TWI697912B - System and method for evaluating the risk of physiological status and electronic device - Google Patents
System and method for evaluating the risk of physiological status and electronic device Download PDFInfo
- Publication number
- TWI697912B TWI697912B TW107138291A TW107138291A TWI697912B TW I697912 B TWI697912 B TW I697912B TW 107138291 A TW107138291 A TW 107138291A TW 107138291 A TW107138291 A TW 107138291A TW I697912 B TWI697912 B TW I697912B
- Authority
- TW
- Taiwan
- Prior art keywords
- physiological data
- information
- physiological
- time range
- risk assessment
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 18
- 238000011156 evaluation Methods 0.000 claims abstract description 24
- 238000012502 risk assessment Methods 0.000 claims description 62
- 230000035790 physiological processes and functions Effects 0.000 claims description 41
- 230000036772 blood pressure Effects 0.000 claims description 13
- 238000013179 statistical model Methods 0.000 claims description 7
- 238000010801 machine learning Methods 0.000 claims description 6
- 230000035488 systolic blood pressure Effects 0.000 description 20
- 230000035487 diastolic blood pressure Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 6
- 230000004622 sleep time Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 101000802640 Homo sapiens Lactosylceramide 4-alpha-galactosyltransferase Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 102100035838 Lactosylceramide 4-alpha-galactosyltransferase Human genes 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
本發明是有關於一種生理狀態的風險評估系統、方法及電子裝置。The invention relates to a risk assessment system, method and electronic device of a physiological state.
一般來說,民眾只有在生理狀態出現異狀時才會前往醫院或診所就診。在醫院或診所時,可能會檢查民眾的血壓等生理資料。醫生可根據當下測得的生理資料評估民眾的健康狀態。然而,對某些容易緊張的民眾來說,或是測量前未充分休息的民眾,在醫院時的單一時間點量測的血壓容易失真,從而可能導致醫生對於民眾健康狀態的評估不精確。Generally speaking, people go to hospitals or clinics only when they have abnormal physical conditions. When in a hospital or clinic, people's blood pressure and other physiological data may be checked. Doctors can assess the health of the people based on the physiological data measured at the moment. However, for some people who are prone to stress, or people who have not had enough rest before the measurement, the blood pressure measured at a single point in the hospital is easily distorted, which may lead to inaccurate assessment of the health status of the people by doctors.
本發明提供一種生理狀態的風險評估系統、方法及電子裝置,可根據一個預設時間範圍內連續測得的使用者的生理資料給出適當的風險評估資訊及/或就醫提醒資訊,從而改善上述問題。The present invention provides a physiological state risk assessment system, method and electronic device, which can provide appropriate risk assessment information and/or medical reminder information based on the physiological data of a user continuously measured within a preset time range, thereby improving the above problem.
本發明的實施例提供一種生理狀態的風險評估系統,其包括生理特徵感測器、儲存裝置及處理器。所述生理特徵感測器用以獲得使用者在預設時間範圍內的多個生理資料。所述生理資料包括在所述預設時間範圍內的第一時間點測得的第一生理資料與在所述預設時間範圍內的第二時間點測得的第二生理資料,且所述第一時間點不同於所述第二時間點。所述儲存裝置耦接至所述生理特徵感測器並用以儲存所述生理資料。所述處理器耦接至所述生理特徵感測器與所述儲存裝置。所述處理器根據所述生理資料獲得至少一特徵參數,所述特徵參數反映所述生理資料的統計特性。所述處理器藉由至少一預測模型分析所述特徵參數以獲得風險評估資訊與就醫提醒資訊的至少其中之一。所述風險評估資訊反映所述使用者發生一預設生理狀態的風險。The embodiment of the present invention provides a physiological state risk assessment system, which includes a physiological characteristic sensor, a storage device, and a processor. The physiological characteristic sensor is used to obtain a plurality of physiological data of the user within a preset time range. The physiological data includes first physiological data measured at a first time point within the preset time range and second physiological data measured at a second time point within the preset time range, and The first time point is different from the second time point. The storage device is coupled to the physiological characteristic sensor and used for storing the physiological data. The processor is coupled to the physiological characteristic sensor and the storage device. The processor obtains at least one characteristic parameter according to the physiological data, and the characteristic parameter reflects the statistical characteristics of the physiological data. The processor analyzes the characteristic parameters by at least one predictive model to obtain at least one of risk assessment information and medical reminder information. The risk assessment information reflects the risk of the user having a predetermined physiological state.
