TWI615848B - Thermal-controlled method and device for thee-dimensional dual-mode forward error correction architecture - Google Patents

Thermal-controlled method and device for thee-dimensional dual-mode forward error correction architecture Download PDF

Info

Publication number
TWI615848B
TWI615848B TW105141118A TW105141118A TWI615848B TW I615848 B TWI615848 B TW I615848B TW 105141118 A TW105141118 A TW 105141118A TW 105141118 A TW105141118 A TW 105141118A TW I615848 B TWI615848 B TW I615848B
Authority
TW
Taiwan
Prior art keywords
error correction
correction code
memory
temperature
dimensional
Prior art date
Application number
TW105141118A
Other languages
Chinese (zh)
Other versions
TW201822216A (en
Inventor
林書彥
蘇河雲
林承鴻
Original Assignee
元智大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元智大學 filed Critical 元智大學
Priority to TW105141118A priority Critical patent/TWI615848B/en
Application granted granted Critical
Publication of TWI615848B publication Critical patent/TWI615848B/en
Publication of TW201822216A publication Critical patent/TW201822216A/en

Links

Landscapes

  • Detection And Correction Of Errors (AREA)
  • Error Detection And Correction (AREA)

Abstract

本發明揭露一種用於雙模式前饋式錯誤更正碼(Dual-mode Forward Error Correction, DFEC)三維架構的溫度控管方法,包含以下步驟:提供第一錯誤更正碼解碼模式、第二錯誤更正碼解碼模式及第一錯誤更正碼解碼模式所需之第一記憶體需求資訊、第二錯誤更正碼解碼模式所需之第二記憶體需求資訊;根據第一記憶體需求資訊及第二記憶體需求資訊,分析對應之三維區塊式記憶體 (3D block-based memory),並建立結合雙模式前饋式錯誤更正碼三維堆疊架構與區塊式記憶體三維堆疊架構之三維晶片(3D IC)堆疊架構,其中三維區塊式記憶體包括數個區塊式靜態隨機存取記憶體(block-based SRAM);根據所建立之三維晶片堆疊架構,得到在第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式下,雙模式前饋式錯誤更正碼三維堆疊架構與區塊式記憶體三維堆疊架構運作時之功耗及晶片佈局資訊;透過功耗分析,得到第一錯誤更正碼解碼模式之第一溫度表現及第二錯誤更正碼解碼模式之第二溫度表現;透過溫度分析,得到第一錯誤更正碼解碼模式之第一溫度特性、第二錯誤更正碼解碼模式之第二溫度特性以應用於三維解碼核心溫控映射的方法,第二溫度特性的溫度增加速度比第一溫度特性的溫度增加速度快;透過溫度分析,得到區塊式記憶體三維堆疊架構運作時之記憶體溫度特性以應用於三維記憶體映射的方法;及透過第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式運作時之溫度差距,開發用於三維晶片堆疊架構之溫度控管映射演算法。The invention discloses a temperature control method for a dual mode forward error correction (DFEC) three-dimensional architecture, comprising the steps of: providing a first error correction code decoding mode and a second error correction code The first memory requirement information required for the decoding mode and the first error correction code decoding mode, and the second memory requirement information required for the second error correction code decoding mode; according to the first memory demand information and the second memory requirement Information, analyze the corresponding 3D block-based memory, and establish a three-dimensional chip (3D IC) stacking with a dual-mode feedforward error correction code three-dimensional stacking architecture and a block memory three-dimensional stacking architecture. The architecture, wherein the three-dimensional block memory comprises a plurality of block-based SRAMs; according to the established three-dimensional wafer stack architecture, the first error correction code decoding mode and the second error are obtained. In the correction code decoding mode, the dual mode feedforward error correction code three-dimensional stacking architecture and the block memory three-dimensional stacking architecture operate Power consumption and wafer layout information; through the power consumption analysis, the first temperature correction of the first error correction code decoding mode and the second temperature performance of the second error correction code decoding mode are obtained; and the first error correction code decoding is obtained through temperature analysis a first temperature characteristic of the mode, a second temperature characteristic of the second error correction code decoding mode to apply to the method of three-dimensional decoding core temperature control mapping, wherein the temperature increase rate of the second temperature characteristic is faster than the temperature increase rate of the first temperature characteristic; Through the temperature analysis, the memory temperature characteristic of the block memory three-dimensional stacking structure is obtained to be applied to the three-dimensional memory mapping method; and the first error correction code decoding mode and the second error correction code decoding mode are operated. Temperature difference, developed a temperature control mapping algorithm for a three-dimensional wafer stack architecture.

Description

雙模式前饋式錯誤更正碼三維架構的溫度控管方法及裝置Temperature control method and device for three-mode feedforward error correction code three-dimensional architecture

本發明是關於一種雙模式前饋式錯誤更正碼三維架構的溫度控管方法及裝置。The invention relates to a temperature control method and device for a three-mode feedforward error correction code three-dimensional architecture.

近年來因為通訊產業蓬勃發展,行動裝置數量大幅提升,各式無線通訊標準也相繼被訂定而出,例如適用於短距離無線通訊的 IEEE 802.16d/m/e (WiMAX)及IEEE 802.11 a/b/g/n/ac(WiFi),其他標準如LTE(Long Term Evloution)、LTE-A(LTE-Advanced)等。在高效能無線通訊設備中,會搭配前饋式錯誤更正碼技術(Forward Error Correction, FEC)來降低訊號出錯率,提高傳輸品質,例如渦輪碼(Turbo Code)、迴旋碼(Convolutional Code)、及低密度奇偶校驗碼(Low-Density Parity-Check Code, LDPC Code)。In recent years, due to the booming communications industry, the number of mobile devices has increased dramatically, and various wireless communication standards have been set. For example, IEEE 802.16d/m/e (WiMAX) and IEEE 802.11 a/ for short-range wireless communication. b/g/n/ac (WiFi), other standards such as LTE (Long Term Evloution), LTE-A (LTE-Advanced), and the like. In high-performance wireless communication equipment, forward error correction (FEC) is used to reduce the signal error rate and improve the transmission quality, such as Turbo Code, Convolutional Code, and Low-Density Parity-Check Code (LDPC Code).

為了讓晶片能夠同時支援兩種不同的輸入碼字,開發出雙模式前饋式錯誤更正碼(Dual-Mode Forward Error Correction, DFEC)的設計。雙模式前饋式錯誤更正碼的設計透過支援不同數目的解碼核心來達成平行解碼,以提高解碼處理量。但是,當有效核心的數目增加時,記憶體頻寬及容量亦需隨之增加,還會遭遇到三維晶片的散熱議題。此外,在不同的解碼模式下,記憶體要求也有差別。因此,在雙模式前饋式錯誤更正碼的設計下,為了支援不同數目的有效解碼核心、解碼模式、記憶體要求,必須設計溫度控制技術來避免晶片過熱並維持效能。In order to enable the chip to support two different input codewords at the same time, a dual-mode Forward Error Correction (DFEC) design was developed. The dual mode feedforward error correction code is designed to achieve parallel decoding by supporting different numbers of decoding cores to increase the amount of decoding processing. However, as the number of effective cores increases, the bandwidth and capacity of the memory also need to increase, and the heat dissipation problem of the three-dimensional chip is also encountered. In addition, memory requirements vary in different decoding modes. Therefore, in the design of the dual-mode feedforward error correction code, in order to support different numbers of effective decoding cores, decoding modes, and memory requirements, temperature control techniques must be designed to avoid overheating of the chip and maintain performance.

因此本發明的目的是提供一種雙模式前饋式錯誤更正碼三維架構的溫度控管方法及裝置。本發明不僅可以利用三維晶片技術,提升雙模式前饋式錯誤更正碼解碼時所需記憶體頻寬,所提出之溫度控制映射演算法,還可以在考量溫度限制、延遲時間、硬體成本的情況下,以合理的成本降低晶片的最高溫度,維持晶片的高效能。It is therefore an object of the present invention to provide a temperature control method and apparatus for a three-mode feedforward error correction code three-dimensional architecture. The invention can not only utilize the three-dimensional wafer technology, but also improve the memory bandwidth required for decoding the dual-mode feedforward error correction code. The proposed temperature control mapping algorithm can also consider temperature limitation, delay time and hardware cost. In this case, the maximum temperature of the wafer is lowered at a reasonable cost to maintain the high performance of the wafer.

依據本發明的一實施例,一種用於雙模式前饋式錯誤更正碼三維架構的溫度控管方法,包含以下步驟:提供第一錯誤更正碼解碼模式、第二錯誤更正碼解碼模式及第一錯誤更正碼解碼模式所需之第一記憶體需求資訊、第二錯誤更正碼解碼模式所需之第二記憶體需求資訊;根據第一記憶體需求資訊及第二記憶體需求資訊,分析對應之三維區塊式記憶體 (3D block-based memory),並建立結合雙模式前饋式錯誤更正碼三維堆疊架構與區塊式記憶體三維堆疊架構之三維晶片(3D IC)堆疊架構,其中三維區塊式記憶體包括數個區塊式靜態隨機存取記憶體(block-based SRAM);根據所建立之三維晶片堆疊架構,得到在第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式下,雙模式前饋式錯誤更正碼三維堆疊架構與區塊式記憶體三維堆疊架構運作時之功耗及晶片佈局資訊;透過功耗分析,得到第一錯誤更正碼解碼模式之第一溫度表現及第二錯誤更正碼解碼模式之第二溫度表現;透過溫度分析,得到第一錯誤更正碼解碼模式之第一溫度特性、第二錯誤更正碼解碼模式之第二溫度特性以應用於三維解碼核心溫控映射的方法,第二溫度特性的溫度增加速度比第一溫度特性的溫度增加速度快;透過溫度分析,得到區塊式記憶體三維堆疊架構運作時之記憶體溫度特性以應用於三維記憶體映射的方法;及透過第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式運作時之溫度差距,開發用於三維晶片堆疊架構之溫度控管映射演算法。According to an embodiment of the invention, a temperature control method for a three-mode feedforward error correction code three-dimensional architecture includes the steps of: providing a first error correction code decoding mode, a second error correction code decoding mode, and a first Error correcting the first memory requirement information required for the code decoding mode, and the second memory correction information required for the second error correction code decoding mode; analyzing the corresponding data according to the first memory demand information and the second memory demand information 3D block-based memory, and establish a three-dimensional chip (3D IC) stacking architecture combining a dual-mode feedforward error correction code three-dimensional stacking architecture and a block memory three-dimensional stacking architecture, wherein the three-dimensional region The block memory includes a plurality of block-based SRAMs; according to the established three-dimensional wafer stacking architecture, obtained in the first error correction code decoding mode and the second error correction code decoding mode , dual mode feedforward error correction code three-dimensional stacking architecture and block memory three-dimensional stacking architecture operation power consumption and wafer layout information And obtaining, by power analysis, a first temperature performance of the first error correction code decoding mode and a second temperature performance of the second error correction code decoding mode; and obtaining a first temperature characteristic of the first error correction code decoding mode by temperature analysis The second error corrects the second temperature characteristic of the code decoding mode to be applied to the method of three-dimensional decoding core temperature control mapping, wherein the temperature increase rate of the second temperature characteristic is faster than the temperature increase rate of the first temperature characteristic; The memory temperature characteristic of the block memory three-dimensional stacking structure is applied to the three-dimensional memory mapping method; and the temperature difference between the first error correction code decoding mode and the second error correction code decoding mode is developed for Temperature Control Mapping Algorithm for 3D Wafer Stacking Architecture.

