TWI726446B - Analytical system and analytical method thereof - Google Patents

Analytical system and analytical method thereof Download PDF

Info

Publication number
TWI726446B
TWI726446B TW108137161A TW108137161A TWI726446B TW I726446 B TWI726446 B TW I726446B TW 108137161 A TW108137161 A TW 108137161A TW 108137161 A TW108137161 A TW 108137161A TW I726446 B TWI726446 B TW I726446B
Authority
TW
Taiwan
Prior art keywords
data
light source
analysis method
wavelength
analysis
Prior art date
Application number
TW108137161A
Other languages
Chinese (zh)
Other versions
TW202107476A (en
Inventor
賴盈達
歐育誠
陳依希
陳冠穎
陳璽元
劉育佑
Original Assignee
新加坡商克雷多生物醫學私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商克雷多生物醫學私人有限公司 filed Critical 新加坡商克雷多生物醫學私人有限公司
Priority to US16/777,814 priority Critical patent/US20210043277A1/en
Priority to EP20163228.8A priority patent/EP3778922A1/en
Priority to JP2020081838A priority patent/JP7213844B2/en
Priority to KR1020200057476A priority patent/KR102278792B1/en
Publication of TW202107476A publication Critical patent/TW202107476A/en
Application granted granted Critical
Publication of TWI726446B publication Critical patent/TWI726446B/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/20Polymerase chain reaction [PCR]; Primer or probe design; Probe optimisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/30Unsupervised data analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Public Health (AREA)
  • Software Systems (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioethics (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

An analytical method includes obtaining a first data and performing curve fitting on the first data according to at least one basis to generate at least one coefficient corresponding to the at least one basis. A function pattern corresponding to one of the at least one basis has asymmetry.

Description

分析系統及其分析方法 Analysis system and its analysis method

本發明係指一種分析系統及其分析方法,尤指分析準確度及分析效率較高且有利於尺寸微型化的一種分析系統及其分析方法。 The present invention refers to an analysis system and an analysis method thereof, especially an analysis system and an analysis method that have high analysis accuracy and analysis efficiency and are beneficial to size miniaturization.

聚合酶鏈式反應(polymerase chain reaction,PCR)的DNA擴增反應為分子生物學的重要技術。其中,即時聚合酶鏈式反應是指在同一個待測物容器中同時進行DNA擴增反應與DNA擴增後的數量分析。DNA擴增後的數量分析是將待測物被激發的螢光訊號分離至不同的多個光路,並藉由多個帶通濾波片過濾為不同頻段的多個訊號,來進行分析。然而,相鄰頻段的訊號會引發交叉干擾(crosstalk)問題,且交叉干擾問題會隨溶液濃度或溫度而改變,而影響分析準確度及分析效率。再者,藉由寬波段的氙氣燈(Xenon light)來激發待測物的激發效率較低,因此不利於偵測低濃度的待測物或多種的待測物,且須配置複雜而體積龐大的光學系統。 The DNA amplification reaction of polymerase chain reaction (PCR) is an important technology of molecular biology. Among them, real-time polymerase chain reaction refers to simultaneous DNA amplification reaction and quantitative analysis after DNA amplification in the same container of the test substance. Quantitative analysis after DNA amplification is to separate the excited fluorescent signal of the test object into different multiple light paths, and filter it into multiple signals of different frequency bands through multiple bandpass filters for analysis. However, signals in adjacent frequency bands will cause crosstalk problems, and the crosstalk problems will vary with solution concentration or temperature, which affects analysis accuracy and analysis efficiency. Furthermore, the excitation efficiency of using a wide-band Xenon light to excite the analyte is low, so it is not conducive to detecting low-concentration analytes or a variety of analytes, and the configuration is complicated and bulky. Optical system.

因此,本發明主要提供一種分析系統及其分析方法,以提高分析準確度及分析效率且有利於尺寸微型化。 Therefore, the present invention mainly provides an analysis system and an analysis method thereof to improve analysis accuracy and analysis efficiency and facilitate size miniaturization.

本發明揭露一種分析方法,包含有取得一第一資料,以及依據至少一基底對第一資料進行曲線擬合,以產生對應至少一基底的至少一係數。其中,至少一基底中的一者對應的一函數圖形具有不對稱性。 The present invention discloses an analysis method, which includes obtaining a first data, and performing curve fitting on the first data according to at least one base to generate at least one coefficient corresponding to the at least one base. Wherein, a function graph corresponding to one of the at least one base has asymmetry.

本發明另揭露一種分析系統,包含有用來儲存一程式碼的一儲存單元,以及用來執行該程式碼的一處理單元。編譯成該程式碼的一分析方法包含有取得一第一資料,以及依據至少一基底對第一資料進行曲線擬合,以產生對應至少一基底的至少一係數。其中,至少一基底中的一者對應的一函數圖形具有不對稱性。 The present invention further discloses an analysis system, which includes a storage unit for storing a program code, and a processing unit for executing the program code. An analysis method compiled into the program code includes obtaining a first data, and performing curve fitting on the first data according to at least one base to generate at least one coefficient corresponding to the at least one base. Wherein, a function graph corresponding to one of the at least one base has asymmetry.

10、70:分析系統 10.70: Analysis system

100:光源 100: light source

120:待測物 120: DUT

150:處理電路 150: processing circuit

160:儲存裝置 160: storage device

110、130、710、730:光學元件 110, 130, 710, 730: optical components

140、740:檢測器 140, 740: detector

BS1~BS3:基底 BS1~BS3: base

BS1w~BS3w:資料分量 BS1w~BS3w: data component

DTr、DTf、DTp、DTn:資料 DTr, DTf, DTp, DTn: data

FS:螢光訊號 FS: Fluorescent signal

L1、L2:積分下界 L1, L2: lower bound of integral

LB:光束 LB: beam

U1、U2:積分上界 U1, U2: integral upper bound

WR1、WR2:波段範圍 WR1, WR2: Band range

第1圖為本發明實施例中一分析系統的示意圖。 Figure 1 is a schematic diagram of an analysis system in an embodiment of the present invention.

第2圖為本發明實施例一分析方法之流程圖。 Figure 2 is a flowchart of an analysis method according to an embodiment of the present invention.

第3圖為第2圖之分析方法的雜訊去除步驟的示意圖。 Figure 3 is a schematic diagram of the noise removal step of the analysis method of Figure 2.

第4圖為第2圖之分析方法的部分擷取步驟的示意圖。 FIG. 4 is a schematic diagram of the partial extraction steps of the analysis method of FIG. 2. FIG.

第5圖為第2圖之分析方法採用的基底的示意圖。 Figure 5 is a schematic diagram of the substrate used in the analysis method of Figure 2.

第6圖為第2圖之分析方法的曲線擬合步驟的示意圖。 Figure 6 is a schematic diagram of the curve fitting steps of the analysis method in Figure 2.

第7圖為本發明實施例中一分析系統的示意圖。 Figure 7 is a schematic diagram of an analysis system in an embodiment of the present invention.

請參考第1圖,第1圖為本發明實施例中一分析系統10的示意圖。分析系統10可用來即時偵測並分析螢光訊號。分析系統10包含有一光源100、光學元件110、130、一待測物120、一檢測器(detector)140、一處理電路150以及一 儲存裝置160。光源100發出的光束LB藉由光學元件110導向待測物120並激發待測物120,而產生螢光訊號FS(也可稱作第一螢光訊號)。螢光訊號FS可藉由光學元件130導向檢測器140,檢測器140接收螢光訊號FS並量測螢光訊號FS的(光)強度與波長的對應關係,並將測得的資料DTr輸出至處理電路150。資料DTr可為光譜資料,處理電路150可依據編譯成程式碼的一分析方法來分析檢測器140傳送的光譜資料,儲存裝置160則可用來儲存光譜資料、分析方法的程式碼或其他資訊。 Please refer to Figure 1, which is a schematic diagram of an analysis system 10 in an embodiment of the present invention. The analysis system 10 can be used to detect and analyze fluorescent signals in real time. The analysis system 10 includes a light source 100, optical elements 110, 130, a test object 120, a detector 140, a processing circuit 150, and a Storage device 160. The light beam LB emitted by the light source 100 is guided by the optical element 110 to the test object 120 and excites the test object 120 to generate a fluorescent signal FS (also referred to as a first fluorescent signal). The fluorescent signal FS can be guided to the detector 140 by the optical element 130. The detector 140 receives the fluorescent signal FS and measures the corresponding relationship between the intensity of the fluorescent signal FS and the wavelength, and outputs the measured data DTr to Processing circuit 150. The data DTr can be spectral data, the processing circuit 150 can analyze the spectral data transmitted by the detector 140 according to an analysis method compiled into a program code, and the storage device 160 can be used to store spectral data, analysis method code or other information.

簡言之,待測物120可包含有至少一種的已知物質。光源100發出的光束LB可激發待測物120中的已知物質,而放射出螢光訊號FS。由於每一種已知物質被激發的螢光訊號(也可稱作第二螢光訊號)的(光)強度與波長的對應關係是已知的,因此,處理電路150可分析待測物被激發的螢光訊號FS的(光)強度與波長的對應關係,而判斷待測物120中的每一種已知物質的濃度。 In short, the test object 120 may include at least one known substance. The light beam LB emitted by the light source 100 can excite the known substance in the test object 120 to emit a fluorescent signal FS. Since the corresponding relationship between the (light) intensity and the wavelength of the fluorescent signal (also known as the second fluorescent signal) excited by each known substance is known, the processing circuit 150 can analyze that the test object is excited The corresponding relationship between the (light) intensity of the fluorescent signal FS and the wavelength is used to determine the concentration of each known substance in the test object 120.

進一步地,請一併參考第2圖至第6圖。第2圖為本發明實施例一分析方法20之流程圖,第3圖為第2圖之分析方法20的雜訊去除步驟的示意圖,第4圖為第2圖之分析方法20的部分擷取步驟的示意圖,第5圖為第2圖之分析方法20採用的基底BS1~BS3的示意圖,以及第6圖為第2圖之分析方法20的曲線擬合步驟的示意圖。分析方法20可被編譯成一程式碼而由第1圖的處理電路150執行,其可包含以下步驟: Further, please refer to Figures 2 to 6 together. Figure 2 is a flowchart of an analysis method 20 according to an embodiment of the present invention. Figure 3 is a schematic diagram of the noise removal steps of the analysis method 20 of Figure 2 and Figure 4 is a partial extraction of the analysis method 20 of Figure 2 The schematic diagram of the steps, Figure 5 is a schematic diagram of the substrates BS1 to BS3 used in the analysis method 20 of Figure 2, and Figure 6 is a schematic diagram of the curve fitting steps of the analysis method 20 of Figure 2. The analysis method 20 can be compiled into a program code and executed by the processing circuit 150 in FIG. 1, which can include the following steps:

步驟200:開始。 Step 200: Start.

步驟202:取得一資料DTr。 Step 202: Obtain a data DTr.

步驟204:進行一資料處理步驟,以於資料DTr去除雜訊,而取得一資料DTf。 Step 204: Perform a data processing step to remove noise from the data DTr, and obtain a data DTf.

步驟206:進行另一資料處理步驟,以擷取部分的資料DTf,而取得一資料DTp。 Step 206: Perform another data processing step to retrieve part of the data DTf to obtain a data DTp.

步驟208:進行另一資料處理步驟,以將資料DTp歸一化(normalized),而取得一資料DTn。 Step 208: Perform another data processing step to normalize the data DTp to obtain a data DTn.

步驟210:依據至少一基底(basis)BS1~BS3對資料DTn進行曲線擬合(curve fitting),以產生對應於至少一基底BS1~BS3的至少一係數,其中,至少一基底BS1~BS3中的一者對應的一函數圖形具有不對稱性(asymmetry)。 Step 210: Perform curve fitting on the data DTn according to at least one basis BS1~BS3 to generate at least one coefficient corresponding to at least one basis BS1~BS3, wherein at least one of the bases BS1~BS3 The graph of a function corresponding to one has asymmetry.

步驟212:結束。 Step 212: End.

具體而言,在步驟202中,處理電路150接收檢測器140傳送的資料DTr。資料DTr可為光譜資料,其提供待測物120被激發的螢光訊號FS的(光)強度與波長的對應關係。 Specifically, in step 202, the processing circuit 150 receives the data DTr transmitted by the detector 140. The data DTr may be spectral data, which provides the corresponding relationship between the (light) intensity and the wavelength of the fluorescent signal FS excited by the test object 120.

步驟204可為一雜訊去除步驟,以提高後續的資料分析的正確性。也就是說,處理電路150可進行一資料處理步驟,以去除資料DTr的雜訊(例如背景雜訊),而將資料DTr轉換為資料DTf。在一些實施例中,處理電路150可針對時域(time domain)或頻域(frequency domain)進行雜訊濾除演算。在一些實施例中,可藉由低通濾波器進行雜訊濾除,但不以此為限。在一些實施例中,可藉由硬體濾波器進行雜訊濾除或藉由軟體濾波器進行雜訊濾除演算,但不以此為限。如第3圖所示,相對資料DTr對應的函數圖形,資料DTf對應的函數圖形為較平滑的曲線。 Step 204 can be a noise removal step to improve the accuracy of subsequent data analysis. In other words, the processing circuit 150 can perform a data processing step to remove noise (such as background noise) of the data DTr, and convert the data DTr into the data DTf. In some embodiments, the processing circuit 150 may perform noise filtering calculations for the time domain or the frequency domain. In some embodiments, the noise can be filtered by a low-pass filter, but it is not limited to this. In some embodiments, a hardware filter may be used to perform noise filtering or a software filter may be used to perform noise filtering calculations, but it is not limited to this. As shown in Figure 3, the function graph corresponding to the data DTf is a smoother curve compared to the function graph corresponding to the data DTr.

步驟206可為一部分擷取步驟,用以減低光源100發出的光束LB造成的干擾,或避開其他光源干擾波段。也就是說,處理電路150可進行一資料處理 步驟,以擷取部分波長區間的資料DTf,而將資料DTf轉換為資料DTp。因此,處理電路150可針對全部波長區間或特定波長區間的光譜資料進行分析。在一些實施例中,可藉由硬體或軟體進行部分擷取步驟,但不以此為限。如第4圖所示,資料DTf對應的函數圖形僅於右半部分重合資料DTp對應的函數圖形。 Step 206 may be a part of the capturing step to reduce the interference caused by the light beam LB emitted by the light source 100 or to avoid interference bands of other light sources. In other words, the processing circuit 150 can perform a data processing The step is to capture the data DTf of a part of the wavelength interval, and convert the data DTf to the data DTp. Therefore, the processing circuit 150 can analyze the spectrum data of the entire wavelength range or a specific wavelength range. In some embodiments, part of the capture step can be performed by hardware or software, but it is not limited to this. As shown in Figure 4, the function graph corresponding to the data DTf only overlaps the function graph corresponding to the data DTp on the right half.

步驟208可為一歸一化步驟,以提高後續的資料分析的效率。也就是說,處理電路150可進行一資料處理步驟,以將資料DTp歸一化,而將資料DTp轉換為資料DTn。在一些實施例中,處理電路150可對資料DTp做(光)強度的歸一化演算,例如對最大光強度進行歸一化。在一些實施例中,可依據公式DTn(λ)=(DTp(λ)-min(DTp))/(max(DTp)-min(DTp))進行歸一化,其中,max(DTp)為資料DTp的最大光強度值,min(DTp)為資料DTp的最小光強度值,DTp(λ)、DTn(λ)分別為資料DTp、DTn在某一波長對應的光強度值。 Step 208 can be a normalization step to improve the efficiency of subsequent data analysis. In other words, the processing circuit 150 can perform a data processing step to normalize the data DTp and convert the data DTp into the data DTn. In some embodiments, the processing circuit 150 can normalize the (light) intensity of the data DTp, for example, normalize the maximum light intensity. In some embodiments, the normalization can be performed according to the formula DTn(λ)=(DTp(λ)-min(DTp))/(max(DTp)-min(DTp)), where max(DTp) is the data The maximum light intensity value of DTp, min(DTp) is the minimum light intensity value of the data DTp, DTp(λ), DTn(λ) are the light intensity values corresponding to the data DTp and DTn at a certain wavelength, respectively.

在步驟210中,處理電路150可依據基底BS1~BS3對資料DTn(也可稱作第一資料)進行曲線擬合(curve fitting),以產生對應於基底BS1~BS3的係數。其中,基底BS1~BS3可分別為光譜資料,而分別提供一種已知物質被激發的螢光訊號(也可稱作第二螢光訊號)的(光)強度與波長的對應關係。如第6圖所示,資料分量BS1w~BS3w分別代表待測物120中的某一種已知物質被激發的螢光訊號的(光)強度與波長的對應關係。其中,資料分量BS1w~BS3w在某一波長的光強度總合等於資料DTn在此波長的光強度,而資料分量BS1w(或資料分量BS2w、BS3w)與基底BS1(或基底BS2、BS3)的比值則為對應基底BS1(或基底BS2、BS3)的係數。也就是說,DTn(λ)=BS1w(λ)+BS2w(λ)+BS3w(λ)=c1*BS1(λ)+c2*BS2(λ)+c3*BS3(λ),BS1w(λ)~BS3w(λ)分別為資料分量BS1w~BS3w在某一波長對應的光強度值, BS1(λ)~BS3(λ)分別為基底BS1~BS3在某一波長對應的光強度值,c1~c3分別為對應基底BS1~BS3的係數。處理電路150可藉由對應基底BS1~BS3的係數,確定待測物120中的每一種已知物質被激發的螢光訊號的(光)強度與波長的對應關係(即第6圖所示的資料分量BS1w~BS3w),而判斷待測物120中的每一種已知物質的濃度。 In step 210, the processing circuit 150 may perform curve fitting on the data DTn (also referred to as the first data) according to the bases BS1 to BS3 to generate coefficients corresponding to the bases BS1 to BS3. Among them, the substrates BS1 to BS3 can respectively be spectral data, and respectively provide a corresponding relationship between (light) intensity and wavelength of a fluorescent signal (also called a second fluorescent signal) excited by a known substance. As shown in FIG. 6, the data components BS1w~BS3w respectively represent the corresponding relationship between the (light) intensity and the wavelength of the fluorescent signal excited by a certain known substance in the test object 120. Among them, the total light intensity of the data components BS1w~BS3w at a certain wavelength is equal to the light intensity of the data DTn at this wavelength, and the ratio of the data component BS1w (or data components BS2w, BS3w) to the base BS1 (or base BS2, BS3) It is the coefficient corresponding to the base BS1 (or base BS2, BS3). In other words, DTn(λ)=BS1w(λ)+BS2w(λ)+BS3w(λ)=c1*BS1(λ)+c2*BS2(λ)+c3*BS3(λ), BS1w(λ)~ BS3w(λ) are the light intensity values corresponding to the data components BS1w~BS3w at a certain wavelength, BS1(λ)~BS3(λ) are the light intensity values corresponding to the substrate BS1~BS3 at a certain wavelength, and c1~c3 are the coefficients corresponding to the substrate BS1~BS3. The processing circuit 150 can determine the corresponding relationship between the (light) intensity and the wavelength of the fluorescent signal excited by each known substance in the test object 120 by using the coefficients corresponding to the substrates BS1~BS3 (that is, as shown in Figure 6 Data components BS1w~BS3w), and determine the concentration of each known substance in the test object 120.

藉由步驟210,即使資料分量BS1w~BS3w之間的距離較近(例如資料分量BS1w~BS3w的局部極大值對應的波長之間的差值較小時或交叉干擾問題較嚴重時),或者即使不同已知物質的激發效率的差異較大時,或者即使某種已知物質的濃度或激發效率較低時,仍能有效分析出每個已知物質的資料分量BS1w~BS3w。在一些實施例中,待測物120進行即時(real-time)聚合酶鏈式反應(polymerase chain reaction,PCR),處理電路150判斷待測物120中的每一種已知物質的濃度,即可計算出DNA擴增(amplification)後的數量。其中,螢光訊號FS可為即時(real-time)聚合酶鏈式反應(polymerase chain reaction,PCR)的DNA擴增反應中,待測物120中(鍵結至DNA雙股的)試劑被激發出的螢光訊號。在此情況下,藉由對應基底BS1~BS3的係數,可計算出DNA擴增後的數量。 According to step 210, even if the distance between the data components BS1w~BS3w is relatively short (for example, when the difference between the wavelengths corresponding to the local maximums of the data components BS1w~BS3w is small or the cross-interference problem is severe), or even if When the excitation efficiency of different known substances differs greatly, or even when the concentration or excitation efficiency of a certain known substance is low, the data components BS1w~BS3w of each known substance can still be effectively analyzed. In some embodiments, the analyte 120 performs real-time polymerase chain reaction (PCR), and the processing circuit 150 determines the concentration of each known substance in the analyte 120. Calculate the amount of DNA after amplification (amplification). Among them, the fluorescent signal FS can be a real-time polymerase chain reaction (PCR) DNA amplification reaction, in which the reagent (bonded to the DNA double strand) in the test substance 120 is excited Fluorescent signal. In this case, the number of amplified DNA can be calculated by the coefficients corresponding to the base BS1~BS3.

在一些實施例中,曲線擬合是依據最小平方法(least square fit)、複線性迴歸法(Multiple Linear Regression)、主成分分析法(principal component analysis)、逐點交叉相關函數法(point-wise cross-correlation)、最小絕對差遞迴法(least absolute deviation regression)或小波轉換法(wavelet transfer)來進行。在一些實施例中,基底BS1~BS3已分別完成(光)強度的歸一化演算,例如對最大光強度進行歸一化。在一些實施例中,如第6圖所示,基底BS1(或基底BS2、BS3)對應的函數圖形可具有不對稱性(asymmetry)。在一些實施例中,如第5 圖所示,基底BS1(或基底BS2、BS3)對應的函數圖形於一第一波長區間(wavelength interval)的定積分(definite integral)可小於函數圖形於一第二波長區間的定積分。也就是說,

Figure 108137161-A0305-02-0009-1
In some embodiments, curve fitting is based on least square fit, multiple linear regression, principal component analysis, and point-wise cross-correlation function. cross-correlation, least absolute deviation regression or wavelet transfer. In some embodiments, the substrates BS1 to BS3 have respectively completed the normalization calculation of (light) intensity, for example, normalization of the maximum light intensity. In some embodiments, as shown in FIG. 6, the function pattern corresponding to the substrate BS1 (or the substrate BS2, BS3) may have asymmetry. In some embodiments, as shown in Figure 5, the definite integral of the function pattern corresponding to the base BS1 (or the base BS2, BS3) in a first wavelength interval may be smaller than the definite integral of the function pattern in a first wavelength interval. Definite integral of two wavelength intervals. In other words,
Figure 108137161-A0305-02-0009-1

其中,L1為第一波長區間的積分下界且其對應函數圖形的一第一局部極小值(local minimum),U2為第二波長區間的積分上界且其對應函數圖形的一第二局部極小值,U1、L2分別為第一波長區間的積分上界與第二波長區間的積分下界且其均對應函數圖形的一局部極大值。在一些實施例中,基底BS1(或基底BS2、BS3)對應的函數圖形可具有多於一個的局部極大值(local maximum)。在一些實施例中,基底BS1(或基底BS2、BS3)對應的函數圖形可藉由實驗或理論計算而確定,例如針對特定的一種已知物質量測其激發頻譜或放射頻譜。 Among them, L1 is the lower integral of the first wavelength interval and corresponds to a first local minimum of the function graph, and U2 is the integral upper bound of the second wavelength interval and it corresponds to a second local minimum of the function graph , U1 and L2 are respectively the upper integral bound of the first wavelength interval and the lower integral bound of the second wavelength interval, and both of them correspond to a local maximum value of the function graph. In some embodiments, the function graph corresponding to the base BS1 (or the base BS2, BS3) may have more than one local maximum. In some embodiments, the function graph corresponding to the substrate BS1 (or the substrate BS2, BS3) can be determined by experiment or theoretical calculation, for example, the excitation spectrum or emission spectrum of a specific known substance is measured.

需注意的是,分析系統10為本發明之實施例,本領域具通常知識者當可據以做不同的變化及修飾。舉例來說,請參考第7圖,第7圖為本發明實施例一分析系統70之示意圖。分析系統70之架構類似於分析系統10,故相同元件沿用相同符號表示。其中,分析系統10的光學元件110、130及檢測器140可藉由分析系統70的光學元件710、730及檢測器740來實施。 It should be noted that the analysis system 10 is an embodiment of the present invention, and those with ordinary knowledge in the art can make various changes and modifications accordingly. For example, please refer to FIG. 7, which is a schematic diagram of an analysis system 70 according to an embodiment of the present invention. The structure of the analysis system 70 is similar to that of the analysis system 10, so the same components are represented by the same symbols. The optical elements 110 and 130 and the detector 140 of the analysis system 10 can be implemented by the optical elements 710 and 730 and the detector 740 of the analysis system 70.

詳細而言,光源100可為高光強度且窄波段的光源。如此一來,即使資料分量BS1w~BS3w之間的距離較近(例如資料分量BS1w~BS3w的局部極大值對應的波長之間的差值較小時或交叉干擾問題較嚴重時),或者即使不同已知物質的激發效率的差異較大時,或者即使某種已知物質的濃度或激發效率較低 時,仍能有效激發出每個已知物質。舉例來說,在一些實施例中,光源100的光強度範圍可介於每平方公釐(millimeter,mm2)10毫瓦(milliWatt,mW)至每平方公釐500毫瓦(即500毫瓦/平方公釐(mW/mm2))之間,因此,光源100相對為高光強度的光源。在一些實施例中,光源100的(瞬間)輸出功率可介於1毫瓦至500毫瓦之間,但不以此為限。 In detail, the light source 100 may be a light source with a high light intensity and a narrow wavelength band. In this way, even if the distance between the data components BS1w~BS3w is relatively short (for example, when the difference between the wavelengths corresponding to the local maximums of the data components BS1w~BS3w is small or the cross-interference problem is serious), or even if the When the difference in the excitation efficiency of known substances is large, or even when the concentration or excitation efficiency of a certain known substance is low, each known substance can still be effectively excited. For example, in some embodiments, the light intensity of the light source 100 may range from 10 milliwatts (milliWatt, mW) per square millimeter (millimeter, mm 2 ) to 500 milliwatts per square millimeter (ie, 500 milliwatts). /Square millimeter (mW/mm 2 )), therefore, the light source 100 is relatively a high light intensity light source. In some embodiments, the (instantaneous) output power of the light source 100 may be between 1 mW and 500 mW, but is not limited to this.

在一些實施例中,光源100的波段範圍(或頻寬)小於至少一種的已知物質被激發的螢光訊號的波段範圍(或頻寬)的十分之一,因此,光源100相對為窄波段的光源。其中,波段範圍(或頻寬)可藉由半高全寬(Full width at half maximum,FWHM)來界定。在一些實施例中,如第6圖所示,光源100的波段範圍WR1小於基底BS1(或基底BS2、BS3)的波段範圍WR2,舉例來說,光源100的波段範圍WR1小於基底BS1(或基底BS2、BS3)的波段範圍WR2的十分之一。在一些實施例中,光源100的波段範圍可介於0.1奈米(nanometer,nm)至2奈米之間,但不以此為限。在一些實施例中,光源100可為雷射光源,更進一步地,光源100可為二極體雷射(diode Laser)光源或半導體雷射(Semiconductor laser)光源,例如為法布立-佩羅(Fabry-Perot,F-P)半導體雷射、單頻半導體雷射(Distributed Feedback Laser,DFB)或垂直共振腔面射型雷射(Vertical-Cavity Surface-Emitting Laser,VCSEL),但不以此為限。在一些實施例中,光源100可為一個以上的半導體雷射光源組成的半導體雷射光源組,且所有的或部分的半導體雷射光源可具有不同的中心波長。在一些實施例中,光源100可為發散角度小於或等於10度的發光二極體光源(light-emitting diode),但不以此為限。在一些實施例中,光源100可為一個以上的發光二極體光源組成的發光二極體光源組,且所有的或部分的發光二極體光源可具有不同的中心波長。在一些實施例中,光源100的中心波長可介於405奈米至660奈米之間,但不以此為限。 In some embodiments, the wavelength range (or bandwidth) of the light source 100 is less than one-tenth of the wavelength range (or bandwidth) of the fluorescent signal excited by at least one known substance. Therefore, the light source 100 is relatively narrow. Band light source. Among them, the band range (or bandwidth) can be defined by the full width at half maximum (FWHM). In some embodiments, as shown in Figure 6, the wavelength range WR1 of the light source 100 is smaller than the wavelength range WR2 of the substrate BS1 (or the substrate BS2, BS3). For example, the wavelength range WR1 of the light source 100 is smaller than the wavelength range WR1 of the substrate BS1 (or substrate BS1). BS2, BS3) one-tenth of the band range WR2. In some embodiments, the wavelength range of the light source 100 may be between 0.1 nanometer (nm) and 2 nanometers, but it is not limited thereto. In some embodiments, the light source 100 may be a laser light source. Further, the light source 100 may be a diode laser light source or a semiconductor laser light source, such as Fabry-Perot. (Fabry-Perot, FP) Semiconductor laser, Distributed Feedback Laser (DFB) or Vertical-Cavity Surface-Emitting Laser (VCSEL), but not limited to this . In some embodiments, the light source 100 may be a semiconductor laser light source group composed of more than one semiconductor laser light source, and all or part of the semiconductor laser light sources may have different center wavelengths. In some embodiments, the light source 100 may be a light-emitting diode with a divergence angle less than or equal to 10 degrees, but it is not limited to this. In some embodiments, the light source 100 may be a light-emitting diode light source group composed of more than one light-emitting diode light source, and all or part of the light-emitting diode light sources may have different central wavelengths. In some embodiments, the center wavelength of the light source 100 may be between 405 nm and 660 nm, but is not limited to this.

待測物120可包含有至少一種的反應物或試劑,而試劑可包含有至少一種的螢光探針或螢光染劑,但不以此為限。在一些實施例中,螢光探針或螢光染劑可為FAM、VIC、HEX、ROX、CY3、CY5、CY5.5、JOE、TET、SyBR、Texas Red、TAMRA、NED、Quasar705、Alexa488、Alexa546、Alexa594、Alexa633、Alexa643、Alexa680或其他的螢光探針或螢光染劑。在一些實施例中,螢光探針或螢光染劑的中心波長介於340奈米至850奈米之間,但不以此為限。其中,波段範圍可藉由半高全寬來界定。此外,待測物120可裝載於一待測物容器。 The analyte 120 may include at least one reactant or reagent, and the reagent may include at least one fluorescent probe or fluorescent dye, but it is not limited thereto. In some embodiments, the fluorescent probe or fluorescent dye can be FAM, VIC, HEX, ROX, CY3, CY5, CY5.5, JOE, TET, SyBR, Texas Red, TAMRA, NED, Quasar705, Alexa488, Alexa546, Alexa594, Alexa633, Alexa643, Alexa680 or other fluorescent probes or fluorescent dyes. In some embodiments, the center wavelength of the fluorescent probe or fluorescent dye is between 340 nanometers and 850 nanometers, but not limited to this. Among them, the band range can be defined by the full width at half maximum. In addition, the test object 120 can be loaded in a test object container.

光學元件710、730可用來調整光束寬度,例如將光束聚合或發散,或者,光學元件710、730可進一步用來調整光束方向。在一些實施例中,光學元件710或光學元件730可包含有至少一個聚合透鏡,但不以此為限。在一些實施例中,光學元件710或光學元件730可包含有雙凸透鏡、平凸透鏡、雙重透鏡、非球面透鏡、消色差透鏡、消像差透鏡、菲涅爾透鏡、平凹透鏡、雙凹透鏡、正/負彎月透鏡、軸稜鏡、梯度折射率透鏡、微透鏡陣列、柱狀透鏡、繞射光學元件、拋物面鏡、全像光學元件或光波導元件其中至少一者。在一些實施例中,分析系統70中可省略光學元件710或光學元件730的設置。 The optical elements 710 and 730 can be used to adjust the beam width, for example, to converge or diverge the beam, or the optical elements 710 and 730 can be further used to adjust the direction of the beam. In some embodiments, the optical element 710 or the optical element 730 may include at least one polymer lens, but it is not limited thereto. In some embodiments, the optical element 710 or the optical element 730 may include bi-convex lenses, plano-convex lenses, double lenses, aspheric lenses, achromatic lenses, aberration lenses, Fresnel lenses, plano-concave lenses, bi-concave lenses, and positive lenses. /At least one of a negative meniscus lens, an axial lens, a gradient index lens, a microlens array, a cylindrical lens, a diffractive optical element, a parabolic mirror, a holographic optical element, or an optical waveguide element. In some embodiments, the configuration of the optical element 710 or the optical element 730 may be omitted in the analysis system 70.

在一些實施例中,檢測器740可為光譜儀,在一些實施例中,檢測器740可為微型光譜儀,以利於分析系統70的尺寸微型化。舉例來說,檢測器740為微電子機械系統(Microelectromechanical Systems,MEMS)光譜儀,但不以此為限。在一些實施例中,檢測器740的波段範圍可為340奈米至850奈米之間,但不以此為限。 In some embodiments, the detector 740 may be a spectrometer. In some embodiments, the detector 740 may be a miniature spectrometer to facilitate the miniaturization of the size of the analysis system 70. For example, the detector 740 is a Microelectromechanical Systems (MEMS) spectrometer, but it is not limited to this. In some embodiments, the wavelength range of the detector 740 may be between 340 nm and 850 nm, but is not limited to this.

處理電路150可依據編譯成程式碼的分析方法20來分析檢測器140傳送的光譜資料。在一些實施例中,處理電路150可為中央處理器(Central Processing Unit,CPU)、微處理器或特定應用積體電路(Application-Specific Integrated Circuit,ASIC)。在一些實施例中,處理電路150可控制光源100於固定時間間隔開啟或關閉。並且,於光源100開啟時,檢測器140同步偵測螢光訊號FS。在一些實施例中,處理電路150可藉由控制光源100的工作電流或藉由控制一光路開關,來控制光源100於固定時間間隔開啟或關閉。其中,光路開關可為機械式光路開關或電子式光路開關。 The processing circuit 150 can analyze the spectral data transmitted by the detector 140 according to the analysis method 20 compiled into a program code. In some embodiments, the processing circuit 150 may be a central processing unit (CPU), a microprocessor, or an application-specific integrated circuit (ASIC). In some embodiments, the processing circuit 150 can control the light source 100 to be turned on or off at a fixed time interval. Moreover, when the light source 100 is turned on, the detector 140 synchronously detects the fluorescent signal FS. In some embodiments, the processing circuit 150 can control the light source 100 to be turned on or off at a fixed time interval by controlling the operating current of the light source 100 or by controlling a light path switch. Among them, the optical path switch may be a mechanical optical path switch or an electronic optical path switch.

在一些實施例中,儲存裝置160可為任一資料儲存裝置,用來儲存一程式碼,處理電路150可藉由儲存裝置160讀取及執行程式碼。舉例來說,儲存裝置160可為用戶識別模組(Subscriber Identity Module,SIM)、唯讀式記憶體(Read-Only Memory,ROM)、快閃記憶體(flash memory)、隨機存取記憶體(Random-Access Memory,RAM)、硬碟(hard disk)、光學資料儲存裝置(optical data storage device)、非揮發性儲存裝置(non-volatile storage device)、非暫態電腦可讀取介質(non-transitory computer-readable medium)等,而不限於此。 In some embodiments, the storage device 160 can be any data storage device for storing a program code, and the processing circuit 150 can read and execute the program code through the storage device 160. For example, the storage device 160 may be a Subscriber Identity Module (SIM), a read-only memory (Read-Only Memory, ROM), a flash memory (flash memory), and a random access memory (SIM). Random-Access Memory (RAM), hard disk (hard disk), optical data storage device (optical data storage device), non-volatile storage device (non-volatile storage device), non-transitory computer readable media (non- transitory computer-readable medium), etc., but not limited to this.

此外,分析方法20亦為本發明之實施例,本領域具通常知識者當可據以做不同的變化及修飾。舉例來說,在低雜訊的情況下,分析方法20中的步驟204可選擇性省略,因此在步驟206中,亦可擷取部分的資料DTr,而取得資料DTp。在未有其他光源干擾的情況下,分析方法20中的步驟206可選擇性省略,因此在步驟208中,亦可擷取部分的資料DTf,而取得資料DTn。在歸一化可省略的情況下,分析方法20中的步驟208可選擇性省略,因此亦可在步驟210中對資料DTp進行曲線擬合。類似地,在步驟204或步驟206省略的情況下,亦可對資 料DTr或資料DTf進行曲線擬合。並且,步驟204、步驟206或步驟208的順序可能調換。 In addition, the analysis method 20 is also an embodiment of the present invention, and those with ordinary knowledge in the art can make various changes and modifications accordingly. For example, in the case of low noise, step 204 in the analysis method 20 can be optionally omitted. Therefore, in step 206, part of the data DTr can also be retrieved to obtain the data DTp. In the absence of interference from other light sources, step 206 in the analysis method 20 can be optionally omitted. Therefore, in step 208, part of the data DTf can also be captured to obtain the data DTn. In the case that the normalization can be omitted, step 208 in the analysis method 20 can be optionally omitted, so the data DTp can also be curve-fitted in step 210. Similarly, in the case where step 204 or step 206 is omitted, the data can also be Data DTr or data DTf for curve fitting. Also, the order of step 204, step 206, or step 208 may be reversed.

綜上所述,本發明不是利用寬波段的氙氣燈,而是利用高光強度且窄波段的光源100,因此可偵測低濃度的待測物120,並可減小分析系統10的複雜度及體積,以符合即時檢測的要求。並且,本發明不是將待測物120被激發的螢光訊號FS分離至不同的多個光路並過濾為不同頻段的多個訊號,而是將螢光訊號FS對應的資料DTn進行曲線擬合(curve fitting),以產生對應基底BS1~BS3的係數,來確定待測物120中的每一種已知物質被激發的螢光訊號的(光)強度與波長的對應關係(即資料分量BS1w~BS3w),而判斷待測物120中的每一種已知物質的濃度。如此一來,即使存在交叉干擾問題,或者即使不同已知物質的激發效率的差異較大時,仍能有效激發並分析每個已知物質,且能提升分析準確度及分析效率。此外,本發明藉由資料處理步驟,而可提高雜訊比(Signal-to-noise ratio,SNR)。 In summary, the present invention does not use a wide-band xenon lamp, but uses a high-intensity and narrow-band light source 100, so it can detect low-concentration test objects 120, and can reduce the complexity and complexity of the analysis system 10 Volume to meet the requirements of instant detection. Moreover, the present invention does not separate the fluorescent signal FS excited by the test object 120 into different multiple optical paths and filter them into multiple signals of different frequency bands, but performs curve fitting on the data DTn corresponding to the fluorescent signal FS ( curve fitting) to generate coefficients corresponding to the substrates BS1~BS3 to determine the (light) intensity of the fluorescent signal and the wavelength corresponding to each known substance in the test object 120 (ie, the data components BS1w~BS3w ), and determine the concentration of each known substance in the analyte 120. In this way, even if there is a cross-interference problem, or even if the excitation efficiency of different known substances differs greatly, each known substance can still be effectively excited and analyzed, and the analysis accuracy and efficiency can be improved. In addition, the present invention can improve the signal-to-noise ratio (SNR) through data processing steps.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention should fall within the scope of the present invention.

BS1w~BS3w:資料分量 BS1w~BS3w: data component

DTn:資料 DTn: Information

WR1:波段範圍 WR1: Band range

Claims (20)

一種分析方法,包含有:取得一第一資料;以及依據至少一基底對該第一資料進行曲線擬合,以產生對應該至少一基底的至少一係數,其中,該至少一基底中的一者對應的一函數圖形具有不對稱性,該函數圖形於一第一波長區間的定積分小於該函數圖形於一第二波長區間的定積分,該第一波長區間的積分下界對應該函數圖形的一第一局部極小值,該第二波長區間的積分上界對應該函數圖形的一第二局部極小值,且該第一波長區間的積分上界與該第二波長區間的積分下界均對應該函數圖形的一局部極大值。 An analysis method includes: obtaining a first data; and performing curve fitting on the first data according to at least one base to generate at least one coefficient corresponding to at least one base, wherein one of the at least one base The corresponding function graph has asymmetry. The definite integral of the function graph in a first wavelength interval is smaller than the definite integral of the function graph in a second wavelength interval. The lower bound of the integral of the first wavelength interval corresponds to a function graph. The first local minimum, the upper integral of the second wavelength interval corresponds to a second local minimum of the function graph, and the upper integral of the first wavelength interval and the lower integral of the second wavelength interval both correspond to the function A local maximum of the graph. 如請求項1所述之分析方法,其中,該第一資料為一待測物被激發的一第一螢光訊號強度與波長的對應關係,該至少一基底中的每一者分別為一已知物質被激發的一第二螢光訊號強度與波長的對應關係。 The analysis method according to claim 1, wherein the first data is the corresponding relationship between the intensity and wavelength of a first fluorescent signal excited by an object under test, and each of the at least one substrate is a Know the corresponding relationship between the intensity of a second fluorescent signal excited by the substance and the wavelength. 如請求項1所述之分析方法,其中,該曲線擬合是依據最小平方法、複線性迴歸法、主成分分析法、逐點交叉相關函數法、最小絕對差遞迴法或小波轉換法來進行。 The analysis method according to claim 1, wherein the curve fitting is based on the least square method, the complex linear regression method, the principal component analysis method, the point-by-point cross-correlation function method, the least absolute difference recursive method, or the wavelet transformation method. get on. 如請求項1所述之分析方法,另包含有:取得一第二資料;以及進行一資料處理步驟,以於該第二資料去除雜訊,而取得該第一資料。 The analysis method according to claim 1, further comprising: obtaining a second data; and performing a data processing step to remove noise from the second data, and obtain the first data. 如請求項1所述之分析方法,另包含有:取得一第二資料;以及進行一資料處理步驟,以擷取部分的該第二資料,而取得該第一資料。 The analysis method described in claim 1 further includes: obtaining a second data; and performing a data processing step to retrieve part of the second data to obtain the first data. 如請求項1所述之分析方法,另包含有:取得一第二資料;以及進行一資料處理步驟,以將該第二資料歸一化,而取得該第一資料。 The analysis method described in claim 1 further includes: obtaining a second data; and performing a data processing step to normalize the second data to obtain the first data. 如請求項1所述之分析方法,另包含有:將一光源發出的光束導向一待測物,以藉由量測該待測物被激發的一第一螢光訊號而取得該第一資料。 The analysis method according to claim 1, further comprising: directing a light beam emitted by a light source to an object to be measured, so as to obtain the first data by measuring a first fluorescent signal excited by the object to be measured . 如請求項7所述之分析方法,其中,該光源為雷射光源,該光源的頻寬小於該至少一基底中的一者的頻寬的十分之一,且頻寬可藉由半高全寬來界定。 The analysis method according to claim 7, wherein the light source is a laser light source, the bandwidth of the light source is less than one-tenth of the bandwidth of one of the at least one substrate, and the bandwidth can be determined by the full width at half maximum To define. 如請求項7所述之分析方法,其中,該光源為發散角度小於或等於10度的發光二極體光源。 The analysis method according to claim 7, wherein the light source is a light-emitting diode light source with a divergence angle less than or equal to 10 degrees. 如請求項7所述之分析方法,其中,該待測物進行即時聚合酶鏈式反應。 The analysis method according to claim 7, wherein the analyte is subjected to real-time polymerase chain reaction. 一種分析系統,包含有:一儲存單元,用來儲存一程式碼;以及 一處理單元,用來執行該程式碼,其中,編譯成該程式碼的一分析方法包含有:取得一第一資料;以及依據至少一基底對該第一資料進行曲線擬合,以產生對應該至少一基底的至少一係數,其中,該至少一基底中的一者對應的一函數圖形具有不對稱性,該函數圖形於一第一波長區間的定積分小於該函數圖形於一第二波長區間的定積分,該第一波長區間的積分下界對應該函數圖形的一第一局部極小值,該第二波長區間的積分上界對應該函數圖形的一第二局部極小值,且該第一波長區間的積分上界與該第二波長區間的積分下界均對應該函數圖形的一局部極大值。 An analysis system includes: a storage unit for storing a program code; and A processing unit for executing the program code, wherein an analysis method compiled into the program code includes: obtaining a first data; and performing curve fitting on the first data according to at least a base to generate a corresponding At least one coefficient of at least one base, wherein a function pattern corresponding to one of the at least one base has asymmetry, and the definite integral of the function pattern in a first wavelength interval is smaller than that of the function pattern in a second wavelength interval The lower bound of the integral of the first wavelength interval corresponds to a first local minimum value of the function graph, the upper bound of the integral of the second wavelength interval corresponds to a second local minimum value of the function graph, and the first wavelength The upper bound of the integral of the interval and the lower bound of the integral of the second wavelength interval both correspond to a local maximum value of the function graph. 如請求項11所述之分析系統,其中,該第一資料為一待測物被激發的一第一螢光訊號強度與波長的對應關係,該至少一基底中的每一者分別為一已知物質被激發的一第二螢光訊號強度與波長的對應關係。 The analysis system according to claim 11, wherein the first data is the corresponding relationship between the intensity and wavelength of a first fluorescent signal excited by an object to be measured, and each of the at least one substrate is a Know the corresponding relationship between the intensity of a second fluorescent signal excited by the substance and the wavelength. 如請求項11所述之分析系統,其中,該曲線擬合是依據最小平方法、複線性迴歸法、主成分分析法、逐點交叉相關函數法、最小絕對差遞迴法或小波轉換法來進行。 The analysis system according to claim 11, wherein the curve fitting is based on the least square method, the complex linear regression method, the principal component analysis method, the point-by-point cross-correlation function method, the least absolute difference recursive method, or the wavelet transformation method get on. 如請求項11所述之分析系統,其中,該分析方法另包含有:取得一第二資料;以及進行一資料處理步驟,以於該第二資料去除雜訊,而取得該第一資料。 The analysis system according to claim 11, wherein the analysis method further includes: obtaining a second data; and performing a data processing step to remove noise from the second data and obtain the first data. 如請求項11所述之分析系統,其中,該分析方法另包含有:取得一第二資料;以及進行一資料處理步驟,以擷取部分的該第二資料,而取得該第一資料。 The analysis system according to claim 11, wherein the analysis method further includes: obtaining a second data; and performing a data processing step to extract part of the second data to obtain the first data. 如請求項11所述之分析系統,其中,該分析方法另包含有:取得一第二資料;以及進行一資料處理步驟,以將該第二資料歸一化,而取得該第一資料。 The analysis system according to claim 11, wherein the analysis method further includes: obtaining a second data; and performing a data processing step to normalize the second data to obtain the first data. 如請求項11所述之分析系統,其中,該分析方法另包含有:將一光源發出的光束導向一待測物,以藉由量測該待測物被激發的一第一螢光訊號而取得該第一資料。 The analysis system according to claim 11, wherein the analysis method further comprises: directing a light beam emitted by a light source to an object to be measured, so as to measure a first fluorescent signal excited by the object to be measured Obtain the first data. 如請求項17所述之分析系統,其中,該光源為雷射光源,該光源的頻寬小於該至少一基底中的一者的頻寬的十分之一,且頻寬可藉由半高全寬來界定。 The analysis system according to claim 17, wherein the light source is a laser light source, the bandwidth of the light source is less than one-tenth of the bandwidth of one of the at least one substrate, and the bandwidth can be determined by the full width at half maximum To define. 如請求項17所述之分析系統,其中,該光源為發散角度小於或等於10度的發光二極體光源。 The analysis system according to claim 17, wherein the light source is a light emitting diode light source with a divergence angle less than or equal to 10 degrees. 如請求項17所述之分析系統,其中,該待測物進行即時聚合酶鏈式反應。 The analysis system according to claim 17, wherein the analyte is subjected to real-time polymerase chain reaction.
TW108137161A 2019-08-11 2019-10-16 Analytical system and analytical method thereof TWI726446B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/777,814 US20210043277A1 (en) 2019-08-11 2020-01-30 Analytical System and Analytical Method Thereof
EP20163228.8A EP3778922A1 (en) 2019-08-11 2020-03-16 Real-time pcr and fluorescence spectrometry
JP2020081838A JP7213844B2 (en) 2019-08-11 2020-05-07 Analysis system and its analysis method
KR1020200057476A KR102278792B1 (en) 2019-08-11 2020-05-14 Analytical System and Analytical Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962885303P 2019-08-11 2019-08-11
US62/885,303 2019-08-11

Publications (2)

Publication Number Publication Date
TW202107476A TW202107476A (en) 2021-02-16
TWI726446B true TWI726446B (en) 2021-05-01

Family

ID=74603798

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137161A TWI726446B (en) 2019-08-11 2019-10-16 Analytical system and analytical method thereof

Country Status (2)

Country Link
CN (1) CN112397152A (en)
TW (1) TWI726446B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070238161A1 (en) * 1998-05-16 2007-10-11 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
CN102010904A (en) * 2010-08-27 2011-04-13 浙江大学 Fluorescent signal detection device of real-time fluorescent quantitative PCR (Polymerase Chain Reaction) instrument
TW201339308A (en) * 2012-03-20 2013-10-01 Thinkfar Nanotechnology Corp Detection device for nucleic acid amplification
TW201544074A (en) * 2014-05-22 2015-12-01 Apex Medical Corp Breathing waveform recognition method and system thereof
TWI586957B (en) * 2016-06-24 2017-06-11 諾貝爾生物有限公司 Multi-channel fluorescene detecting system and method using the same
TWI624543B (en) * 2011-09-25 2018-05-21 賽瑞諾斯有限公司 Systems and methods for multi-analysis
TW201829784A (en) * 2007-08-13 2018-08-16 美商網路生物有限公司 Integrated microfluidic systems, biochips and methods for the detection of nucleic acids and biological molecules by electrophoresis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704104B2 (en) * 2000-03-16 2004-03-09 Spectrumedix Llc Multi-wavelength array reader for biological assay
US20070098594A1 (en) * 2005-11-03 2007-05-03 Roche Molecular Systems, Inc. Analytical multi-spectral optical detection system
EP1804172B1 (en) * 2005-12-20 2021-08-11 Roche Diagnostics GmbH PCR elbow determination using curvature analysis of a double sigmoid
JP5601098B2 (en) * 2010-09-03 2014-10-08 ソニー株式会社 Fluorescence intensity correction method and fluorescence intensity calculation apparatus
WO2012106481A1 (en) * 2011-02-01 2012-08-09 Life Technologies Coporation Systems and methods for the analysis of protein melt curve data
JP5817369B2 (en) * 2011-09-13 2015-11-18 ソニー株式会社 SPECTRUM ANALYSIS DEVICE, MICROPARTICLE MEASUREMENT DEVICE, METHOD AND PROGRAM FOR SPECTRUM ANALYSIS OR SPECTRUM CHART DISPLAY
KR20140002242A (en) * 2012-06-28 2014-01-08 삼성전자주식회사 Method and apparatus for performing quantitative analysis of nucleic acid using real-time pcr
US20170247745A1 (en) * 2014-09-12 2017-08-31 Click Diagnostics, Inc. Multiplex optical detection
US11385168B2 (en) * 2015-03-31 2022-07-12 Nec Corporation Spectroscopic analysis apparatus, spectroscopic analysis method, and readable medium
CN106645708A (en) * 2016-09-20 2017-05-10 必欧瀚生物技术(合肥)有限公司 Quantitative detection calculation method based on fluorescent immuno-chromatographic technology
CN106906132B (en) * 2017-03-21 2018-06-29 广东顺德工业设计研究院(广东顺德创新设计研究院) Digital polymerase chain reaction optical detection apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070238161A1 (en) * 1998-05-16 2007-10-11 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
TW201829784A (en) * 2007-08-13 2018-08-16 美商網路生物有限公司 Integrated microfluidic systems, biochips and methods for the detection of nucleic acids and biological molecules by electrophoresis
CN102010904A (en) * 2010-08-27 2011-04-13 浙江大学 Fluorescent signal detection device of real-time fluorescent quantitative PCR (Polymerase Chain Reaction) instrument
TWI624543B (en) * 2011-09-25 2018-05-21 賽瑞諾斯有限公司 Systems and methods for multi-analysis
TW201339308A (en) * 2012-03-20 2013-10-01 Thinkfar Nanotechnology Corp Detection device for nucleic acid amplification
TW201544074A (en) * 2014-05-22 2015-12-01 Apex Medical Corp Breathing waveform recognition method and system thereof
TWI586957B (en) * 2016-06-24 2017-06-11 諾貝爾生物有限公司 Multi-channel fluorescene detecting system and method using the same

Also Published As

Publication number Publication date
CN112397152A (en) 2021-02-23
TW202107476A (en) 2021-02-16

Similar Documents

Publication Publication Date Title
JP7542048B2 (en) Optical Couplers and Waveguide Systems
US11879841B2 (en) Optical system and assay chip for probing, detecting and analyzing molecules
US6373567B1 (en) Dispersive near-IR Raman spectrometer
CN113899452B (en) Multiplexing and coding for reference switching
JPH09184809A (en) Scattering light measuring apparatus
JP2009526997A (en) Method and system for simultaneously monitoring optical signals from multiple sources in real time
US20150055132A1 (en) Method for calibrating spectroscopy apparatus and equipment for use in the method
EP3140636B1 (en) A surface refractive index image acquiring system and method
US20130195131A1 (en) Chemical detection and laser wavelength stabilization employing spectroscopic absorption via laser compliance voltage sensing
AU2019287768A1 (en) Data acquisition control for advanced analytic instruments having pulsed optical sources
EP3739310B1 (en) Spectrometry device and spectrometry method
TWI726446B (en) Analytical system and analytical method thereof
US11879846B2 (en) Raman spectroscopy method and apparatus using broadband excitation light
JP7213844B2 (en) Analysis system and its analysis method
US20220136956A1 (en) Method and systems for characterizing and encoding a light detection system
JP2023549475A (en) Flow cytometers including tilted beam shaping optics and methods of using flow cytometers
CN115406835B (en) Nitrate measurement method and system based on wavelength tunable ultraviolet narrow-band light source
CN117664883A (en) Transformer fault detection method, device, storage medium and electronic equipment
US20220026339A1 (en) Methods and devices for evaluating performance of a diode laser
WO2022210192A1 (en) Raman spectroscopy device and raman spectroscopy measurement method
CN118483205A (en) DMD-based explosive analysis fluorescence spectrometer and method
KR20250025099A (en) Apparatus and method for providing gas concentration
JP6726859B2 (en) Fluorescence detector and control method thereof
CN116500012A (en) Multi-wavelength corrected Raman fluorescence spectrum joint detection device and method
WO2024124078A1 (en) Devices, methods, and systems to measuring and recording spectrum of a reactant array