TWI619488B - Lower extremity exoskeleton auxiliary device and method thereof - Google Patents
Lower extremity exoskeleton auxiliary device and method thereof Download PDFInfo
- Publication number
- TWI619488B TWI619488B TW106101900A TW106101900A TWI619488B TW I619488 B TWI619488 B TW I619488B TW 106101900 A TW106101900 A TW 106101900A TW 106101900 A TW106101900 A TW 106101900A TW I619488 B TWI619488 B TW I619488B
- Authority
- TW
- Taiwan
- Prior art keywords
- lower extremity
- extremity exoskeleton
- muscle
- knee joint
- layer
- Prior art date
Links
- 210000003141 lower extremity Anatomy 0.000 title claims abstract description 194
- 238000000034 method Methods 0.000 title claims description 24
- 210000003205 muscle Anatomy 0.000 claims abstract description 68
- 210000000629 knee joint Anatomy 0.000 claims abstract description 66
- 238000004364 calculation method Methods 0.000 claims abstract description 33
- 238000013528 artificial neural network Methods 0.000 claims abstract description 23
- 210000003127 knee Anatomy 0.000 claims abstract description 16
- 210000000689 upper leg Anatomy 0.000 claims abstract description 15
- 230000001537 neural effect Effects 0.000 claims description 15
- 238000010606 normalization Methods 0.000 claims description 13
- 230000003183 myoelectrical effect Effects 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 210000001087 myotubule Anatomy 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Rehabilitation Tools (AREA)
- Manipulator (AREA)
Abstract
一種下肢外骨骼輔助裝置,其供使用者之至少一下肢穿戴,下肢外骨骼輔助裝置包含肌電感測端、膝關節角度感測單元、類神經網路演算單元、下肢外骨骼馬達及下肢輔具。肌電感測端用以量測大腿之肌電訊號。膝關節角度感測單元用以量測膝關節之膝關節角度訊號。類神經網路演算單元依據肌電訊號、膝關節角度訊號及肌肉機械模型,運算得到輸出值,輸出值轉換為下肢外骨骼馬達控制訊號。下肢外骨骼馬達鄰近膝關節且依據輸入之下肢外骨骼馬達控制訊號產生輔助力矩。下肢輔具受輔助力矩驅動以輔助支撐下肢。 A lower extremity exoskeleton assisting device is provided for at least one lower limb of a user. The lower extremity exoskeleton assisting device includes a muscle inductance measuring end, a knee joint angle sensing unit, a neural network computing unit, a lower extremity exoskeleton motor and a lower extremity assistive device. . The muscle inductance measuring terminal is used to measure the muscle electrical signal of the thigh. The knee angle sensing unit is used to measure the knee angle signal of the knee joint. The neural network calculation unit calculates the output value based on the electromyogram signal, knee joint angle signal, and muscle mechanical model, and the output value is converted into a lower extremity exoskeleton motor control signal. The lower extremity exoskeleton motor is adjacent to the knee joint and generates auxiliary torque according to the input of the lower extremity exoskeleton motor control signal. The lower limb assist is driven by an assisting torque to assist in supporting the lower limb.
Description
本發明係有關於一種外骨骼輔助裝置及其方法,且特別是有關於一種應用於人體下肢的外骨骼輔助裝置及其方法。 The invention relates to an exoskeleton assisting device and a method thereof, and in particular to an exoskeleton assisting device and a method thereof applied to a lower limb of a human body.
隨著各國先後邁入高齡化社會,社會環境與生活型態也隨之轉變,醫療與復健的需求不斷地上漲,同時也帶動了醫療照護及醫療器材的產業發展。對於老年人及殘疾人士而言,若有一個如下肢外骨骼輔助裝置的智慧型機器輔具,來輔助老年人與殘疾人士一些動作上的不足,儘管速度上不能像正常人那樣快速,但對於醫療復健或居家活動卻有非常大的幫助。 As countries have stepped into an aging society, the social environment and life style have also changed, and the demand for medical care and rehabilitation has continued to rise. At the same time, it has also led to the development of medical care and medical equipment industries. For the elderly and people with disabilities, if there is a smart machine assist device such as the extremity exoskeleton assist device to assist the elderly and people with disabilities with some movement deficiency, although the speed cannot be as fast as normal people, but for the Medical rehabilitation or home activities can be very helpful.
然而,傳統的下肢外骨骼輔助裝置為達到輔助支撐下肢的功效,通常在人體裝設有多個感測器,使得傳統的下肢外骨骼輔助裝置穿戴較不便利舒適且價格昂貴。因此,市場上亟欲發展一種穿戴便利且價格親民的下肢外骨骼輔助裝置及其方法,以增進穿戴意願,並進一步提升穿戴的普及率。 However, in order to achieve the effect of supporting the lower limbs, the conventional lower extremity exoskeleton assisting device is usually equipped with multiple sensors, which makes the traditional lower extremity exoskeleton assisting device inconvenient and comfortable to wear and expensive. Therefore, the market is eager to develop a lower extremity exoskeleton assisting device and method that are convenient to wear and affordable, in order to increase the willingness to wear and further increase the penetration rate of wear.
本發明提供一種下肢外骨骼輔助裝置,及提供一種下肢外骨骼輔助方法,藉由類神經網路演算單元依據肌電訊號、膝關節角度訊號及肌肉機械模型,使下肢外骨骼馬達產生輔助力矩以驅動下肢輔具,可具有裝置簡便及良好輔助支撐下肢的優點,並能增進使用者的穿戴意願。 The invention provides a lower extremity exoskeleton assisting device and a lower extremity exoskeleton assisting method. A neural network-like calculation unit is used to generate an assist torque for the lower extremity exoskeleton motor according to the myoelectric signal, the knee joint angle signal, and the muscle mechanical model. Driving the lower extremity assistive device can have the advantages of simple device and good support for the lower extremity, and can increase the user's willingness to wear.