本發明的實施例另提供一種電子裝置,其包括生理特徵感測器、儲存裝置及處理器。所述生理特徵感測器用以獲得使用者在預設時間範圍內的多個生理資料。所述生理資料包括在所述預設時間範圍內的第一時間點測得的第一生理資料與在所述預設時間範圍內的第二時間點測得的第二生理資料,且所述第一時間點不同於所述第二時間點。所述儲存裝置耦接至所述生理特徵感測器並用以儲存所述生理資料。所述處理器耦接至所述生理特徵感測器與所述儲存裝置。所述處理器根據所述生理資料獲得至少一特徵參數。所述特徵參數反映所述生理資料的統計特性。所述處理器藉由至少一預測模型分析所述特徵參數以獲得風險評估資訊與就醫提醒資訊的至少其中之一。所述風險評估資訊反映所述使用者發生一預設生理狀態的風險。An embodiment of the present invention further provides an electronic device, which includes a physiological characteristic sensor, a storage device, and a processor. The physiological characteristic sensor is used to obtain a plurality of physiological data of the user within a preset time range. The physiological data includes first physiological data measured at a first time point within the preset time range and second physiological data measured at a second time point within the preset time range, and The first time point is different from the second time point. The storage device is coupled to the physiological characteristic sensor and used for storing the physiological data. The processor is coupled to the physiological characteristic sensor and the storage device. The processor obtains at least one characteristic parameter according to the physiological data. The characteristic parameters reflect the statistical characteristics of the physiological data. The processor analyzes the characteristic parameters by at least one predictive model to obtain at least one of risk assessment information and medical reminder information. The risk assessment information reflects the risk of the user having a predetermined physiological state.
本發明的實施例另提供一種生理狀態的風險評估方法,其包括:藉由生理特徵感測器獲得使用者在預設時間範圍內的多個生理資料,其中所述生理資料包括在所述預設時間範圍內的第一時間點測得的第一生理資料與在所述預設時間範圍內的第二時間點測得的第二生理資料,且所述第一時間點不同於所述第二時間點;根據所述生理資料獲得至少一特徵參數,其中所述特徵參數反映所述生理資料的統計特性;以及藉由至少一預測模型分析所述特徵參數以獲得風險評估資訊與就醫提醒資訊的至少其中之一,其中所述風險評估資訊反映所述使用者發生預設生理狀態的風險。An embodiment of the present invention further provides a method for risk assessment of a physiological state, which includes: obtaining a plurality of physiological data of a user within a preset time range by a physiological characteristic sensor, wherein the physiological data is included in the prediction It is assumed that the first physiological data measured at the first time point within the time range and the second physiological data measured at the second time point within the preset time range, and the first time point is different from the first physiological data Two time points; obtaining at least one characteristic parameter according to the physiological data, wherein the characteristic parameter reflects the statistical characteristics of the physiological data; and analyzing the characteristic parameter by at least one predictive model to obtain risk assessment information and medical reminder information At least one of, wherein the risk assessment information reflects the risk of the user having a predetermined physiological state.
