TWI728582B - Exoskeleton system for rehabilitation training in collaboration between upper limb and lower limb on the basis of virtual reality and augmented reality - Google Patents
Exoskeleton system for rehabilitation training in collaboration between upper limb and lower limb on the basis of virtual reality and augmented reality Download PDFInfo
- Publication number
- TWI728582B TWI728582B TW108143951A TW108143951A TWI728582B TW I728582 B TWI728582 B TW I728582B TW 108143951 A TW108143951 A TW 108143951A TW 108143951 A TW108143951 A TW 108143951A TW I728582 B TWI728582 B TW I728582B
- Authority
- TW
- Taiwan
- Prior art keywords
- exoskeleton
- joint mechanism
- processing unit
- augmented reality
- coupled
- Prior art date
Links
- 210000003141 lower extremity Anatomy 0.000 title claims abstract description 76
- 210000001364 upper extremity Anatomy 0.000 title claims abstract description 73
- 230000003190 augmentative effect Effects 0.000 title claims abstract description 66
- 238000012549 training Methods 0.000 title abstract description 49
- 210000003205 muscle Anatomy 0.000 claims abstract description 64
- 238000012545 processing Methods 0.000 claims abstract description 60
- 230000004580 weight loss Effects 0.000 claims abstract description 48
- 230000005484 gravity Effects 0.000 claims abstract description 38
- 238000006073 displacement reaction Methods 0.000 claims abstract description 14
- 239000000872 buffer Substances 0.000 claims abstract description 13
- 230000007246 mechanism Effects 0.000 claims description 91
- 210000002310 elbow joint Anatomy 0.000 claims description 22
- 210000000323 shoulder joint Anatomy 0.000 claims description 22
- 210000001508 eye Anatomy 0.000 claims description 17
- 210000000544 articulatio talocruralis Anatomy 0.000 claims description 11
- 210000000629 knee joint Anatomy 0.000 claims description 11
- 210000004394 hip joint Anatomy 0.000 claims description 10
- 210000003857 wrist joint Anatomy 0.000 claims description 10
- 206010049565 Muscle fatigue Diseases 0.000 claims description 8
- 238000013473 artificial intelligence Methods 0.000 claims description 3
- 210000005252 bulbus oculi Anatomy 0.000 claims description 2
- 210000001624 hip Anatomy 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 claims 1
- 210000000707 wrist Anatomy 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 11
- 230000008569 process Effects 0.000 abstract description 7
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 230000035772 mutation Effects 0.000 abstract 1
- 210000003414 extremity Anatomy 0.000 description 13
- 230000008859 change Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 239000013585 weight reducing agent Substances 0.000 description 5
- 230000005021 gait Effects 0.000 description 4
- 210000002414 leg Anatomy 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000007659 motor function Effects 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Rehabilitation Tools (AREA)
Abstract
Description
本發明係提供一種基於虛擬實境與擴增實境之上下肢協同復健外骨骼系統,尤指一種結合上肢與下肢的協同復健訓練模式,搭配虛擬實境技術、擴增實境技術、氣壓肌肉基礎之動態減重系統、重心平衡調節系統、眼動儀及跑步機,讓患者可透過模擬正常人體行走時上肢與下肢的姿態,藉由上肢與下肢的協同運動,增強復健訓練的效果及加速肢體運動功能的恢復進程。 The present invention provides a collaborative rehabilitation exoskeleton system for upper and lower limbs based on virtual reality and augmented reality, especially a collaborative rehabilitation training mode combining upper limbs and lower limbs, combined with virtual reality technology, augmented reality technology, Pneumatic muscle-based dynamic weight loss system, center of gravity balance adjustment system, eye tracker and treadmill, allowing patients to simulate the posture of the upper and lower limbs when walking in a normal human body, and enhance the rehabilitation training through the coordinated movement of the upper and lower limbs Effect and accelerate the recovery process of limb movement function.
按,人類行走是上肢(手臂)和下肢(腿部)運動的結合,手臂在行走時處於自然擺動的狀態保障身體不傾倒使步行運動可以持續進行,研究結果也證明人體上下肢的運動透過神經相互作用產生影響。 According to, human walking is a combination of upper limbs (arms) and lower limbs (legs). The arms are in a natural swinging state when walking to ensure that the body does not tip over so that the walking movement can continue. The research results also prove that the movement of the upper and lower limbs of the human body passes through the nerves. Interaction has an impact.
近年,隨著國內老齡化程度的加劇,心血管疾病及其他因素引起的中風與肢體功能障,不僅嚴重影響患者的正常生活,也對家庭和社會造成巨大的負擔。 In recent years, with the intensification of domestic aging, stroke and limb dysfunction caused by cardiovascular disease and other factors have not only severely affected the normal life of patients, but also caused a huge burden on the family and society.
對於下肢喪失運動功能的患者,上肢的積極運動有利於下肢運動功能的恢復。但目前國內醫院使用的復健訓練設備,都只是單獨針對上肢或下 肢進行復健訓練的設備,無法讓患者四肢相互配合協調運動,模擬人體正常的行走姿態,且整個訓練過程繁瑣枯燥互動性差,沒有正確和科學的評估方式讓患者提高復健意圖及清楚未來的努力方向,患者常處於低參與度的被動狀態,使得復健訓練系統在國內臨床使用受到很大的限制,此外,現有復健訓練系統缺乏個體適應性和有效的控制策略,導致復健訓練的效率與成效低落。 For patients with lower extremity loss of motor function, active upper extremity exercise is conducive to the recovery of lower extremity motor function. However, the current rehabilitation training equipment used in domestic hospitals is only for the upper limbs or lower limbs. The equipment for limb rehabilitation training cannot allow the patient’s limbs to cooperate and coordinate with each other to simulate the normal walking posture of the human body, and the entire training process is tedious and interactive. There is no correct and scientific evaluation method to allow the patient to improve the rehabilitation intention and understand the future. In the direction of efforts, patients are often in a passive state with low participation, which greatly restricts the clinical use of rehabilitation training systems in China. In addition, the existing rehabilitation training systems lack individual adaptability and effective control strategies, resulting in rehabilitation training. Low efficiency and effectiveness.