依據本發明提供一種下肢外骨骼輔助裝置,其供使用者之至少一下肢穿戴,下肢外骨骼輔助裝置包含肌電感測端、膝關節角度感測單元、類神經網路演算單元、下肢外骨骼馬達及下肢輔具。肌電感測端對應下肢的大腿設置,且肌電感測端用以量測大腿之肌電訊號。膝關節角度感測單元對應下肢的膝關節設置,且膝關節角度感測單元用以量測膝關節之膝關節角度訊號。類神經網路演算單元電性連接肌電感測端及膝關節角度感測單元,類神經網路演算單元依據肌電訊號、膝關節角度訊號及肌肉機械模型,運算得到輸出值,輸出值轉換為下肢外骨骼馬達控制訊號。下肢外骨骼馬達鄰近膝關節且電性連接類神經網路演算單元,下肢外骨骼馬達依據輸入之下肢外骨骼馬達控制訊號產生輔助力矩。下肢輔具受輔助力矩驅動以輔助支撐下肢。因此,本發明之一種下肢外骨骼輔助裝置,可精簡下肢外骨骼輔助裝置結構並具良好輔助下肢效果。 According to the present invention, a lower extremity exoskeleton auxiliary device is provided for at least one lower limb of a user. The lower extremity exoskeleton auxiliary device includes a muscle inductance measuring end, a knee joint angle sensing unit, a neural network-like calculation unit, and a lower extremity exoskeleton motor. And lower limb assistive devices. The muscle inductance measuring end is arranged corresponding to the thigh of the lower limb, and the muscle inductance measuring end is used to measure the muscle electrical signal of the thigh. The knee joint angle sensing unit is set corresponding to the knee joint of the lower limb, and the knee joint angle sensing unit is used to measure the knee joint angle signal of the knee joint. The neural network-like calculation unit is electrically connected to the muscle inductance measuring end and the knee joint angle sensing unit. The neural network-like calculation unit calculates the output value based on the myoelectric signal, knee angle signal, and muscle mechanical model, and the output value is converted into Lower extremity exoskeleton motor control signal. The lower extremity exoskeleton motor is adjacent to the knee joint and is electrically connected to a neural network-like calculation unit. The lower extremity exoskeleton motor generates an auxiliary torque according to the input of the lower extremity exoskeleton motor control signal. The lower limb assist is driven by an assisting torque to assist in supporting the lower limb. Therefore, the lower extremity exoskeleton auxiliary device of the present invention can simplify the structure of the lower extremity exoskeleton auxiliary device and has a good effect of assisting the lower limbs.
根據前段所述的下肢外骨骼輔助裝置,肌肉機械模型可依據Hill肌肉模型及下肢外骨骼馬達之參數建 立。肌肉機械模型可依據肌電訊號的時變資訊及膝關節角度訊號的時變資訊,以判斷使用者之下肢的動作意圖,而調整肌肉機械模型之參數。下肢外骨骼輔助裝置可供使用者之二下肢穿戴,其中肌電感測端、膝關節角度感測單元、下肢外骨骼馬達及下肢輔具的數量皆為二個並分別對應二下肢。類神經網路演算單元可包含類神經網路建立,類神經網路包含輸入層、第一層、第二層、第三層及輸出層。輸入層係以二下肢的二肌電訊號及二膝關節角度訊號作為變數輸入模糊規則。第一層係將模糊規則進行適合度運算,得到複數規則強度。第二層係將規則強度進行正規化運算,得到複數正規化值。第三層係將正規化值與Sugeno模糊模式相乘運算。輸出層係將第三層的運算結果進行總和運算得到輸出值。膝關節角度感測單元可包含編碼器,編碼器與下肢外骨骼馬達連接,且編碼器轉換膝關節角度訊號由類比形式成為數位形式。藉由上述提及的各點技術特徵,有助於下肢外骨骼馬達較即時地輔助支撐下肢。 According to the lower extremity exoskeleton auxiliary device described in the previous paragraph, the muscle mechanical model can be constructed according to the parameters of the Hill muscle model and the lower extremity exoskeleton motor. Stand. The muscle mechanical model can adjust the parameters of the muscle mechanical model according to the time varying information of the myoelectric signal and the time varying information of the knee joint angle signal to determine the action intention of the user's lower limbs. The lower extremity exoskeleton assisting device can be worn by two lower limbs of a user, in which the number of muscle inductance measuring ends, knee joint angle sensing units, lower extremity exoskeleton motors and lower limb assists are two and correspond to two lower limbs, respectively. The neural network-like calculation unit may include the establishment of a neural network, and the neural network includes an input layer, a first layer, a second layer, a third layer, and an output layer. The input layer is based on the musculature signals of the two lower limbs and the angle signals of the two knee joints as variables to input fuzzy rules. In the first layer, the fitness rules of fuzzy rules are calculated to obtain the strength of complex rules. The second layer is a normalization operation of the rule strength to obtain a complex normalization value. The third layer multiplies the normalized value with the Sugeno fuzzy mode. The output layer is the sum of the operation results of the third layer to obtain the output value. The knee joint angle sensing unit may include an encoder, which is connected to the lower extremity exoskeleton motor, and the encoder converts the knee joint angle signal from an analog form to a digital form. With the technical features of the points mentioned above, it helps the lower extremity exoskeleton motor to assist in supporting the lower limb in a more timely manner.