依據本發明的另一實施例,本發明另揭露一種用於雙模式前饋式錯誤更正碼三維架構的溫度控管裝置,包含: 雙模式前饋式錯誤更正碼三維堆疊架構;區塊式記憶體三維堆疊架構,與雙模式前饋式錯誤更正碼三維堆疊架構耦接,區塊式記憶體三維堆疊架構包含數個區塊式靜態隨機存取記憶體;解碼核心有限狀態機,自雙模式前饋式錯誤更正碼三維堆疊架構得到在第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式下運作時之功耗及晶片佈局資訊,解碼核心有限狀態機用於透過溫度分析,得到第一錯誤更正碼解碼模式之第一溫度特性、第二錯誤更正碼解碼模式之第二溫度特性以應用於三維解碼核心溫控映射,第二溫度特性的溫度增加速度比第一溫度特性的溫度增加速度快;及記憶體有限狀態機,自區塊式記憶體三維堆疊架構得到在第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式下運作時之功耗及晶片佈局資訊,記憶體有限狀態機用於透過溫度分析,得到區塊式記憶體三維堆疊架構運作時之記憶體溫度特性以應用於三維記憶體映射;模式控制器,與解碼核心有限狀態機及記憶體有限狀態機連接,模式控制器係用於控制解碼核心有限狀態機之狀態及記憶體有限狀態機之狀態;及溫控映射演算法開發模組,用於透過第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式運作時之溫度差距,開發用於雙模式前饋式錯誤更正碼三維堆疊架構及區塊式記憶體三維堆疊架構之溫度控管映射演算法。According to another embodiment of the present invention, the present invention further discloses a temperature control device for a three-mode feedforward error correction code three-dimensional architecture, comprising: a dual mode feedforward error correction code three-dimensional stacking structure; block memory The three-dimensional stacking architecture is coupled with the dual-mode feedforward error correction code three-dimensional stacking architecture, the block-type memory three-dimensional stacking architecture includes several block-type static random access memories; the decoding core finite state machine, self-double mode The feedforward error correction code three-dimensional stacking architecture obtains power consumption and wafer layout information when operating in the first error correction code decoding mode and the second error correction code decoding mode, and the decoding core finite state machine is used for transmitting temperature analysis. a first temperature characteristic of the error correction code decoding mode and a second temperature characteristic of the second error correction code decoding mode are applied to the three-dimensional decoding core temperature control map, and the temperature increase rate of the second temperature characteristic is increased compared to the temperature of the first temperature characteristic Fast speed; and memory finite state machine, self-blocking memory three-dimensional stacking architecture gets the first error correction code solution The code mode and the second error correct the power consumption and the chip layout information in the code decoding mode, and the memory finite state machine is used to obtain the memory temperature characteristic of the block type memory three-dimensional stack structure operation through temperature analysis. In the three-dimensional memory mapping; the mode controller is connected to the decoding core finite state machine and the memory finite state machine, and the mode controller is used for controlling the state of the decoding core finite state machine and the state of the memory finite state machine; and temperature control a mapping algorithm development module for developing a three-dimensional feedforward error correction code three-dimensional stacking structure and block memory by using a temperature difference between the first error correction code decoding mode and the second error correction code decoding mode operation Temperature control mapping algorithm for volumetric 3D stacking architecture.

本「發明內容」係以簡化形式介紹一些選定概念,在下文之「實施方式」中將進一步對其進行描述。本「發明內容」並非意欲辨識申請專利之標的之關鍵特徵或基本特徵,亦非意欲用於限制申請專利之標的之範圍。This Summary of the Invention describes some of the selected concepts in a simplified form and is further described in the "Embodiment" below. This Summary is not intended to identify key features or essential features of the subject matter of the patent application, and is not intended to limit the scope of the patent application.

接下來請參照本發明實施例的詳細說明,其中所提到的範例會連同圖式一同進行說明。在任何可能的情況下,圖式及說明中所使用的相同參考數標都代表了相同或類似的元件。Next, please refer to the detailed description of the embodiments of the present invention, and the examples mentioned are explained together with the drawings. Wherever possible, the same reference numerals are used in the drawings and the claims

無線通訊設備已經是日常生活中重要的一部份,目前主流的無線傳輸標準包含LTE 和 WiMAX兩種。在高效能無線通訊設備中,會搭配前饋式錯誤更正碼技術來降低訊號出錯率,提高傳輸品質,前饋式錯誤更正碼常具備兩種以上的解碼模式,以支援不同的通訊協定。由於渦輪碼和低密度奇偶校驗碼擁有良好的錯誤更正能力,常被應用於LTE 和 WiMAX傳輸標準,本發明說明中的實施例是以渦輪碼和低密度奇偶校驗碼來進行說明,但是本技術可適用於其他類型的通訊標準及前饋式錯誤更正碼,並不受限於本發明說明之內容。Wireless communication equipment has become an important part of daily life. Currently, mainstream wireless transmission standards include LTE and WiMAX. In high-performance wireless communication equipment, the feedforward error correction code technology is used to reduce the signal error rate and improve the transmission quality. The feedforward error correction code often has more than two decoding modes to support different communication protocols. Since turbo codes and low density parity check codes have good error correction capabilities and are often applied to LTE and WiMAX transmission standards, the embodiments of the present description are illustrated by turbo codes and low density parity check codes, but The present technology is applicable to other types of communication standards and feedforward error correction codes, and is not limited to the description of the present invention.

雙模式前饋式錯誤更正碼之三維架構同時支援兩種錯誤更正碼,並藉由三維晶片的優勢,提高傳輸頻寬。為了讓設計的前饋式錯誤更正碼硬體架構同時支援多種不同的通訊協定,提高應用上的彈性與可擴展性,常會採用多個可重置規劃之處理核心(Kernel)來實現。這樣的設計方式,不僅可支援多種通訊協定,同時可以藉由平行處理架構,提高處理能力以支援更高效能的應用。The three-dimensional architecture of the dual-mode feedforward error correction code supports both error correction codes and improves the transmission bandwidth by virtue of the three-dimensional chip. In order to make the design of the feedforward error correction code hardware architecture support a variety of different communication protocols, improve the flexibility and scalability of the application, often use multiple resettable processing core (Kernel) to achieve. This design approach not only supports multiple communication protocols, but also enhances processing power to support higher performance applications through a parallel processing architecture.

請參照圖1,其係繪示根據本發明實施例之用於雙模式前饋式錯誤更正碼三維架構的溫度控管方法。依據本發明的一實施例,一種用於雙模式前饋式錯誤更正碼三維架構的溫度控管方法包含以下步驟:步驟110,提供第一錯誤更正碼解碼模式、第二錯誤更正碼解碼模式及第一錯誤更正碼解碼模式所需之第一記憶體需求資訊、第二錯誤更正碼解碼模式所需之第二記憶體需求資訊;步驟120,根據第一記憶體需求資訊及第二記憶體需求資訊,分析對應之三維區塊式記憶體 (3D block-based memory),並建立結合雙模式前饋式錯誤更正碼三維堆疊架構與區塊式記憶體三維堆疊架構之三維晶片(3D IC)堆疊架構,其中三維區塊式記憶體包括數個區塊式靜態隨機存取記憶體(block-based SRAM);步驟130,根據所建立之三維晶片堆疊架構,得到在第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式下,前饋式錯誤更正碼三維堆疊架構與區塊式記憶體三維堆疊架構運作時之功耗及晶片佈局資訊;步驟140,透過功耗分析,得到第一錯誤更正碼解碼模式之第一溫度表現及第二錯誤更正碼解碼模式之第二溫度表現;步驟150,透過溫度分析,得到第一錯誤更正碼解碼模式之第一溫度特性、第二錯誤更正碼解碼模式之第二溫度特性以應用於三維解碼核心溫控映射的方法,第二溫度特性的溫度增加速度比第一溫度特性的溫度增加速度快;步驟160,透過溫度分析,得到區塊式記憶體三維堆疊架構運作時之記憶體溫度特性以應用於三維記憶體映射的方法;步驟170,透過第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式運作時之溫度差距,開發用於三維晶片堆疊架構之溫度控管映射演算法;步驟180,將雙模式前饋式錯誤更正碼三維堆疊架構旋轉90度以減少熱點重疊;步驟190,增加多餘記憶體元件至區塊式記憶體三維堆疊架構。Please refer to FIG. 1 , which illustrates a temperature control method for a three-mode architecture of a dual mode feedforward error correction code according to an embodiment of the invention. According to an embodiment of the invention, a temperature control method for a three-mode feedforward error correction code three-dimensional architecture includes the following steps: Step 110, providing a first error correction code decoding mode, a second error correction code decoding mode, and The first error corrects the first memory requirement information required for the code decoding mode, and the second error corrects the second memory requirement information required for the code decoding mode; step 120, according to the first memory demand information and the second memory requirement Information, analyze the corresponding 3D block-based memory, and establish a three-dimensional chip (3D IC) stacking with a dual-mode feedforward error correction code three-dimensional stacking architecture and a block memory three-dimensional stacking architecture. The architecture, wherein the three-dimensional block memory comprises a plurality of block-based SRAMs; and step 130, according to the established three-dimensional wafer stack architecture, obtains the first error correction code decoding mode and In the second error correction code decoding mode, the feedforward error correction code three-dimensional stacking architecture and the block memory three-dimensional stacking architecture work Consumption and wafer layout information; step 140, through the power consumption analysis, obtaining a first temperature performance of the first error correction code decoding mode and a second temperature performance of the second error correction code decoding mode; and step 150, transmitting the temperature analysis a first temperature characteristic of the error correction code decoding mode, a second temperature characteristic of the second error correction code decoding mode to apply to the method of three-dimensional decoding core temperature control mapping, and the temperature increase rate of the second temperature characteristic is higher than the first temperature characteristic The temperature increase speed is fast; in step 160, through the temperature analysis, the memory temperature characteristic of the block type memory three-dimensional stacking structure is obtained to be applied to the three-dimensional memory mapping method; in step 170, the first error correction code decoding mode is The second error corrects the temperature difference in the operation of the code decoding mode, and develops a temperature control mapping algorithm for the three-dimensional wafer stacking architecture; in step 180, the dual-mode feedforward error correction code three-dimensional stacking architecture is rotated by 90 degrees to reduce hotspot overlap. Step 190, adding redundant memory components to the block memory three-dimensional stacking architecture.

