控制器30提供之一風扇控制訊號SFG來運作,風扇控制訊號SFG之值越大,風扇模組20中的馬達轉速越快,散熱效果越強,但也會產生較大噪音。在電子系統100的運作期間,風扇模組20通常會是主要的噪音來源。在一實施例中,風扇控制訊號SFG可為一脈波頻寬調變(Pulse Width Modulation,PWM)之方波訊號,透過改變其工作週期(duty cycle)來調整風扇模組20中的馬達轉速。在一實施例中,風扇模組20可包含一個或多個軸流式風扇或離心式風扇。然而,風扇模組20所包含的風扇數目、風扇類型和風扇驅動方式並不限定本發明之範疇。
The
嵌入式控制器30會儲存相關電子系統100各項運作的EC代碼和開機時重要訊號的時序。在關機狀態下,嵌入式控制器30會一直保持運行以等待用戶的開機訊息;在開機狀態下,嵌入式控制器30會控制系統的待機/休眠狀態、鍵盤控制器、充電指示燈,和風扇模組20中的馬達轉速。嵌入式控制器30通常包含一溫度感測器(未顯示於第1圖)來監控處理器10的操作溫度,並依此輸出風扇控制訊號SFG。當處理器10的操作溫度越高,風扇控制訊號SFG的工作週期越大,而風扇模組20中的馬達轉速越快;當處理器10的操作溫度越低,風扇控制訊號SFG的工作週期越小,而風扇模組20中的馬達轉速越慢。
The embedded
揚聲器模組40是一種可將電子訊號轉換成聲音訊號的電子元件,通常包含振膜(diaphragm)和由電磁鐵和音圈所組成的驅動電路。揚聲器模組40可依據ANC控制器60提供之一揚聲器控制訊號SMIC來運作,當揚聲器控制訊號SMIC之電流通過音圈時,音圈即隨著電流的頻率振動,而和音圈相連的振膜當然也就跟著振動,進而推動周圍的空氣振動以產生聲音。在本發明實施例中,揚聲器模組40之振膜會設置在風扇模組20之出風結構內,可依據揚聲器控制訊號SMIC來產生一反相噪音訊號y(n)。
The
誤差麥克風50用來在電子系統100運作時擷取噪音,並輸出相對應之誤差訊號e(n)至ANC控制器60,其中d(n)代表在電子系統100運作期間欲消除的噪音訊號。由於風扇模組20為主要噪音源,誤差麥克風50可設置在接近風扇模組20的出風口之處。誤差麥克風50可透過
一主要路徑和一次級路徑來偵測噪音:主要路徑相關於風扇模組20和誤差麥克風50之間的訊號傳遞路徑,透過主要路徑會擷取到噪音訊號d(n);而次級路徑相關於揚聲器模組40和誤差麥克風50間的訊號傳遞路徑,透過次級路徑會擷取到相關反相噪音訊號y(n)之一校正後反相噪音訊號y’(n)。更詳細地說,誤差麥克風50所輸出之誤差訊號e(n)為噪音訊號d(n)和校正後反相噪音訊號y’(n)之間的差值,誤差訊號e(n)之值越小代表降噪效果越好。在一實施例中,誤差麥克風50可為一數位式微機電系統(Micro Electro Mechanical System,MEMS)麥克風,其具備高耐熱、高抗振和高抗射頻干擾等性能。然而,誤差麥克風50之種類並不限定本發明之範疇。
The
ANC控制器60可從嵌入式控制器30接收一同步訊號SSYN,以及從誤差麥克風50接收誤差訊號e(n),其中同步訊號SSYN包含相關風扇模組20之結構(例如各風扇葉片數)和運作設定(例如在不同模式下馬達轉速)之資訊。依據同步訊號SSYN及誤差訊號e(n),ANC控制器60可計算出風扇模組20在實際運作時所產生噪音中的窄頻帶噪音,再依此提供揚聲器控制訊號SMIC以驅動揚聲器模組40,使得揚聲器模組40提供之反相噪音訊號y(n)能有效地抵銷噪音信號d(n),亦即盡量讓誤差訊號e(n)降至0。
The
第2圖為本發明實施例中ANC控制器60實作方式之示意圖。ANC控制器60包含一頻率計算器62、一訊號產生器64、一數位濾波器66、一揚聲器驅動電路68、一次級路徑補償轉移函數模組70、一次級路徑轉移函數模組72、一噪音加權和轉換模組74,以及一適應性濾波
器76。
FIG. 2 is a schematic diagram of the implementation of the
在本發明中,電子系統100可在一離線模式和一上線模式下運作,其中離線模式可求出相關於在特定馬達轉速下的頻率相位偏移之資訊,而上線模式可提供前饋式主動噪音控制。
In the present invention, the
第3圖顯示了電子系統100在離線模式運作時之流程圖,其包含下列步驟:
FIG. 3 shows a flowchart of the
步驟310:風扇模組20以特定風扇轉速來運作。
Step 310: The
步驟320:量測特定風扇轉速的噪音頻率和相對應之功率。 Step 320 : Measure the noise frequency and the corresponding power of the specific fan speed.