目前臨床復健訓練有兩個較為明顯的問題:一是設備功能不完善,造成醫師或物理治療師處在人力輔助患者進行復健訓練的體力勞動中,不僅體力流失快效率低,而且無法即時瞭解患者復健訓練的各種運動參數回饋。因而造成復健時無法準確對患者的復健訓練效果進行評估,也無法進一步提出更為有效的訓練任務。二是復健訓練為大量單調的重複運動,患者主動參與的積極度不高,因而復健訓練效果不佳。上述兩個問題都違背了運動復健的3個核心準則:重複訓練、面對任務和主動意圖。因此給予醫師或物理治療師有效的回饋,進而給予患者適當的訓練任務並引起患者主動參與的積極性,已成為復健醫療需要解決的重要問題。現有復健訓練系統只關注在上肢復健訓練或下肢復健訓練,沒有展現人體四肢協調性訓練的特點,無法實現人體四肢的協調互動,目前結合上下肢協同復健訓練的相關研究不多,因此在人體四肢的協調性訓練還存在很大的不足。 At present, clinical rehabilitation training has two obvious problems: one is the imperfect function of the equipment, which causes physicians or physical therapists to be in manual labor assisting patients in rehabilitation training, which not only loses physical strength quickly, but also cannot be instantaneous. Understand the feedback of various exercise parameters of patients' rehabilitation training. As a result, it is impossible to accurately evaluate the patient's rehabilitation training effect during rehabilitation, and it is impossible to further propose more effective training tasks. Second, rehabilitation training is a large number of monotonous repetitive exercises, and patients are not actively involved in active participation, so the effect of rehabilitation training is not good. Both of the above problems violate the three core principles of sports rehabilitation: repetitive training, facing tasks, and active intentions. Therefore, giving doctors or physical therapists effective feedback, and then giving patients appropriate training tasks and arousing the enthusiasm of patients to actively participate, has become an important problem that needs to be solved in rehabilitation medicine. The existing rehabilitation training system only focuses on upper limb rehabilitation training or lower limb rehabilitation training, and does not show the characteristics of human limb coordination training, and cannot realize the coordination and interaction of human limbs. At present, there are not many related researches combining upper and lower limbs cooperative rehabilitation training. Therefore, there are still great shortcomings in the coordination training of human limbs.
有鑑於此,吾等發明人乃潛心進一步研究運用虛擬實境與擴增實境之四肢協同復健外骨骼系統,並著手進行研發及改良,期以一較佳設作以解決上述問題,且在經過不斷試驗及修改後而有本發明之問世。 In view of this, our inventors have devoted themselves to further research on the exoskeleton system for extremity rehabilitation using virtual reality and augmented reality, and proceeded to develop and improve the exoskeleton system with a better design to solve the above problems, and After continuous experimentation and modification, the present invention came out.
爰是,本發明為達致以上目的,吾等發明人提供一種基於虛擬實境與擴增實境之上下肢協同復健外骨骼系統,其包含:一外骨骼系統,其設有一上肢外骨骼、一下肢外骨骼、一重心平衡調節系統及一氣壓肌肉基礎之動態減重系統;該上肢外骨骼、該下肢外骨骼及該氣壓肌肉基礎之動態減重系統係相互耦接;且該氣壓肌肉基礎之動態減重系統設有一氣壓肌肉裝置,該氣壓肌肉裝置頂端設有一位移件,該氣壓肌肉裝置與該位移件之間耦設一拉力感測器,且該位移件兩端分別樞接至少一支承架,所述支承架相對該氣壓肌肉裝置一端樞接一背板,又該背板對應該上肢外骨骼、該下肢外骨骼一端設有一調整件;該重心平衡調節系統,其設有一呈四邊形的框架,該框架內設有至少一彈性元件,該重心平衡調節系統係耦接該氣壓肌肉基礎之動態減重系統;一虛擬實境(virtual reality,VR)與擴增實境(Augmented Reality,AR)系統,其包含至少一運動任務、至少一擴增場景及至少一虛擬場景,該虛擬實境與擴增實境系統係耦接該外骨骼系統;一處理單元,其係耦接該上肢外骨骼、該下肢外骨骼、該氣壓肌肉裝置、該重心平衡調節系統及該虛擬實境與擴增實境系統;以及一眼動儀,其係耦接該虛擬實境與擴增實境系統及該處理單元,該處理單元設有一眼動追蹤時間值,當該眼動儀跟蹤測量一眼球位置並達該眼動追蹤時間值時,即始進行其一所述運動任務。 In order to achieve the above objective, the present invention provides a cooperative rehabilitation exoskeleton system for upper and lower limbs based on virtual reality and augmented reality, which includes: an exoskeleton system equipped with an upper limb exoskeleton , Lower limb exoskeleton, a center of gravity balance adjustment system and a pneumatic muscle-based dynamic weight loss system; the upper limb exoskeleton, the lower limb exoskeleton and the pneumatic muscle-based dynamic weight loss system are coupled to each other; and the pneumatic muscle The basic dynamic weight loss system is provided with a pneumatic muscle device, the top of the pneumatic muscle device is provided with a displacement member, a tension sensor is coupled between the pneumatic muscle device and the displacement member, and both ends of the displacement member are pivotally connected to at least A support frame, the support frame is pivotally connected to a back plate at one end of the pneumatic muscle device, and the back plate corresponds to the upper limb exoskeleton. One end of the lower limb exoskeleton is provided with an adjusting member; the center of gravity adjustment system is provided with a A quadrilateral frame with at least one elastic element, the center of gravity balance adjustment system is coupled to the pneumatic muscle-based dynamic weight reduction system; a virtual reality (VR) and augmented reality (Augmented Reality) , AR) system, which includes at least one motion task, at least one augmented scene and at least one virtual scene, the virtual reality and augmented reality system are coupled to the exoskeleton system; a processing unit is coupled to the exoskeleton system The upper limb exoskeleton, the lower limb exoskeleton, the pneumatic muscle device, the center of gravity balance adjustment system, and the virtual reality and augmented reality system; and an eye tracker coupled to the virtual reality and augmented reality system And the processing unit, the processing unit is provided with an eye tracking time value, and when the eye tracker measures an eyeball position and reaches the eye tracking time value, it starts to perform one of the above-mentioned exercise tasks.