請參照圖2,其係繪示根據本發明實施例之三維晶片堆疊架構。本發明針對同時堆疊雙模式前饋式錯誤更正碼與區塊式記憶體之三維晶片堆疊架構,其中包含具備兩種解碼模式之前饋式錯誤更正碼晶片三維堆疊架構(圖2a),以及區塊式記憶體三維堆疊架構(圖2b),並透過三維晶片堆疊技術形成三維架構,如圖2c所示。透過圖2c之三維架構,本發明提出如圖3所示之設計流程。透過此設計流程,給定具備兩種解碼模式之錯誤更正碼晶片以及兩種解碼模式下所需之記憶體需求MR 1、MR 2。接著分析其對應之區塊式靜態隨機存取記憶體(block-based SRAM)架構,並建立其對應之三維晶片堆疊架構。再藉由所建立之三維晶片堆疊架構,在兩種解碼模式下,得到前饋式錯誤更正碼與區塊式記憶體運作時之功耗P m1 、P m2 、P INT 、P SRAM 與晶片佈局資訊F kernel 、F INT 、F SRAM 。P m1 、P m2 為前饋式錯誤更正碼兩種解碼模式下的功耗表現。 P INT 、P SRAM 為區塊式記憶體相互連接部分及SRAM區塊的功耗表現。透過溫度分析,可得到前饋式錯誤更正碼兩種解碼模式下的溫度特性T m1 、T m2 ,區塊式靜態記憶體運作時的溫度特性T INT 、T SRAM ;例如,在解碼模式下,應用渦輪解碼模式的功率P m1 、LDPC解碼模式的功耗P m2 、DFEC解碼核心的晶片佈局資訊F kernel 來分析溫度行為,得到兩種錯誤更正碼解碼模式之溫度特性T m1 、T m2 。最後,使用成本函數以找出同時考量溫度限制、延遲時間、硬體成本之溫度控管映射演算法。 Please refer to FIG. 2, which illustrates a three-dimensional wafer stacking architecture in accordance with an embodiment of the present invention. The present invention is directed to a three-dimensional wafer stacking architecture for simultaneously stacking dual-mode feedforward error correction codes and block memory, including a three-dimensional stacking architecture (Fig. 2a) with two decoding modes and a feedforward error correction code (Fig. 2a), and a block The three-dimensional stacking architecture of the memory (Fig. 2b) and the three-dimensional architecture through the three-dimensional wafer stacking technique, as shown in Figure 2c. Through the three-dimensional architecture of Figure 2c, the present invention proposes a design flow as shown in Figure 3. Through this design flow, the error correction code chip with two decoding modes and the memory requirements MR 1 and MR 2 required in the two decoding modes are given. Then analyze its corresponding block-based SRAM architecture and establish its corresponding 3D wafer stack architecture. Through the established three-dimensional wafer stacking architecture, the feedforward error correction code and the power consumption of the block memory operation P m1 , P m2 , P INT , P SRAM and the chip layout are obtained in two decoding modes. Information F kernel , F INT , F SRAM . P m1 and P m2 are power consumption performances of the feedforward error correction code in two decoding modes. P INT and P SRAM are the power consumption performance of the block type memory interconnection part and the SRAM block. Through the temperature analysis, the temperature characteristics T m1 , T m2 in the two decoding modes of the feedforward error correction code and the temperature characteristics T INT and T SRAM in the operation of the block static memory can be obtained; for example, in the decoding mode, application of turbo decoding mode power P m1, LDPC decoding mode power P m2, DFEC decoding core wafer layout information F kernel to analyze the behavior of the temperature, to obtain two kinds of error correction code decoding mode temperature characteristics of T m1, T m2. Finally, the cost function is used to find a temperature-controlled mapping algorithm that takes into account temperature limits, delay times, and hardware costs.

在一實施例中,可應用渦輪解碼模式的溫度特性T m1 及LDPC解碼模式的溫度特性T m2 來設計三維解碼核心溫控映射的方法,以處理雙模式前饋式錯誤更正碼三維架構解碼核心的熱點問題 。觀察雙模式錯誤更正碼解碼模式下所呈現的溫度特性發現,渦輪解碼模式的溫度特性是溫度增加的速度比LDPC解碼模式的溫度增加速度快,因此將三維解碼核心溫控映射的方法設計為包含以下步驟:步驟410,避免相鄰層的有效雙模式前饋式錯誤更正碼核心在渦輪解碼模式下運作;及步驟420,避免有效雙模式前饋式錯誤更正碼核心連續累積地解碼渦輪碼,如圖4所示。 In one embodiment, the temperature characteristics of turbo-decoding may be applied mode characteristic temperature T m1 and T m2 LDPC decoding mode to decode a three-dimensional design method of temperature control core mapped to the pre-processed dual mode feed-forward error correction code decoding core three-dimensional framework Hot issue. Observing the temperature characteristics of the dual mode error correction code decoding mode, it is found that the temperature characteristic of the turbo decoding mode is that the temperature increase speed is faster than the temperature increase of the LDPC decoding mode, so the method of three-dimensional decoding core temperature control mapping is designed to include The following steps: Step 410, avoiding the effective dual mode feedforward error correction code core of the adjacent layer operating in the turbo decoding mode; and step 420, avoiding the effective dual mode feedforward error correction code core continuously cumulatively decoding the turbo code, As shown in Figure 4.

請參照圖5,圖5繪示根據本發明實施例之用於雙模式前饋式錯誤更正碼三維架構的三維解碼核心溫控映射。為了支援前述特徵,在LDPC解碼模式與渦輪解碼模式下運作的1、2、或4核心會在時域及空間域上進行重新映射。為了易於實現於硬體,如圖5a所示,可將核心設計為具有五個狀態(S0~ S4)。在S0時,非有效核心是閒置的狀態。 在S1及S2時, LDPC解碼模式與渦輪解碼模式交替進行,以解碼時間T及L表示。將相鄰核心以S1與S2堆疊,可減少累積渦輪解碼,因此可降低最高溫度。圖5b繪示具一、二、及四個有效核心的核心映射的有限狀態機(Finite State Machine, FSM)。圖5c繪示核心映射的範例。如果兩個相鄰核心是以S3與S4堆疊,渦輪解碼會從S3移至S4。S3與S4適用於靠近散熱裝置的相鄰核心層以耗散更多熱能,如圖5c的Ly2與Ly3所示。LDPC解碼模式與渦輪解碼模式會交替進行,避免相鄰層運作於渦輪模式及有效DFEC核心連續累積地解碼渦輪碼。Please refer to FIG. 5. FIG. 5 illustrates a three-dimensional decoding core temperature control mapping for a three-mode feedforward error correction code three-dimensional architecture according to an embodiment of the present invention. In order to support the aforementioned features, the 1, 2, or 4 cores operating in the LDPC decoding mode and the turbo decoding mode are remapped in the time domain and the spatial domain. In order to be easily implemented in hardware, as shown in FIG. 5a, the core can be designed to have five states (S0 to S4). At S0, the non-active core is in an idle state. At S1 and S2, the LDPC decoding mode and the turbo decoding mode are alternately performed, and are represented by decoding times T and L. Stacking adjacent cores with S1 and S2 reduces cumulative turbo decoding and therefore lowers the maximum temperature. Figure 5b illustrates a Finite State Machine (FSM) with a core map of one, two, and four active cores. Figure 5c illustrates an example of a core map. If two adjacent cores are stacked with S3 and S4, the turbo decoding will move from S3 to S4. S3 and S4 are suitable for adjacent core layers close to the heat sink to dissipate more thermal energy, as shown by Ly2 and Ly3 in Figure 5c. The LDPC decoding mode and the turbo decoding mode alternate, avoiding adjacent layers operating in the turbo mode and the active DFEC core continuously accumulating the turbo code.