基於上述,在藉由生理特徵感測器獲得使用者在不同時間點的生理資料後,至少一個特徵參數可被獲得且所述特徵參數可反映所述生理資料的統計特性。接著,藉由至少一個預測模型的分析,對應於此使用者的風險評估資訊及/或就醫提醒資訊可被獲得。透過考慮在預設時間範圍內連續測得的使用者的生理資料,本發明實施例可以提供適當的風險評估資訊及/或就醫提醒資訊協助一般民眾管理及/或理解其生理狀態。Based on the above, after obtaining the physiological data of the user at different time points by the physiological characteristic sensor, at least one characteristic parameter can be obtained and the characteristic parameter can reflect the statistical characteristics of the physiological data. Then, through the analysis of at least one predictive model, the risk assessment information and/or medical reminder information corresponding to the user can be obtained. By considering the user's physiological data continuously measured within a preset time range, embodiments of the present invention can provide appropriate risk assessment information and/or medical reminder information to assist the general public in managing and/or understanding their physiological state.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
圖1是根據本發明的一實施例所繪示的生理狀態的風險評估系統的示意圖。請參照圖1,系統(亦稱為生理狀態的風險評估系統)10包括生理特徵感測器11、儲存裝置12、處理器13及輸入/輸出介面14。生理特徵感測器11可包括各式用以感測使用者的生理資料的感測器,例如血壓感測器、血糖感測器及/或腦波偵測器,且生理特徵感測器11的類型不限於此。此外,生理特徵感測器11的數目可以是一或多個。Fig. 1 is a schematic diagram of a risk assessment system for a physiological state according to an embodiment of the present invention. Please refer to FIG. 1, the system (also referred to as the risk assessment system of the physiological state) 10 includes a
儲存裝置12耦接至生理特徵感測器11並且用以儲存資料。例如,儲存裝置12可儲存經由生理特徵感測器11測得的生理資料。儲存裝置12可包括揮發性儲存媒體與非揮發性儲存媒體。其中,揮發性儲存媒體可以是隨機存取記憶體,而非揮發性儲存媒體可以是唯讀記憶體、固態硬碟或傳統硬碟。此外,儲存裝置12的數目可以是一或多個。The
處理器13耦接至生理特徵感測器11與儲存裝置12。處理器13可包括中央處理單元、圖形處理器(graphics processing unit, GPU)或是其他可程式化之一般用途或特殊用途的微處理器、數位訊號處理器、可程式化控制器、特殊應用積體電路、可程式化邏輯裝置或其他類似裝置或這些裝置的組合。The
輸入/輸出介面14耦接至處理器13。輸入/輸出介面14用以輸出訊號或接收訊號。例如,輸入/輸出介面14可包括螢幕、觸控螢幕、觸控板、滑鼠、鍵盤、實體按鈕、揚聲器、麥克風、有線通訊介面及/或無線通訊介面,且輸入/輸出介面14的類型不限於此。The input/
在一實施例中,系統10可配置於單一電子裝置。此電子裝置可以是智慧手環、智慧手錶、智慧血壓計、智慧血糖機或腦波偵測器等。此電子裝置可藉由生理特徵感測器11感測使用者的生理資料。此電子裝置可藉由儲存裝置12儲存所測得的生理資料。此電子裝置可藉由處理器13處理此生理資料並可藉由輸入/輸出介面14輸出處理結果。此外,此電子裝置亦可藉由輸入/輸出介面14將生理資料的處理結果傳送至雲端資料庫或其他電子裝置(例如智慧型手機、平板電腦或筆記型電腦)。In one embodiment, the
在一實施例中,系統10可配置於至少兩個彼此獨立的電子裝置。例如,生理特徵感測器11、儲存裝置12及輸入/輸出介面14可配置於第一電子裝置(例如智慧手環、智慧手錶、智慧血壓計、智慧血糖機或腦波偵測器),而處理器13可配置於第二電子裝置(例如智慧型手機、平板電腦、筆記型電腦、工業電腦或伺服器)。第一電子裝置可經由輸入/輸出介面14與第二電子裝置通訊以將測得的生理資料傳送給第二電子裝置。第二電子裝置可處理來自第一電子裝置的生理資料並對生理資料進行處理。此外,第二電子裝置亦可藉由某一輸入/輸出介面輸出處理結果及/或將處理結果儲存至雲端資料庫等。In one embodiment, the
生理特徵感測器11可獲得使用者在某一預設時間範圍內的多個生理資料。例如,生理資料可包括在此預設時間範圍內的某一時間點(亦稱為第一時間點)測得的生理資料(亦稱為第一生理資料)與在此預設時間範圍內的另一時間點(亦稱為第二生理資料)測得的生理資料(亦稱為第二生理資料)。第一時間點不同於第二時間點。The
圖2是根據本發明的一實施例所繪示的生理資料的示意圖。須注意的是,在圖2的實施例中,是以血壓感測器作為圖1中生理特徵感測器11的範例,但非用以限制本發明。FIG. 2 is a schematic diagram of physiological data drawn according to an embodiment of the invention. It should be noted that in the embodiment of FIG. 2, a blood pressure sensor is used as an example of the
請參照圖1與圖2,生理資料201是經由生理特徵感測器11測得。生理資料201反映血壓資訊。例如,生理資料201可反映使用者在一個預設時間範圍內每隔一預設時間間隔測得的血壓資訊。時間資訊202反映生理資料201的量測時間。生理資料201與時間資訊202可儲存於儲存裝置12。Please refer to FIG. 1 and FIG. 2, the
在本實施例中,預設時間範圍為24小時(即一天)且預設時間間隔為60分鐘。在本實施例中,血壓資訊包括收縮壓與舒張壓。例如,在時間11:10時,所測得的使用者的收縮壓與舒張壓分別為138與79毫米汞柱(mmHg)。在時間12:10時,所測得的使用者的收縮壓與舒張壓分別為144與79毫米汞柱。In this embodiment, the preset time range is 24 hours (ie, one day) and the preset time interval is 60 minutes. In this embodiment, the blood pressure information includes systolic blood pressure and diastolic blood pressure. For example, at time 11:10, the measured systolic and diastolic blood pressure of the user are 138 and 79 millimeters of mercury (mmHg), respectively. At 12:10, the measured systolic and diastolic blood pressure of the user were 144 and 79 mmHg, respectively.
須注意的是,在一實施例中,預設時間範圍可為其他時間範圍。例如,在一實施例中,預設時間範圍可為24小時的倍數,例如48小時或72小時。在一實施例中,預設時間間隔亦可以是更長(例如2小時)或更短(例如30分鐘)。此外,在一實施例中,生理資料201可僅包括收縮壓與舒張壓的其中之一。It should be noted that, in one embodiment, the preset time range may be other time ranges. For example, in one embodiment, the preset time range may be a multiple of 24 hours, such as 48 hours or 72 hours. In an embodiment, the predetermined time interval may also be longer (for example, 2 hours) or shorter (for example, 30 minutes). In addition, in an embodiment, the
處理器13可根據生理資料201獲得至少一特徵參數。此特徵參數反映生理資料201的統計特性。例如,此統計特性可包括生理資料201中至少一部分數值的最小值、生理資料201中至少一部分數值的最大值、生理資料201中至少一部分數值的平均值、生理資料201中至少一部分數值的變異數、生理資料201中至少一部分數值的標準差、生理資料201中至少一部分數值的遞降比例、生理資料201中至少一部分數值的上升速率、生理資料201中至少一部分數值的下降速率、生理資料201中至少一部分數值的驟升數值及/或生理資料201中至少一部分數值的驟降數值。在另一實施例中,此統計特性還可以反映其他類型的統計資訊(例如加權平均值或中位數等),本發明不加以限制。The
在一實施例中,處理器13可將預設時間範圍劃分為兩個以上的時間範圍。任兩個時間範圍可以重疊或不重疊。處理器13可根據所劃分的時間範圍來分析所述生理資料以獲得所述特徵參數。所述特徵參數可包括分時段特徵參數、跨時段特徵參數及/或不分時段特徵參數。例如,根據所劃分的單一時間範圍內測得的生理資料,處理器13可獲得分時段特徵參數。例如,根據所劃分的多個時間範圍內測得的生理資料,處理器13可獲得跨時段特徵參數。或者,根據所有時間範圍內測得的生理資料,處理器13可獲得不分時段特徵參數。In an embodiment, the
以圖2為例,在一實施例中,處理器13可將24小時劃分為日間時段、睡眠時段及晨間時段。日間時段可為06:00~22:00。睡眠時段可為22:00~06:00。晨間時段可為06:00~08:00。根據日間時段、睡眠時段及晨間時段中某一個時段所涵蓋的時間範圍內所測得的生理資料,處理器13可獲得分時段特徵參數。例如,根據日間時段、睡眠時段或晨間時段中所測得的生理資料,處理器13可獲得收縮壓的最小值、收縮壓的最大值、舒張壓的最小值、舒張壓最大值、收縮壓的平均值、舒張壓的平均值、收縮壓的變異數及/或舒張壓的變異數等。此些資訊屬於分時段特徵參數。Taking FIG. 2 as an example, in one embodiment, the
根據日間時段、睡眠時段及晨間時段中某兩個時段所涵蓋的時間範圍內所測得的生理資料,處理器13可獲得跨時段特徵參數。例如,根據睡眠時段至晨間時段所測得的生理資料,處理器13可獲得睡眠時段到晨間時段中收縮壓(或舒張壓)的驟升速率及/或驟升數值。或者,根據日間時段至睡眠時段所測得的生理資料,處理器13可獲得日間時段到睡眠時段中收縮壓(或舒張壓)的驟降比例等。此些資訊屬於跨時段特徵參數。According to the physiological data measured in the time range covered by two of the daytime period, the sleep period and the morning period, the
根據日間時段、睡眠時段及晨間時段所涵蓋的所有時間範圍內所測得的生理資料,處理器13可獲得不分時段特徵參數。例如,根據24小時內測得的所有生理資料,處理器13可獲得此些時段中收縮壓的平均值、舒張壓的平均值、收縮壓的標準差及/或舒張壓的標準差等。此些資訊屬於不分時段特徵參數。According to the physiological data measured in all the time ranges covered by the day time, sleep time, and morning time, the
在一實施例中,處理器13可根據以下方程式(1.1)獲得一或多個時段中N個生理資料的平均值。In an embodiment, the
(1.1) (1.1)
在方程式(1.1)中,特徵參數AVG對應N個生理資料的平均值,且P(k)對應生理資料的數值(例如血壓值)。In equation (1.1), the characteristic parameter AVG corresponds to the average value of N physiological data, and P(k) corresponds to the value of the physiological data (for example, blood pressure).
在一實施例中,處理器13可根據以下方程式(1.2)獲得一或多個時段中N個生理資料的變異數(亦稱為平均真實變異)。In an embodiment, the
(1.2) (1.2)
在方程式(1.2)中,特徵參數ARV對應N個生理資料的變異數。In equation (1.2), the characteristic parameter ARV corresponds to the variance of N physiological data.