依據本發明另提供一種下肢外骨骼輔助方法,其提供輔助力矩給予使用者之至少一下肢,下肢外骨骼輔助方法包含肌電感測步驟、膝關節角度感測步驟、類神經網路演算步驟、下肢外骨骼馬達作動步驟及驅動下肢輔具步驟。肌電感測步驟係量測下肢之大腿的肌電訊號。膝關節角度感測步驟係量測下肢之膝關節角度訊號。類神經網路演算步驟係依據肌電訊號、膝關節角度訊號及肌肉機械模型,運算得到輸出值,並將輸出值轉換為下肢外骨骼馬達控制訊號。下 肢外骨骼馬達作動步驟係下肢外骨骼馬達依據輸入之下肢外骨骼馬達控制訊號產生輔助力矩。驅動下肢輔具步驟係下肢輔具受輔助力矩驅動以輔助支撐下肢。因此,本發明之一種下肢外骨骼輔助方法,可精簡下肢外骨骼的輔助方法並具良好輔助下肢效果。 According to the present invention, a lower limb exoskeleton assisting method is provided, which provides assisting torque to at least the lower limbs of the user. The lower extremity exoskeleton assisting method includes a muscle inductance measurement step, a knee angle sensing step, a neural network-like calculation step, and a lower limb Exoskeleton motor actuation step and lower limb assistive device step. The muscle inductance measurement step measures the muscle electrical signals of the thighs of the lower limbs. The knee angle sensing step measures the knee angle signal of the lower limb. The neural network-like calculation step is based on the electromyogram signal, knee joint angle signal, and muscle mechanical model to calculate the output value, and convert the output value to the lower extremity exoskeleton motor control signal. under The extremity exoskeleton motor actuation step is based on the input of the lower extremity exoskeleton motor control signal to generate auxiliary torque. The step of driving the lower limb assistive device is that the lower limb assistive device is driven by an assisting torque to assist in supporting the lower limb. Therefore, the method for assisting lower extremity exoskeleton according to the present invention can simplify the method for assisting lower extremity exoskeleton and has a good effect of assisting lower extremity.
根據前段所述的下肢外骨骼輔助方法,肌肉機械模型可依據Hill肌肉模型及下肢外骨骼馬達之參數建立。下肢外骨骼輔助方法可提供二輔助力矩分別給予使用者之二下肢。類神經網路演算步驟可包含類神經網路建立,類神經網路包含輸入層、第一層、第二層、第三層及輸出層。輸入層係以二下肢的二肌電訊號及二膝關節角度訊號作為變數輸入模糊規則。第一層係將模糊規則進行適合度運算,得到複數規則強度。第二層係將規則強度進行正規化運算,得到複數正規化值。第三層係將正規化值與Sugeno模糊模式相乘運算。輸出層係將第三層的運算結果進行總和運算得到輸出值。藉由上述提及的各點技術特徵,可更加提高本發明之下肢外骨骼輔助方法輔助支撐下肢的準確性。 According to the lower extremity exoskeleton assistance method described in the previous paragraph, the muscle mechanical model can be established based on the Hill muscle model and the parameters of the lower extremity exoskeleton motor. The lower extremity exoskeleton assist method can provide two auxiliary torques to the user's two lower limbs, respectively. The neural network-like calculation step may include the establishment of a neural-like network. The neural-like network includes an input layer, a first layer, a second layer, a third layer, and an output layer. The input layer is based on the musculature signals of the two lower limbs and the angle signals of the two knee joints as variables to input fuzzy rules. In the first layer, the fitness rules of fuzzy rules are calculated to obtain the strength of complex rules. The second layer is a normalization operation of the rule strength to obtain a complex normalization value. The third layer multiplies the normalized value with the Sugeno fuzzy mode. The output layer is the sum of the operation results of the third layer to obtain the output value. With the technical features of the points mentioned above, the accuracy of the lower extremity exoskeleton assisting method of the present invention to assist in supporting lower limbs can be further improved.
40‧‧‧使用者 40‧‧‧ users
51、52‧‧‧下肢 51, 52‧‧‧ lower limbs
61、62‧‧‧大腿 61, 62‧‧‧ thighs
71、72‧‧‧膝關節 71, 72‧‧‧ Knee
100、200‧‧‧下肢外骨骼輔助裝置 100, 200‧‧‧ Lower limb exoskeleton assist device
131、231、232‧‧‧肌電感測端 131, 231, 232‧‧‧ muscle inductance test terminal
141、241、242‧‧‧膝關節角度感測單元 141, 241, 242‧‧‧Knee joint angle sensing unit
150、250‧‧‧類神經網路演算單元 150, 250‧‧‧ neural network calculation units
161、261、262‧‧‧下肢外骨骼馬達 161, 261, 262‧‧‧ Lower limb exoskeleton motor
171、271、272‧‧‧下肢輔具 171, 271, 272‧‧‧ Lower limb assistive devices
480‧‧‧Hill肌肉模型 480‧‧‧Hill muscle model
600‧‧‧類神經網路 600‧‧‧ class neural network
605‧‧‧輸入層 605‧‧‧input layer
610‧‧‧第一層 610‧‧‧First floor
620‧‧‧第二層 620‧‧‧Second floor
630‧‧‧第三層 630‧‧‧third floor
640‧‧‧輸出層 640‧‧‧output layer