步驟330:求出特定風扇轉速下每一噪音頻率的相位偏移關係。 Step 330: Obtain the phase shift relationship of each noise frequency at a specific fan speed.
步驟340:針對特定風扇轉速設計出相位補償訊號x(n)。 Step 340 : Design the phase compensation signal x(n) for a specific fan speed.
風扇模組20在運作時的噪音源來自馬達轉動造成的空氣流,其中窄頻成份可能源自於由扇葉運動所產生體積位移之厚度噪音,或由扇葉表面之變動性負載力(有軸向之升力與風扇面之拉力)所造成的葉片通過頻率(blade passing frequency,BPF)噪音。由於BPF及相關諧波與在每一風扇葉片通過固定參考點時產生之壓力擾動有關,當扇葉尖端產生週期性壓力波時就會產生特定的窄頻噪音。ANC控制器60之頻率計算器62可依據嵌入式控制器30提供之同步訊號SSYN得知風扇模組20的目前轉速、預估單葉片頻率點和葉片數,其中BPF之值為風扇模組20的馬達轉速和葉片數之乘積。假設風扇模組20之葉片數為
37,下列表一顯示了頻率計算器62所計算出的資料,但並不限定本發明之範疇。馬達轉速的單位為rpm,而頻率單位為赫茲。
The noise source of the
如前所述,風扇模組20可能會有不同的轉速設定,而不同轉速所產生的噪音訊號可能會因電子系統100的公差發生相位偏移,因此本發明會先在離線模式下求出相關風扇模組20每一轉速的相位偏移資訊。
As mentioned above, the
當在步驟310中風扇模組20以特定轉速來運作後,接著在步驟320中會量測特定轉速的實際噪音頻率和相對應之功率。在一實施例中,步驟320可包含聲音訊號切割、聲音訊號補零、聲音訊號轉換和聲音訊號峰值判斷等運作。更詳細地說,當電子系統100在離線模式下運作時,誤差麥克風50會擷取在特定風扇轉速下風扇模組20所產生的噪音訊號,將擷取到的噪音訊號切割成複數段(例如每段包含1024個取樣點),延伸每段序列的長度(例如將每段長度延伸為1024×8個取樣點),將原噪音訊號之1024個取樣點置於延伸後每段序列的前端,再將每段序列的後端新增的1024×7個取樣點補零。接著,本發明會對補零之後的每一個序列帶入快速傅立葉變換(Fast Fourier Transform,FFT),以將噪音訊號由時域轉換成頻域的功率頻率響應。最後,本發明會判斷頻率響應中的峰值,以求出在此特定風扇轉速下的實際BPF基頻和實際BPF倍頻。上述實際BPF基頻和實際BPF倍頻之值和表一所示之理論值可能相差±100Hz之間。
After the
在步驟330中,本發明會求出特定風扇轉速下每一噪音頻率的相位偏移關係。在一實施例中,由於BPF基頻的訊號處理會影響到BPF倍頻訊號,所以揚聲器驅動電路68可控制揚聲器模組40依序播放特定風扇轉速下噪音訊號之BPF基頻訊號、二倍頻訊號,…,N倍頻訊號(N為大於1之整數),直到該特定風扇轉速的倍頻訊號都處理完。
In
接下來說明步驟330之詳細實施方式,音頻訊號之功率相關於頻率,首先針對BPF基頻訊號提供一個包含K個序列長度的動態相位
正弦波,每一個序列相位偏移△φk為,因此第k個序列的訊
號可表達為sin(w * t+△φk),其中K為大於1之整數,而k為介於1和K之間的整數。也就是說,當BPF基頻訊號之相位固定時,其正弦波中每一個序列的相位差異固定(例如40°,60°,80°…),而上述動態相位正弦波中每一個序列的相位差異會增加△φk度的變化(例如在K=12時依序為40°,90°,140°…)。
Next, the detailed implementation of
接著,揚聲器驅動電路68會控制揚聲器模組40依序播放特定風扇轉速下之動態相位正弦波,並由誤差麥克風50擷取後計算出每一個序列的功率,再將功率最小的序列所對應的相位設為該噪音頻率的相位偏移。舉例來說,針對相關BPF基頻訊號的動態相位正弦波,若其第2個序列sin(w * t+△φ2)的功率最小,BPF基頻訊號的相位偏移會設為△φ2。針對相關BPF二倍頻訊號的動態相位正弦波,若其第k個序列sin(w * t+△φk)的功率最小,BPF二倍頻訊號的相位偏移會設為△φk。
Next, the
最後在步驟340中,本發明會針對風扇模組20之每一風扇轉速重複步驟310-330,以對每一個風扇轉速設計出一個相對應的相位補償訊號x(n),其中BPF的基頻和倍頻各有不同功率和相位。
Finally, in
第4圖顯示了電子系統100在上線模式運作時之流程圖,其包含下列步驟:
FIG. 4 shows a flowchart of the
步驟410:誤差麥克風50擷取噪音並提供相對應之誤差訊號e(n)。
Step 410: The
步驟420:ANC控制器60從嵌入式控制器30提供之同步訊號
SSYN得到風扇模組20中各風扇葉片數和在各模式下馬達轉速,並提供相對應之相位補償訊號x(n)。
Step 420: The
步驟430:ANC控制器60依據誤差訊號e(n)和相位補償訊號x(n)求出風扇模組20運作時的實際單葉片基頻、實際倍頻和實際BPF等資訊,並依此提供揚聲器控制訊號SMIC。
Step 430: The
步驟440:揚聲器模組40依據揚聲器控制訊號SMIC產生反相噪音訊號y(n)。
Step 440: The
步驟450:ANC控制器60針對次級路徑校正參考訊號x(n)提供校正後參考訊號x’(n),以及校正反向噪音訊號y(n)以提供校正後反向噪音訊號y’(n);執行步驟310。
Step 450: The
在步驟410中,當電子系統100在上線模式運作時,誤差麥克風50會擷取噪音並提供相對應之誤差訊號e(n)。如前所述,誤差麥克風50所提供之誤差訊號e(n)為噪音訊號d(n)和校正後反相噪音訊號y’(n)之間的差值,而噪音訊號d(n)主要來自風扇模組20運作時扇葉的轉動。
In step 410, when the
在步驟420中,ANC控制器60之訊號產生器64會依據頻率計算器62計算出來的資料和於下線模式中求得的資料來提供對應之相位補償訊號x(n),其中相位補償訊號x(n)包含風扇模組20在現有轉速下的實際倍頻、實際BPF、相位偏移,以及聲壓頻譜(dBSPL)等資訊,可決定揚聲器控制訊號SMIC之基準功率值,而透過調整數位濾波器66之參數W(Z)可改變揚聲器控制訊號SMIC之功率值。
In step 420, the
在步驟430和440中,ANC控制器60之數位濾波器66會依據誤
差訊號e(n)和相位補償訊號x(n)來驅動揚聲器驅動電路68以輸出揚聲器控制訊號SMIC,進而驅動揚聲器模組40以提供反相噪音訊號y(n),其中W(Z)代表數位濾波器66的可調整運作參數。
In steps 430 and 440, the
揚聲器模組40自身特性和運作時發送至風扇模組20的白噪音(white noise)會影響揚聲器模組40和誤差麥克風50之間的次級路徑,假設揚聲器模組40目前提供的反相噪音訊號y(n)可完全抵銷噪音信號d(n),但在經由次級路徑傳送後,誤差麥克風50擷取到的反相噪音訊號y(n)可能會因為訊號衰減或變形而無法完全抵銷噪音信號d(n)。因此,在步驟450中,ANC控制器60之次級路徑補償轉移函數模組70可從嵌入式控制器30得知次級路徑之預估訊號,再依據預估訊號來校正參考訊號x(n)以提供校正後參考訊號x’(n)。ANC控制器60之次級路徑轉移函數模組72可為一頻譜分析儀,用來量測次級路徑的實際頻率響應S(Z),再依此校正反向噪音訊號y(n)以提供校正後反向噪音訊號y’(n),進而補償次級路徑對訊號傳輸造成的影響。
The characteristics of the
噪音加權轉換模組74耦接至誤差麥克風50,可依據一特定訊號加權方式和訊號轉換方式來處理誤差麥克風50量測到的誤差訊號e(n),再將處理後之誤差訊號e’(n)傳送至適應性濾波器76。在一實施例中,噪音加權轉換模組74可採用A加權(A weighting)和快速傅立葉變換(Fast Fourier Transform,FFT)來處理誤差訊號e(n)。然而,噪音加權轉換模組74所使用的訊號加權方式和訊號轉換方式並不限定本發明之範疇。
The noise
適應性濾波器76耦接至次級路徑補償轉移函數模組70和噪音加權轉換模組74,可依據一特定演算法來處理校正後相位補償訊號x’(n)和處理後誤差訊號e’(n),進而調整數位濾波器66之參數W(Z)。更詳細地說,校正後相位補償訊號x’(n)包含風扇模組20的實際馬達轉速、實際單葉片基頻、實際倍頻、實際BPF和相位偏移等資訊,適應性濾波器76再依據處理後誤差訊號e’(n)即可求出風扇模組20運作時的校正後實際單葉片基頻、校正後實際倍頻和校正後實際BPF等相關窄頻噪音的資訊,進而依此調整數位濾波器66之參數W(Z)。如此一來,當數位濾波器66驅動揚聲器驅動電路68以輸出揚聲器控制訊號SMIC時,揚聲器模組40所產生的反相噪音訊號y(n)會反應風扇模組20的實際運作狀況和目前降噪程度。更明確地說,反相噪音訊號y(n)至少包含一第一噪音消除波形和一第二噪音消除波形,其中第一噪音消除波形為相關於實際單葉片基頻的反向訊號,而第二噪音消除波形為相關於實際BPF基頻的反向訊號。
The
在一實施例中,適應性濾波器76可依據最小均方(Least mean square,LMS)演算法來處理校正後相位補償訊號x’(n)和處理後誤差訊號e’(n)。然而,適應性濾波器76所使用的演算法並不限定本發明之範疇。
In one embodiment, the
綜上所述,本發明之電子系統100會先在離線模式下求出相關風扇模組20每一轉速的相位偏移資訊。接著在上線模式下運作時,誤差麥克風50會擷取噪音並輸出相對應之誤差訊號,ANC控制器60會依據誤差訊號和嵌入式控制器30提供之風扇資訊計算出風扇模組20在
實際運作時所產生噪音中的窄頻帶噪音(實際單葉片基頻噪音或實際BPF基頻噪音),再依此驅動揚聲器模組40以提供反相噪音訊號y(n),使得反相噪音訊號y(n)能抵銷電子系統100運作時所產生噪音。透過適應性地調整反向噪音訊號以將誤差訊號之值調至0,本發明能兼顧散熱和降噪的重要課題,並能抵銷系統公差造成的相位偏移以提昇主動噪音控制的精準度。
To sum up, the
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
40:揚聲器模組 40:Speaker module
50:誤差麥克風 50: error microphone
60:主動降噪控制器 60: Active noise reduction controller
62:頻率計算器 62: Frequency calculator
64:訊號產生器 64: Signal generator
66:數位濾波器 66: Digital filter
68:揚聲器驅動電路 68: Speaker drive circuit
70:次級路徑補償轉移函數模組 70:Secondary Path Compensation Transfer Function Module
72:次級路徑轉移函數模組 72: Secondary path transfer function module
74:噪音加權和轉換模組 74:Noise Weighting and Transformation Module
76:適應性濾波器 76: Adaptive filter
SMIC:揚聲器控制訊號 S MIC : speaker control signal
SSYN:同步訊號 S SYN : Synchronization signal
x(n):相位補償訊號 x(n): phase compensation signal
x’(n):校正後位補償訊號 x’(n): Corrected position compensation signal
y(n):反相噪音訊號 y(n): anti-phase noise signal
y’(n):校正反相噪音訊號 y'(n): Correction of anti-phase noise signal
e(n):誤差訊號 e(n): error signal
e’(n):處理後誤差訊號 e’(n): Error signal after processing
d(n):噪音訊號 d(n): noise signal
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110137164A TWI779863B (en) | 2021-10-06 | 2021-10-06 | Electronic system with heat dissipation and feedforward active noise control function |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110137164A TWI779863B (en) | 2021-10-06 | 2021-10-06 | Electronic system with heat dissipation and feedforward active noise control function |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI779863B true TWI779863B (en) | 2022-10-01 |
| TW202316230A TW202316230A (en) | 2023-04-16 |
Family
ID=85475967
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110137164A TWI779863B (en) | 2021-10-06 | 2021-10-06 | Electronic system with heat dissipation and feedforward active noise control function |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI779863B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115620738A (en) * | 2022-12-14 | 2023-01-17 | 小米汽车科技有限公司 | Noise reduction method, noise reduction device, electronic equipment and medium |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100416489C (en) * | 2002-12-13 | 2008-09-03 | 华邦电子股份有限公司 | Method for compensating noise |
| CN101498321A (en) * | 2008-02-02 | 2009-08-05 | 奇鋐科技股份有限公司 | Fan noise eliminating system |
| CN105298933A (en) * | 2015-09-11 | 2016-02-03 | 中国船舶重工集团公司第七0九研究所 | Active noise control device for axial fan |
| US9923550B2 (en) * | 2015-09-16 | 2018-03-20 | Bose Corporation | Estimating secondary path phase in active noise control |
-
2021
- 2021-10-06 TW TW110137164A patent/TWI779863B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100416489C (en) * | 2002-12-13 | 2008-09-03 | 华邦电子股份有限公司 | Method for compensating noise |
| CN101498321A (en) * | 2008-02-02 | 2009-08-05 | 奇鋐科技股份有限公司 | Fan noise eliminating system |
| CN105298933A (en) * | 2015-09-11 | 2016-02-03 | 中国船舶重工集团公司第七0九研究所 | Active noise control device for axial fan |
| US9923550B2 (en) * | 2015-09-16 | 2018-03-20 | Bose Corporation | Estimating secondary path phase in active noise control |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115620738A (en) * | 2022-12-14 | 2023-01-17 | 小米汽车科技有限公司 | Noise reduction method, noise reduction device, electronic equipment and medium |
| CN115620738B (en) * | 2022-12-14 | 2023-08-29 | 小米汽车科技有限公司 | Noise reduction method and device, electronic equipment and medium |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202316230A (en) | 2023-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100412689C (en) | Noise reduction device and projector device using the same | |
| US20130037620A1 (en) | Controlling air movers based on acoustic signature | |
| WO2006117915A1 (en) | Active noise suppressor | |
| TWI790737B (en) | Electronic system with heat dissipation and feedforward active noise control function | |
| US10083683B2 (en) | Reducing computer fan noise | |
| TWI811768B (en) | Electronic system with heat dissipation and feedforward active noise control function | |
| TWI806260B (en) | Electronic system with heat dissipation and feedforward active noise control function with wind pressure compensation | |
| US11875773B2 (en) | Fan control system and method for noise cancellation | |
| TWI779863B (en) | Electronic system with heat dissipation and feedforward active noise control function | |
| JP6409109B1 (en) | Fan noise control system | |
| TWI832402B (en) | Electronic system with heat dissipation and feedforward active noise control function | |
| CN116025595A (en) | Electronic system with heat dissipation and feed-forward active noise control | |
| US12374316B2 (en) | Separate active noise cancellation device | |
| CN116241493B (en) | Feed-forward active noise control electronics with heat dissipation and wind pressure compensation | |
| US12002446B2 (en) | Electronic system having heat dissipation and feed-forward active noise control function and related method | |
| CN115727016A (en) | Electronics with cooling and feed-forward active noise control | |
| CN115823026A (en) | Electronic system with heat dissipation and feedforward active noise control function | |
| TWM644561U (en) | Separate active noise cancellation device | |
| CN117703839A (en) | Electronic system with thermal dissipation and feed-forward active noise control | |
| JP5546795B2 (en) | Target wave reduction device | |
| CN117627965A (en) | Electronic system with thermal dissipation and feed-forward active noise control | |
| JP2010276773A5 (en) | ||
| Wu et al. | Research on active control of axial flow fan noise using a novel and simplified duct system | |
| JPH10169599A (en) | Fan device | |
| JP2011175887A (en) | Electromagnetic induction heating cooker |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| GD4A | Issue of patent certificate for granted invention patent |