據上所述之基於虛擬實境與擴增實境之上下肢協同復健外骨骼系統,其中,該虛擬實境與擴增實境系統更耦接一運動捕捉系統及一顯示單元,且該處理單元係耦接該運動捕捉系統,該運動捕捉系統係量測該上肢外骨骼、該下肢外骨骼於正常步行及進行原地行走時之運動軌跡,並透過該處理單元將 所述運動軌跡分析轉換為複數運動數據,並將所述運動數據傳送至該虛擬實境與擴增實境系統,以對應產生其一所述運動任務及其一所述虛擬與擴增場景者。 According to the aforementioned virtual reality and augmented reality upper and lower extremity collaborative rehabilitation exoskeleton system, wherein the virtual reality and augmented reality system are further coupled to a motion capture system and a display unit, and the The processing unit is coupled to the motion capture system, and the motion capture system measures the motion trajectories of the upper limb exoskeleton and the lower limb exoskeleton during normal walking and walking on the spot. The motion trajectory analysis is converted into complex motion data, and the motion data is transmitted to the virtual reality and augmented reality system to correspondingly generate one of the motion tasks and one of the virtual and augmented scenes .
據上所述之基於虛擬實境與擴增實境之上下肢協同復健外骨骼系統,其中,該上肢外骨骼更包含一第一肩關節機構、一第二肩關節機構、一第一肘關節機構、一第二肘關節機構及一腕關節機構;該第一肩關節機構、該第二肩關節機構、該第一肘關節機構、該第二肘關節機構及該腕關節機構係耦接該處理單元,且該第一肩關節機構、該第二肩關節機構、該第一肘關節機構、該第二肘關節機構及該腕關節機構係分別傳送一上肢運動狀態及一上肢肌肉疲勞狀態至該處理單元,該處理單元對應該上肢肌肉疲勞狀態對應選擇相異之運動任務;該下肢外骨骼更包含一髖關節機構、一膝關節機構及一踝關節機構;該髖關節機構、該膝關節機構及該踝關節機構係耦接該處理單元,且該髖關節機構、該膝關節機構及該踝關節機構係分別傳送一下肢運動狀態及一下肢肌肉疲勞狀態至該處理單元,該處理單元對應該下肢肌肉疲勞狀態對應選擇另一所述運動任務。 According to the above-mentioned collaborative rehabilitation exoskeleton system for upper and lower limbs based on virtual reality and augmented reality, the upper limb exoskeleton further includes a first shoulder joint mechanism, a second shoulder joint mechanism, and a first elbow Joint mechanism, a second elbow joint mechanism, and a wrist joint mechanism; the first shoulder joint mechanism, the second shoulder joint mechanism, the first elbow joint mechanism, the second elbow joint mechanism, and the wrist joint mechanism are coupled The processing unit, and the first shoulder joint mechanism, the second shoulder joint mechanism, the first elbow joint mechanism, the second elbow joint mechanism, and the wrist joint mechanism respectively transmit an upper limb movement state and an upper limb muscle fatigue state To the processing unit, the processing unit selects different exercise tasks corresponding to the fatigue state of the upper limb muscles; the lower limb exoskeleton further includes a hip joint mechanism, a knee joint mechanism, and an ankle joint mechanism; the hip joint mechanism, the knee joint mechanism The joint mechanism and the ankle joint mechanism are coupled to the processing unit, and the hip joint mechanism, the knee joint mechanism, and the ankle joint mechanism respectively transmit the lower limb motion state and the lower limb muscle fatigue state to the processing unit, the processing unit Corresponding to the lower extremity muscle fatigue state corresponding to select another exercise task.
據上所述之基於虛擬實境與擴增實境之上下肢協同復健外骨骼系統,其中,該上肢外骨骼及該下肢外骨骼更設有一緩衝元件,且該緩衝元件係耦接該處理單元,該處理單元係控制基於AI(Artificial Intelligence,AI)自動參數調節的該緩衝元件令該上肢外骨骼及該下肢外骨骼呈過阻尼系統,以平滑與緩慢的方式安全回復到該運動軌跡。 According to the aforementioned virtual reality and augmented reality upper and lower extremity cooperative rehabilitation exoskeleton system, wherein the upper extremity exoskeleton and the lower extremity exoskeleton are further provided with a buffer element, and the buffer element is coupled to the processing The processing unit controls the cushioning element based on AI (Artificial Intelligence, AI) automatic parameter adjustment to make the upper limb exoskeleton and the lower limb exoskeleton present an over-damping system, and safely return to the motion trajectory in a smooth and slow manner.
據上所述之基於虛擬實境與擴增實境之上下肢協同復健外骨骼系統,其中,該處理單元更耦接一資訊管理系統,該資訊管理系統設有一資料庫。 According to the aforementioned virtual reality and augmented reality upper and lower limb cooperative rehabilitation exoskeleton system, the processing unit is further coupled to an information management system, and the information management system is provided with a database.
據上所述之基於虛擬實境與擴增實境之上下肢協同復健外骨骼系統,其中,該外骨骼系統更組設於一系統支撐架及一跑步機之間,該跑步機係耦接該處理單元,且該系統支撐架底部設有一調整裝置,該調整裝置係可調整該系統支撐架對應於該跑步機之位置及高度。 According to the above-mentioned exoskeleton system based on virtual reality and augmented reality, the upper limbs cooperative rehabilitation exoskeleton system, wherein the exoskeleton system is further assembled between a system support frame and a treadmill, and the treadmill is coupled The processing unit is connected, and an adjustment device is arranged at the bottom of the system support frame, and the adjustment device can adjust the position and height of the system support frame corresponding to the treadmill.