請參照圖6,圖6繪示根據本發明實施例之三維記憶體映射的方法。三維記憶體映射的方法包含以下步驟:步驟610,避免數個有效記憶體元件的垂直堆疊;及步驟620,避免連續存取同一記憶體元件。在兩種解碼模式下,解碼核心的記憶體需求通常是不同的,要找到合適的記憶體元件尺寸用於目標DFEC解碼核心,可應用第一記憶體需求資訊及第二記憶體需求資訊結合不同數目固定尺寸之記憶體元件來開發三維區塊式靜態隨機存取記憶體,以支援不同的解碼模式。記憶體元件的儲存寬度(memory width)與儲存容量(memory size)會影響記憶體使用率。為了支援第一記憶體需求資訊及第二記憶體需求資訊,必須討論記憶體元件的儲存寬度與儲存容量以增加記憶體使用率。根據記憶體元件的儲存寬度與儲存容量,分析前饋式錯誤更正碼三維堆疊架構與區塊式記憶體三維堆疊架構的相互連接部分(interconnection)及SRAM區塊運作時之功耗P INT 、P SRAM ,及相互連接部分及SRAM區塊的晶片佈局資訊F INT 、F SRAM Please refer to FIG. 6. FIG. 6 illustrates a method for three-dimensional memory mapping according to an embodiment of the present invention. The method of three-dimensional memory mapping includes the following steps: step 610, avoiding vertical stacking of a plurality of valid memory elements; and step 620, avoiding continuous access to the same memory element. In both decoding modes, the memory requirements of the decoding core are usually different. To find the appropriate memory component size for the target DFEC decoding core, the first memory demand information and the second memory demand information can be combined. A fixed number of memory elements are used to develop three-dimensional block-type SRAM to support different decoding modes. The memory width and memory size of the memory component affect the memory usage. In order to support the first memory demand information and the second memory demand information, the storage width and storage capacity of the memory components must be discussed to increase the memory usage. According to the storage width and storage capacity of the memory component, the three-dimensional stacking structure of the feedforward error correction code and the interconnection of the block memory three-dimensional stacking structure and the power consumption of the SRAM block operation P INT , P are analyzed. SRAM , and the interconnect layout and the layout information of the SRAM block F INT , F SRAM .

前饋式錯誤更正碼三維堆疊架構與區塊式記憶體三維堆疊架構的相互連接部分及SRAM區塊運作時之功耗P INT 、P SRAM ,相互連接部分及SRAM區塊的晶片佈局資訊F INT 、F SRAM 可用來找出相互連接部分及三維區塊式SRAM中的SRAM區塊的溫度行為T INT 、T SRAM 。T INT 、T SRAM 可用來解決三維堆疊區塊式SRAM的熱點問題。為了避免三維區塊式SRAM的熱點問題,本發明提出三維記憶體映射的方法。三維記憶體映射是藉由避免有效記憶體元件的垂直堆疊及避免連續存取同一記憶體元件來移除熱點。為了避免有效記憶體元件的垂直堆疊,將有效記憶體元件區分為奇映射(odd mappings)與偶映射(even mappings)。請參照圖7,圖7繪示根據本發明實施例之三維記憶體映射的示意圖。圖7a繪示16個有效記憶體元件、8個有效記憶體元件(8a與8b)、4個有效記憶體元件(4a~4d)、及2個有效記憶體元件(2a~2h)的記憶體映射。應用分治演算法(divide-and-conquer algorithm)來決定2、4、8、及16個有效記憶體元件的記憶體映射。透過結合2、4、8個有效記憶體元件的記憶體映射,亦可將不同記憶體元件的記憶體映射實現於不同的應用方式中。例如,表1繪示由8、4、2個有效記憶體元件延伸的10個及12個有效記憶體的範例實施例,透過將奇映射與偶映射堆疊於相鄰記憶體層可減少溫度問題。圖7b繪示10個有效記憶體的記憶體映射的狀態轉換。針對不同層(層8n~8n+7),記憶體映射的起始狀態(10~10f)不同。本發明將奇映射與偶映射堆疊於相鄰層以減少溫度問題,目的是避免連續存取同一個記憶體元件。圖7c繪示具2個核心層與4個SRAM層的範例三維DFEC。如果操作模式是渦輪模式與LDPC模式兩者之間轉換,記憶體映射亦隨之更改。 表1 10個及12個有效記憶體的記憶體映射 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>10</b>個有效記憶體 </td><td><b>12</b>個有效記憶體 </td></tr><tr><td> 奇映射 </td><td> 偶映射 </td><td> 奇映射 </td><td> 偶映射 </td></tr><tr><td> 10a = 8a+2e 10b = 8a+2f 10c = 8a+2g 10d = 8a+2h </td><td> 10e = 8b+2a 10f = 8b+2b 10g = 8b+2c 10h = 8b+2d </td><td> 12a = 8a+4c 12b = 8a+4d </td><td> 12c = 8b + 4a 12d = 8b + 4b </td></tr></TBODY></TABLE>Feedforward error correction code 3D stacking structure and interconnection of block memory 3D stacking structure and power consumption of SRAM block operation P INT , P SRAM , interconnection part and chip layout information of SRAM block F INT F SRAM can be used to find the temperature behavior T INT , T SRAM of the interconnected part and the SRAM block in the three-dimensional block type SRAM . T INT and T SRAM can be used to solve the hot spot problem of 3D stacked block SRAM. In order to avoid the hot spot problem of the three-dimensional block type SRAM, the present invention proposes a method of three-dimensional memory mapping. Three-dimensional memory mapping removes hotspots by avoiding vertical stacking of valid memory elements and avoiding continuous access to the same memory element. In order to avoid vertical stacking of valid memory elements, the effective memory elements are divided into odd mappings and even mappings. Please refer to FIG. 7. FIG. 7 is a schematic diagram of three-dimensional memory mapping according to an embodiment of the present invention. Figure 7a shows the memory of 16 active memory elements, 8 active memory elements (8a and 8b), 4 effective memory elements (4a to 4d), and 2 effective memory elements (2a to 2h). Mapping. A divide-and-conquer algorithm is used to determine the memory mapping of 2, 4, 8, and 16 valid memory elements. By combining the memory mapping of 2, 4, and 8 effective memory elements, the memory mapping of different memory elements can also be implemented in different application modes. For example, Table 1 illustrates an exemplary embodiment of 10 and 12 active memories extending from 8, 4, and 2 active memory elements, which can be reduced by stacking odd and even mappings on adjacent memory layers. Figure 7b illustrates the state transition of the memory map of the 10 valid memories. The initial state (10 to 10f) of the memory map is different for different layers (layers 8n to 8n+7). The present invention stacks odd and even mappings on adjacent layers to reduce temperature problems in order to avoid continuous access to the same memory element. Figure 7c illustrates an example three dimensional DFEC with two core layers and four SRAM layers. If the mode of operation is between turbo mode and LDPC mode, the memory map is also changed. Table 1 Memory mapping of 10 and 12 valid memories <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td><b>10</b>effectivememory</td><td><b>12</b> effective memory</td></tr><tr><td> odd mapping</td><td> even mapping</td><td> Odd mapping</td><td> Even mapping</td></tr><tr><td> 10a = 8a+2e 10b = 8a+2f 10c = 8a+2g 10d = 8a+ 2h </td><td> 10e = 8b+2a 10f = 8b+2b 10g = 8b+2c 10h = 8b+2d </td><td> 12a = 8a+4c 12b = 8a+4d </td><Td> 12c = 8b + 4a 12d = 8b + 4b </td></tr></TBODY></TABLE>

本發明所提出之用於雙模式前饋式錯誤更正碼三維架構的溫度控管方法還包含將雙模式前饋式錯誤更正碼三維堆疊架構旋轉90度以減少熱點重疊,及增加多餘記憶體元件至區塊式記憶體三維堆疊架構。第一溫度特性T m1 、第二溫度特性T m2 、相互連接部分及區塊式記憶體三維堆疊架構中區塊式靜態隨機存取記憶體的溫度行為T INT 、T SRAM 可用來解決區塊式靜態隨機存取記憶體頂部與運算核心底部垂直堆疊所造成的溫度問題。以不同的方向堆疊區塊式靜態隨機存取記憶體頂部與運算核心底部可影響雙模式前饋式錯誤更正碼三維架構的溫度行為。將具雙模式前饋式錯誤更正碼之三維解碼核心旋轉90度可減少重疊區域的熱點,因此可降低溫度。在雙模式前饋式錯誤更正碼三維架構中,增加多餘記憶體元件至三維區塊式記憶體,也就是將頂部的區塊式靜態隨機存取記憶體重新映射至位於其他層的多餘記憶體元件,可進一步移開重疊區域中的有效記憶體元件。 The temperature control method for the dual mode feedforward error correction code three-dimensional architecture proposed by the present invention further comprises rotating the dual mode feedforward error correction code three-dimensional stacking architecture by 90 degrees to reduce hotspot overlap and adding redundant memory components. To the block memory three-dimensional stacking architecture. The temperature behavior T INT and T SRAM of the block type static random access memory in the first temperature characteristic T m1 , the second temperature characteristic T m2 , the interconnected portion and the block type memory three-dimensional stacking structure can be used to solve the block type The temperature problem caused by the vertical stacking of the top of the SRAM with the bottom of the computing core. Stacking the top of the block-type SRAM and the bottom of the computing core in different directions can affect the temperature behavior of the three-mode architecture of the dual-mode feedforward error correction code. Rotating the three-dimensional decoding core with the dual-mode feedforward error correction code by 90 degrees reduces the hot spots in the overlap region, thus reducing the temperature. In the two-mode feedforward error correction code three-dimensional architecture, adding redundant memory components to three-dimensional block memory, that is, re-mapping the top block-type static random access memory to redundant memory located in other layers The component can further remove the active memory components in the overlap region.