在一實施例中,處理器13可根據以下方程式(1.3)獲得某一時段(亦稱為第一時段)到另一個時段(亦稱為第二時段)中生理資料的遞降比例。In an embodiment, the
(1.3) (1.3)
在方程式(1.3)中,特徵參數DIP對應第一時段到第二時段中生理資料的遞降比例,AVG(Q)對應於第一時段中Q個生理資料的平均值,且AVG(P)對應於第二時段中P個生理資料的平均值。例如,假設第一時段為日間時段且第二時段為睡眠時段,則特徵參數DIP可反映從日間時段到睡眠時段中血壓(例如收縮壓或舒張壓)的遞降比例。In equation (1.3), the characteristic parameter DIP corresponds to the decreasing proportion of physiological data in the first period to the second period, AVG(Q) corresponds to the average of Q physiological data in the first period, and AVG(P) corresponds to The average value of P physiological data in the second period. For example, assuming that the first time period is a day time period and the second time period is a sleep time period, the characteristic parameter DIP may reflect the decreasing proportion of blood pressure (such as systolic blood pressure or diastolic blood pressure) from the day time period to the sleep period.
在一實施例中,處理器13可將某一時段中生理資料的平均值減去另一時段中生理資料的平均值,以獲得生理資料的驟升數值。例如,處理器13可將晨間時段中收縮壓的平均值減去睡眠時段中收縮壓的最小值,以獲得睡眠時段至晨間時段中收縮壓的驟升數值。In an embodiment, the
在一實施例中,處理器13可根據某兩個時段中生理資料對時間的迴歸係數以獲得生理資料的驟升速率。例如,處理器13可根據以下方程式(1.4)~(1.6)獲得睡眠時段到晨間時段收縮壓(或舒張壓)的驟升速率。In an embodiment, the
(1.4) (1.4)
(1.5) (1.5)
(1.6) (1.6)
在方程式(1.4)~(1.6)中,n為收集到的時間點的數目,x
i為睡眠時段中發生最小的收縮壓的時間點到晨間時段結束的時間點之間收集到的時間點,且y
i為睡眠時段中發生最小的收縮壓的時間點到晨間時段結束的時間點之間收集到的收縮壓。此外,處理器13可基於其他類型的演算法來獲得相應的特徵參數,本發明不加以限制。
In equations (1.4)~(1.6), n is the number of time points collected, and x i is the time point collected from the time point when the smallest systolic blood pressure occurs during the sleep period to the time point when the morning period ends. , And y i is the systolic blood pressure collected between the time when the smallest systolic blood pressure occurs during the sleep period and the time when the morning period ends. In addition, the
處理器13可藉由至少一個預測模型分析所獲得的特徵參數以獲得對應於此使用者的風險評估資訊及/或就醫提醒資訊。例如,上述特徵參數的至少一種可以被採用以獲得風險評估資訊及/或就醫提醒資訊。此風險評估資訊可反映使用者發生預設生理狀態的風險。此風險可以用機率或等級等方式來表示。例如,此風險評估資訊可反映使用者未來發生高血壓、糖尿病等異常生理狀態的機率。須注意的是,此風險評估資訊並非醫學上的診斷資訊,而僅是對所測得的生理資料進行分析而獲得的概略分析結果。此外,就醫提醒資訊可根據風險評估資訊而提醒使用者可以針對可能發生的預設生理狀態進行檢查與預防。The
在一實施例中,預測模型的數目(或類型)可以是一或多個。例如,預測模型可包括參數統計模型、集成學習模型及機器學習模型的至少其中之二。參數統計模型可包括Cox模型(亦稱為Cox迴歸模型或比例風險迴歸(Proportional Hazards)模型)。例如,參數統計模型可具有不同群組之間運算結果的比值不隨時間變化的特性。參數統計模型比較能解釋特徵參數對於不同群組之間的表現差異。集成學習(Ensemble Learning)模型可包括隨機森林(Random Forest)模型。例如,集成學習模型可採用多個決策樹並藉由投票或整合的方式來產生預測結果。集成學習模型可提供較穩健的預測結果。機器學習模型包括支持向量機器(Support Vector Machine, SVM)模型。例如,機器學習模型可找出一個非線性的平面來最大化地分割不同群組並提供預測結果。In an embodiment, the number (or type) of prediction models may be one or more. For example, the prediction model may include at least two of a parameter statistical model, an integrated learning model, and a machine learning model. The parameter statistical model may include a Cox model (also known as a Cox regression model or a proportional hazards regression (Proportional Hazards) model). For example, the parameter statistical model may have the characteristic that the ratio of the calculation results between different groups does not change with time. Comparison of parameter statistical models can explain the performance differences of characteristic parameters between different groups. The ensemble learning (Ensemble Learning) model may include a random forest (Random Forest) model. For example, the ensemble learning model can use multiple decision trees and generate prediction results through voting or integration. The integrated learning model can provide more robust prediction results. Machine learning models include Support Vector Machine (SVM) models. For example, a machine learning model can find a non-linear plane to maximize segmentation of different groups and provide prediction results.
在不同實施例中,越多預測模型被使用,則所獲得的風險評估資訊及/或就醫提醒資訊可能越精準。在以下實施例中,是以上述三個預測模型(即三種類型的預測模型)同時被使用作為範例,但其並非用以限制本發明。In different embodiments, the more predictive models are used, the more accurate the obtained risk assessment information and/or medical reminder information may be. In the following embodiments, the above three prediction models (ie, three types of prediction models) are used simultaneously as an example, but they are not intended to limit the present invention.
在一實施例中,處理器13可運行第一預測模型、第二預測模型及第三預測模型。第一預測模型、第二預測模型及第三預測模型可分別為參數統計模型、集成學習模型及機器學習模型。處理器13可藉由第一預測模型、第二預測模型及第三預測模型分析所述特徵參數以分別獲得第一評估資訊、第二評估資訊及第三評估資訊。處理器13可根據第一評估資訊、第二評估資訊及第三評估資訊獲得所述風險評估資訊及/或就醫提醒資訊。In an embodiment, the
在一實施例中,處理器13可根據以下方程式(2.1)獲得對應於預設生理狀態的風險值。In an embodiment, the
(2.1) (2.1)
在方程式(2.1)中,風險值RK對應使用者發生預設生理狀態的風險,RK(1)對應第一預測模型產生的第一評估資訊,RK(2)對應第二預測模型產生的第二評估資訊,且RK(3)對應第三預測模型產生的第三評估資訊。風險值RK越高,表示使用者發生預設生理狀態的風險越大。處理器13可根據風險值RK獲得所述風險評估資訊。In equation (2.1), the risk value RK corresponds to the user's risk of a preset physiological state, RK(1) corresponds to the first assessment information generated by the first prediction model, and RK(2) corresponds to the second prediction model generated by the second prediction model. Evaluation information, and RK(3) corresponds to the third evaluation information generated by the third prediction model. The higher the risk value RK, the greater the risk that the user will have a preset physiological state. The
在一實施例中,處理器13可獲得第一預測模型的預測誤差率(亦稱為第一預測誤差率)、第二預測模型的預測誤差率(亦稱為第二預測誤差率)及第三預測模型的預測誤差率(亦稱為第三預測誤差率)。處理器13可根據第一評估資訊、第二評估資訊、第三評估資訊、第一預測誤差率、第二預測誤差率及第三預測誤差率獲得風險評估資訊與就醫提醒資訊的至少其中之一。例如,處理器13可根據以下方程式(3.1)~(3.4)獲得對應於預設生理狀態的風險值。In one embodiment, the
(3.1) (3.1)
(3.2) (3.2)
(3.3) (3.3)
(3.4) (3.4)
在方程式(3.1)~(3.4)中,參數a對應第一預測模型的預測誤差率(即第一預測誤差率),參數b對應第二預測模型的預測誤差率(即第二預測誤差率),且參數c對應第三預測模型的預測誤差率(即第三預測誤差率)。換言之,方程式(3.1)~(3.4)考慮了不同預測模型的不同預測誤差率。處理器13可調整不同預測模型所產生的預測結果的權重α、β及γ。在一實施例中,使用方程式(3.1)~(3.4)的預測精準度可能會高於使用方程式(2.1)的預測精準度。In equations (3.1)~(3.4), parameter a corresponds to the prediction error rate of the first prediction model (ie, the first prediction error rate), and parameter b corresponds to the prediction error rate of the second prediction model (ie, the second prediction error rate) , And the parameter c corresponds to the prediction error rate of the third prediction model (ie, the third prediction error rate). In other words, equations (3.1)~(3.4) consider the different prediction error rates of different prediction models. The
在一實施例中,第一評估資訊可反映第一預測模型認為使用者需要或不需要就醫。第二評估資訊可反映第二預測模型認為使用者需要或不需要就醫。第三評估資訊可反映第三預測模型認為使用者需要或不需要就醫。In one embodiment, the first evaluation information may reflect that the first prediction model believes that the user needs or does not need medical treatment. The second evaluation information may reflect that the second prediction model believes that the user needs or does not need medical treatment. The third evaluation information may reflect that the third prediction model believes that the user needs or does not need medical treatment.
在一實施例中,處理器13可以是以多數決的方式參考第一評估資訊、第二評估資訊及第三評估資訊獲得就醫提醒資訊。例如,若三個預測模型中有兩個或兩個以上的預測模型認為使用者需要就醫,則處理器13就可以產生提醒使用者就醫的就醫提醒資訊。In one embodiment, the
在一實施例中,處理器13亦可以採用其他機制獲得就醫提醒資訊。例如,在一實施例中,只要有一個預測模型認為使用者需要就醫,則處理器13就可以產生提醒使用者就醫的就醫提醒資訊。或者,在一實施例中,只要有一個預測模型認為使用者不需要就醫,則處理器13就不產生提醒使用者就醫的就醫提醒資訊。In one embodiment, the
圖3是根據本發明的一實施例所繪示的生理狀態的風險評估方法的流程圖。請參照圖3,在步驟S301中,藉由生理特徵感測器獲得使用者在預設時間範圍內的多個生理資料。所述生理資料包括在所述預設時間範圍內的第一時間點測得的第一生理資料與在所述預設時間範圍內的第二時間點測得的第二生理資料,且所述第一時間點不同於所述第二時間點。在步驟S302中,根據所述生理資料獲得至少一特徵參數。所述特徵參數反映所述生理資料的統計特性。在步驟S303中,藉由至少一預測模型分析所述特徵參數以獲得風險評估資訊及/或就醫提醒資訊。所述風險評估資訊反映所述使用者發生預設生理狀態的風險。Fig. 3 is a flowchart of a method for risk assessment of a physiological state according to an embodiment of the present invention. Referring to FIG. 3, in step S301, a plurality of physiological data of the user within a preset time range is obtained by the physiological characteristic sensor. The physiological data includes first physiological data measured at a first time point within the preset time range and second physiological data measured at a second time point within the preset time range, and The first time point is different from the second time point. In step S302, at least one characteristic parameter is obtained according to the physiological data. The characteristic parameters reflect the statistical characteristics of the physiological data. In step S303, the characteristic parameters are analyzed by at least one predictive model to obtain risk assessment information and/or medical reminder information. The risk assessment information reflects the risk of the user having a predetermined physiological state.
須注意的是,圖3中各步驟已詳細說明如上,在此便不再贅述。圖3中各步驟可以實作為多個程式碼或是電路,本發明不加以限制。此外,圖3的方法可以搭配以上範例實施例使用,也可以單獨使用,本發明不加以限制。It should be noted that each step in FIG. 3 has been described in detail above, and will not be repeated here. Each step in FIG. 3 can be implemented as multiple program codes or circuits, and the present invention is not limited. In addition, the method in FIG. 3 can be used in conjunction with the above exemplary embodiments, or can be used alone, and the present invention is not limited.
綜上所述,在藉由生理特徵感測器獲得使用者在不同時間點的生理資料後,至少一個特徵參數可被獲得且所述特徵參數可反映所述生理資料的統計特性。接著,藉由至少一個預測模型的分析,對應於此使用者的風險評估資訊及/或就醫提醒資訊可被獲得。透過考慮在預設時間範圍內連續測得的使用者的生理資料,本發明實施例可以提供適當的風險評估資訊及/或就醫提醒資訊協助一般民眾管理及/或理解其生理狀態。此外,所述風險評估資訊及/或就醫提醒資訊也可協助醫生或護理人員對使用者的生理狀態進行評估。In summary, after obtaining the physiological data of the user at different time points by the physiological characteristic sensor, at least one characteristic parameter can be obtained and the characteristic parameter can reflect the statistical characteristics of the physiological data. Then, through the analysis of at least one predictive model, the risk assessment information and/or medical reminder information corresponding to the user can be obtained. By considering the user's physiological data continuously measured within a preset time range, embodiments of the present invention can provide appropriate risk assessment information and/or medical reminder information to assist the general public in managing and/or understanding their physiological state. In addition, the risk assessment information and/or medical reminder information can also assist doctors or nurses in assessing the physiological state of the user.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make slight changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to those defined by the attached patent scope.
10:生理狀態的風險評估系統 11:生理特徵感測器 12:儲存裝置 13:處理器 14:輸入/輸出介面 201:生理資料 202:時間資訊 S301~S303:步驟10: Physiological state risk assessment system 11: Physiological characteristic sensor 12: Storage device 13: Processor 14: Input/output interface 201: Physiological data 202: Time information S301~S303: Steps
圖1是根據本發明的一實施例所繪示的生理狀態的風險評估系統的示意圖。 圖2是根據本發明的一實施例所繪示的生理資料的示意圖。 圖3是根據本發明的一實施例所繪示的生理狀態的風險評估方法的流程圖。Fig. 1 is a schematic diagram of a risk assessment system for a physiological state according to an embodiment of the present invention. FIG. 2 is a schematic diagram of physiological data drawn according to an embodiment of the invention. Fig. 3 is a flowchart of a method for risk assessment of a physiological state according to an embodiment of the present invention.