是由上述說明及設置,顯見本發明主要具有下列數項優點及功效,茲逐一詳述如下: Based on the above description and settings, it is obvious that the present invention mainly has the following advantages and effects, which are described in detail as follows:
1.本發明以上下肢協同復健外骨骼為基礎,結合虛擬實境(VR)與擴增實境(AR)技術,同時藉由虛擬實境(VR)與擴增實境(AR)增加復健訓練的趣味性,建立基於虛擬實境(VR)與擴增實境(AR)技術的復健訓練系統,營造高度沉浸感和互動的虛擬場景或擴增場景,能完成受損神經中樞的主被動刺激,透過3D視覺和聽覺等效果作用於患者神經中樞,實現患者積極主動的運動意念激發,可有效促進患者的復健進程。該系統可提供豐富多樣的刺激,增強患者的主動性與積極性,進而達致從多元角度促進患者的復健進程。 1. The present invention combines the virtual reality (VR) and augmented reality (AR) technology based on the above-mentioned lower extremity collaborative rehabilitation exoskeleton, and at the same time increases the complexity through the virtual reality (VR) and augmented reality (AR) The fun of fitness training, the establishment of a rehabilitation training system based on virtual reality (VR) and augmented reality (AR) technologies to create highly immersive and interactive virtual scenes or augmented scenes, which can complete the damage of the damaged nerve center Active and passive stimulation acts on the patient's nerve center through 3D visual and auditory effects, realizing the stimulation of the patient's active movement idea, which can effectively promote the patient's rehabilitation process. The system can provide a variety of stimuli, enhance the initiative and enthusiasm of patients, and promote the rehabilitation process of patients from multiple perspectives.
2.本發明的虛擬實境與擴增實境之上下肢協同復健外骨骼系統適用人群廣泛,可以進行上肢、下肢不同速度和不同強度的訓練,同時還添加一些個性化的元素增加患者進行復健訓練的興趣。該系統能夠科學的訓練患者的肢體,保存訓練數據留待研究處理,針對不同病情可設定不同的訓練模式。此外,利用虛擬實境(VR)與擴增實境(AR)進行復健訓練具有真實世界所不具備的優勢,相較於真實環境的復健訓練結果,虛擬場景與擴增場景的動作技能學習和運動復健訓練效果更好,將虛擬實境(VR)與擴增實境(AR)技術應用到復健醫療領域可降低傳統復健訓練方法的局限性。 2. The virtual reality and augmented reality upper and lower limbs cooperative rehabilitation exoskeleton system of the present invention is suitable for a wide range of people. It can train the upper and lower limbs at different speeds and intensities, and also adds some personalized elements to increase the patient's performance Interest in rehabilitation training. The system can scientifically train the limbs of patients, save training data for research and processing, and set different training modes for different conditions. In addition, the use of virtual reality (VR) and augmented reality (AR) for rehabilitation training has advantages that the real world does not have. Compared with the results of rehabilitation training in the real environment, the action skills of virtual scenes and augmented scenes The effect of learning and sports rehabilitation training is better, and the application of virtual reality (VR) and augmented reality (AR) technology to the field of rehabilitation medicine can reduce the limitations of traditional rehabilitation training methods.
3.本發明之該氣壓肌肉基礎之動態減重系統係結合氣體可壓縮性的特性,以重量輕出力大(出力為相同缸徑氣缸的10倍)的氣壓肌肉進行動態減重系統的設計,以單根氣壓肌肉驅動的方式解決馬達及氣壓缸驅動減重所存在的缺點,在訓練過程中,可以根據患者下肢復健的具體狀況與復健訓練需求,透過控制系統調節比例壓力閥帶動該氣壓肌肉基礎之動態減重系統上下移動,把患者向上適當吊起或放下實現動態減重的目的。另本發明之重心平衡調節系統是依據人在正常站立及行走過程中人體重心軌跡變化曲線,以彈性元件所設計的一種被動式體重心變化調節機構,可實現人體重心在正常站立及行走過程中的平衡調節;故當重心平衡調節系統受到來自人體的壓力時,其會依據壓力的變化自動伸縮,所以可緩衝壓力的突變,最後會隨人體重心的上下移動被動實現人體重心軌跡變化的平衡調節。故此,患者利用本發明進行復健時,本發明可依據患者之步態頻率、步長、身高及體重等影響重心之數據,利用氣壓肌肉基礎之動態減重系統實現動態恆定減重,以及藉由重心平衡調節系統緩衝來自人體壓力的突變,此外,氣壓肌肉基礎之動態減重系統可由處理單元依據復健狀態進行不同比例的減重量設定,並由處理單元進行動態的恆定減重控制,以確保復健之穩定性;此外,若患者復健期間產生傾斜或絆倒而脫離復健路徑時,本發明即可藉由緩衝元件以平滑、緩慢回復到運動軌跡,以提升回復至運動軌跡之穩定性及安全性。 3. The pneumatic muscle-based dynamic weight loss system of the present invention combines the characteristics of gas compressibility to design a dynamic weight loss system with a pneumatic muscle with light weight and high output (output is 10 times that of a cylinder with the same bore). The single pneumatic muscle drive method solves the shortcomings of the motor and the pneumatic cylinder driving weight loss. During the training process, according to the specific condition of the patient's lower limb rehabilitation and rehabilitation training needs, the pressure can be driven by the proportional pressure valve through the control system. The muscle-based dynamic weight loss system moves up and down to properly lift or lower the patient to achieve the purpose of dynamic weight loss. In addition, the center of gravity balance adjustment system of the present invention is based on the track change curve of the center of gravity of the person during normal standing and walking, and a passive center of gravity adjustment mechanism designed with elastic elements can realize the adjustment of the center of gravity of the person during normal standing and walking. Balance adjustment; Therefore, when the center of gravity balance adjustment system is under pressure from the human body, it will automatically expand and contract according to the pressure change, so it can buffer sudden changes in pressure, and finally will passively realize the balance adjustment of the change of the person's center of gravity trajectory with the up and down movement of the person's center of gravity. Therefore, when a patient uses the present invention to perform rehabilitation, the present invention can use the barometric muscle-based dynamic weight loss system to achieve dynamic constant weight loss based on the patient’s gait frequency, step length, height, and weight, etc., which affect the center of gravity data. The balance adjustment system of the center of gravity buffers the sudden change of the pressure from the human body. In addition, the dynamic weight loss system based on the pneumatic muscle can be set by the processing unit to reduce weight in different proportions according to the rehabilitation state, and the processing unit can perform dynamic constant weight loss control. To ensure the stability of rehabilitation; in addition, if the patient is inclined or tripped during rehabilitation and leaves the rehabilitation path, the present invention can smoothly and slowly return to the motion trajectory through the buffer element, so as to improve the return to the motion trajectory. Stability and safety.
4.本發明利用四肢協同復健訓練的新觀念,結合虛擬實境(VR)與擴增實境(AR),可供患者進行上下肢協同復健訓練的外骨骼系統,可實現上肢與下肢運動相結合的四肢協調訓練刺激行走神經,並利用眼動儀始進行其 一所述運動任務,提高患者主動參與復健訓練的積極性,讓患者逐漸擁有自主運動能力,對減輕個人及社會經濟負擔具有重要的貢獻。 4. The present invention utilizes the new concept of extremity cooperative rehabilitation training, combined with virtual reality (VR) and augmented reality (AR), an exoskeleton system for patients to perform upper and lower extremity cooperative rehabilitation training, which can realize upper and lower extremities The coordinated training of the limbs combined with exercise stimulates the walking nerve, and the eye tracker is used to start it 1. The exercise tasks mentioned above can improve the enthusiasm of patients to actively participate in rehabilitation training, so that patients gradually have the ability to exercise autonomously, and have an important contribution to reducing personal and social economic burden.
1:外骨骼系統 1: Exoskeleton system
11:上肢外骨骼 11: Upper extremity exoskeleton
111:第一肩關節機構 111: The first shoulder joint mechanism
112:第二肩關節機構 112: The second shoulder joint mechanism
113:第一肘關節機構 113: The first elbow joint mechanism
114:第二肘關節機構 114: Second elbow joint mechanism
115:腕關節機構 115: Wrist Joint Mechanism
12:下肢外骨骼 12: Lower extremity exoskeleton
121:髖關節機構 121: Hip Joint Mechanism
122:膝關節機構 122: Knee Joint Mechanism
123:踝關節機構 123: Ankle Joint Mechanism
13:氣壓肌肉基礎之動態減重系統 13: Pneumatic muscle-based dynamic weight loss system
131:位移件 131: Displacement piece
132:支承架 132: Support frame
133:背板 133: Backplane
134:調整件 134: adjustment parts
135:拉力感測器 135: Tension sensor
136:氣壓肌肉裝置 136: Pneumatic Muscle Device
17:重心平衡調節系統 17: Center of gravity balance adjustment system
171:框架 171: Frame
172:彈性元件 172: Elastic element
14:緩衝元件 14: Cushioning element
15:系統支撐架 15: System support frame
151:調整裝置 151: adjustment device
16:跑步機 16: treadmill
2:虛擬實境與擴增實境系統 2: Virtual reality and augmented reality system
21:運動捕捉系統 21: Motion capture system
22:顯示單元 22: display unit
3:處理單元 3: Processing unit
4:資訊管理系統 4: Information Management System
41:資料庫 41: Database
5:眼動儀 5: Eye Tracker
第1圖係本發明之立體示意圖。 Figure 1 is a perspective view of the present invention.
第2圖係本發明之結構示意圖。 Figure 2 is a schematic diagram of the structure of the present invention.
第3圖係本發明另一視角之立體示意圖。 Figure 3 is a perspective view of the present invention from another perspective.
第4圖系本發明移除系統支撐架之立體示意圖。 Figure 4 is a perspective view of the support frame of the removal system of the present invention.
關於吾等發明人之技術手段,茲舉數種較佳實施例配合圖式於下文進行詳細說明,俾供 鈞上深入了解並認同本發明。 Regarding the technical means of our inventors, several preferred embodiments are described in detail below in conjunction with the drawings, so as to provide a thorough understanding and approval of the present invention.
請先參閱第1圖至第4圖所示,本發明係一種基於虛擬實境與擴增實境之上下肢協同復健外骨骼系統,其包含:一外骨骼系統1,其設有一上肢外骨骼11、一下肢外骨骼12一重心平衡調節系統17及一氣壓肌肉基礎之動態減重系統13;該上肢外骨骼11、該下肢外骨骼12及該氣壓肌肉基礎之動態減重系統13係相互耦接;本發明較佳實施例中,該上肢外骨骼11部分是以EtherCAT(乙太網控制自動化技術)的網路控制架構,進行該上肢外骨骼11所有馬達的控制,所有馬達的感測與控制訊號僅以一條網路線進行所有馬達驅動器的串接,免除複雜的現場總線配置架構,而該下肢外骨骼12部分是以(Controller Area Network,CAN bus)的匯流排標
準,進行該下肢外骨骼12所有薄型馬達的控制,所有薄型馬達的感測與控制訊號僅以CAN bus網路進行所有馬達驅動器的串接,免除複雜的現場總線配置架構;在一實施例中,該氣壓肌肉基礎之動態減重系統13更設有一氣壓肌肉裝置136,該氣壓肌肉裝置136頂端設有一位移件131,該氣壓肌肉裝置136與該位移件131之間耦設一拉力感測器135,且該位移件131兩端分別樞設至少一支承架132,所述支承架132相對該氣壓肌肉裝置136一端樞設一背板133,又該背板133對應該上肢外骨骼11、該下肢外骨骼12一端設有一調整件134;於一實施例中,該外骨骼系統1係組設於一系統支撐架15及一跑步機16之間,該系統支撐架15底部設有一調整裝置151,該調整裝置151係可調整該系統支撐架15對應於該跑步機16之位置及高度;又該氣壓肌肉基礎之動態減重系統13一端係樞設於該系統支撐架15;該重心平衡調節系統17,其設有一呈四邊形的框架171,該框架171內設有至少一彈性元件172,該重心平衡調節系統17係耦接該氣壓肌肉基礎之動態減重系統13;其中,該重心平衡調節系統17是依據人在正常站立及行走過程中人體重心軌跡變化曲線,以彈性元件172所設計的一種被動式體重心變化調節機構,可實現人體重心在正常站立及行走過程中的平衡調節;當該重心平衡調節系統17受到來自人體的壓力時,其會依據壓力的變化自動伸縮,所以可緩衝壓力的突變,最後會隨人體重心的上下移動被動實現人體重心軌跡變化的平衡調節;一虛擬實境與擴增實境系統2(如:虛擬實境(VR)與擴增實境(AR)平台),其包含至少一運動任務及至少一虛擬場景(如:虛擬實境(VR)與擴增實境(AR)場景),該虛擬實境與擴增實境系統2係耦接該外骨骼系統1;
在一實施例中,該虛擬實境與擴增實境系統2中除可供患者藉由虛擬實境(VR)平台實際體驗位於一虛構場景互動外,亦可依據擴增實境(AR)平台之場景與現實世界場景結合並供患者予以互動;一處理單元3,其係耦接該上肢外骨骼11、該下肢外骨骼12、該氣壓肌肉裝置136、該重心平衡調節系統17、該虛擬實境與擴增實境系統2及該跑步機16;在一實施例中,該處理單元3更耦接一資訊管理系統4,該資訊管理系統4設有一資料庫41;該資訊管理系統4主要用來輸入、分類、儲存個人資訊和復健狀態,提供醫護人員可靠的資料也方便患者管理自己的資訊,統一有序的數據標準有助於實現醫療訊息的管理,此外,該氣壓肌肉基礎之動態減重系統13可由處理單元3依據復健狀態進行不同比例的減重量設定,並由處理單元3進行動態的恆定減重控制;一眼動儀5,其係耦接該虛擬實境與擴增實境系統2及該處理單元3,該處理單元3設有一眼動追蹤時間值,當該眼動儀5跟蹤測量一眼球位置並達該眼動追蹤時間值時,即始進行其一所述運動任務;在一實施例中,該虛擬實境與擴增實境系統2更耦接一運動捕捉系統21及一顯示單元22(如:3D顯示器),且該處理單元3係耦接該運動捕捉系統21,該運動捕捉系統21係量測該上肢外骨骼11、該下肢外骨骼12於正常步行及進行原地行走時之運動軌跡,並透過該處理單元3將所述運動軌跡分析轉換為複數運動數據,並將所述運動數據傳送至該虛擬實境與擴增實境系統2,以對應產生其一所述運動任務及其一所述虛擬場景或擴增場景;本發明較佳實施例中,該上肢外骨骼11及該下肢外骨骼12更設有一緩衝元件14,且該緩衝元件14係耦接該處理單元3,該處理單元3係控制基於
AI(Artificial Intelligence,AI)自動參數調節的該緩衝元件14令該上肢外骨骼11及該下肢外骨骼12偏離該運動軌跡時呈平滑、緩慢的方式安全回復到該運動軌跡;以及於另一實施例中,該上肢外骨骼11更包含一第一肩關節機構111、一第二肩關節機構112、一第一肘關節機構113、一第二肘關節機構114及一腕關節機構115;該第一肩關節機構111、該第二肩關節機構112、該第一肘關節機構113、該第二肘關節機構114及該腕關節機構115係耦接該處理單元3,且該第一肩關節機構111、該第二肩關節機構112、該第一肘關節機構113、該第二肘關節機構114及該腕關節機構115係分別傳送一上肢運動狀態及一上肢肌肉疲勞狀態至該處理單元3,該處理單元3對應該上肢肌肉疲勞狀態對應選擇相異之運動任務;該下肢外骨骼12更包含一髖關節機構121、一膝關節機構122及一踝關節機構123;該髖關節機構121、該膝關節機構122及該踝關節機構123係耦接該處理單元3,且該髖關節機構121、該膝關節機構122及該踝關節機構123係分別傳送一下肢運動狀態及一下肢肌肉疲勞狀態至該處理單元3,該處理單元3對應該下肢肌肉疲勞狀態對應選擇另一所述運動任務。
Please refer to Figures 1 to 4, the present invention is a virtual reality and augmented reality based upper and lower extremity collaborative rehabilitation exoskeleton system, which includes: an
藉此,續請參閱第1圖至第4圖所示,當患者利用本發明進行復健時,該氣壓肌肉基礎之動態減重系統13即利用該位移件131調整所述支承架132之位置,使該上肢外骨骼11與該下肢外骨骼12位於可利於患者穿戴之位置,此時,患者即可將四肢套入該上肢外骨骼11與該下肢外骨骼12,而由於每一患者身高型態相異,故即可利用該調整件134調整該上肢外骨骼11與該下肢外骨骼12至患者四肢適當高度,令本發明可根據患者實際身型予以調整,使其完全貼合患者實際身型,且適用於任一身型之患者;
待穿戴完畢後,該拉力感測器135即感測患者重量並傳至該處理單元3分析後,該處理單元3即令該氣壓肌肉基礎之動態減重系統13產生一反向之拉力,且該處理單元3即依據該資訊管理系統4之患者的個人資訊,令該虛擬實境與擴增實境系統2產生其一所述運動任務,以供患者進行復健運動,其中,該運動捕捉系統21即係量測患者復健時之運動軌跡,並透過該處理單元3將所述運動軌跡分析轉換為複數運動數據,並將所述運動數據傳送至該虛擬實境與擴增實境系統2,以對應產生另一所述運動任務及另一所述虛擬場景或擴增場景,其中,所述虛擬場景或擴增場景係於該顯示單元22呈現;當患者依據該運動任務復健時,該眼動儀5即可判定患者是否主動參與訓練過程,且訓練或復健期間,該氣壓肌肉基礎之動態減重系統13運作之狀態亦藉由該處理單元分析,並傳至該資訊管理系統4儲存於資料庫41。
Therefore, please refer to Figs. 1 to 4 again. When the patient uses the present invention for rehabilitation, the pneumatic muscle-based dynamic
再者,由於患者生理上的缺陷,患者雙腿已無法完全承受自身的重量。根據復健醫學理論,只有儘量模仿人體正常行走步態才能達到最佳的復健效果。因此在進行步態復健訓練時必須有一個動態減重系統能依據患者的減重需求,自行設定減重比例來減輕患者雙腿的受力,使訓練達到更好的效果。該氣壓肌肉基礎之動態減重系統13主要的目的是為了減輕患者腿部的承受力,使患者能夠更加自如的運動。惟,目前國內外普遍採用的是透過馬達或氣壓缸驅動減重,但是馬達提供的減重位置固定,無法在患者重心變化時提供恆定的減重力。氣壓缸需具有驅動的柔順性,但其存在氣體洩漏造成減重比例不易控制的問題。故本發明之該氣壓肌肉基礎之動態減重系統13係結合氣體可壓縮性的特性,以重量輕出力大(出力為相同缸徑氣缸的10倍)的氣壓肌肉進行動態減重系統的設計,以單根氣壓肌肉驅動的方式解決馬達及氣壓缸驅動減重所存在的缺點,在訓練過程中,可以根據患者下肢復健的具體狀況與復健訓練需求,
透過該處理單元帶動該氣壓肌肉裝置136上下移動,把患者向上適當吊起或放下實現動態減重的目的。故此,本發明可依據患者之步態頻率、步長、身高及體重,利用該氣壓肌肉基礎之動態減重系統13實現動態恆定減重,以確保復健之穩定性;而若患者復健期間產生傾斜或絆倒而脫離復健路徑時,本發明即可藉由該緩衝元件14以平滑、緩慢的方式安全回復到該運動軌跡,以提升回復至該運動軌跡之穩定性及安全性。
Furthermore, due to the patient's physical defects, the patient's legs can no longer fully bear their own weight. According to the theory of rehabilitation medicine, the best rehabilitation effect can be achieved only by imitating the normal walking gait of the human body as much as possible. Therefore, when performing gait rehabilitation training, there must be a dynamic weight loss system that can set the weight loss ratio according to the patient's weight loss needs to reduce the force on the patient's legs, so that the training can achieve better results. The main purpose of the pneumatic muscle-based dynamic
綜上所述,本發明所揭露之技術手段確能有效解決習知等問題,並達致預期之目的與功效,且申請前未見諸於刊物、未曾公開使用且具長遠進步性,誠屬專利法所稱之發明無誤,爰依法提出申請,懇祈 鈞上惠予詳審並賜准發明專利,至感德馨。 In summary, the technical means disclosed in the present invention can effectively solve conventional problems and achieve the expected purpose and effect. It has not been seen in the publications, has not been used publicly, and has long-term progress before the application. The patent law claims that the invention is correct. Yan filed an application in accordance with the law and prayed that Jun Shanghui will give a detailed examination and grant the invention patent, which is very grateful.
惟以上所述者,僅為本發明之數種較佳實施例,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明書內容所作之等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。 However, the foregoing are only a few preferred embodiments of the present invention, and should not be used to limit the scope of implementation of the present invention, that is, all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the description of the invention are all It should still fall within the scope of the patent for this invention.
1:外骨骼系統 1: Exoskeleton system
11:上肢外骨骼 11: Upper extremity exoskeleton
111:第一肩關節機構 111: The first shoulder joint mechanism
112:第二肩關節機構 112: The second shoulder joint mechanism
113:第一肘關節機構 113: The first elbow joint mechanism
114:第二肘關節機構 114: Second elbow joint mechanism
115:腕關節機構 115: Wrist Joint Mechanism
12:下肢外骨骼 12: Lower extremity exoskeleton
121:髖關節機構 121: Hip Joint Mechanism
122:膝關節機構 122: Knee Joint Mechanism
123:踝關節機構 123: Ankle Joint Mechanism
13:氣壓肌肉基礎之動態減重系統 13: Pneumatic muscle-based dynamic weight loss system
132:支承架 132: Support frame
133:背板 133: Backplane
136:氣壓肌肉裝置 136: Pneumatic Muscle Device
15:系統支撐架 15: System support frame
151:調整裝置 151: adjustment device
16:跑步機 16: treadmill
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108143951A TWI728582B (en) | 2019-12-02 | 2019-12-02 | Exoskeleton system for rehabilitation training in collaboration between upper limb and lower limb on the basis of virtual reality and augmented reality |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108143951A TWI728582B (en) | 2019-12-02 | 2019-12-02 | Exoskeleton system for rehabilitation training in collaboration between upper limb and lower limb on the basis of virtual reality and augmented reality |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI728582B true TWI728582B (en) | 2021-05-21 |
| TW202122136A TW202122136A (en) | 2021-06-16 |
Family
ID=77036273
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108143951A TWI728582B (en) | 2019-12-02 | 2019-12-02 | Exoskeleton system for rehabilitation training in collaboration between upper limb and lower limb on the basis of virtual reality and augmented reality |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI728582B (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101530367A (en) * | 2009-04-21 | 2009-09-16 | 清华大学 | Unweighting walking rehabilitation training robot |
| CN101536955A (en) * | 2009-04-21 | 2009-09-23 | 清华大学 | Vertical follow-up type lightened walking rehabilitation training robot |
| CN101810533A (en) * | 2010-03-08 | 2010-08-25 | 上海交通大学 | Walking aid exoskeleton rehabilitation robot |
| CN103462781A (en) * | 2013-08-22 | 2013-12-25 | 上海交通大学 | Lower limb rehabilitation training robot |
| CN105496732A (en) * | 2015-12-02 | 2016-04-20 | 宁波高新区斌达体育科技有限公司 | Running and walking boosting speed increaser |
| TW201632233A (en) * | 2015-03-10 | 2016-09-16 | 龍華科技大學 | Pneumatic drive rehabilitation of lower extremity gait training system |
| CN106420271A (en) * | 2016-09-06 | 2017-02-22 | 广州科安康复专用设备有限公司 | Single-driven bionic gait rehabilitation training robot system |
| WO2018214246A1 (en) * | 2017-05-22 | 2018-11-29 | 华中科技大学 | Connecting rod-type lower limb exoskeleton rehabilitation robot |
-
2019
- 2019-12-02 TW TW108143951A patent/TWI728582B/en active
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101530367A (en) * | 2009-04-21 | 2009-09-16 | 清华大学 | Unweighting walking rehabilitation training robot |
| CN101536955A (en) * | 2009-04-21 | 2009-09-23 | 清华大学 | Vertical follow-up type lightened walking rehabilitation training robot |
| CN101530367B (en) | 2009-04-21 | 2011-01-05 | 清华大学 | Unweighting walking rehabilitation training robot |
| CN101536955B (en) | 2009-04-21 | 2011-01-05 | 清华大学 | Vertical follow-up type lightened walking rehabilitation training robot |
| CN101810533A (en) * | 2010-03-08 | 2010-08-25 | 上海交通大学 | Walking aid exoskeleton rehabilitation robot |
| CN103462781B (en) | 2013-08-22 | 2015-07-08 | 上海交通大学 | Lower Limb Rehabilitation Training Robot |
| CN103462781A (en) * | 2013-08-22 | 2013-12-25 | 上海交通大学 | Lower limb rehabilitation training robot |
| TW201632233A (en) * | 2015-03-10 | 2016-09-16 | 龍華科技大學 | Pneumatic drive rehabilitation of lower extremity gait training system |
| CN105496732A (en) * | 2015-12-02 | 2016-04-20 | 宁波高新区斌达体育科技有限公司 | Running and walking boosting speed increaser |
| CN105496732B (en) | 2015-12-02 | 2018-02-02 | 宁波高新区斌达体育科技有限公司 | Run booster speed increasing device |
| CN106420271A (en) * | 2016-09-06 | 2017-02-22 | 广州科安康复专用设备有限公司 | Single-driven bionic gait rehabilitation training robot system |
| CN106420271B (en) | 2016-09-06 | 2018-11-30 | 广州科安康复专用设备有限公司 | It is single to drive bionical gait rehabilitation training robot system |
| WO2018214246A1 (en) * | 2017-05-22 | 2018-11-29 | 华中科技大学 | Connecting rod-type lower limb exoskeleton rehabilitation robot |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202122136A (en) | 2021-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7382415B2 (en) | Upper limb function evaluation device and method and upper limb rehabilitation training system and method | |
| CN110201358A (en) | Rehabilitation training of upper limbs system and method based on virtual reality and motor relearning | |
| Carr et al. | Neurological rehabilitation: optimizing motor performance | |
| Fisher et al. | Evidence based resistance training recommendations | |
| Liu et al. | Augmented reality-based training system for hand rehabilitation | |
| CN110215676A (en) | A kind of upper limb both arms rehabilitation training man-machine interaction method and system | |
| CN109157374A (en) | A kind of intensive care unit brain paralysis patient double lower limb coordinated movement of various economic factors rehabilitation system | |
| TWI762313B (en) | Immersive and multi-posture rehabilitation training system with active/passive physical coordination | |
| BRPI0822752B1 (en) | PORTABLE DEVICE FOR TOP MEMBERS REHABILITATION | |
| CN105640733B (en) | A kind of upper limb rehabilitation robot and its control method | |
| CN107753241A (en) | A kind of control method of lower limb rehabilitation treatment intelligent exoskeleton robot | |
| KR102346680B1 (en) | Training and exercise system based on virtual reality or augmented reality for dizziness and disequilibrium | |
| Baur et al. | Making neurorehabilitation fun: Multiplayer training via damping forces balancing differences in skill levels | |
| CN119339881B (en) | A training-based approach to movement rehabilitation | |
| Sáenz-de-Urturi et al. | Kinect-based virtual game for motor and cognitive rehabilitation: a pilot study for older adults | |
| TWI728582B (en) | Exoskeleton system for rehabilitation training in collaboration between upper limb and lower limb on the basis of virtual reality and augmented reality | |
| US20230136143A1 (en) | Upper limb rehabilitation training system integrating multi-source stimulation | |
| CN103736255B (en) | Meridian-guiding-feedback rehabilitation training system for lower limb potential development training | |
| CN103463799B (en) | Follow through leading network pilot feedback rehabilitation training system | |
| Ciou et al. | Football APP based on smart phone with FES in drop foot rehabilitation | |
| Friedrich et al. | Serious Games for Home-based Stroke Rehabilitation. | |
| CN106815466A (en) | It is a kind of based on the sportsmedicine control weight management method for instructing to be combined under on-line monitoring and line | |
| TW202506238A (en) | An intervention method for promoting cardiorespiratory fitness training and its system thereof | |
| Zhang et al. | [Retracted] The Biomechanical Analysis of Jumping Difficulty Movement in National Traditional Sports | |
| CN205434279U (en) | Recovered robot of intelligence |