請參照圖8,圖8繪示根據本發明實施例之額外的多餘記憶體元件的示意圖。圖8a繪示具有額外的多餘記憶體元件的雙模式前饋式錯誤更正碼三維架構。多餘記憶體元件是位於距離散熱裝置較近的區塊式靜態隨機存取記憶體層,可將針對重疊區域中有效記憶體元件的存取重新映射至多餘記憶體元件。圖8b繪示將重疊區域中的四個記憶體元件自頂部區塊式靜態隨機存取記憶體重新映射至多餘記憶體元件的範例實施例。一半的多餘記憶體元件是應用於渦輪解碼模式與LDPC解碼模式之其中一者。有效的多餘記憶體元件並不相鄰,這是為了減少熱效應。在不同的實施例中,針對不同數目的多餘記憶體元件,重新映射的方法可能有所不同。相較於不重疊區域中的有效記憶體元件,在重疊區域中的有效記憶體元件有較高的優先權被取代。如果重疊區域中的全部有效記憶體元件都被重新映射,不重疊區域中的有效記憶體元件也可被重新映射。圖8c繪示自頂部區塊式靜態隨機存取記憶體將記憶體元件重新映射至多餘記憶體元件的範例。渦輪解碼模式下的四個有效記憶體元件及LDPC解碼模式下的四個有效記憶體元件映射至不同數目的多餘記憶體元件。在具有十六個多餘記憶體元件的例子中,因為在重疊區域中的有效記憶體元件被移除了,不重疊區域中的記憶體元件可被重新映射。額外的多餘記憶體元件可能導致區塊式靜態隨機存取記憶體的硬體成本增加。表2記錄用於支援1、2、4個雙模式前饋式錯誤更正碼解碼核心之雙模式前饋式錯誤更正碼三維堆疊架構的多餘記憶體元件所需的硬體成本。 表2 多餘記憶體元件的硬體成本 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 雙模式前饋式錯誤更正碼 三維堆疊架構 </td><td> 4個多餘記憶體元件 </td><td> 8個多餘記憶體元件 </td><td> 16個多餘記憶體元件 </td></tr><tr><td> 4個雙模式前饋式錯誤更正碼解碼核心8層靜態隨機存取記憶體 </td><td> 3.13% </td><td> 6.25% </td><td> 12.50% </td></tr><tr><td> 2個雙模式前饋式錯誤更正碼解碼核心4層靜態隨機存取記憶體 </td><td> 6.25% </td><td> 12.50% </td><td> 25% </td></tr><tr><td> 1個雙模式前饋式錯誤更正碼解碼核心2層靜態隨機存取記憶體 </td><td> 12.50% </td><td> 25% </td><td> 50% </td></tr></TBODY></TABLE>Please refer to FIG. 8. FIG. 8 is a schematic diagram of an additional redundant memory component in accordance with an embodiment of the present invention. Figure 8a illustrates a three-mode feedforward error correction code three-dimensional architecture with additional redundant memory elements. The redundant memory component is a block-type SRAM layer located closer to the heat sink, and the access to the valid memory component in the overlap region can be remapped to the redundant memory component. FIG. 8b illustrates an exemplary embodiment of remapping four memory elements in an overlap region from a top block static random access memory to a redundant memory device. Half of the redundant memory components are applied to one of the turbo decoding mode and the LDPC decoding mode. Effective redundant memory components are not adjacent, in order to reduce thermal effects. In different embodiments, the method of remapping may be different for different numbers of redundant memory elements. The effective memory elements in the overlap region have higher priority than the valid memory elements in the non-overlapping regions. If all of the valid memory elements in the overlap region are remapped, the valid memory elements in the non-overlapping regions can also be remapped. Figure 8c illustrates an example of re-mapping memory elements to redundant memory elements from top-tile static random access memory. The four active memory elements in the turbo decoding mode and the four active memory elements in the LDPC decoding mode are mapped to different numbers of redundant memory elements. In the example with sixteen redundant memory elements, the memory elements in the non-overlapping regions can be remapped because the valid memory elements in the overlapping regions are removed. Additional redundant memory components may result in increased hardware cost of the tiled SRAM. Table 2 records the hardware cost required to support the redundant memory components of the two-mode feedforward error correction three-dimensional stacking architecture for 1, 2, and 4 dual-mode feedforward error correction code decoding cores. Table 2 Hardware cost of redundant memory components         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Dual mode feedforward error correction code 3D stacking architecture</td><td> 4 extra Memory element</td><td> 8 redundant memory elements</td><td> 16 redundant memory elements</td></tr><tr><td> 4 dual-mode feedforward Error Correction Code Decoding Core 8 Layer Static Random Access Memory</td><td> 3.13% </td><td> 6.25% </td><td> 12.50% </td></tr><tr ><td> 2 dual-mode feedforward error correction code decoding core 4 layer static random access memory</td><td> 6.25% </td><td> 12.50% </td><td> 25 % </td></tr><tr><td> 1 dual mode feedforward error correction code decoding core 2 layer static random access memory</td><td> 12.50% </td><td > 25% </td><td> 50% </td></tr></TBODY></TABLE>

本發明提出成本函數以找出同時滿足溫度、延遲時間、及硬體成本等不同限制的溫度控管映射演算法。成本函數係定義為下列式子(1)及(2): 成本 =( T limit T)/ T limit × NL× NH(1) 成本 = INF(2) 其中 T limit 表示溫度限制、NL表示正規化延遲(Normalized Latency)、NH表示正規化硬體成本(Normalized Hardware Cost)、 INF表示溫度超過預設限制。針對溫度 T、正規化延遲 NL、正規化硬體成本 NH的映射,可以式子(1)計算出成本。( T limit T)/ T limit 表示 T limit T之間的溫度差。在式子(1)中,應用( T limit T)/ T limit NLNH三者之乘積以找出設計折衷。如果 T大於 T limit ,將成本定義為無限大( INF),如式子(2)所示。表3記錄 T limit = 70°C、85°C、100°C時不同映射的成本。2SISO的例子(表3中的(a))是本實驗中的基線,延遲 NL和硬體成本 NH是正規化為1( NL=1、 NH=1)。2SISO+16 SME、2SISO+8 SME、2SISO+I/4 是 T limit = 70°C、 85°C、 100°C時成本最低的最佳映射。 表3 T limit = 70°C、 85°C、 100°C時不同映射的成本 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td>   </td><td><b>(a)</b></td><td><b>(b)</b></td><td><b>(c)</b></td><td><b>(d)</b></td><td><b>(e)</b></td><td><b>(f)</b></td><td><b>(g)</b></td><td><b>(h)</b></td><td><b>(i)</b></td><td><b>(j)</b></td><td><b>(k)</b></td><td><b>(l)</b></td></tr><tr><td> 溫度 (<i>T</i>) </td><td> 111.32 </td><td> 101.33 </td><td> 98.61 </td><td> 93.7 </td><td> 72.12 </td><td> 68.45 </td><td> 66.86 </td><td> 64.09 </td><td> 91.53 </td><td> 79.97 </td><td> 68.57 </td><td> 72.27 </td></tr><tr><td> 正規化延遲 (<i>NL)</i></td><td> 1.00 </td><td> 1.11 </td><td> 1.17 </td><td> 1.28 </td><td> 1.99 </td><td> 2.22 </td><td> 2.33 </td><td> 2.56 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.17 </td></tr><tr><td> 正規化硬體成本<i>(NH)</i></td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.06 </td><td> 1.13 </td><td> 1.25 </td><td> 1.13 </td></tr><tr><td> 成本 (<i>T<sub>limit</sub></i> = 70°C) </td><td><i>INF</i></td><td><i>INF</i></td><td><i>INF</i></td><td><i>INF</i></td><td><i>INF</i></td><td> 0.86 </td><td> 0.93 </td><td> 1.08 </td><td><i>INF</i></td><td><i>INF</i></td><td><b>0.48</b></td><td><i>INF</i></td></tr><tr><td> 成本 (<i>T<sub>limit</sub></i> = 85°C) </td><td><i>INF</i></td><td><i>INF</i></td><td><i>INF</i></td><td><i>INF</i></td><td><i>INF</i></td><td> 1.90 </td><td> 2.17 </td><td> 2.77 </td><td><i>INF</i></td><td><b>0.32</b></td><td> 0.48 </td><td> 0.46 </td></tr><tr><td> 成本(<i>T<sub>limit</sub></i> = 100°C) </td><td><i>INF</i></td><td> INF </td><td><b>0.13</b></td><td> 0.20 </td><td> 0.70 </td><td> 0.86 </td><td> 0.93 </td><td> 1.08 </td><td> 0.19 </td><td> 0.32 </td><td> 0.48 </td><td> 0.46 </td></tr></TBODY></TABLE>註記: ž 表3中的符號: (a)2SISO (b)2SISO+I/8 (c)2SISO+I/4 (d)2 SISO+I/2 (e)1SISO (f)1SISO+I/8 (g)1SISO+I/4 (h)1SISO+I/2 (i)2SISO + 4 SME (j)2SISO+8 SME (k)2SISO+16 SME (l)2SISO+I/4+8 SME. ž 2SISO、1SISO表示雙模式前饋式錯誤更正碼三維架構有2、1個有效運算核心 ž I/8、I/4、I/2表示插入雙模式前饋式錯誤更正碼三維架構的額外12.5%、25%、50%閒置週期 ž 4 SME、8 SME、16 SME表示應用於雙模式前饋式錯誤更正碼三維架構的 4、 8、16 個額外記憶體元件 The present invention proposes a cost function to find a temperature control mapping algorithm that satisfies different constraints such as temperature, delay time, and hardware cost. The cost function is defined as the following equations (1) and (2): Cost = ( T limit T ) / T limit × NL × NH (1) Cost = INF (2) where T limit represents temperature limit and NL represents regular Normalized Latency, NH stands for Normalized Hardware Cost, and INF indicates that the temperature exceeds the preset limit. For the mapping of the temperature T , the normalization delay NL , and the normalized hardware cost NH , the cost can be calculated by the equation (1). ( T limit T ) / T limit represents the temperature difference between T limit and T. In equation (1), the product of ( T limit T ) / T limit , NL , NH is applied to find the design compromise. If T is greater than T limit , the cost is defined as infinity ( INF ), as shown in equation (2). Table 3 records the cost of different mappings at T limit = 70 ° C, 85 ° C, and 100 ° C. The 2SISO example ((a) in Table 3) is the baseline in this experiment, and the delay NL and the hardware cost NH are normalized to 1 ( NL = 1, NH = 1). 2SISO+16 SME, 2SISO+8 SME, 2SISO+I/4 are the best mappings with the lowest cost at T limit = 70°C, 85°C, and 100°C. Table 3 T limit = 70 ° C, 85 ° C, 100 ° C, the cost of different mapping <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td></td><td><b>(a)</b></td><td><b>(b)</b></td><td><b>(c)</b></td><td><b>(d)</b></td><td><b>(e)</b></td><td><b>(f)</b></td><td><b>(g)</b></td><td><b>(h)</b></td><td><b>(i)</b></td><td><b>(j)</b></td><td><b>(k)</b></td><td><b>(l)</b></td></tr><tr><td> Temperature (<i>T</i>) </td><td> 111.32 </td><td> 101.33 </td><Td> 98.61 </td><td> 93.7 </td><td> 72.12 </td><td> 68.45 </td><td> 66.86 </td><td> 64.09 </td><td> 91.53 </td><td> 79.97 </td><td> 68.57 </td><td> 72.27 </td></tr><tr><td> Normalization delay (<i>NL)</ i></td><td> 1.00 </td><td> 1.11 </td><td> 1.17 </td><td> 1.28 </td><td> 1.99 </td><td> 2.22 </td><td> 2.33 </td><td> 2.56 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.17 </ Td></tr><tr><td> normalized hardware cost <i>(NH)</i></td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.00 </td><td> 1.06 </td><td> 1.13 </td><td> 1.25 </td><td> 1.13 </td></tr><tr><td> Cost (<i>T<sub>limit</ Sub></i> = 70°C) </td><td><i>INF</i></td><td><i>INF</i></td><td><i >INF</i></td><td><i>INF</i></td><td><i>INF</i></td><td> 0.86 </td><td > 0.93 </td><td> 1.08 </td><td><i>INF</i></td><td><i>INF</i></td><td><b>0.48</b></td><td><i>INF</i></td></tr><tr><td> Cost (<i>T<sub>limit</sub></ i> = 85°C) </td><td><i>INF</i></td><td><i>INF</i></td><td><i>INF</ i></td><td><i>INF</i></td><td><i>INF</i></td><td> 1.90 </td><td> 2.17 </ Td><td> 2.77 </td><td><i>INF</i></td><td><b>0.32</b></td><td> 0.48 </td><td > 0.46 </td></tr><tr><td> Cost (<i>T<sub>limit</sub></i> = 100°C) </td><td><i>INF </i></td><td> INF </td><td><b>0.13</b></td><td> 0.20 </td><td> 0.70 </td><td> 0.86 </td><td> 0.93 </td><td> 1.08 </td><td> 0.19 </td><td> 0.32 </td><td> 0.48 </td><td> 0.46 </td></tr></TBODY></TABLE> Notes: ž Symbols in Table 3: (a) 2SISO (b) 2SISO+I/8 (c) 2SISO+I/4 (d) 2 SISO+ I/2 (e) 1SISO (f) 1SISO+I/8 (g) 1SISO+I/4 (h) 1SISO+I/ 2 (i) 2SISO + 4 SME (j) 2SISO+8 SME (k) 2SISO+16 SME (l) 2SISO+I/4+8 SME. ž 2SISO, 1SISO means dual mode feedforward error correction code 3D architecture 2, 1 effective computing core Z I / 8, I / 4, I / 2 indicates the insertion of dual mode feedforward error correction code 3D architecture additional 12.5%, 25%, 50% idle period Z 4 SME, 8 SME, 16 SME represents 4, 8, and 16 additional memory components applied to the dual-mode feedforward error correction code 3D architecture

在一實施例中,考慮在具有二層解碼核心及四層區塊式記憶體的雙模式前饋式錯誤更正碼三維架構中溫度、延遲時間、與硬體成本之間的折衷。為了降低最高溫度,雙模式前饋式錯誤更正碼三維架構可採取以下作法:更改有效的雙模式前饋式錯誤更正碼核心、增加多餘記憶體元件、增加空轉周期。減少有效的雙模式前饋式錯誤更正碼核心及增加額外的空轉周期可能增加解碼延遲;增加多餘記憶體元件可能造成額外的記憶體成本。因此,設計上的折衷必須以不同的設計限制來進行討論。In one embodiment, a trade-off between temperature, delay time, and hardware cost in a two-mode feedforward error correction code three-dimensional architecture with a two-layer decoding core and four-layer block memory is considered. To reduce the maximum temperature, the dual-mode feedforward error correction code 3D architecture can take the following actions: change the effective dual-mode feedforward error correction code core, add redundant memory components, and increase the idle cycle. Reducing an effective dual-mode feedforward error correcting the code core and adding additional idle cycles may increase the decoding delay; adding extra memory components may result in additional memory costs. Therefore, design compromises must be discussed with different design constraints.

此處只討論延遲與溫度之間的設計折衷。為了降低最高溫度,一種方法是更改有效的雙模式前饋式錯誤更正碼核心的數目,還有一種方法是增加額外的空轉周期。1SISO、2SISO分別表示1、2個有效的雙模式前饋式錯誤更正碼核心,以及2層及4層區塊式記憶體。限制 1/8、1/4、1/2分別表示在雙核心模式中為了降低溫度而加入的額外的空轉周期 12.5%、 25%、50%。在此實施例中,最高溫度可降低10°C ~ 47.2°C。2SISO 延遲是 基線,數值是正規化為1。實驗結果顯示,相較於增加額外的空轉周期,更改有效的雙模式前饋式錯誤更正碼核心可降低更多溫度,但是延遲亦增加更多。Only the design tradeoff between delay and temperature is discussed here. One way to reduce the maximum temperature is to change the number of valid dual-mode feedforward error correction code cores. Another way is to add an extra idle period. 1SISO and 2SISO respectively represent 1, 2 effective dual-mode feedforward error correction code cores, and 2 and 4 layer block memories. Limits 1/8, 1/4, and 1/2 indicate the additional idle periods of 12.5%, 25%, and 50% added to reduce temperature in the dual core mode. In this embodiment, the maximum temperature can be lowered by 10 ° C to 47.2 ° C. The 2SISO delay is the baseline and the value is normalized to 1. Experimental results show that changing the effective dual-mode feedforward error correction code core can reduce more temperature than adding additional idle cycles, but the delay is also increased more.

請參照圖9,圖9繪示根據本發明實施例之一種用於雙模式前饋式錯誤更正碼三維架構的溫度控管裝置。依據本發明一實施例,用於雙模式前饋式錯誤更正碼三維架構的溫度控管裝置包含:前饋式錯誤更正碼三維堆疊架構910;區塊式記憶體三維堆疊架構920,與前饋式錯誤更正碼三維堆疊架構910耦接,其中區塊式記憶體三維堆疊架構920包含數個區塊式靜態隨機存取記憶體;解碼核心有限狀態機930,自前饋式錯誤更正碼三維堆疊架構910得到在第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式下運作時之功耗及晶片佈局資訊,解碼核心有限狀態機930用於透過溫度分析,得到第一錯誤更正碼解碼模式之第一溫度特性、第二錯誤更正碼解碼模式之第二溫度特性以應用於三維解碼核心溫控映射,第二溫度特性的溫度增加速度比第一溫度特性的溫度增加速度快;及記憶體有限狀態機940,自區塊式記憶體三維堆疊架構920得到在第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式下運作時之功耗及晶片佈局資訊,記憶體有限狀態機940用於透過溫度分析,得到區塊式記憶體三維堆疊架構920運作時之記憶體溫度特性以應用於三維記憶體映射;模式控制器950,與解碼核心有限狀態機930及記憶體有限狀態機940連接,模式控制器950係用於控制解碼核心有限狀態機930之狀態及記憶體有限狀態機940之狀態;及溫控映射演算法開發模組960,用於透過第一錯誤更正碼解碼模式與第二錯誤更正碼解碼模式運作時之溫度差距,開發用於前饋式錯誤更正碼三維堆疊架構910及區塊式記憶體三維堆疊架構920之溫度控管映射演算法。Please refer to FIG. 9. FIG. 9 illustrates a temperature control device for a three-dimensional architecture of a dual mode feedforward error correction code according to an embodiment of the invention. According to an embodiment of the invention, a temperature control device for a three-mode feedforward error correction code three-dimensional architecture includes: a feedforward error correction code three-dimensional stacking architecture 910; a block memory three-dimensional stacking architecture 920, and feedforward The error correction code three-dimensional stacking architecture 910 is coupled, wherein the block-type memory three-dimensional stacking architecture 920 includes a plurality of block-type static random access memories; the decoding core finite state machine 930, the self-feedforward error correction code three-dimensional stacking architecture 910 obtains power consumption and chip layout information when operating in the first error correction code decoding mode and the second error correction code decoding mode, and the decoding core finite state machine 930 is configured to obtain the first error correction code decoding mode by using temperature analysis. a first temperature characteristic, a second temperature characteristic of the second error correction code decoding mode is applied to the three-dimensional decoding core temperature control map, the temperature increase rate of the second temperature characteristic is faster than the temperature increase of the first temperature characteristic; and the memory is limited State machine 940, self-blocking memory three-dimensional stacking architecture 920 is obtained in the first error correction code decoding mode with a second error The power consumption and chip layout information in the code decoding mode, the memory finite state machine 940 is used to obtain the memory temperature characteristics of the block memory three-dimensional stacking architecture 920 during the operation through the temperature analysis for the three-dimensional memory mapping. The mode controller 950 is coupled to the decoding core finite state machine 930 and the memory finite state machine 940 for controlling the state of the decoding core finite state machine 930 and the state of the memory finite state machine 940; The control mapping algorithm development module 960 is configured to develop a three-dimensional stacking architecture 910 and a block type for the feedforward error correction code by using the temperature difference between the first error correction code decoding mode and the second error correction code decoding mode operation. The temperature control mapping algorithm of the memory three-dimensional stacking architecture 920.