A1、A2‧‧‧肌電訊號 A1, A2‧‧‧myoelectric signals
B1、B2‧‧‧膝關節角度訊號 B1, B2‧‧‧‧ Knee joint angle signal
Q0,1、Q0,2、Q0,3、Q0,4、Q1,1、Q1,2、Q2,1、Q2,2、Q3,1、Q3,2‧‧‧運算值 Q 0,1 , Q 0,2 , Q 0,3 , Q 0,4 , Q 1,1 , Q 1,2 , Q 2,1 , Q 2,2 , Q 3,1 , Q 3,2 ‧ ‧ Operation Value
Qoutput‧‧‧輸出值 Q output ‧‧‧ output value
800‧‧‧下肢外骨骼輔助方法 800‧‧‧ Lower extremity exoskeleton assistance method
810、‧‧‧肌電感測步驟 810, ‧‧‧ muscle inductance measurement steps
820‧‧‧膝關節角度感測步驟 820‧‧‧Knee Joint Angle Sensing Procedure
830‧‧‧類神經網路演算步驟 830‧‧‧type neural network calculation steps
840‧‧‧下肢外骨骼馬達作動步驟 840‧‧‧ Lower limb exoskeleton motor operation steps
850‧‧‧驅動下肢輔具步驟 850‧‧‧ Steps for driving assistive device of lower limb
lm‧‧‧肌肉肌纖維的長度 l m ‧‧‧length of muscle fiber
φ‧‧‧膝關節角度 φ‧‧‧Knee joint angle
CE‧‧‧收縮元件 CE‧‧‧Contraction element
FA‧‧‧收縮元件所產生的主動力 F A ‧‧‧ The main power generated by the shrinking element
PE‧‧‧彈性元件 PE‧‧‧Elastic element
FP‧‧‧彈性元件所產生的被動力 F P ‧‧‧ Passive force generated by elastic element
Fm‧‧‧FA和FP的合力, The combined force of F m ‧‧‧ F A and F P ,
Fmt‧‧‧Fm在膝關節角度之方向的分力 F mt ‧‧‧F m component force in the direction of knee joint angle
第1圖係繪示本發明一實施方式的下肢外骨骼輔助裝置的方塊圖;第2圖係繪示本發明一實施方式之一實施例的下肢外骨骼輔助裝置的方塊圖; 第3圖係繪示第2圖的下肢外骨骼輔助裝置的使用示意圖;第4圖係繪示第2圖的下肢外骨骼輔助裝置中的Hill肌肉模型;第5圖係繪示第2圖的下肢外骨骼輔助裝置中的類神經網路;以及第6圖係繪示本發明另一實施方式的下肢外骨骼輔助方法的流程圖。 FIG. 1 is a block diagram of a lower extremity exoskeleton assisting device according to an embodiment of the present invention; FIG. 2 is a block diagram of a lower extremity exoskeleton assisting device according to an embodiment of the present invention; Fig. 3 is a schematic diagram showing the use of the lower extremity exoskeleton assisting device of Fig. 2; Fig. 4 is a diagram showing the Hill muscle model in the lower extremity exoskeleton assisting device of Fig. 2; A neural-like network in a lower extremity exoskeleton assistance device; and FIG. 6 is a flowchart illustrating a lower extremity exoskeleton assistance method according to another embodiment of the present invention.
配合參照第1圖,第1圖係繪示本發明一實施方式的下肢外骨骼輔助裝置100的方塊圖。由第1圖可知,下肢外骨骼輔助裝置100供使用者之至少一下肢穿戴,下肢外骨骼輔助裝置100包含肌電感測端131、膝關節角度感測單元141、類神經網路演算單元150、下肢外骨骼馬達161及下肢輔具171。 With reference to FIG. 1, FIG. 1 is a block diagram illustrating a lower extremity exoskeleton assisting device 100 according to an embodiment of the present invention. It can be seen from FIG. 1 that the lower extremity exoskeleton assisting device 100 is provided for at least one lower limb of a user. The lower extremity exoskeleton assisting device 100 includes a muscle inductance measuring end 131, a knee joint angle sensing unit 141, a neural network-like computing unit 150, Lower extremity exoskeleton motor 161 and lower limb assistive device 171.
配合參照第2圖及第3圖,第2圖係繪示本發明一實施方式之一實施例的下肢外骨骼輔助裝置200的方塊圖,第3圖係繪示第2圖的下肢外骨骼輔助裝置200的使用示意圖。由第2圖及第3圖可知,本實施例的下肢外骨骼輔助裝置200供使用者40之二下肢51、52穿戴,下肢外骨骼輔助裝置200包含肌電感測端231、232、膝關節角度感測單元241、242、類神經網路演算單元250、下肢外骨骼馬達261、262及下肢輔具271、272,其中肌電感測端231、膝關節角度感測單元241、下肢外骨骼馬達261、下肢輔具271 對應下肢51,肌電感測端232、膝關節角度感測單元242、下肢外骨骼馬達262、下肢輔具272對應下肢52。 With reference to FIG. 2 and FIG. 3, FIG. 2 is a block diagram showing a lower extremity exoskeleton assisting device 200 according to an embodiment of the present invention, and FIG. 3 is a lower extremity exoskeleton assisting device of FIG. 2 A schematic diagram of the use of the device 200. As can be seen from FIG. 2 and FIG. 3, the lower extremity exoskeleton assisting device 200 of this embodiment is intended to be worn by the user 40 bis lower limbs 51 and 52. The lower extremity exoskeleton assisting device 200 includes muscle inductance measuring ends 231 and 232, and the knee angle Sensing units 241, 242, neural network calculation unit 250, lower extremity exoskeleton motors 261, 262, and lower extremity assist devices 271, 272, of which the muscle inductance measuring end 231, knee joint angle sensing unit 241, lower extremity exoskeleton motor 261 Lower limb assists 271 Corresponding to the lower limb 51, the muscle inductance measuring end 232, the knee joint angle sensing unit 242, the lower extremity exoskeleton motor 262, and the lower limb assisting device 272 correspond to the lower limb 52.
肌電感測端231對應下肢51的大腿61設置,且肌電感測端231用以量測大腿61之肌電訊號(Electromyographic Signal,EMG signal)A1,肌電感測端232對應下肢52的大腿62設置,且肌電感測端232用以量測大腿62之肌電訊號A2,其中肌電感測端231、232可為非侵入式的電極貼片並可連接放大器,肌電感測端231、232可分別設置於大腿61、62的肌肉纖維最多之處,如大腿股四頭肌,以提高肌電訊號A1、A2的強度及準確度,且肌電訊號A1、A2的頻域取樣範圍可為10Hz~1000Hz。 The muscle inductance measuring terminal 231 is provided corresponding to the thigh 61 of the lower limb 51, and the muscle inductance measuring terminal 231 is used to measure the electromyographic signal (EMG signal) A1 of the thigh 61, and the muscle inductance measuring terminal 232 is arranged corresponding to the thigh 62 of the lower limb 52 The muscle inductance measuring terminal 232 is used to measure the muscle electrical signal A2 of the thigh 62. The muscle inductance measuring terminals 231 and 232 can be non-invasive electrode patches and can be connected to an amplifier. The muscle inductance measuring terminals 231 and 232 can be respectively Set on the thighs 61 and 62 where there are the most muscle fibers, such as the thigh quadriceps, to improve the strength and accuracy of the EMG signals A1 and A2, and the frequency domain sampling range of the EMG signals A1 and A2 can be 10Hz ~ 1000Hz.
膝關節角度感測單元241對應下肢51的膝關節71設置,且膝關節角度感測單元241用以量測膝關節71之膝關節角度訊號B1,膝關節角度感測單元242對應下肢52的膝關節72設置,且膝關節角度感測單元242用以量測膝關節72之膝關節角度訊號B2。 The knee joint angle sensing unit 241 is provided corresponding to the knee joint 71 of the lower limb 51, and the knee joint angle sensing unit 241 is used to measure the knee angle signal B1 of the knee joint 71. The knee joint angle sensing unit 242 corresponds to the knee of the lower limb 52 The joint 72 is set, and the knee joint angle sensing unit 242 is used to measure the knee joint angle signal B2 of the knee joint 72.
類神經網路演算單元250電性連接肌電感測端231、232及膝關節角度感測單元241、242,類神經網路演算單元250依據前述之肌電訊號A1、A2、膝關節角度訊號B1、B2及肌肉機械模型,運算得到輸出值Qoutput,輸出值Qoutput轉換為二下肢外骨骼馬達控制訊號。 The neural network-like calculation unit 250 is electrically connected to the muscle inductance measuring terminals 231 and 232 and the knee joint angle sensing units 241 and 242. The neural network-like calculation unit 250 is based on the aforementioned myoelectric signals A1, A2, and knee joint angle signals B1 , B2 and the muscle mechanical model, the output value Q output is calculated, and the output value Q output is converted into a control signal of the exoskeleton motor of the lower limbs.
下肢外骨骼馬達261鄰近膝關節71且電性連接類神經網路演算單元250,下肢外骨骼馬達261依據輸入之一下肢外骨骼馬達控制訊號產生輔助力矩;下肢外骨骼馬達 262鄰近膝關節72且電性連接類神經網路演算單元250,下肢外骨骼馬達262依據輸入之另一下肢外骨骼馬達控制訊號產生輔助力矩。 The lower extremity exoskeleton motor 261 is adjacent to the knee joint 71 and is electrically connected to a neural network calculation unit 250. The lower extremity exoskeleton motor 261 generates auxiliary torque according to one of the input lower extremity exoskeleton motor control signals; the lower extremity exoskeleton motor 262 is adjacent to the knee joint 72 and is electrically connected to a neural network calculation unit 250. The lower extremity exoskeleton motor 262 generates an assist torque according to the input of another lower extremity exoskeleton motor control signal.
下肢輔具271受輔助力矩驅動以輔助支撐下肢51,下肢輔具272受輔助力矩驅動以輔助支撐下肢52。因此,依據本發明之下肢外骨骼輔助裝置200,藉由類神經網路演算單元250依據肌電訊號A1、A2、膝關節角度訊號B1、B2及肌肉機械模型,使下肢外骨骼馬達261、262產生輔助力矩以分別驅動下肢輔具271、272,可精簡下肢外骨骼輔助裝置200之感測器的安裝位置及數量,且具有良好輔助支撐下肢51、52的優點,以增進使用者40的穿戴意願。 此外,下肢外骨骼馬達261、262可連接減速機(圖未揭示),以令使用者40對於下肢外骨骼輔助裝置200提供的輔助力矩感覺較為平順舒適。 The lower limb assist 271 is driven by an assisting torque to assist in supporting the lower limb 51, and the lower limb assist 272 is driven by the assisting torque to assist in supporting the lower limb 52. Therefore, according to the lower extremity exoskeleton assisting device 200 of the present invention, the lower extremity exoskeleton motors 261 and 262 are made by the neural network calculation unit 250 according to the myoelectric signals A1, A2, knee joint angle signals B1, B2, and the muscle mechanical model. Generates auxiliary torque to drive the lower limb assists 271 and 272 respectively, which can simplify the installation position and number of sensors of the lower limb exoskeleton assist device 200, and has the advantages of supporting the lower limbs 51 and 52 well to improve the wear of the user 40 Will. In addition, the lower extremity exoskeleton motors 261 and 262 can be connected to a speed reducer (not shown in the figure), so that the user 40 feels smooth and comfortable about the assist torque provided by the lower extremity exoskeleton assist device 200.
配合參照第4圖,第4圖係繪示第2圖的下肢外骨骼輔助裝置200中的Hill肌肉模型480。由第4圖可知,在本實施例中,肌肉機械模型可依據Hill肌肉模型480及下肢外骨骼馬達261、262之參數建立,由此可提高下肢外骨骼馬達261、262輔助支撐下肢51、52的準確性。在第4圖之Hill肌肉模型480的參數中,lm表示肌肉肌纖維的長度,φ表示膝關節角度,FA表示收縮元件CE所產生的主動力,FP表示彈性元件PE所產生的被動力,Fm表示FA和FP的合力,Fmt表示Fm在膝關節角度φ之方向的分力。 With reference to FIG. 4, FIG. 4 shows a Hill muscle model 480 in the lower extremity exoskeleton assistance device 200 of FIG. 2. As can be seen from FIG. 4, in this embodiment, the muscle mechanical model can be established based on the parameters of the Hill muscle model 480 and the lower extremity exoskeleton motors 261 and 262, thereby improving the lower extremity exoskeleton motors 261 and 262 to assist in supporting the lower extremities 51 and 52 Accuracy. Among the parameters of the Hill muscle model 480 in Fig. 4, l m represents the length of muscle muscle fibers, φ represents the knee joint angle, F A represents the main power generated by the contraction element CE, and F P represents the passive power generated by the elastic element PE. , F m represents the combined force of F A and F P , and F mt represents the component force of F m in the direction of the knee angle φ.
肌肉機械模型可依據肌電訊號A1、A2的時變資訊及膝關節角度訊號B1、B2的時變資訊,以判斷使用者40之下肢51、52的動作意圖,如起立、坐下、上樓梯、下樓梯等,而調整肌肉機械模型之參數,以有助於下肢外骨骼馬達261、262較即時地輔助支撐下肢51、52。 The muscle mechanical model can use the time-varying information of the myoelectric signals A1 and A2 and the time-varying information of the knee angle signals B1 and B2 to determine the action intentions of the lower limbs 51 and 52 of the user 40, such as standing, sitting, and going up stairs , Going down the stairs, etc., and adjusting the parameters of the muscle mechanical model to help the lower extremity exoskeleton motors 261, 262 assist in supporting the lower limbs 51, 52 in a more timely manner.
配合參照第5圖,第5圖係繪示第2圖的下肢外骨骼輔助裝置200中的類神經網路600。由第5圖可知,類神經網路演算單元250可包含類神經網路600建立,類神經網路600可為適應性網路模糊推論系統(Adaptive-Network-based Fuzzy Inference System,ANFIS)且包含輸入層605、第一層610、第二層620、第三層630及輸出層640。輸入層605係以下肢51、52的肌電訊號A1、A2及膝關節角度訊號B1、B2作為變數輸入模糊規則。第一層610係將模糊規則進行適合度運算,得到複數規則強度。第二層620係將規則強度進行正規化運算,得到複數正規化值。第三層630係將正規化值與Sugeno模糊模式相乘運算。輸出層640係將第三層630的運算結果進行總和運算得到輸出值Qoutput。藉此,可更加提高下肢外骨骼馬達261、262輔助支撐下肢51、52的準確性。 With reference to FIG. 5, FIG. 5 illustrates a neural network 600 in the lower extremity exoskeleton assisting device 200 of FIG. 2. It can be seen from FIG. 5 that the neural-like network calculation unit 250 may include a neural-like network 600 to be established. The neural-like network 600 may be an Adaptive-Network-based Fuzzy Inference System (ANFIS) and include The input layer 605, the first layer 610, the second layer 620, the third layer 630, and the output layer 640. The input layer 605 is the electromyogram signals A1, A2 of the lower limbs 51, 52 and the knee joint angle signals B1, B2 as variable input fuzzy rules. The first layer 610 performs the fitness calculation of the fuzzy rules to obtain the strength of the complex rules. The second layer 620 performs a normalization operation on the rule strength to obtain a complex normalization value. The third layer 630 multiplies the normalized value and the Sugeno fuzzy mode. The output layer 640 is obtained by performing a total operation on the operation results of the third layer 630 to obtain an output value Q output . This can further improve the accuracy of the lower extremity exoskeleton motors 261, 262 to assist in supporting the lower limbs 51, 52.
在本實施例中,前段所述的類神經網路600依據以下式(1)至式(6)。參照以下式(1)及式(2),輸入層605係以下肢51、52的肌電訊號A1、A2及膝關節角度訊號B1、B2作為變數輸入模糊規則,得到運算值Q0,i,其中x及y分別表示肌電訊號A1、A2及膝關節角度訊號B1、B2,且其
隸屬函數分別為高斯函數uAi及uBi,學習參數為ai、bi、ci、ai-2、bi-2及ci-2:
參照以下式(3),第一層610係將模糊規則進行適合度運算(即wi),得到複數規則強度,即是運算值Q1,i:,其中i=1,2...式(3)。 Referring to the following formula (3), the first layer 610 performs a fitness operation on the fuzzy rules (ie, w i ) to obtain the strength of the complex rule, which is the operation value Q 1, i : , Where i = 1, 2, ... Equation (3).
參照以下式(4),第二層620係將規則強度進行正規化運算,得到複數正規化值,即是運算值Q2,i,其中運算值Q2,i介於0與1之間:
參照以下式(5),第三層630係將正規化值與Sugeno模糊模式(即fi)相乘運算,得到運算值Q3,i,其中pi、qi及ri為Sugeno模糊模式的參數:
參照以下式(6),輸出層640係將第三層630的運算值Q3,i進行總和運算得到類神經網路600的輸出值Qoutput:
膝關節角度感測單元241、242可分別包含編碼器(圖未揭示),其一編碼器與下肢外骨骼馬達261連接,另一編碼器與下肢外骨骼馬達262連接,且編碼器轉換膝關節角度訊號B1、B2由類比形式成為數位形式,以有助於降低下肢外骨骼輔助裝置200的電路設計複雜度且維持輔助支撐功效。其他實施例中,膝關節角度感測單元可包含霍爾元件(Hall Effect Sensor)或陀螺儀等。 The knee joint angle sensing units 241 and 242 may each include an encoder (not shown in the figure). One of the encoders is connected to the lower extremity exoskeleton motor 261 and the other is connected to the lower extremity exoskeleton motor 262. The encoder converts the knee joint. The angle signals B1 and B2 are changed from an analog form to a digital form to help reduce the complexity of the circuit design of the lower extremity exoskeleton assist device 200 and maintain the auxiliary support effect. In other embodiments, the knee joint angle sensing unit may include a Hall effect sensor (Hall Effect Sensor) or a gyroscope.
配合參照第6圖,第6圖係繪示本發明另一實施方式的下肢外骨骼輔助方法800的流程圖。由第6圖可知,下肢外骨骼輔助方法800提供輔助力矩給予使用者之至少一下肢,下肢外骨骼輔助方法800包含肌電感測步驟810、膝關節角度感測步驟820、類神經網路演算步驟830、下肢外骨骼馬達作動步驟840及驅動下肢輔具步驟850,各步驟之細節如第6圖之內容所述。 With reference to FIG. 6, FIG. 6 is a flowchart illustrating a lower extremity exoskeleton assistance method 800 according to another embodiment of the present invention. It can be seen from FIG. 6 that the lower extremity exoskeleton assistance method 800 provides assisting torque to at least the lower limbs of the user. The lower extremity exoskeleton assistance method 800 includes a muscle inductance measurement step 810, a knee joint angle sensing step 820, and a neural network-like calculation step. 830. The lower extremity exoskeleton motor actuating step 840 and the lower extremity assisting device step 850 are described in detail in FIG. 6.
本發明另一實施方式的一實施例中,請一併參照第2圖、第3圖及第6圖,下肢外骨骼輔助方法800可提供二輔助力矩分別給予使用者40之二下肢51、52。進一步來說,肌電感測步驟810係分別量測下肢51、52之大腿61、62的肌電訊號A1、A2。膝關節角度感測步驟820係分別量測下肢51、52之膝關節角度訊號B1、B2。類神經網路演算步驟830係依據前述之肌電訊號A1、A2、膝關節角度訊號B1、B2及肌肉機械模型,運算得到輸出值Qoutput,並將輸 出值Qoutput轉換為二下肢外骨骼馬達控制訊號。下肢外骨骼馬達作動步驟840係下肢外骨骼馬達261、262依據輸入之對應的下肢外骨骼馬達控制訊號產生輔助力矩。驅動下肢輔具步驟850係下肢輔具271、272受對應的輔助力矩驅動以輔助支撐下肢51、52。 In an example of another embodiment of the present invention, please refer to FIG. 2, FIG. 3 and FIG. 6 together. The lower extremity exoskeleton assisting method 800 can provide two assisting torques to the user 40 two lower limbs 51 and 52, respectively. . Further, the step 810 of the muscle inductance measurement measures the muscle signals A1 and A2 of the thighs 61 and 62 of the lower limbs 51 and 52, respectively. The knee joint angle sensing step 820 measures the knee joint angle signals B1 and B2 of the lower limbs 51 and 52, respectively. The neural network-like calculation step 830 is based on the aforementioned myoelectric signals A1, A2, knee joint angle signals B1, B2, and a muscle mechanical model, and calculates an output value Q output , and converts the output value Q output into a two-limb exoskeleton motor Control signal. The lower extremity exoskeleton motor actuation step 840 is that the lower extremity exoskeleton motors 261 and 262 generate an assist torque according to the input corresponding lower extremity exoskeleton motor control signal. Step 850 of driving the lower limbs assistive device 850, the lower limbs assistive devices 271, 272 are driven by corresponding assisting torques to assist in supporting the lower limbs 51, 52.