S301~S303:步驟S301~S303: steps
Claims (17)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107138291A TWI697912B (en) | 2018-10-30 | 2018-10-30 | System and method for evaluating the risk of physiological status and electronic device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107138291A TWI697912B (en) | 2018-10-30 | 2018-10-30 | System and method for evaluating the risk of physiological status and electronic device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202016947A TW202016947A (en) | 2020-05-01 |
| TWI697912B true TWI697912B (en) | 2020-07-01 |
Family
ID=71895611
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW107138291A TWI697912B (en) | 2018-10-30 | 2018-10-30 | System and method for evaluating the risk of physiological status and electronic device |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI697912B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI790479B (en) * | 2020-09-17 | 2023-01-21 | 宏碁股份有限公司 | Physiological status evaluation method and physiological status evaluation device |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9107586B2 (en) * | 2006-05-24 | 2015-08-18 | Empire Ip Llc | Fitness monitoring |
| US20150305675A1 (en) * | 2014-04-25 | 2015-10-29 | Halo Wearables, Llc | Wearable stress-testing device |
| TWI524879B (en) * | 2013-04-02 | 2016-03-11 | Univ Hungkuang | Human microcirculation evaluation system |
| TWI542322B (en) * | 2014-12-22 | 2016-07-21 | 財團法人工業技術研究院 | Method and system for detecting sleep event |
-
2018
- 2018-10-30 TW TW107138291A patent/TWI697912B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9107586B2 (en) * | 2006-05-24 | 2015-08-18 | Empire Ip Llc | Fitness monitoring |
| TWI524879B (en) * | 2013-04-02 | 2016-03-11 | Univ Hungkuang | Human microcirculation evaluation system |
| US20150305675A1 (en) * | 2014-04-25 | 2015-10-29 | Halo Wearables, Llc | Wearable stress-testing device |
| TWI542322B (en) * | 2014-12-22 | 2016-07-21 | 財團法人工業技術研究院 | Method and system for detecting sleep event |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202016947A (en) | 2020-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11961621B2 (en) | Predicting intensive care transfers and other unforeseen events using machine learning | |
| US20240321447A1 (en) | Method and System for Personalized Prediction of Infection and Sepsis | |
| US11266355B2 (en) | Early warning system and method for predicting patient deterioration | |
| CN108604465B (en) | Prediction of Acute Respiratory Disease Syndrome (ARDS) based on patient physiological responses | |
| KR20200136950A (en) | Systems and methods for personalized drug treatment management | |
| TW201523503A (en) | Management systems and methods for managing physiology data measurement | |
| US11495352B2 (en) | Population health platform | |
| US20170300651A1 (en) | Platform which correlates data for recommendation | |
| CN111372506A (en) | System and computer program for predicting thyrotoxicosis using wearable devices | |
| WO2018090304A1 (en) | Mental stress evaluation method and device | |
| CN113658704A (en) | Diabetes risk prediction device, device and storage medium | |
| US11278246B1 (en) | Determining respiratory deterioration and decision support tool | |
| TW202317027A (en) | Intradialytic analysis method and analysis apparatus for dialysis | |
| Melnykova et al. | Anomalies detecting in medical metrics using machine learning tools | |
| US11096580B2 (en) | Adaptive health score | |
| US20220139550A1 (en) | Population health platform | |
| TWI697912B (en) | System and method for evaluating the risk of physiological status and electronic device | |
| US20210407683A1 (en) | Method and system for remote health monitoring, analyzing, and response | |
| JP2020523095A (en) | System and method for visualizing disease symptom comparisons in a patient population | |
| US12440170B1 (en) | Forecasting acute inflammatory condition and decision support tool | |
| US20250157669A1 (en) | Decision-Support Tools For Pediatric Obesity | |
| TW202123255A (en) | Health management system using non-contact imaging-based physiological measurement technology | |
| Randall Moorman | The principles of whole-hospital predictive analytics monitoring for clinical medicine originated in the neonatal ICU | |
| Rassam et al. | Monitoring Critical Health Conditions in the Elderly: A Deep Learning-Based Abnormal Vital Sign Detection Model. | |
| CN115666376A (en) | System and method for hypertension monitoring |