溫控映射演算法開發模組960使用成本函數以找出同時滿足溫度限制、延遲時間、及硬體成本之溫度控管映射演算法。成本函數係以下列式子表示: 成本 = ( T limit T)/ T limit × NL× NH成本 = INF其中 T limit 表示溫度限制、 NL表示正規化延遲、 NH表示正規化硬體成本、 INF表示溫度超過預設限制。雙模式前饋式錯誤更正碼三維堆疊架構910可旋轉90度以減少熱點重疊,區塊式記憶體三維堆疊架構920還可包含多餘的記憶體元件。 The temperature control mapping algorithm development module 960 uses a cost function to find a temperature control mapping algorithm that satisfies both temperature limits, delay times, and hardware costs. The cost function is expressed by the following equation: Cost = ( T limit T ) / T limit × NL × NH cost = INF where T limit represents temperature limit, NL represents normalized delay, NH represents normalized hardware cost, INF represents The temperature exceeds the preset limit. The dual mode feedforward error correction code three dimensional stacking architecture 910 can be rotated 90 degrees to reduce hotspot overlap, and the tiled memory three dimensional stacking architecture 920 can also include redundant memory components.

本發明開發出可用於雙模式解碼核心與區塊式記憶體三維晶片架構之溫度控管映射演算法,藉由溫度限制、延遲時間、硬體成本的考量,在合理的成本下解決三維晶片的溫度問題。在實驗中,證明了應用所提出之溫度映射演算法於雙模式前饋式錯誤更正碼三維架構,可降低5.4°C ~ 62.9°C的晶片最高溫。The invention develops a temperature control mapping algorithm which can be used for the dual mode decoding core and the block type memory three-dimensional wafer architecture, and solves the three-dimensional wafer at a reasonable cost by considering temperature limitation, delay time and hardware cost. Temperature problem. In the experiment, it is proved that the proposed temperature mapping algorithm is applied to the dual-mode feedforward error correction code three-dimensional architecture, which can reduce the maximum temperature of the wafer from 5.4 ° C to 62.9 ° C.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技術者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之發明申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one skilled in the art can make various modifications and retouchings without departing from the spirit and scope of the present invention. The scope is defined by the scope of the appended claims.

100~190‧‧‧步驟方法
410~420‧‧‧步驟方法
610~620‧‧‧步驟方法
910‧‧‧前饋式錯誤更正碼三維堆疊架構
920‧‧‧區塊式記憶體三維堆疊架構
930‧‧‧解碼核心有限狀態機
940‧‧‧記憶體有限狀態機
950‧‧‧模式控制器
960‧‧‧溫控映射演算法開發模組
100~190‧‧‧Step method
410~420‧‧‧Step method
610~620‧‧‧Step method
910‧‧‧Feed-forward error correction code three-dimensional stacking architecture
920‧‧‧block memory three-dimensional stacking architecture
930‧‧‧Decoding core finite state machine
940‧‧‧Memory finite state machine
950‧‧‧Mode Controller
960‧‧‧ Temperature Control Mapping Algorithm Development Module

為讓本發明能更明顯易懂,請參考所附圖式閱讀本發明說明,在圖式中: 圖1繪示根據本發明實施例之用於雙模式前饋式錯誤更正碼三維架構的溫度控管方法; 圖2繪示根據本發明實施例之三維晶片堆疊架構; 圖3繪示根據本發明實施例之用於雙模式前饋式錯誤更正碼三維架構的溫度控管設計流程; 圖4繪示根據本發明實施例之三維解碼核心溫控映射的方法; 圖5繪示根據本發明實施例之用於雙模式前饋式錯誤更正碼三維架構的三維解碼核心溫控映射; 圖6繪示根據本發明實施例之三維記憶體映射的方法; 圖7繪示根據本發明實施例之三維記憶體映射的示意圖; 圖8繪示根據本發明實施例之額外的多餘記憶體元件的示意圖;及 圖9繪示根據本發明實施例之一種用於雙模式前饋式錯誤更正碼三維架構的溫度控管裝置。In order to make the invention more apparent, the description of the present invention will be read with reference to the accompanying drawings in which: FIG. 1 illustrates the temperature of a three-dimensional architecture for a dual mode feedforward error correction code according to an embodiment of the present invention. FIG. 2 illustrates a three-dimensional wafer stacking architecture according to an embodiment of the present invention; FIG. 3 illustrates a temperature control design flow for a three-mode feedforward error correction code three-dimensional architecture according to an embodiment of the present invention; A method for three-dimensional decoding core temperature control mapping according to an embodiment of the present invention is shown; FIG. 5 illustrates a three-dimensional decoding core temperature control mapping for a three-mode feedforward error correction code three-dimensional architecture according to an embodiment of the present invention; FIG. 7 is a schematic diagram showing three-dimensional memory mapping according to an embodiment of the present invention; FIG. 8 is a schematic diagram showing additional redundant memory elements according to an embodiment of the present invention; FIG. 9 illustrates a temperature control device for a three-dimensional architecture of a dual mode feedforward error correction code according to an embodiment of the invention.

100~190‧‧‧步驟方法 100~190‧‧‧Step method

Claims (8)

一種用於一雙模式前饋式錯誤更正碼(Dual-Mode Forward Error Correction,DFEC)三維架構的溫度控管方法,包含以下步驟:提供一第一錯誤更正碼解碼模式、一第二錯誤更正碼解碼模式及該第一錯誤更正碼解碼模式所需之一第一記憶體需求資訊、該第二錯誤更正碼解碼模式所需之一第二記憶體需求資訊;根據該第一記憶體需求資訊及該第二記憶體需求資訊,分析對應之區塊式記憶體(block-based memory)架構,並建立結合一雙模式前饋式錯誤更正碼三維堆疊架構與一區塊式記憶體三維堆疊架構之一三維晶片(3D IC)堆疊架構,其中該區塊式記憶體三維堆疊架構包含複數個區塊式靜態隨機存取記憶體(block-based SRAM);根據所建立之該三維晶片堆疊架構,得到在該第一錯誤更正碼解碼模式與該第二錯誤更正碼解碼模式下,該雙模式前饋式錯誤更正碼三維堆疊架構與該區塊式記憶體三維堆疊架構運作時之功耗及晶片佈局資訊;透過功耗分析,得到該第一錯誤更正碼解碼模式之一第一溫度表現及該第二錯誤更正碼解碼模式之一第二溫度表現;透過溫度分析,得到該第一錯誤更正碼解碼模式之一第一溫度特性、該第二錯誤更正碼解碼模式之一第二溫度特性以應用於一三維解碼核心溫控映射的方法,該第二溫度特性的溫度增加速度比該第一溫度特性的溫度增加速度快,其中該三維解碼核心溫控映射的方法更包含以下步驟:避免相鄰層的有效雙模式前饋式錯誤更正碼核心在該第二錯誤更正碼解碼式下運作;及 避免有效雙模式前饋式錯誤更正碼核心連續累積地解碼該第二錯誤更正碼;透過溫度分析,得到該區塊式記憶體三維堆疊架構運作時之一記憶體溫度特性以應用於一三維記憶體映射的方法;及透過該第一錯誤更正碼解碼模式與該第二錯誤更正碼解碼模式運作時之一溫度差距,開發用於該三維晶片堆疊架構之一溫度控管映射演算法。 A temperature control method for a dual mode Forward Error Correction (DFEC) three-dimensional architecture includes the following steps: providing a first error correction code decoding mode and a second error correction code a first memory requirement information required by the decoding mode and the first error correction code decoding mode, and a second memory requirement information required by the second error correction code decoding mode; according to the first memory demand information and The second memory needs information, analyzes a corresponding block-based memory architecture, and establishes a three-dimensional feedforward error correction code three-dimensional stacking structure and a block memory three-dimensional stacking structure. a three-dimensional chip (3D IC) stacking structure, wherein the block-type memory three-dimensional stacking structure comprises a plurality of block-based SRAMs; according to the established three-dimensional wafer stacking architecture, In the first error correction code decoding mode and the second error correction code decoding mode, the dual mode feedforward error correction code three-dimensional stacking architecture and the block type record The power consumption and the chip layout information of the body three-dimensional stacking structure operation; the first temperature performance of the first error correction code decoding mode and the second temperature performance of the second error correction code decoding mode are obtained through power consumption analysis; And performing, by temperature analysis, a method for applying a first temperature characteristic of the first error correction code decoding mode, and a second temperature characteristic of the second error correction code decoding mode to apply to a three-dimensional decoding core temperature control mapping, the second The temperature increase rate of the temperature characteristic is faster than the temperature increase rate of the first temperature characteristic, wherein the method of three-dimensional decoding core temperature control mapping further comprises the steps of: avoiding an effective dual mode feedforward error correction code core of the adjacent layer in the The second error corrects the code to operate under the decoding mode; and Avoiding the effective dual-mode feedforward error correction code core continuously accumulating and decoding the second error correction code; and performing temperature analysis to obtain one of the memory temperature characteristics of the block type memory three-dimensional stacking structure for application to a three-dimensional memory a method of volume mapping; and developing a temperature control mapping algorithm for the three-dimensional wafer stacking architecture by correcting a temperature difference between the first error correction code decoding mode and the second error correction code decoding mode operation. 如申請專利範圍第1項所述之溫度控管方法,其中該三維記憶體映射的方法包含以下步驟:避免複數個有效記憶體元件的垂直堆疊;及避免連續存取同一記憶體元件。 The temperature control method of claim 1, wherein the method of three-dimensional memory mapping comprises the steps of: avoiding vertical stacking of a plurality of valid memory elements; and avoiding continuous access to the same memory element. 如申請專利範圍第1項所述之溫度控管方法,其中該開發用於該三維晶片堆疊架構之一溫度控管映射演算法包含以下步驟:使用一成本函數以找出同時滿足一溫度限制、一延遲時間、及一硬體成本之該溫度控管映射演算法。 The temperature control method of claim 1, wherein the temperature control mapping algorithm developed for the three-dimensional wafer stacking architecture comprises the following steps: using a cost function to find that a temperature limit is simultaneously satisfied, The temperature control mapping algorithm for a delay time and a hardware cost. 如申請專利範圍第3項所述之溫度控管方法,其中該成本函數係以下列式子表示:成本=(Tlimit-T)/Tlimit x NL x NH 成本=INF其中Tlimit表示溫度限制、NL表示正規化延遲(Normalized Latency)、NH表示正規化硬體成本(Normalized Hardware Cost)、INF表示溫度超過預設限制。 The temperature control method according to claim 3, wherein the cost function is expressed by the following formula: cost = (T limit - T) / T limit x NL x NH cost = INF where T limit represents temperature limit NL indicates Normalized Latency, NH indicates Normalized Hardware Cost, and INF indicates that the temperature exceeds a preset limit. 如申請專利範圍第1項所述之溫度控管方法,更包含以下步驟: 將該雙模式前饋式錯誤更正碼三維堆疊架構旋轉90度以減少熱點重疊;及增加多餘記憶體元件(spare memory elements)至該區塊式記憶體三維堆疊架構。 The temperature control method described in claim 1 of the patent scope further includes the following steps: The dual mode feedforward error correction code three-dimensional stacking architecture is rotated by 90 degrees to reduce hotspot overlap; and additional memory memory elements are added to the block memory three-dimensional stacking architecture. 一種用於一雙模式前饋式錯誤更正碼三維架構的溫度控管裝置,包含:一雙模式前饋式錯誤更正碼三維堆疊架構;一區塊式記憶體三維堆疊架構,與該雙模式前饋式錯誤更正碼三維堆疊架構耦接,該區塊式記憶體三維堆疊架構包含複數個區塊式靜態隨機存取記憶體,其中該雙模式前饋式錯誤更正碼三維堆疊架構旋轉90度以減少熱點重疊,其中該區塊式記憶體三維堆疊架構更包含多餘的記憶體元件;一解碼核心有限狀態機,自該雙模式前饋式錯誤更正碼三維堆疊架構得到在一第一錯誤更正碼解碼模式與一第二錯誤更正碼解碼模式下運作時之功耗及晶片佈局資訊,該解碼核心有限狀態機用於透過溫度分析,得到該第一錯誤更正碼解碼模式之一第一溫度特性、該第二錯誤更正碼解碼模式之一第二溫度特性以應用於一三維解碼核心溫控映射,該第二溫度特性的溫度增加速度比該第一溫度特性的溫度增加速度快;一記憶體有限狀態機,自該區塊式記憶體三維堆疊架構得到在該第一錯誤更正碼解碼模式與該第二錯誤更正碼解碼模式下運作時之功耗及晶片佈局資訊,該記憶體有限狀態機用於透過溫度分析,得到該區塊式記憶體三維堆疊架構運作時之一記憶體溫度特性以應用於一三維記憶體映射;一模式控制器,與該解碼核心有限狀態機及該記憶體有限狀態機連接, 該模式控制器係用於控制該解碼核心有限狀態機之狀態及該記憶體有限狀態機之狀態;及一溫控映射演算法開發模組,用於透過該第一錯誤更正碼解碼模式與該第二錯誤更正碼解碼模式運作時之一溫度差距,開發用於該雙模式前饋式錯誤更正碼三維堆疊架構及該區塊式記憶體三維堆疊架構之一溫度控管映射演算法。 A temperature control device for a three-mode feedforward error correction code three-dimensional architecture, comprising: a dual mode feedforward error correction code three-dimensional stacking architecture; a block memory three-dimensional stacking architecture, and the dual mode front The three-dimensional stacking architecture of the fed-in error correction code includes a plurality of block-type static random access memories, wherein the dual-mode feedforward error correction code three-dimensional stacking structure is rotated by 90 degrees. Reducing hotspot overlap, wherein the block-type memory three-dimensional stacking architecture further comprises redundant memory components; a decoding core finite state machine, obtained from the dual-mode feedforward error correction code three-dimensional stacking architecture in a first error correction code Decoding mode and a second error correcting power consumption and chip layout information when operating in a code decoding mode, the decoding core finite state machine is configured to obtain a first temperature characteristic of the first error correction code decoding mode through temperature analysis, The second error corrects one of the second temperature characteristics of the code decoding mode to apply to a three-dimensional decoding core temperature control map, the second temperature The temperature increase rate is faster than the temperature increase of the first temperature characteristic; a memory finite state machine obtains the first error correction code decoding mode and the second error correction code from the block type memory three-dimensional stacking architecture The power consumption and the wafer layout information in the decoding mode, the memory finite state machine is used to obtain a memory temperature characteristic of the block memory three-dimensional stacking structure to be applied to a three-dimensional memory through temperature analysis. Mapping; a mode controller coupled to the decoding core finite state machine and the memory finite state machine, The mode controller is configured to control a state of the decoding core finite state machine and a state of the memory finite state machine; and a temperature control mapping algorithm development module, configured to correct the code decoding mode by using the first error The second error corrects one of the temperature differences in the code decoding mode operation, and develops a three-dimensional stacking architecture for the dual-mode feedforward error correction code and a temperature control mapping algorithm for the block memory three-dimensional stacking architecture. 如申請專利範圍第6項所述之溫度控管裝置,其中該溫控映射演算法開發模組使用一成本函數以找出同時滿足一溫度限制、一延遲時間、及一硬體成本之該溫度控管映射演算法。 The temperature control device of claim 6, wherein the temperature control mapping algorithm development module uses a cost function to find the temperature that satisfies both a temperature limit, a delay time, and a hardware cost. Control mapping algorithm. 如申請專利範圍第7項所述之溫度控管裝置,其中該成本函數係以下列式子表示:成本=(Tlimit-T)/Tlimit x NL x NH 成本=INF其中Tlimit表示溫度限制、NL表示正規化延遲、NH表示正規化硬體成本、INF表示溫度超過預設限制。 The temperature control device according to claim 7, wherein the cost function is expressed by the following formula: cost = (Tlimit - T) / Tlimit x NL x NH cost = INF where Tlimit represents temperature limit, NL represents The normalization delay, NH indicates the normalized hardware cost, and INF indicates that the temperature exceeds the preset limit.
TW105141118A 2016-12-12 2016-12-12 Thermal-controlled method and device for thee-dimensional dual-mode forward error correction architecture TWI615848B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105141118A TWI615848B (en) 2016-12-12 2016-12-12 Thermal-controlled method and device for thee-dimensional dual-mode forward error correction architecture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105141118A TWI615848B (en) 2016-12-12 2016-12-12 Thermal-controlled method and device for thee-dimensional dual-mode forward error correction architecture

Publications (2)

Publication Number Publication Date
TWI615848B true TWI615848B (en) 2018-02-21
TW201822216A TW201822216A (en) 2018-06-16

Family

ID=62014739

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141118A TWI615848B (en) 2016-12-12 2016-12-12 Thermal-controlled method and device for thee-dimensional dual-mode forward error correction architecture

Country Status (1)

Country Link
TW (1) TWI615848B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477422B2 (en) * 1999-06-07 2009-01-13 Canon Kabushiki Kaisha Image recording apparatus, image recording method, method for controlling the image recording apparatus, storage medium storing a program capable of being read by a computer, and image processing method
US20100100797A1 (en) * 2008-10-16 2010-04-22 Genesys Logic, Inc. Dual mode error correction code (ecc) apparatus for flash memory and method thereof
US8060774B2 (en) * 2005-06-24 2011-11-15 Google Inc. Memory systems and memory modules
US9103785B2 (en) * 2008-06-25 2015-08-11 Emergence Genomics, Llc Method and apparatus for melting curve analysis of nucleic acids in microarray format
US9128015B2 (en) * 2011-09-25 2015-09-08 Theranos, Inc. Centrifuge configurations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477422B2 (en) * 1999-06-07 2009-01-13 Canon Kabushiki Kaisha Image recording apparatus, image recording method, method for controlling the image recording apparatus, storage medium storing a program capable of being read by a computer, and image processing method
US8060774B2 (en) * 2005-06-24 2011-11-15 Google Inc. Memory systems and memory modules
US9103785B2 (en) * 2008-06-25 2015-08-11 Emergence Genomics, Llc Method and apparatus for melting curve analysis of nucleic acids in microarray format
US20100100797A1 (en) * 2008-10-16 2010-04-22 Genesys Logic, Inc. Dual mode error correction code (ecc) apparatus for flash memory and method thereof
US9128015B2 (en) * 2011-09-25 2015-09-08 Theranos, Inc. Centrifuge configurations

Also Published As

Publication number Publication date
TW201822216A (en) 2018-06-16

Similar Documents

Publication Publication Date Title
US11671329B2 (en) Computation of network flooding topologies
US11899613B1 (en) Method and apparatus to process an instruction for a distributed logic having tightly coupled accelerator core and processor core in a multi-dimensional packaging
JP5630664B2 (en) Memory network method, apparatus, and system
US10249597B2 (en) Systems, methods, and apparatuses for implementing die recovery in two-level memory (2LM) stacked die subsystems
EP3657740B1 (en) Message forwarding
US20180024864A1 (en) Memory Module for a Data Center Compute Sled
JP7586658B2 (en) PACKAGED DEVICE WITH CHIPLETS HAVING MEMORY RESOURCES - Patent application
JP7493276B2 (en) Support device and program
US20180173452A1 (en) Apparatus for hyper converged infrastructure
US20230350795A1 (en) Dual-port memory module design for composable computing
Li et al. An energy efficient 18Gbps LDPC decoding processor for 802.11 ad in 28nm CMOS
CN112445747A (en) System, apparatus and method for providing symmetric multi-processor high-speed links
TWI615848B (en) Thermal-controlled method and device for thee-dimensional dual-mode forward error correction architecture
Narang et al. TEFLON: Thermally efficient dataflow-aware 3D NoC for accelerating CNN inferencing on manycore PIM architectures
US9893998B2 (en) Packet transfer system
Wu et al. Algorithms for reconfiguring NoC-based fault-tolerant multiprocessor arrays
CN116206666A (en) Semiconductor memory device and method of operating the same
WO2021150678A1 (en) Computation of a network flooding topology
Abdallah et al. A low-overhead fault tolerant technique for TSV-based interconnects in 3D-IC systems
CN113454571A (en) Multi-slot server assembly
US20250231894A1 (en) Input/output device in a high density or rackmount environment
CN113824579B (en) Interface configuration method of equipment in campus network and network equipment
Lin et al. Block-based SRAM architecture and thermal-aware memory mappings for three-dimensional channel decoding systems
KR20240139991A (en) Memory package expansion
KR20160079314A (en) Semiconductor device and method for operating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees