TWI726446B - Analytical system and analytical method thereof - Google Patents
Analytical system and analytical method thereof Download PDFInfo
- Publication number
- TWI726446B TWI726446B TW108137161A TW108137161A TWI726446B TW I726446 B TWI726446 B TW I726446B TW 108137161 A TW108137161 A TW 108137161A TW 108137161 A TW108137161 A TW 108137161A TW I726446 B TWI726446 B TW I726446B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- light source
- analysis method
- wavelength
- analysis
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 77
- 238000012545 processing Methods 0.000 claims description 37
- 239000000126 substance Substances 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 20
- 239000012491 analyte Substances 0.000 claims description 7
- 238000003753 real-time PCR Methods 0.000 claims description 5
- 238000005314 correlation function Methods 0.000 claims description 3
- 238000012417 linear regression Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims 6
- 238000012847 principal component analysis method Methods 0.000 claims 2
- 238000011426 transformation method Methods 0.000 claims 2
- 230000003287 optical effect Effects 0.000 description 24
- 230000006870 function Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 239000007850 fluorescent dye Substances 0.000 description 8
- 230000005284 excitation Effects 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 230000004544 DNA amplification Effects 0.000 description 5
- 238000010606 normalization Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 238000002284 excitation--emission spectrum Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/10—Signal processing, e.g. from mass spectrometry [MS] or from PCR
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
- G16B25/20—Polymerase chain reaction [PCR]; Primer or probe design; Probe optimisation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/20—Supervised data analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/30—Unsupervised data analysis
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medical Informatics (AREA)
- Theoretical Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Public Health (AREA)
- Software Systems (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioethics (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Genetics & Genomics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本發明係指一種分析系統及其分析方法,尤指分析準確度及分析效率較高且有利於尺寸微型化的一種分析系統及其分析方法。 The present invention refers to an analysis system and an analysis method thereof, especially an analysis system and an analysis method that have high analysis accuracy and analysis efficiency and are beneficial to size miniaturization.
聚合酶鏈式反應(polymerase chain reaction,PCR)的DNA擴增反應為分子生物學的重要技術。其中,即時聚合酶鏈式反應是指在同一個待測物容器中同時進行DNA擴增反應與DNA擴增後的數量分析。DNA擴增後的數量分析是將待測物被激發的螢光訊號分離至不同的多個光路,並藉由多個帶通濾波片過濾為不同頻段的多個訊號,來進行分析。然而,相鄰頻段的訊號會引發交叉干擾(crosstalk)問題,且交叉干擾問題會隨溶液濃度或溫度而改變,而影響分析準確度及分析效率。再者,藉由寬波段的氙氣燈(Xenon light)來激發待測物的激發效率較低,因此不利於偵測低濃度的待測物或多種的待測物,且須配置複雜而體積龐大的光學系統。 The DNA amplification reaction of polymerase chain reaction (PCR) is an important technology of molecular biology. Among them, real-time polymerase chain reaction refers to simultaneous DNA amplification reaction and quantitative analysis after DNA amplification in the same container of the test substance. Quantitative analysis after DNA amplification is to separate the excited fluorescent signal of the test object into different multiple light paths, and filter it into multiple signals of different frequency bands through multiple bandpass filters for analysis. However, signals in adjacent frequency bands will cause crosstalk problems, and the crosstalk problems will vary with solution concentration or temperature, which affects analysis accuracy and analysis efficiency. Furthermore, the excitation efficiency of using a wide-band Xenon light to excite the analyte is low, so it is not conducive to detecting low-concentration analytes or a variety of analytes, and the configuration is complicated and bulky. Optical system.
因此,本發明主要提供一種分析系統及其分析方法,以提高分析準確度及分析效率且有利於尺寸微型化。 Therefore, the present invention mainly provides an analysis system and an analysis method thereof to improve analysis accuracy and analysis efficiency and facilitate size miniaturization.
本發明揭露一種分析方法,包含有取得一第一資料,以及依據至少一基底對第一資料進行曲線擬合,以產生對應至少一基底的至少一係數。其中,至少一基底中的一者對應的一函數圖形具有不對稱性。 The present invention discloses an analysis method, which includes obtaining a first data, and performing curve fitting on the first data according to at least one base to generate at least one coefficient corresponding to the at least one base. Wherein, a function graph corresponding to one of the at least one base has asymmetry.
本發明另揭露一種分析系統,包含有用來儲存一程式碼的一儲存單元,以及用來執行該程式碼的一處理單元。編譯成該程式碼的一分析方法包含有取得一第一資料,以及依據至少一基底對第一資料進行曲線擬合,以產生對應至少一基底的至少一係數。其中,至少一基底中的一者對應的一函數圖形具有不對稱性。 The present invention further discloses an analysis system, which includes a storage unit for storing a program code, and a processing unit for executing the program code. An analysis method compiled into the program code includes obtaining a first data, and performing curve fitting on the first data according to at least one base to generate at least one coefficient corresponding to the at least one base. Wherein, a function graph corresponding to one of the at least one base has asymmetry.
10、70:分析系統 10.70: Analysis system
100:光源 100: light source
120:待測物 120: DUT
150:處理電路 150: processing circuit
160:儲存裝置 160: storage device
110、130、710、730:光學元件 110, 130, 710, 730: optical components
140、740:檢測器 140, 740: detector
BS1~BS3:基底 BS1~BS3: base
BS1w~BS3w:資料分量 BS1w~BS3w: data component
DTr、DTf、DTp、DTn:資料 DTr, DTf, DTp, DTn: data
FS:螢光訊號 FS: Fluorescent signal
L1、L2:積分下界 L1, L2: lower bound of integral
LB:光束 LB: beam
U1、U2:積分上界 U1, U2: integral upper bound
WR1、WR2:波段範圍 WR1, WR2: Band range
第1圖為本發明實施例中一分析系統的示意圖。 Figure 1 is a schematic diagram of an analysis system in an embodiment of the present invention.
第2圖為本發明實施例一分析方法之流程圖。 Figure 2 is a flowchart of an analysis method according to an embodiment of the present invention.
第3圖為第2圖之分析方法的雜訊去除步驟的示意圖。 Figure 3 is a schematic diagram of the noise removal step of the analysis method of Figure 2.
第4圖為第2圖之分析方法的部分擷取步驟的示意圖。 FIG. 4 is a schematic diagram of the partial extraction steps of the analysis method of FIG. 2. FIG.
第5圖為第2圖之分析方法採用的基底的示意圖。 Figure 5 is a schematic diagram of the substrate used in the analysis method of Figure 2.
第6圖為第2圖之分析方法的曲線擬合步驟的示意圖。 Figure 6 is a schematic diagram of the curve fitting steps of the analysis method in Figure 2.
第7圖為本發明實施例中一分析系統的示意圖。 Figure 7 is a schematic diagram of an analysis system in an embodiment of the present invention.
請參考第1圖,第1圖為本發明實施例中一分析系統10的示意圖。分析系統10可用來即時偵測並分析螢光訊號。分析系統10包含有一光源100、光學元件110、130、一待測物120、一檢測器(detector)140、一處理電路150以及一
儲存裝置160。光源100發出的光束LB藉由光學元件110導向待測物120並激發待測物120,而產生螢光訊號FS(也可稱作第一螢光訊號)。螢光訊號FS可藉由光學元件130導向檢測器140,檢測器140接收螢光訊號FS並量測螢光訊號FS的(光)強度與波長的對應關係,並將測得的資料DTr輸出至處理電路150。資料DTr可為光譜資料,處理電路150可依據編譯成程式碼的一分析方法來分析檢測器140傳送的光譜資料,儲存裝置160則可用來儲存光譜資料、分析方法的程式碼或其他資訊。
Please refer to Figure 1, which is a schematic diagram of an
簡言之,待測物120可包含有至少一種的已知物質。光源100發出的光束LB可激發待測物120中的已知物質,而放射出螢光訊號FS。由於每一種已知物質被激發的螢光訊號(也可稱作第二螢光訊號)的(光)強度與波長的對應關係是已知的,因此,處理電路150可分析待測物被激發的螢光訊號FS的(光)強度與波長的對應關係,而判斷待測物120中的每一種已知物質的濃度。
In short, the
進一步地,請一併參考第2圖至第6圖。第2圖為本發明實施例一分析方法20之流程圖,第3圖為第2圖之分析方法20的雜訊去除步驟的示意圖,第4圖為第2圖之分析方法20的部分擷取步驟的示意圖,第5圖為第2圖之分析方法20採用的基底BS1~BS3的示意圖,以及第6圖為第2圖之分析方法20的曲線擬合步驟的示意圖。分析方法20可被編譯成一程式碼而由第1圖的處理電路150執行,其可包含以下步驟:
Further, please refer to Figures 2 to 6 together. Figure 2 is a flowchart of an
步驟200:開始。 Step 200: Start.
步驟202:取得一資料DTr。 Step 202: Obtain a data DTr.
步驟204:進行一資料處理步驟,以於資料DTr去除雜訊,而取得一資料DTf。 Step 204: Perform a data processing step to remove noise from the data DTr, and obtain a data DTf.
步驟206:進行另一資料處理步驟,以擷取部分的資料DTf,而取得一資料DTp。 Step 206: Perform another data processing step to retrieve part of the data DTf to obtain a data DTp.
步驟208:進行另一資料處理步驟,以將資料DTp歸一化(normalized),而取得一資料DTn。 Step 208: Perform another data processing step to normalize the data DTp to obtain a data DTn.
步驟210:依據至少一基底(basis)BS1~BS3對資料DTn進行曲線擬合(curve fitting),以產生對應於至少一基底BS1~BS3的至少一係數,其中,至少一基底BS1~BS3中的一者對應的一函數圖形具有不對稱性(asymmetry)。 Step 210: Perform curve fitting on the data DTn according to at least one basis BS1~BS3 to generate at least one coefficient corresponding to at least one basis BS1~BS3, wherein at least one of the bases BS1~BS3 The graph of a function corresponding to one has asymmetry.
步驟212:結束。 Step 212: End.
具體而言,在步驟202中,處理電路150接收檢測器140傳送的資料DTr。資料DTr可為光譜資料,其提供待測物120被激發的螢光訊號FS的(光)強度與波長的對應關係。
Specifically, in
步驟204可為一雜訊去除步驟,以提高後續的資料分析的正確性。也就是說,處理電路150可進行一資料處理步驟,以去除資料DTr的雜訊(例如背景雜訊),而將資料DTr轉換為資料DTf。在一些實施例中,處理電路150可針對時域(time domain)或頻域(frequency domain)進行雜訊濾除演算。在一些實施例中,可藉由低通濾波器進行雜訊濾除,但不以此為限。在一些實施例中,可藉由硬體濾波器進行雜訊濾除或藉由軟體濾波器進行雜訊濾除演算,但不以此為限。如第3圖所示,相對資料DTr對應的函數圖形,資料DTf對應的函數圖形為較平滑的曲線。
步驟206可為一部分擷取步驟,用以減低光源100發出的光束LB造成的干擾,或避開其他光源干擾波段。也就是說,處理電路150可進行一資料處理
步驟,以擷取部分波長區間的資料DTf,而將資料DTf轉換為資料DTp。因此,處理電路150可針對全部波長區間或特定波長區間的光譜資料進行分析。在一些實施例中,可藉由硬體或軟體進行部分擷取步驟,但不以此為限。如第4圖所示,資料DTf對應的函數圖形僅於右半部分重合資料DTp對應的函數圖形。
Step 206 may be a part of the capturing step to reduce the interference caused by the light beam LB emitted by the
步驟208可為一歸一化步驟,以提高後續的資料分析的效率。也就是說,處理電路150可進行一資料處理步驟,以將資料DTp歸一化,而將資料DTp轉換為資料DTn。在一些實施例中,處理電路150可對資料DTp做(光)強度的歸一化演算,例如對最大光強度進行歸一化。在一些實施例中,可依據公式DTn(λ)=(DTp(λ)-min(DTp))/(max(DTp)-min(DTp))進行歸一化,其中,max(DTp)為資料DTp的最大光強度值,min(DTp)為資料DTp的最小光強度值,DTp(λ)、DTn(λ)分別為資料DTp、DTn在某一波長對應的光強度值。
Step 208 can be a normalization step to improve the efficiency of subsequent data analysis. In other words, the
在步驟210中,處理電路150可依據基底BS1~BS3對資料DTn(也可稱作第一資料)進行曲線擬合(curve fitting),以產生對應於基底BS1~BS3的係數。其中,基底BS1~BS3可分別為光譜資料,而分別提供一種已知物質被激發的螢光訊號(也可稱作第二螢光訊號)的(光)強度與波長的對應關係。如第6圖所示,資料分量BS1w~BS3w分別代表待測物120中的某一種已知物質被激發的螢光訊號的(光)強度與波長的對應關係。其中,資料分量BS1w~BS3w在某一波長的光強度總合等於資料DTn在此波長的光強度,而資料分量BS1w(或資料分量BS2w、BS3w)與基底BS1(或基底BS2、BS3)的比值則為對應基底BS1(或基底BS2、BS3)的係數。也就是說,DTn(λ)=BS1w(λ)+BS2w(λ)+BS3w(λ)=c1*BS1(λ)+c2*BS2(λ)+c3*BS3(λ),BS1w(λ)~BS3w(λ)分別為資料分量BS1w~BS3w在某一波長對應的光強度值,
BS1(λ)~BS3(λ)分別為基底BS1~BS3在某一波長對應的光強度值,c1~c3分別為對應基底BS1~BS3的係數。處理電路150可藉由對應基底BS1~BS3的係數,確定待測物120中的每一種已知物質被激發的螢光訊號的(光)強度與波長的對應關係(即第6圖所示的資料分量BS1w~BS3w),而判斷待測物120中的每一種已知物質的濃度。
In
藉由步驟210,即使資料分量BS1w~BS3w之間的距離較近(例如資料分量BS1w~BS3w的局部極大值對應的波長之間的差值較小時或交叉干擾問題較嚴重時),或者即使不同已知物質的激發效率的差異較大時,或者即使某種已知物質的濃度或激發效率較低時,仍能有效分析出每個已知物質的資料分量BS1w~BS3w。在一些實施例中,待測物120進行即時(real-time)聚合酶鏈式反應(polymerase chain reaction,PCR),處理電路150判斷待測物120中的每一種已知物質的濃度,即可計算出DNA擴增(amplification)後的數量。其中,螢光訊號FS可為即時(real-time)聚合酶鏈式反應(polymerase chain reaction,PCR)的DNA擴增反應中,待測物120中(鍵結至DNA雙股的)試劑被激發出的螢光訊號。在此情況下,藉由對應基底BS1~BS3的係數,可計算出DNA擴增後的數量。
According to step 210, even if the distance between the data components BS1w~BS3w is relatively short (for example, when the difference between the wavelengths corresponding to the local maximums of the data components BS1w~BS3w is small or the cross-interference problem is severe), or even if When the excitation efficiency of different known substances differs greatly, or even when the concentration or excitation efficiency of a certain known substance is low, the data components BS1w~BS3w of each known substance can still be effectively analyzed. In some embodiments, the
在一些實施例中,曲線擬合是依據最小平方法(least square fit)、複線性迴歸法(Multiple Linear Regression)、主成分分析法(principal component analysis)、逐點交叉相關函數法(point-wise cross-correlation)、最小絕對差遞迴法(least absolute deviation regression)或小波轉換法(wavelet transfer)來進行。在一些實施例中,基底BS1~BS3已分別完成(光)強度的歸一化演算,例如對最大光強度進行歸一化。在一些實施例中,如第6圖所示,基底BS1(或基底BS2、BS3)對應的函數圖形可具有不對稱性(asymmetry)。在一些實施例中,如第5
圖所示,基底BS1(或基底BS2、BS3)對應的函數圖形於一第一波長區間(wavelength interval)的定積分(definite integral)可小於函數圖形於一第二波長區間的定積分。也就是說,
其中,L1為第一波長區間的積分下界且其對應函數圖形的一第一局部極小值(local minimum),U2為第二波長區間的積分上界且其對應函數圖形的一第二局部極小值,U1、L2分別為第一波長區間的積分上界與第二波長區間的積分下界且其均對應函數圖形的一局部極大值。在一些實施例中,基底BS1(或基底BS2、BS3)對應的函數圖形可具有多於一個的局部極大值(local maximum)。在一些實施例中,基底BS1(或基底BS2、BS3)對應的函數圖形可藉由實驗或理論計算而確定,例如針對特定的一種已知物質量測其激發頻譜或放射頻譜。 Among them, L1 is the lower integral of the first wavelength interval and corresponds to a first local minimum of the function graph, and U2 is the integral upper bound of the second wavelength interval and it corresponds to a second local minimum of the function graph , U1 and L2 are respectively the upper integral bound of the first wavelength interval and the lower integral bound of the second wavelength interval, and both of them correspond to a local maximum value of the function graph. In some embodiments, the function graph corresponding to the base BS1 (or the base BS2, BS3) may have more than one local maximum. In some embodiments, the function graph corresponding to the substrate BS1 (or the substrate BS2, BS3) can be determined by experiment or theoretical calculation, for example, the excitation spectrum or emission spectrum of a specific known substance is measured.
需注意的是,分析系統10為本發明之實施例,本領域具通常知識者當可據以做不同的變化及修飾。舉例來說,請參考第7圖,第7圖為本發明實施例一分析系統70之示意圖。分析系統70之架構類似於分析系統10,故相同元件沿用相同符號表示。其中,分析系統10的光學元件110、130及檢測器140可藉由分析系統70的光學元件710、730及檢測器740來實施。
It should be noted that the
詳細而言,光源100可為高光強度且窄波段的光源。如此一來,即使資料分量BS1w~BS3w之間的距離較近(例如資料分量BS1w~BS3w的局部極大值對應的波長之間的差值較小時或交叉干擾問題較嚴重時),或者即使不同已知物質的激發效率的差異較大時,或者即使某種已知物質的濃度或激發效率較低
時,仍能有效激發出每個已知物質。舉例來說,在一些實施例中,光源100的光強度範圍可介於每平方公釐(millimeter,mm2)10毫瓦(milliWatt,mW)至每平方公釐500毫瓦(即500毫瓦/平方公釐(mW/mm2))之間,因此,光源100相對為高光強度的光源。在一些實施例中,光源100的(瞬間)輸出功率可介於1毫瓦至500毫瓦之間,但不以此為限。
In detail, the
在一些實施例中,光源100的波段範圍(或頻寬)小於至少一種的已知物質被激發的螢光訊號的波段範圍(或頻寬)的十分之一,因此,光源100相對為窄波段的光源。其中,波段範圍(或頻寬)可藉由半高全寬(Full width at half maximum,FWHM)來界定。在一些實施例中,如第6圖所示,光源100的波段範圍WR1小於基底BS1(或基底BS2、BS3)的波段範圍WR2,舉例來說,光源100的波段範圍WR1小於基底BS1(或基底BS2、BS3)的波段範圍WR2的十分之一。在一些實施例中,光源100的波段範圍可介於0.1奈米(nanometer,nm)至2奈米之間,但不以此為限。在一些實施例中,光源100可為雷射光源,更進一步地,光源100可為二極體雷射(diode Laser)光源或半導體雷射(Semiconductor laser)光源,例如為法布立-佩羅(Fabry-Perot,F-P)半導體雷射、單頻半導體雷射(Distributed Feedback Laser,DFB)或垂直共振腔面射型雷射(Vertical-Cavity Surface-Emitting Laser,VCSEL),但不以此為限。在一些實施例中,光源100可為一個以上的半導體雷射光源組成的半導體雷射光源組,且所有的或部分的半導體雷射光源可具有不同的中心波長。在一些實施例中,光源100可為發散角度小於或等於10度的發光二極體光源(light-emitting diode),但不以此為限。在一些實施例中,光源100可為一個以上的發光二極體光源組成的發光二極體光源組,且所有的或部分的發光二極體光源可具有不同的中心波長。在一些實施例中,光源100的中心波長可介於405奈米至660奈米之間,但不以此為限。
In some embodiments, the wavelength range (or bandwidth) of the
待測物120可包含有至少一種的反應物或試劑,而試劑可包含有至少一種的螢光探針或螢光染劑,但不以此為限。在一些實施例中,螢光探針或螢光染劑可為FAM、VIC、HEX、ROX、CY3、CY5、CY5.5、JOE、TET、SyBR、Texas Red、TAMRA、NED、Quasar705、Alexa488、Alexa546、Alexa594、Alexa633、Alexa643、Alexa680或其他的螢光探針或螢光染劑。在一些實施例中,螢光探針或螢光染劑的中心波長介於340奈米至850奈米之間,但不以此為限。其中,波段範圍可藉由半高全寬來界定。此外,待測物120可裝載於一待測物容器。
The
光學元件710、730可用來調整光束寬度,例如將光束聚合或發散,或者,光學元件710、730可進一步用來調整光束方向。在一些實施例中,光學元件710或光學元件730可包含有至少一個聚合透鏡,但不以此為限。在一些實施例中,光學元件710或光學元件730可包含有雙凸透鏡、平凸透鏡、雙重透鏡、非球面透鏡、消色差透鏡、消像差透鏡、菲涅爾透鏡、平凹透鏡、雙凹透鏡、正/負彎月透鏡、軸稜鏡、梯度折射率透鏡、微透鏡陣列、柱狀透鏡、繞射光學元件、拋物面鏡、全像光學元件或光波導元件其中至少一者。在一些實施例中,分析系統70中可省略光學元件710或光學元件730的設置。
The
在一些實施例中,檢測器740可為光譜儀,在一些實施例中,檢測器740可為微型光譜儀,以利於分析系統70的尺寸微型化。舉例來說,檢測器740為微電子機械系統(Microelectromechanical Systems,MEMS)光譜儀,但不以此為限。在一些實施例中,檢測器740的波段範圍可為340奈米至850奈米之間,但不以此為限。
In some embodiments, the
處理電路150可依據編譯成程式碼的分析方法20來分析檢測器140傳送的光譜資料。在一些實施例中,處理電路150可為中央處理器(Central Processing Unit,CPU)、微處理器或特定應用積體電路(Application-Specific Integrated Circuit,ASIC)。在一些實施例中,處理電路150可控制光源100於固定時間間隔開啟或關閉。並且,於光源100開啟時,檢測器140同步偵測螢光訊號FS。在一些實施例中,處理電路150可藉由控制光源100的工作電流或藉由控制一光路開關,來控制光源100於固定時間間隔開啟或關閉。其中,光路開關可為機械式光路開關或電子式光路開關。
The
在一些實施例中,儲存裝置160可為任一資料儲存裝置,用來儲存一程式碼,處理電路150可藉由儲存裝置160讀取及執行程式碼。舉例來說,儲存裝置160可為用戶識別模組(Subscriber Identity Module,SIM)、唯讀式記憶體(Read-Only Memory,ROM)、快閃記憶體(flash memory)、隨機存取記憶體(Random-Access Memory,RAM)、硬碟(hard disk)、光學資料儲存裝置(optical data storage device)、非揮發性儲存裝置(non-volatile storage device)、非暫態電腦可讀取介質(non-transitory computer-readable medium)等,而不限於此。
In some embodiments, the
此外,分析方法20亦為本發明之實施例,本領域具通常知識者當可據以做不同的變化及修飾。舉例來說,在低雜訊的情況下,分析方法20中的步驟204可選擇性省略,因此在步驟206中,亦可擷取部分的資料DTr,而取得資料DTp。在未有其他光源干擾的情況下,分析方法20中的步驟206可選擇性省略,因此在步驟208中,亦可擷取部分的資料DTf,而取得資料DTn。在歸一化可省略的情況下,分析方法20中的步驟208可選擇性省略,因此亦可在步驟210中對資料DTp進行曲線擬合。類似地,在步驟204或步驟206省略的情況下,亦可對資
料DTr或資料DTf進行曲線擬合。並且,步驟204、步驟206或步驟208的順序可能調換。
In addition, the
綜上所述,本發明不是利用寬波段的氙氣燈,而是利用高光強度且窄波段的光源100,因此可偵測低濃度的待測物120,並可減小分析系統10的複雜度及體積,以符合即時檢測的要求。並且,本發明不是將待測物120被激發的螢光訊號FS分離至不同的多個光路並過濾為不同頻段的多個訊號,而是將螢光訊號FS對應的資料DTn進行曲線擬合(curve fitting),以產生對應基底BS1~BS3的係數,來確定待測物120中的每一種已知物質被激發的螢光訊號的(光)強度與波長的對應關係(即資料分量BS1w~BS3w),而判斷待測物120中的每一種已知物質的濃度。如此一來,即使存在交叉干擾問題,或者即使不同已知物質的激發效率的差異較大時,仍能有效激發並分析每個已知物質,且能提升分析準確度及分析效率。此外,本發明藉由資料處理步驟,而可提高雜訊比(Signal-to-noise ratio,SNR)。
In summary, the present invention does not use a wide-band xenon lamp, but uses a high-intensity and narrow-
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention should fall within the scope of the present invention.
BS1w~BS3w:資料分量 BS1w~BS3w: data component
DTn:資料 DTn: Information
WR1:波段範圍 WR1: Band range
Claims (20)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/777,814 US20210043277A1 (en) | 2019-08-11 | 2020-01-30 | Analytical System and Analytical Method Thereof |
| EP20163228.8A EP3778922A1 (en) | 2019-08-11 | 2020-03-16 | Real-time pcr and fluorescence spectrometry |
| JP2020081838A JP7213844B2 (en) | 2019-08-11 | 2020-05-07 | Analysis system and its analysis method |
| KR1020200057476A KR102278792B1 (en) | 2019-08-11 | 2020-05-14 | Analytical System and Analytical Method Thereof |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201962885303P | 2019-08-11 | 2019-08-11 | |
| US62/885,303 | 2019-08-11 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202107476A TW202107476A (en) | 2021-02-16 |
| TWI726446B true TWI726446B (en) | 2021-05-01 |
Family
ID=74603798
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108137161A TWI726446B (en) | 2019-08-11 | 2019-10-16 | Analytical system and analytical method thereof |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN112397152A (en) |
| TW (1) | TWI726446B (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070238161A1 (en) * | 1998-05-16 | 2007-10-11 | Applera Corporation | Instrument for monitoring polymerase chain reaction of DNA |
| CN102010904A (en) * | 2010-08-27 | 2011-04-13 | 浙江大学 | Fluorescent signal detection device of real-time fluorescent quantitative PCR (Polymerase Chain Reaction) instrument |
| TW201339308A (en) * | 2012-03-20 | 2013-10-01 | Thinkfar Nanotechnology Corp | Detection device for nucleic acid amplification |
| TW201544074A (en) * | 2014-05-22 | 2015-12-01 | Apex Medical Corp | Breathing waveform recognition method and system thereof |
| TWI586957B (en) * | 2016-06-24 | 2017-06-11 | 諾貝爾生物有限公司 | Multi-channel fluorescene detecting system and method using the same |
| TWI624543B (en) * | 2011-09-25 | 2018-05-21 | 賽瑞諾斯有限公司 | Systems and methods for multi-analysis |
| TW201829784A (en) * | 2007-08-13 | 2018-08-16 | 美商網路生物有限公司 | Integrated microfluidic systems, biochips and methods for the detection of nucleic acids and biological molecules by electrophoresis |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6704104B2 (en) * | 2000-03-16 | 2004-03-09 | Spectrumedix Llc | Multi-wavelength array reader for biological assay |
| US20070098594A1 (en) * | 2005-11-03 | 2007-05-03 | Roche Molecular Systems, Inc. | Analytical multi-spectral optical detection system |
| EP1804172B1 (en) * | 2005-12-20 | 2021-08-11 | Roche Diagnostics GmbH | PCR elbow determination using curvature analysis of a double sigmoid |
| JP5601098B2 (en) * | 2010-09-03 | 2014-10-08 | ソニー株式会社 | Fluorescence intensity correction method and fluorescence intensity calculation apparatus |
| WO2012106481A1 (en) * | 2011-02-01 | 2012-08-09 | Life Technologies Coporation | Systems and methods for the analysis of protein melt curve data |
| JP5817369B2 (en) * | 2011-09-13 | 2015-11-18 | ソニー株式会社 | SPECTRUM ANALYSIS DEVICE, MICROPARTICLE MEASUREMENT DEVICE, METHOD AND PROGRAM FOR SPECTRUM ANALYSIS OR SPECTRUM CHART DISPLAY |
| KR20140002242A (en) * | 2012-06-28 | 2014-01-08 | 삼성전자주식회사 | Method and apparatus for performing quantitative analysis of nucleic acid using real-time pcr |
| US20170247745A1 (en) * | 2014-09-12 | 2017-08-31 | Click Diagnostics, Inc. | Multiplex optical detection |
| US11385168B2 (en) * | 2015-03-31 | 2022-07-12 | Nec Corporation | Spectroscopic analysis apparatus, spectroscopic analysis method, and readable medium |
| CN106645708A (en) * | 2016-09-20 | 2017-05-10 | 必欧瀚生物技术(合肥)有限公司 | Quantitative detection calculation method based on fluorescent immuno-chromatographic technology |
| CN106906132B (en) * | 2017-03-21 | 2018-06-29 | 广东顺德工业设计研究院(广东顺德创新设计研究院) | Digital polymerase chain reaction optical detection apparatus and method |
-
2019
- 2019-10-16 TW TW108137161A patent/TWI726446B/en active
-
2020
- 2020-03-06 CN CN202010149961.4A patent/CN112397152A/en not_active Withdrawn
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070238161A1 (en) * | 1998-05-16 | 2007-10-11 | Applera Corporation | Instrument for monitoring polymerase chain reaction of DNA |
| TW201829784A (en) * | 2007-08-13 | 2018-08-16 | 美商網路生物有限公司 | Integrated microfluidic systems, biochips and methods for the detection of nucleic acids and biological molecules by electrophoresis |
| CN102010904A (en) * | 2010-08-27 | 2011-04-13 | 浙江大学 | Fluorescent signal detection device of real-time fluorescent quantitative PCR (Polymerase Chain Reaction) instrument |
| TWI624543B (en) * | 2011-09-25 | 2018-05-21 | 賽瑞諾斯有限公司 | Systems and methods for multi-analysis |
| TW201339308A (en) * | 2012-03-20 | 2013-10-01 | Thinkfar Nanotechnology Corp | Detection device for nucleic acid amplification |
| TW201544074A (en) * | 2014-05-22 | 2015-12-01 | Apex Medical Corp | Breathing waveform recognition method and system thereof |
| TWI586957B (en) * | 2016-06-24 | 2017-06-11 | 諾貝爾生物有限公司 | Multi-channel fluorescene detecting system and method using the same |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112397152A (en) | 2021-02-23 |
| TW202107476A (en) | 2021-02-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7542048B2 (en) | Optical Couplers and Waveguide Systems | |
| US11879841B2 (en) | Optical system and assay chip for probing, detecting and analyzing molecules | |
| US6373567B1 (en) | Dispersive near-IR Raman spectrometer | |
| CN113899452B (en) | Multiplexing and coding for reference switching | |
| JPH09184809A (en) | Scattering light measuring apparatus | |
| JP2009526997A (en) | Method and system for simultaneously monitoring optical signals from multiple sources in real time | |
| US20150055132A1 (en) | Method for calibrating spectroscopy apparatus and equipment for use in the method | |
| EP3140636B1 (en) | A surface refractive index image acquiring system and method | |
| US20130195131A1 (en) | Chemical detection and laser wavelength stabilization employing spectroscopic absorption via laser compliance voltage sensing | |
| AU2019287768A1 (en) | Data acquisition control for advanced analytic instruments having pulsed optical sources | |
| EP3739310B1 (en) | Spectrometry device and spectrometry method | |
| TWI726446B (en) | Analytical system and analytical method thereof | |
| US11879846B2 (en) | Raman spectroscopy method and apparatus using broadband excitation light | |
| JP7213844B2 (en) | Analysis system and its analysis method | |
| US20220136956A1 (en) | Method and systems for characterizing and encoding a light detection system | |
| JP2023549475A (en) | Flow cytometers including tilted beam shaping optics and methods of using flow cytometers | |
| CN115406835B (en) | Nitrate measurement method and system based on wavelength tunable ultraviolet narrow-band light source | |
| CN117664883A (en) | Transformer fault detection method, device, storage medium and electronic equipment | |
| US20220026339A1 (en) | Methods and devices for evaluating performance of a diode laser | |
| WO2022210192A1 (en) | Raman spectroscopy device and raman spectroscopy measurement method | |
| CN118483205A (en) | DMD-based explosive analysis fluorescence spectrometer and method | |
| KR20250025099A (en) | Apparatus and method for providing gas concentration | |
| JP6726859B2 (en) | Fluorescence detector and control method thereof | |
| CN116500012A (en) | Multi-wavelength corrected Raman fluorescence spectrum joint detection device and method | |
| WO2024124078A1 (en) | Devices, methods, and systems to measuring and recording spectrum of a reactant array |