請一併參照第4圖及第5圖,下肢外骨骼輔助方法800中肌肉機械模型可依據Hill肌肉模型480及下肢外骨骼馬達261、262之參數建立。類神經網路演算步驟830可包含類神經網路600建立,類神經網路600包含輸入層605、第一層610、第二層620、第三層630及輸出層640。輸入層605係以下肢51、52的肌電訊號A1、A2及膝關節角度訊號B1、B2作為變數輸入模糊規則。第一層610係將模糊規則進行適合度運算,得到複數規則強度。第二層620係將規則強度進行正規化運算,得到複數正規化值。第三層630係將正規化值與Sugeno模糊模式相乘運算。輸出層640係將第三層630的運算結果進行總和運算得到輸出值Qoutput。本發明另一實施方式之一實施例的下肢外骨骼輔助方法800之其他細節同本發明一實施方式之一實施例的下肢外骨骼輔助裝置200,在此不予贅述。 Please refer to FIG. 4 and FIG. 5 together. The muscle mechanical model of the lower extremity exoskeleton assistance method 800 can be established based on the parameters of the Hill muscle model 480 and the lower extremity exoskeleton motors 261 and 262. The neural-like network calculation step 830 may include the establishment of a neural-like network 600. The neural-like network 600 includes an input layer 605, a first layer 610, a second layer 620, a third layer 630, and an output layer 640. The input layer 605 is the electromyogram signals A1, A2 of the lower limbs 51, 52 and the knee joint angle signals B1, B2 as variable input fuzzy rules. The first layer 610 performs the fitness calculation of the fuzzy rules to obtain the strength of the complex rules. The second layer 620 performs a normalization operation on the rule strength to obtain a complex normalization value. The third layer 630 multiplies the normalized value and the Sugeno fuzzy mode. The output layer 640 is obtained by performing a total operation on the operation results of the third layer 630 to obtain an output value Q output . Other details of the lower extremity exoskeleton assisting method 800 according to an embodiment of another embodiment of the present invention are the same as those of the lower extremity exoskeleton assisting device 200 according to an embodiment of the present invention, and are not described herein.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Any person skilled in the art can make various modifications and retouches without departing from the spirit and scope of the present invention. The scope shall be determined by the scope of the attached patent application.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106101900A TWI619488B (en) | 2017-01-19 | 2017-01-19 | Lower extremity exoskeleton auxiliary device and method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106101900A TWI619488B (en) | 2017-01-19 | 2017-01-19 | Lower extremity exoskeleton auxiliary device and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI619488B true TWI619488B (en) | 2018-04-01 |
| TW201827028A TW201827028A (en) | 2018-08-01 |
Family
ID=62639699
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW106101900A TWI619488B (en) | 2017-01-19 | 2017-01-19 | Lower extremity exoskeleton auxiliary device and method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI619488B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI687215B (en) * | 2019-03-05 | 2020-03-11 | 國立勤益科技大學 | Lower limb exoskeleton robot and aiding method thereof |
| CN113990441A (en) * | 2021-11-25 | 2022-01-28 | 杭州电子科技大学 | Lower limb knee joint active muscle myoelectric fitting method based on biodynamics |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW530647U (en) * | 2002-04-16 | 2003-05-01 | Ching-Kong Chen | Electrically actuated stand-up wheelchair |
| CN101111211A (en) * | 2005-01-26 | 2008-01-23 | 山海嘉之 | Wearable motion assist device and control program |
| CN102389437A (en) * | 2011-06-24 | 2012-03-28 | 中国人民解放军第二军医大学 | Application of Centella triterpenes in preparing products for improving cerebral apoplexy sequelae |
| US20120191220A1 (en) * | 2003-11-18 | 2012-07-26 | Victhom Human Bionics Inc. | Instrumented prosthetic foot |
-
2017
- 2017-01-19 TW TW106101900A patent/TWI619488B/en not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW530647U (en) * | 2002-04-16 | 2003-05-01 | Ching-Kong Chen | Electrically actuated stand-up wheelchair |
| US20120191220A1 (en) * | 2003-11-18 | 2012-07-26 | Victhom Human Bionics Inc. | Instrumented prosthetic foot |
| CN101111211A (en) * | 2005-01-26 | 2008-01-23 | 山海嘉之 | Wearable motion assist device and control program |
| CN102389437A (en) * | 2011-06-24 | 2012-03-28 | 中国人民解放军第二军医大学 | Application of Centella triterpenes in preparing products for improving cerebral apoplexy sequelae |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI687215B (en) * | 2019-03-05 | 2020-03-11 | 國立勤益科技大學 | Lower limb exoskeleton robot and aiding method thereof |
| CN113990441A (en) * | 2021-11-25 | 2022-01-28 | 杭州电子科技大学 | Lower limb knee joint active muscle myoelectric fitting method based on biodynamics |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201827028A (en) | 2018-08-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Vinoj et al. | Brain-controlled adaptive lower limb exoskeleton for rehabilitation of post-stroke paralyzed | |
| Chen et al. | A real-time lift detection strategy for a hip exoskeleton | |
| Zhang et al. | Robotics in lower‐limb rehabilitation after stroke | |
| JP4695605B2 (en) | Neuromuscular stimulation | |
| Fleischer et al. | A human--exoskeleton interface utilizing electromyography | |
| Chen et al. | Towards Human-like walking with Biomechanical and neuromuscular control features: personalized attachment point optimization method of Cable-Driven exoskeleton | |
| JP6340528B2 (en) | BMI exercise assist device | |
| CN110072678A (en) | The mankind for moving auxiliary are intended to detection system | |
| Hellman et al. | A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss | |
| CN111696645A (en) | Hand exoskeleton rehabilitation training device and method based on surface electromyographic signals | |
| Zhang et al. | Imposing healthy hip motion pattern and range by exoskeleton control for individualized assistance | |
| Maeda et al. | Muscle synergy analysis of human adaptation to a variable-stiffness exoskeleton: Human walk with a knee exoskeleton with pneumatic artificial muscles | |
| TWI619488B (en) | Lower extremity exoskeleton auxiliary device and method thereof | |
| Yu et al. | Adaptive gait training of a lower limb rehabilitation robot based on human–robot interaction force measurement | |
| Wind et al. | Neuromotor regulation of ankle stiffness is comparable to regulation of joint position and torque at moderate levels | |
| JP6065441B2 (en) | Information generating apparatus, information generating method, information generating program, and information recording medium | |
| Zhu et al. | Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation | |
| Hasegawa et al. | Evaluation of fingertip force accuracy in different support conditions of exoskeleton | |
| Krasin et al. | EMG based elbow joint powered exoskeleton for biceps brachii strength augmentation | |
| Souit et al. | Design of a lower limb exoskeleton for experimental research on gait control | |
| Chandrapal et al. | Preliminary evaluation of a lower-limb exoskeleton-stair climbing | |
| Kim et al. | Ankle intention detection algorithm using electromyography signal | |
| TWI687215B (en) | Lower limb exoskeleton robot and aiding method thereof | |
| CN118078611A (en) | Pressure measurement sensing system | |
| Tanaka et al. | Evaluation of a device that promotes walking using a two-dimensional emotion map |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |