TWI605841B - Control method, control system and processing apparatus for ventilator - Google Patents
Control method, control system and processing apparatus for ventilator Download PDFInfo
- Publication number
- TWI605841B TWI605841B TW105108423A TW105108423A TWI605841B TW I605841 B TWI605841 B TW I605841B TW 105108423 A TW105108423 A TW 105108423A TW 105108423 A TW105108423 A TW 105108423A TW I605841 B TWI605841 B TW I605841B
- Authority
- TW
- Taiwan
- Prior art keywords
- target
- breathing
- tidal volume
- spontaneous
- volume value
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims description 84
- 238000000034 method Methods 0.000 title claims description 39
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 184
- 230000002269 spontaneous effect Effects 0.000 claims description 127
- 238000009423 ventilation Methods 0.000 claims description 95
- 241001246312 Otis Species 0.000 claims description 82
- 230000000241 respiratory effect Effects 0.000 claims description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 239000008280 blood Substances 0.000 claims description 12
- 210000004369 blood Anatomy 0.000 claims description 12
- 230000037396 body weight Effects 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000001568 sexual effect Effects 0.000 claims 1
- 238000004891 communication Methods 0.000 description 8
- 230000003434 inspiratory effect Effects 0.000 description 6
- 230000036387 respiratory rate Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000006213 oxygenation reaction Methods 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 208000008784 apnea Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000005399 mechanical ventilation Methods 0.000 description 1
- 230000001007 puffing effect Effects 0.000 description 1
- 238000002106 pulse oximetry Methods 0.000 description 1
- 201000004193 respiratory failure Diseases 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
本發明是有關於一種呼吸器的控制方法,且特別是有關於一種自發性(spontaneous)呼吸輔助模式下之呼吸器的控制方法、控制系統及處理裝置。The present invention relates to a method of controlling a respirator, and more particularly to a method, a control system and a processing apparatus for a respirator in a spontaneous breathing assist mode.
呼吸器是一種取代人體呼吸器官幫浦作用的機械裝置,其主要目的是讓呼吸衰竭病人得到通氣(ventilation)及氧氣治療(oxygenation),同時降低呼吸作功(work of breathing),來維持適當的血中二氧化碳及氧氣含量,並藉以讓病人呼吸不費力。A respirator is a mechanical device that replaces the function of the human respiratory organs. Its main purpose is to provide ventilation and oxygenation to patients with respiratory failure, while reducing work-to-breathing to maintain proper The amount of carbon dioxide and oxygen in the blood, so that the patient can breathe effortlessly.
呼吸器可能具有數種通氣模式,例如,容積強制通氣模式(Continue Mandatory Ventilation;CMV)、壓力控制通氣模式(Pressure Control Ventilation;PCV)、同步間歇性強制通氣模式(Synchronized Intermittent Mandatory Ventilation;SIMV)、以及可讓使用者自行主控呼吸的啟動與結束的壓力輔助通氣模式(Pressure Support Ventilation;PSV)(以下簡稱PS模式)或其他自發性呼吸輔助模式。The respirator may have several modes of ventilation, such as Continuous Mandatory Ventilation (CMV), Pressure Control Ventilation (PCV), Synchronized Intermittent Mandatory Ventilation (SIMV), And a Pressure Support Ventilation (PSV) (hereinafter referred to as PS mode) or other spontaneous breathing assistance mode that allows the user to control the start and end of the breathing.
而Hamilton公司所生產的呼吸器是利用適應支持通氣(Adaptive Support Ventilation;ASV)模式,其依據奧提斯(Otis)理論基礎,並結合壓力控制(PC)模式與PS模式,以藉由控制每分鐘通氣量(Minute Volume;MV)及呼吸速率來因應病患的需求。The respirators produced by Hamilton use the Adaptive Support Ventilation (ASV) model, which is based on the Otis theory and combines the pressure control (PC) mode with the PS mode to control each Minute Volume (MV) and respiratory rate are used to meet the needs of the patient.
在ASV模式下,以往通常需要透過醫療人員以經驗估算來調整呼吸器,以讓病患獲得合適的每分鐘通氣量。而台灣專利編號I260219「自動調控每分鐘通氣量之人工呼吸器及其方法」更提出了基於ASV模式自動調控每分鐘通氣量之方法,以免除人員的操控,來達到病患合適的每分鐘通氣量。也就是說,在現有技術中,除了以ASV模式之外,並未有其他文獻揭露基於其他通氣模式來達到調整合適的每分鐘通氣量之技術。In the ASV mode, it has often been necessary to adjust the respirator through medical staff with empirical estimates to allow the patient to get the appropriate ventilation per minute. The Taiwan Patent No. I260219 "The artificial respirator and its method for automatically regulating the ventilation per minute" proposes a method of automatically regulating the ventilation per minute based on the ASV mode, so as to avoid the manipulation of the person to achieve the appropriate ventilation per minute for the patient. the amount. That is to say, in the prior art, in addition to the ASV mode, there is no other document that discloses a technique for adjusting an appropriate per minute ventilation based on other ventilation modes.
對於供應於病人之呼吸器的每分鐘通氣量,該如何測量每分鐘通氣量及其需要量為何等至今仍是一個相當重要且存在爭議的議題。早在1991年,學者已提及呼吸器病人需要監測呼吸參數及量測每分鐘通氣量。然而,由於並未將前述量測方法標準化,因此往往會高估或低估量測的每分鐘通氣量,從而影響到預測病人的預後。因此,當前技術需要一種能夠找尋到病人當前所需之每分鐘通氣量的方法。How to measure the minute ventilation and its required amount for the minute ventilation supplied to the patient's respirator is still a very important and controversial issue. As early as 1991, scholars have mentioned that respirator patients need to monitor breathing parameters and measure minute ventilation. However, since the aforementioned measurement methods are not standardized, the measured minute ventilation is often overestimated or underestimated, thereby affecting the prognosis of the predicted patient. Therefore, the current technology requires a method that can find the minute ventilation required by the patient.
本發明提供一種呼吸器的控制方法、控制系統及處理裝置,其可讓呼吸器在自發性呼吸輔助模式下,取得適合使用者的最佳每分鐘通氣量(Optimal Minute Volume;OMV)。The invention provides a control method, a control system and a processing device for a respirator, which enable the respirator to obtain an optimal optimal minute ventilation (OMV) suitable for the user in the spontaneous breathing assistance mode.
本發明提供一種呼吸器的控制方法,此呼吸器處於自發性呼吸輔助模式下,而控制方法包括下列步驟。接收並偵測呼吸參數。計算數條目標奧提斯曲線。判斷是否調整呼吸器的呼吸輔助程度,以使呼吸參數符合目標奧提斯曲線其中一者。而若呼吸參數符合目標奧提斯曲線其中一者,則取得最佳每分鐘通氣量。例如:提示準備病人,此提示選項可包括確認人工氣道通暢,人工氣道氣囊與呼吸器管路沒有漏氣,當前有自發性呼吸,足夠氧合,給予安靜無干擾的環境等。開啟呼吸器自發性呼吸模式,吸氣輔助壓力初始在例如是10 cmH2O。接著,接收病人當前呼吸參數。取得數筆呼吸參數後,求得當前每分鐘通氣量落在何處(例如,11.2公升等),且以其計算出目標奧提斯曲線。以此目標奧提斯曲線的目標潮氣容積,來判斷是否調整呼吸器的自發性呼吸輔助程度,以使當前呼吸參數符合目標奧提斯曲線。此外,判斷病人是否呼吸趨緩於目標呼吸次數而維持。若是,則決定最佳每分鐘通氣的需要量。若否,則再計算新的目標奧提斯曲線,接著重複進行先前的步驟。The present invention provides a method of controlling a respirator in a spontaneous breathing assist mode, and the control method includes the following steps. Receive and detect breathing parameters. Calculate several target Ortis curves. Determine whether to adjust the breathing assistance level of the respirator so that the breathing parameters meet one of the target Otis curves. If the breathing parameter meets one of the target Otis curves, the optimal per minute ventilation is obtained. For example: prompting to prepare the patient, this prompt option may include confirmation of artificial airway patency, artificial airway balloon and respirator tube without air leakage, current spontaneous breathing, sufficient oxygenation, giving a quiet and interference-free environment. Turn on the spontaneous breathing mode of the respirator, and the inspiratory assist pressure is initially at, for example, 10 cmH2O. Next, the patient's current breathing parameters are received. After obtaining a few breathing parameters, find out where the current ventilation per minute falls (for example, 11.2 liters, etc.) and calculate the target Otis curve. The target tidal volume of the target Otis curve is used to determine whether to adjust the spontaneous breathing assistance level of the respirator so that the current breathing parameters conform to the target Otis curve. In addition, it is determined whether the patient's breathing is slowed down by the target number of breaths. If so, determine the optimal amount of ventilation per minute. If not, then calculate the new target Otis curve, and then repeat the previous steps.
本發明提出一種呼吸器的控制系統。此控制系統包括呼吸器及處理裝置。呼吸器處於自發性呼吸輔助模式下,並用以接收呼吸參數。處理裝置耦接呼吸器。處理裝置透過呼吸器接收並偵測呼吸參數,計算目標奧提斯曲線,判斷是否對呼吸器調整呼吸輔助程度,以使呼吸參數符合目標奧提斯曲線其中一者,而若呼吸參數符合目標奧提斯曲線其中一者,進而判斷病人是否自發性呼吸趨緩於目標呼吸次數且維持(例如,一段時間的變異未超過門檻值)。若是,則取得最佳每分鐘通氣需要量。若否,再計算新的目標奧提斯曲線,接著重複執行先前步驟。The present invention provides a control system for a respirator. This control system includes a respirator and a processing device. The respirator is in spontaneous breathing assistance mode and is used to receive breathing parameters. The processing device is coupled to the respirator. The processing device receives and detects the breathing parameter through the respirator, calculates the target Otis curve, determines whether the breathing aid is adjusted to the respirator, so that the breathing parameter meets one of the target Otis curves, and if the breathing parameter meets the target One of the Tis curves, in turn, determines whether the patient's spontaneous breathing slows down to the target number of breaths and is maintained (eg, the variation over time does not exceed the threshold). If so, the optimal per minute ventilation requirement is obtained. If not, calculate the new target Otis curve and repeat the previous steps.
本發明提出一種呼吸器的處理裝置,其耦接於處於自發性呼吸輔助模式下的呼吸器,且包括訊號接收模組及處理單元。訊號接收模組自呼吸器接收並偵測呼吸參數。處理單元接訊號接收模組,自訊號接收模組接收呼吸參數,計算目標奧提斯曲線,判斷是否對呼吸器調整呼吸輔助程度,以使呼吸參數符合目標奧提斯曲線其中一者,而若呼吸參數符合目標奧提斯曲線其中一者,進而判斷病人是否自發性呼吸趨緩於目標呼吸次數而維持。若是,則取得最佳每分鐘通氣需要量。若否,再計算新的目標奧提斯曲線,接著重複執行先前步驟。The present invention provides a respirator processing device coupled to a respirator in a spontaneous breathing assistance mode, and includes a signal receiving module and a processing unit. The signal receiving module receives and detects breathing parameters from the respirator. The processing unit receives the receiving module, receives the breathing parameter from the signal receiving module, calculates the target Otis curve, and determines whether the breathing aid is adjusted to the breathing apparatus so that the breathing parameter meets one of the target Otis curves, and if The breathing parameter conforms to one of the target Otis curves, and then determines whether the patient's spontaneous breathing is slowed down by the target number of breaths. If so, the optimal per minute ventilation requirement is obtained. If not, calculate the new target Otis curve and repeat the previous steps.
基於上述,本發明實施例提出一種呼吸器的控制方法、控制系統及處理裝置,其可讓呼吸器在自發性呼吸輔助模式下,經由調整呼吸輔助程度(例如是壓力輔助模式之壓力值)以讓呼吸參數趨近於選定的目標奧提斯曲線。而當病人此時呼吸趨緩而維持,則藉以取得最佳每分鐘通氣量。藉此,只要利用能提供自發性呼吸輔助模式的呼吸器,便能透過本發明實施例來幫助病患找尋到最佳每分鐘通氣量,即,病人經此微調後,得到自發性呼吸趨緩而維持的每分鐘通氣所需要的量。Based on the above, the embodiment of the present invention provides a control method, a control system, and a processing device for a respirator, which can adjust the respiratory assist level (for example, the pressure value of the pressure assist mode) in the spontaneous breathing assist mode. Let the breathing parameters approach the selected target Otis curve. And when the patient's breathing is slowed down and maintained, the best minute ventilation is achieved. Thereby, as long as the respirator capable of providing the spontaneous breathing assist mode is used, the patient can find the optimal per minute ventilation through the embodiment of the present invention, that is, after the patient is finely adjusted, the spontaneous breathing is slowed down. While maintaining the amount of ventilation required per minute.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
奧提斯(Otis)理論是說明,人在自然呼吸之下,呼吸次數(Respiratory Rate;RR)的多寡是取決於人需要達到最小的吸氣作功(Work of Breathing;WOB)。在任何的每分鐘通氣量(MV)之下,具有無限多種的潮氣容積(Tidal Volume)值及呼吸次數的組合,即,每分鐘通氣量等於一口氣中的潮氣容積值乘上一分鐘的呼吸次數。而呼吸次數及吸氣作功更呈現J字形曲線的關係。據此,本發明實施例便是讓呼吸器在自發性呼吸輔助模式下,透過調整呼吸輔助程度,以讓當前自發性呼吸次數及當前自發性潮氣容積值能趨近(例如,差距小於10%、15%等)目標,並藉以取得此使用者的最佳每分鐘通氣量(OMV)。以下提出符合本發明之精神的多個實施例,應用本實施例者可依其需求而對這些實施例進行適度調整,而不僅限於下述描述中的內容。The theory of Otis is to show that the amount of Respiratory Rate (RR) of a person under natural breathing depends on the person who needs to achieve the minimum Work of Breathing (WOB). Under any minute ventilation (MV), there is an infinite variety of Tidal Volume values and the number of breaths, ie, the breath per minute is equal to the tidal volume value in one breath multiplied by one minute of breath. frequency. The number of breaths and the work of inhalation show a J-shaped curve. Accordingly, the embodiment of the present invention allows the respirator to adjust the degree of respiratory assistance in the spontaneous breathing assist mode so that the current spontaneous breathing number and the current spontaneous tidal volume volume can be approximated (for example, the difference is less than 10%). , 15%, etc.) target, and to get the best per minute ventilation (OMV) of this user. A plurality of embodiments in accordance with the spirit of the present invention are set forth below, and those applying the present embodiment can be appropriately adjusted according to their needs, and are not limited to the contents described in the following description.
圖1是依據本發明一實施例說明一種控制系統的方塊圖。請參照圖1,控制系統100包括呼吸器110及處理裝置150。1 is a block diagram showing a control system in accordance with an embodiment of the present invention. Referring to FIG. 1 , the control system 100 includes a respirator 110 and a processing device 150 .
呼吸器110可以是支援自發性呼吸輔助(例如,PS模式、容積輔助(volume support)等)模式的任何類型或廠牌的呼吸器,其用以接收來自使用者的多個呼吸參數。呼吸器110亦可提供氧氣給病人。具體而言,呼吸器110之管路可透過人工氣管插管或氣切管連接至病人的呼吸器官,以使呼吸器110提供病人通氣,且呼吸器110同時亦提供有關於病人的呼吸狀況的即時資訊(例如流量、阻力及壓力等),亦即呼吸參數。此外,呼吸器110可連接至一個流量感應器,即可測量出病人的呼吸參數,並輸出呼吸參數。Respirator 110 may be any type or brand of respirator that supports spontaneous breathing assistance (eg, PS mode, volume support, etc.) mode to receive multiple breathing parameters from the user. Respirator 110 can also provide oxygen to the patient. Specifically, the tubing of the respirator 110 can be connected to the patient's respiratory organs through an artificial tracheal intubation or a gas-cutting tube to allow the respirator 110 to provide patient ventilation, and the respirator 110 is also provided with respect to the patient's respiratory condition. Instant information (such as flow, resistance and pressure, etc.), which is the breathing parameter. In addition, the respirator 110 can be connected to a flow sensor to measure the patient's breathing parameters and output breathing parameters.
處理裝置150可以是桌上型電腦、筆記型電腦、智慧型手機、平板電腦、工作站等電子裝置。處理裝置150包括訊號接收模組151、顯示單元152及處理單元153。訊號接收模組151用以自呼吸器接110收並偵測呼吸參數。這些呼吸參數包括使用者血氧飽和度(Oxyhemoglobin Saturation by Pulse Oximetry;SPO2)、當前自發性潮氣容積值及當前自發性呼吸次數。依據不同設計需求,呼吸參數可能更包括吐氣末陽壓(positive end expiratory pressure,簡稱為PEEP)、呼吸道阻力(airway resistance,簡稱為Rexp)、呼氣流量(expiratory flow,簡稱為Fexp)及其呼氣流量波形資訊等,且以不以此為限。The processing device 150 can be an electronic device such as a desktop computer, a notebook computer, a smart phone, a tablet computer, or a workstation. The processing device 150 includes a signal receiving module 151, a display unit 152, and a processing unit 153. The signal receiving module 151 is configured to receive and detect respiratory parameters from the respirator 110. These breathing parameters include Oxyhemoglobin Saturation by Pulse Oximetry (SPO2), current spontaneous tidal volume values, and current spontaneous respiratory counts. According to different design requirements, the respiratory parameters may include positive end expiratory pressure (PEEP), airway resistance (Rexp), expiratory flow (Fexp) and its call. Air flow waveform information, etc., and is not limited to this.
訊號接收模組151例如是透過具備RS232、通用串列匯流排(Universal Serial Bus;USB)等通訊界面的接頭連接呼吸器100,並每隔一預設時間(例如為0.5、0.2秒等)自呼吸器100存取上述呼吸參數。The signal receiving module 151 is connected to the respirator 100 through a connector having a communication interface such as RS232 or a universal serial bus (USB), and is automatically set every predetermined time (for example, 0.5, 0.2 seconds, etc.). The respirator 100 accesses the above breathing parameters.
顯示單元152例如是液晶顯示器(Liquid Crystal Display;LCD)、發光二極體(Light-Emitting Diode;LED)顯示器、場發射顯示器(Field Emission Display;FED)或其他種類顯示器的螢幕。顯示單元152用以呈現呼吸參數及目標奧提斯曲線,而目標奧提斯曲線將於下方實施例說明。The display unit 152 is, for example, a liquid crystal display (LCD), a Light-Emitting Diode (LED) display, a Field Emission Display (FED), or a display of other types of displays. The display unit 152 is used to present the breathing parameters and the target Otis curve, and the target Otis curve will be described in the following embodiment.
處理單元153例如是中央處理器(Central Processing Unit;CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor;DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuit;ASIC)、系統單晶片(system on chip;SoC)或其他類似元件或上述元件的組合。處理單元153耦接訊號接收模組151及顯示單元152。在本實施例中,處理單元153用以處理本實施例之處理裝置150所有作業。The processing unit 153 is, for example, a central processing unit (CPU), or other programmable general purpose or special purpose microprocessor (Microprocessor), digital signal processor (DSP), programmable A controller, an Application Specific Integrated Circuit (ASIC), a system on chip (SoC), or the like, or a combination of the above. The processing unit 153 is coupled to the signal receiving module 151 and the display unit 152. In the embodiment, the processing unit 153 is configured to process all the operations of the processing device 150 of the embodiment.
為了方便理解本發明實施例的操作流程,以下將舉諸多實施例詳細說明本發明實施例中呼吸器110的控制方法。圖2是依據本發明一實施例說明一種控制方法之流程圖。請參照圖2,本實施例的方法適用於圖1中的呼吸器110及處理裝置150。下文中,將搭配呼吸器110及處理裝置150中的各項元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。In order to facilitate the understanding of the operation flow of the embodiment of the present invention, the control method of the respirator 110 in the embodiment of the present invention will be described in detail below by way of various embodiments. 2 is a flow chart illustrating a control method in accordance with an embodiment of the invention. Referring to FIG. 2, the method of the present embodiment is applicable to the respirator 110 and the processing device 150 of FIG. Hereinafter, the method described in the embodiments of the present invention will be described in conjunction with various components and modules in the respirator 110 and the processing device 150. The various processes of the method can be adjusted accordingly according to the implementation situation, and are not limited thereto.
在步驟S210中,處理裝置150的處理單元153藉由控制訊號接收模組151,以透過呼吸器110接收並偵測呼吸參數。這些呼吸參數至少包括當前自發性潮氣容積值及每分鐘下之當前自發性呼吸次數。而此呼吸器110是設定在PS模式下。而處理單元153例如即時計算呼吸器110所取得每口呼吸的呼吸參數。In step S210, the processing unit 153 of the processing device 150 receives and detects the breathing parameter through the respirator 110 by controlling the signal receiving module 151. These breathing parameters include at least the current spontaneous tidal volume value and the current number of spontaneous respirations per minute. The respirator 110 is set in the PS mode. The processing unit 153, for example, calculates the breathing parameters of each breath taken by the respirator 110 in real time.
需說明的是,在步驟S210所述接收並偵測呼吸參數之步驟之後,處理單元153更判斷血氧飽和度是否足夠。具體而言,處理單元153判斷血氧飽和度是否大於血氧門檻值(例如,85 %、90 %等)。若血氧飽和度大於血氧門檻值,則接續進行後續步驟。反之,若血氧飽和度未大於血氧門檻值,則繼續執行步驟S210。此外,處理單元153更判斷當前受偵測之病人是否具有自主呼吸的能力。此外,處理單元153可透過顯示單元152呈現下列至少一者或其組合的提示選項:確認人工氣道通暢、確認人工氣道有無漏氣、確認呼吸器管路有無漏氣、確認當前有自發性呼吸且無呼吸暫停(Apnea)、確認氧合足夠及/或給予安靜無干擾的環境。 It should be noted that, after the step of receiving and detecting the breathing parameter in step S210, the processing unit 153 further determines whether the blood oxygen saturation is sufficient. Specifically, the processing unit 153 determines whether the blood oxygen saturation is greater than a blood oxygen threshold (for example, 85 % , 90 %, etc.). If the oxygen saturation is greater than the blood oxygen threshold, the subsequent steps are continued. On the other hand, if the blood oxygen saturation is not greater than the blood oxygen threshold, step S210 is continued. In addition, the processing unit 153 further determines whether the currently detected patient has the ability to spontaneously breathe. In addition, the processing unit 153 can present the prompting option of at least one of the following or a combination thereof through the display unit 152: confirming the artificial airway is unobstructed, confirming whether the artificial airway is leaking, confirming whether the respirator tube is leaking, confirming that there is spontaneous breathing at present. No apnea, confirm that oxygen is adequate and/or give a quiet, undisturbed environment.
在當前呼吸器110輔助下,處理單元153開始計算當前每分鐘通氣量,且以使用者之理想體重來計算每分鐘通氣量以及其百分比。此百分比是將理想體重(公斤)乘上0.1公升的每分鐘通氣量來作為100%。若當前自發性呼吸之每分鐘通氣量高於此使用者之理想體重(Ideal Body Weight;IBW)的特定百分比範圍(例如,100%~130%)內的每分鐘通氣量(例如,約在每分鐘10公升(L/min)以上),則進一步量測此使用者在自發性呼吸下需要的呼吸量(即,每分鐘通氣量(MV))。例如,病人有自發性呼吸,且血氧飽和度(SPO2)為95%,而當前每分鐘通氣量為每分鐘12公升。在理想體重70公斤下,理想體重的每分鐘通氣量7公升,百分比是100%,而180%是12.6公升。With the assistance of the current respirator 110, the processing unit 153 begins to calculate the current minute ventilation and calculates the minute ventilation and its percentage based on the user's ideal weight. This percentage is taken as 100% by multiplying the ideal body weight (kg) by 0.1 liters per minute of ventilation. If the current perioperative ventilation of spontaneous breathing is higher than the specific percentage of the user's ideal body weight (IBW) (eg, 100% to 130%) per minute ventilation (eg, approximately every In 10 minutes (L/min) or more, the amount of breathing required by the user under spontaneous breathing (ie, minute ventilation (MV)) is further measured. For example, the patient has spontaneous breathing and has a blood oxygen saturation (SPO2) of 95%, while the current ventilation per minute is 12 liters per minute. At an ideal weight of 70 kg, the ideal body weight per minute ventilation is 7 liters, the percentage is 100%, and 180% is 12.6 liters.
在步驟S230中,處理單元153計算多個目標奧提斯曲線。在本實施例中,處理單元153依據提供呼吸參數之使用者的理想體重,計算理想體重每分鐘通氣量及不同百分比的每分鐘通氣量。將這些計算的每分鐘通氣量與當前自發性每分鐘通氣量進行比較,從而計算出目標奧提斯曲線。具體而言,處理單元153取得輸入單元(例如,具備觸控功能的顯示單元152、鍵盤、滑鼠等)所接收理想體重的參數輸入操作。男性的理想體重計算為(身高(公分)-80)×0.7,而女性的理想體重計算為(身高(公分)-70)×0.6。接著,處理單元153將理想體重代入Otis方程式(1): …(1) 為呼吸作功最小的目標呼吸次數,a為正弦波(sinusoidal)流量的常數(例如,(2π^2)/60),RCe為時間常數(呼吸道阻力(Rexp)與呼吸順應性(respiratory compliance)之乘積)(例如,0.1秒、0.5秒等),MinVol為每分鐘通氣量(以70公斤(kg)之理想體重為例,則每分鐘通氣量為100%×70(kg)×0.1(每分鐘公升/公斤(l/min/kg))=7(公升/分鐘(L/min))),f為理想體重下的每分鐘呼吸次數,Vd為呼吸死腔(Deadspace)容積值。 In step S230, the processing unit 153 calculates a plurality of target Otis curves. In the present embodiment, the processing unit 153 calculates the ideal body weight per minute ventilation and the different percentages of minute ventilation according to the ideal weight of the user providing the breathing parameters. The calculated per minute ventilation is compared to the current spontaneous per minute ventilation to calculate the target Otis curve. Specifically, the processing unit 153 acquires a parameter input operation of receiving an ideal weight from an input unit (for example, a display unit 152 having a touch function, a keyboard, a mouse, etc.). The ideal body weight of a man is calculated as (height (cm) -80) x 0.7, while the ideal weight of a woman is calculated as (height (cm) -70) x 0.6. Next, the processing unit 153 substitutes the ideal body weight into the Otis equation (1): …(1) The minimum number of target breaths for breathing work, a is the constant of the sinusoidal flow (for example, (2π^2)/60), and RCe is the time constant (respiratory resistance (Rexp) and respiratory compliance (respiratory compliance) The product (for example, 0.1 second, 0.5 second, etc.), MinVol is the ventilation per minute (for an ideal weight of 70 kg (kg), the ventilation per minute is 100% × 70 (kg) × 0.1 (per Minute liters/kg (l/min/kg) = 7 (L/min), f is the number of breaths per minute under ideal body weight, and Vd is the volume of the dead space.
呼吸次數f可依據表(1)中針對成人的初始呼吸圖案(pattern)來決定,可利用此使用者之理想體重對應的同步間歇性強制通氣模式(Synchronized Intermittent Mandatory Ventilation;SIMV)下之呼吸次數。例如,理想體重為60公斤,則呼吸次數f為每分鐘10次。此外,呼吸次數f亦可直接採用當前自發性呼吸次數。需說明的是,表(1)中的數值僅是由於作為範例來說明,然並非用以侷限本發明。 表(1) <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 理想體重(公斤) </td><td> 吸氣壓力 (cmH2O) </td><td> 吸氣時間 (秒) </td><td> SIMV下之呼吸次數(次數/分鐘) </td><td> 最小目標呼吸次數(次數/分鐘) </td></tr><tr><td> 30至39 </td><td> 15 </td><td> 1 </td><td> 14 </td><td> 7 </td></tr><tr><td> 40至49 </td><td> 15 </td><td> 1 </td><td> 12 </td><td> 6 </td></tr><tr><td> 50至59 </td><td> 15 </td><td> 1 </td><td> 10 </td><td> 5 </td></tr><tr><td> 60至69 </td><td> 18 </td><td> 1.5 </td><td> 10 </td><td> 5 </td></tr><tr><td> 大於100 </td><td> 20 </td><td> 1.5 </td><td> 10 </td><td> 5 </td></tr></TBODY></TABLE>The number of breaths f can be determined according to the initial respiratory pattern for adults in Table (1), and the number of breaths under Synchronized Intermittent Mandatory Ventilation (SIMV) corresponding to the ideal weight of the user can be utilized. . For example, if the ideal weight is 60 kg, the number of breaths f is 10 times per minute. In addition, the number of breaths f can also directly use the current number of spontaneous breathing. It should be noted that the numerical values in Table (1) are only for illustrative purposes, and are not intended to limit the present invention. Table 1) <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> ideal weight (kg) </td><td> inspiratory pressure (cmH2O) </td ><td> Inspiratory time (seconds) </td><td> Number of breaths under SIMV (number of times / minute) </td><td> Minimum number of target breaths (number of times / minute) </td></tr ><tr><td> 30 to 39 </td><td> 15 </td><td> 1 </td><td> 14 </td><td> 7 </td></tr> <tr><td> 40 to 49 </td><td> 15 </td><td> 1 </td><td> 12 </td><td> 6 </td></tr>< Tr><td> 50 to 59 </td><td> 15 </td><td> 1 </td><td> 10 </td><td> 5 </td></tr><tr ><td> 60 to 69 </td><td> 18 </td><td> 1.5 </td><td> 10 </td><td> 5 </td></tr><tr> <td> greater than 100 </td><td> 20 </td><td> 1.5 </td><td> 10 </td><td> 5 </td></tr></TBODY>< /TABLE>
此目標奧提斯曲線是潮氣容積值與呼吸次數對應之參數。而依據理想體重所代入之目標奧提斯曲線為100%的目標奧提斯曲線。接著,處理單元153依據100%的目標奧提斯曲線計算其他百分比(例如,110%及90%的目標奧提斯曲線等以10%或其他百分比間距(例如,5%、15%等)來區隔),並依據當前自發性潮氣容積值及當前自發性呼吸次數計算當前自發性每分鐘通氣量,配合(fit)奧提斯曲線(也就是,奧提斯曲線中最接近於當前呼吸參數的一條奧提斯曲線,且對應於當前自發性每分鐘通氣量)。This target Otis curve is a parameter corresponding to the tidal volume value and the number of breaths. The target Ortis curve, which is based on the ideal weight, is the 100% target Otis curve. Next, the processing unit 153 calculates other percentages according to the 100% target Otis curve (for example, 110% and 90% of the target Otis curve, etc., at 10% or other percentage intervals (eg, 5%, 15%, etc.) Interval), and calculate the current spontaneous per minute ventilation according to the current spontaneous tidal volume value and the current spontaneous respiratory rate, and fit the Otis curve (that is, the closest to the current respiratory parameters in the Ortis curve) An Otis curve and corresponds to the current spontaneous per minute ventilation).
接著,在步驟S250中,處理單元153判斷是否對呼吸器110調整呼吸輔助程度,以使呼吸參數符合目標奧提斯曲線其中一者。在本實施例中,處理單元153依據當前自發性潮氣容積值選擇目標奧提斯曲線中的選定目標曲線,且比較當前自發性潮氣容積值及選定目標曲線的目標潮氣容積值。具體而言,處理單元153進一步自步驟S230中所計算出多條目標奧提斯曲線挑選部份涵蓋當前每分鐘通氣量之特定範圍(例如,±10%、±15%等)的目標奧提斯曲線。接著,處理單元153自這些受挑選的目標奧提斯曲線中,挑選最靠近且高於當前配合奧提斯曲線對應的潮氣容積值之選定目標曲線(或稱決策目標曲線)。Next, in step S250, the processing unit 153 determines whether the breathing assistance level is adjusted to the respirator 110 such that the breathing parameter conforms to one of the target Otis curves. In the present embodiment, the processing unit 153 selects a selected target curve in the target Otis curve according to the current spontaneous tidal volume value, and compares the current spontaneous tidal volume value with the target tidal volume value of the selected target curve. Specifically, the processing unit 153 further selects a target range of the target range per minute ventilation (for example, ±10%, ±15%, etc.) from the plurality of target Otis curve selection portions calculated in step S230. Curve. Next, the processing unit 153 selects, from the selected target Otis curves, a selected target curve (or a decision target curve) that is closest to and higher than the tidal volume value corresponding to the current Otis curve.
舉例而言,病人的IBW為70公斤重,則100%的每分鐘通氣量為每分鐘7公升、…、160%的每分鐘通氣量為每分鐘11.2公升、170%的每分鐘通氣量為每分鐘11.9公升、180%的每分鐘通氣量為每分鐘12.6公升…依此類推。當呼吸器110經調整為壓力輔助(PS)模式下時,其當前自發性呼吸的每分鐘通氣量為每分鐘12公升。處理單元153便會挑選以每分鐘12公升對應百分比之特定範圍(例如,10%、15%等)的目標奧提斯曲線(即,160%、170%、180%三條目標奧提斯曲線)(這三條目標奧提斯曲線包覆當前每分鐘12公升對應的範圍)。接著,處理單元153分別計算三條目標奧提斯曲線對應的目標每分鐘通氣量、目標呼吸次數、目標潮氣容積值,並將最靠近且目標潮氣容積值高於當前自發性潮氣容積值的目標奧提斯曲線作為選定目標曲線。例如,選定目標曲線為180%的目標奧提斯曲線,且其目標每分鐘通氣量為每分鐘12.6公升、目標呼吸次數19次及目標潮氣容積值663毫升。For example, if the patient's IBW is 70 kg, then 100% of the minute ventilation is 7 liters per minute, ..., 160% of the minute ventilation is 11.2 liters per minute, and 170% of the ventilation per minute is 11.9 liters per minute, 180% of ventilation per minute is 12.6 liters per minute... and so on. When the respirator 110 is adjusted to the pressure assisted (PS) mode, its current spontaneous breathing has a per minute ventilation of 12 liters per minute. The processing unit 153 will select a target Otis curve (ie, 160%, 170%, 180% three target Otis curves) with a specific range (for example, 10%, 15%, etc.) corresponding to a percentage of 12 liters per minute. (The three target Ortis curves cover the current range of 12 liters per minute). Next, the processing unit 153 calculates the target per minute ventilation, the target respiratory number, the target tidal volume value corresponding to the three target Otis curves, and the target with the closest target tidal volume volume value higher than the current spontaneous tidal volume value. The Tis curve is used as the selected target curve. For example, the target curve is selected to be a 180% target Otis curve with a target per minute ventilation of 12.6 liters per minute, a target number of breaths of 19, and a target tidal volume value of 663 milliliters.
在一實施例中,處理裝置153以自發性(spontaneous)呼吸次數-潮氣容積座標圖,將呼吸參數及這些目標奧提斯曲線呈現在顯示單元152上。舉例而言,圖3是具有奧提斯曲線之使用者介面的範例。請參照圖3,顯示單元152上呈現使用者介面300,且使用者介面300包括呼吸次數-潮氣容積座標圖310、數據呈現區塊320及通訊介面及參數設定區塊350。呼吸次數-潮氣容積座標圖310中呈現當前呼吸參數301、170%的目標奧提斯曲線311、160%的目標奧提斯曲線313、180%的目標奧提斯曲線315及當前配合奧提斯曲線317。數據呈現區塊320以數值及圖表(呼吸次數-潮氣容積座標圖310)呈現不同百分比的每分鐘通氣量、潮氣容積值及呼吸器等參數。通訊介面及參數設定區塊350用以呈現通訊介面的設定、理想體重之參數、每分鐘通氣量設定等。藉此,操作人員並能輕易得知圖形化的參數表現,並有利於後續操作。In one embodiment, the processing device 153 presents the breathing parameters and the target Otis curves on the display unit 152 in a spontaneous breathing times-tidal volume coordinate map. For example, Figure 3 is an example of a user interface with an Otis curve. Referring to FIG. 3 , the user interface 300 is presented on the display unit 152 , and the user interface 300 includes a respiratory number-tidal volume coordinate map 310 , a data presentation block 320 , and a communication interface and a parameter setting block 350 . The number of breaths - tidal volume coordinate map 310 presents the current breathing parameters 301, 170% target Otis curve 311, 160% target Otis curve 313, 180% target Otis curve 315 and current cooperation Ortis Curve 317. The data presentation block 320 presents different percentages of minute ventilation, tidal volume values, and respirator parameters in numerical values and graphs (breathing times - tidal volume coordinate map 310). The communication interface and parameter setting block 350 is used to display the setting of the communication interface, the parameter of the ideal weight, the setting of the ventilation per minute, and the like. In this way, the operator can easily know the graphical parameter performance and facilitate subsequent operations.
值得一提的是,依據不同設計需求,可能選擇不同目標奧提斯曲線的目標潮氣容積值來進行比較,且不以此為限。此外,圖3中的數值及曲線僅用於範例中說明,然不以侷限本發明。It is worth mentioning that, depending on the design requirements, the target tidal volume values of different target Otis curves may be selected for comparison, and are not limited thereto. Moreover, the numerical values and curves in FIG. 3 are for illustrative purposes only, and are not intended to limit the invention.
而在另一實施例中,處理單元153以使用者當前每分鐘通氣量為初始的計算,並將此當前每分鐘通氣量代入Otis方程式(1),以計算出目標奧提斯曲線。例如,在呼吸器110經設定為PS模式下,若當前自發性呼吸之每分鐘通氣量為每分鐘12公升,則 處理單元153將此每分鐘通氣量代入Otis方程式(1)後,便可計算出目標呼吸次數為18且目標潮氣容積值為667毫升。In yet another embodiment, the processing unit 153 calculates the current Otis curve by taking the current per minute ventilation of the user as an initial calculation and substituting the current per minute ventilation into the Otis equation (1). For example, when the respirator 110 is set to the PS mode, if the per minute ventilation of the current spontaneous breathing is 12 liters per minute, the processing unit 153 substitutes the per minute ventilation into the Otis equation (1) to calculate The target number of breaths was 18 and the target tidal volume value was 667 ml.
接著,處理單元153計算當前自發性潮氣容積值與選定目標曲線的目標潮氣容積值之差距(例如,當前自發性潮氣容積值與選定目標曲線的目標潮氣容積值相減之差值除上目標潮氣容積值),並判斷當前自發性潮氣容積值及目標潮氣容積值間的差距是否小於潮氣容積值範圍(例如,5%、10%等)。Next, the processing unit 153 calculates a difference between the current spontaneous tidal volume value and the target tidal volume value of the selected target curve (eg, the difference between the current spontaneous tidal volume value and the target tidal volume value of the selected target curve is divided by the target tidal volume The volume value) and determine whether the difference between the current spontaneous tidal volume value and the target tidal volume value is less than the tidal volume value range (eg, 5%, 10%, etc.).
在一實施例中,若當前自發性潮氣容積值及目標潮氣容積值間的差距未小於潮氣容積值範圍,則處理裝置150對呼吸器110調整呼吸輔助程度(level)。也就是,當前自發性潮氣容積值並未符合目標潮氣容積值,並需要透過調整呼吸輔助程度來讓當前自發性潮氣容積值符合目標潮氣容積值。處理單元153透過呼吸輔助調整模組(未繪示,內建或外置於處理裝置150)傳送控制訊號來調整呼吸輔助程度。例如,呼吸輔助調整模組可控制呼吸器110中針對呼吸輔助程度的旋鈕,或者直接增加或減少呼吸輔助程度(例如,壓力值)。或者,呼吸器110可直接接收使用者的調整操作來調整呼吸輔助程度。In one embodiment, if the difference between the current spontaneous tidal volume value and the target tidal volume value is not less than the tidal volume value range, the processing device 150 adjusts the respiratory assistance level to the ventilator 110. That is, the current spontaneous tidal volume value does not meet the target tidal volume value, and the current spontaneous tidal volume volume value needs to be adjusted to meet the target tidal volume value by adjusting the respiratory assistance level. The processing unit 153 adjusts the degree of respiratory assistance by transmitting a control signal through a breathing assistance adjustment module (not shown, built-in or externally disposed to the processing device 150). For example, the breathing assistance adjustment module can control the knob for the degree of breathing assistance in the respirator 110, or directly increase or decrease the degree of breathing assistance (eg, pressure value). Alternatively, the respirator 110 can directly receive the user's adjustment operation to adjust the degree of breathing assistance.
在一實施例中,在當前自發性潮氣容積值及目標潮氣容積值間的差距未小於潮氣容積值範圍的前提下,若當前自發性潮氣容積值大於目標潮氣容積值間,則處理單元153對呼吸器110調降呼吸輔助程度,而若當前自發性潮氣容積值小於目標潮氣容積值間,則處理單元153對呼吸器110調昇呼吸輔助程度。假設呼吸器110處於PS模式下,處理單元153透過呼吸輔助調整模組傳送調降(例如,減少5、10或15等 cmH2O之吸氣壓力)或調昇(例如,增加5、10或15等 cmH2O之吸氣壓力)呼吸輔助程度的控制訊號至呼吸器110。而呼吸器110並能依據此控制訊號來調整呼吸輔助程度。接著,處理單元153再次透過訊號接收模組151自呼吸器110接收呼吸參數(例如,取得使用者下一口或兩口氣的呼吸參數),並重新比較當前自發性潮氣容積值是否符合目標潮氣容積值。In an embodiment, if the difference between the current spontaneous tidal volume value and the target tidal volume value is not less than the tidal volume value range, if the current spontaneous tidal volume value is greater than the target tidal volume value, the processing unit 153 is The ventilator 110 lowers the degree of respiratory assistance, and if the current spontaneous tidal volume value is less than the target tidal volume value, the processing unit 153 raises the respiratory assist level to the ventilator 110. Assuming that the respirator 110 is in the PS mode, the processing unit 153 transmits a down-conversion (eg, a decrease in the inspiratory pressure of 5, 10, or 15 cmH2O) or a rise (eg, an increase of 5, 10, or 15 by the respiratory assist adjustment module). The inspiratory pressure of cmH2O) the control signal of the respiratory assist level to the respirator 110. The respirator 110 can also adjust the degree of breathing assistance according to the control signal. Then, the processing unit 153 receives the breathing parameter from the respirator 110 through the signal receiving module 151 (for example, obtains the breathing parameter of the user's next or two breaths), and re-compares whether the current spontaneous tidal volume value meets the target tidal volume value. .
舉例而言,當前病人為自發性呼吸,呼吸器110使用PS模式,且其壓力值為15 cmH2O。處理單元153計算出病人的當前自發性潮氣容積值為422毫升,且目標潮氣容積值為667毫升。接著,呼吸器110受回饋增加3 cmH2O(此時壓力為18 cmH2O)。若下一口呼吸所取得之當前潮氣容積值為788毫升且目標潮氣容積值為667毫升,則呼吸器110受減少2 cmH2O(此時壓力為16 cmH2O)。依此類推,若當前自發性潮氣容積值落在目標潮氣容積的±10%範圍內,則停止調整壓力值,並進入下一步驟(即,當前自發性潮氣容積值及目標潮氣容積值間的差距小於潮氣容積值範圍的情況)。For example, the current patient is spontaneous breathing, and the respirator 110 uses the PS mode with a pressure of 15 cmH2O. The processing unit 153 calculates that the patient's current spontaneous tidal volume value is 422 milliliters and the target tidal volume value is 667 milliliters. Next, the respirator 110 is fed back by 3 cmH2O (at this time the pressure is 18 cmH2O). If the current tidal volume value obtained for the next breath is 788 ml and the target tidal volume value is 667 ml, the respirator 110 is reduced by 2 cm H2O (at this time the pressure is 16 cmH2O). Similarly, if the current spontaneous tidal volume value falls within ±10% of the target tidal volume, stop adjusting the pressure value and proceed to the next step (ie, between the current spontaneous tidal volume value and the target tidal volume value). The difference is less than the range of tidal volume values).
也就是說,若當前自發性潮氣容積值未符合目標潮氣容積值,則控制系統100需要透過不斷調整呼吸輔助程度,來使當前自發性潮氣容積值能夠符合目標潮氣容積值(即,差距相差小於潮氣容積值範圍)。而如圖3所示的當前呼吸參數301在自發性呼吸次數-潮氣容積座標圖中,會隨著呼吸輔助程度調昇而往左移,且隨著呼吸輔助程度調降而往右移。That is, if the current spontaneous tidal volume value does not meet the target tidal volume value, the control system 100 needs to continuously adjust the respiratory assistance level to make the current spontaneous tidal volume value conform to the target tidal volume value (ie, the difference between the differences is less than The range of tidal volume values). The current breathing parameter 301 shown in FIG. 3 is shifted to the left in the spontaneous breathing number-tidal volume coordinate map as the breathing assistance level is increased, and is shifted to the right as the breathing assistance level is lowered.
在一實施例中,若當前自發性潮氣容積值及目標潮氣容積值間的差距小於潮氣容積值範圍,則處理單元153比較當前自發性呼吸次數及選定目標曲線的目標呼吸次數。在本實施例中,若當前自發性呼吸次數趨緩(例如,次數變化小於次數變化門檻值)及目標呼吸次數間的差距小於呼吸次數範圍(例如,5%、10%等)且此差距在一段時間的變化範圍小於變化門檻值(即,維持平穩者),則處理單元153決定最佳每分鐘通氣量,而若當前自發性呼吸次數及目標呼吸次數間的差距未小於呼吸次數範圍,則處理單元153調整目標奧提斯曲線,並再次透過呼吸器110接收並偵測呼吸參數。具體而言,若當前自發性呼吸次數及目標呼吸次數間的差距未小於呼吸次數範圍,則當前設定的每分鐘通氣量仍並非此使用者最合適的最佳每分鐘通氣量。處理單元153會重新計算並呈現目標奧提斯曲線(重新執行步驟S250)(例如,超過呼吸次數範圍則增加10%的目標奧提斯曲線(例如,自170%調整至180%)),或是直接取得後續的呼吸參數來比較當前自發性潮氣容積值及目標潮氣容積值間。In one embodiment, if the difference between the current spontaneous tidal volume value and the target tidal volume value is less than the tidal volume value range, the processing unit 153 compares the current spontaneous breathing number with the target breathing number of the selected target curve. In this embodiment, if the current spontaneous respiratory rate is slowed down (for example, the number of changes is less than the threshold of the number of changes) and the difference between the number of target breaths is less than the range of respiratory numbers (eg, 5%, 10%, etc.) and the difference is If the change range of the time is less than the change threshold (ie, the smoother is maintained), the processing unit 153 determines the optimal minute ventilation, and if the difference between the current spontaneous breathing number and the target respiratory number is not less than the respiratory number range, then The processing unit 153 adjusts the target Otis curve and receives and detects the breathing parameters through the respirator 110 again. Specifically, if the current difference between the number of spontaneous breathing and the target number of breathing is not less than the range of breathing times, the currently set per minute ventilation is still not the most suitable optimal minute ventilation for the user. The processing unit 153 will recalculate and present the target Otis curve (re-execution of step S250) (eg, a target Otis curve that increases by 10% over the range of breaths (eg, from 170% to 180%), or The subsequent breathing parameters are directly obtained to compare the current spontaneous tidal volume value with the target tidal volume value.
舉例而言,當前病人為自發性呼吸,呼吸器110使用PS模式,且其壓力值為16 cmH2O。處理單元153計算出病人的當前自發性潮氣容積值落在目標潮氣容積值(667毫升)的±10%範圍內,當前自發性呼吸次數為每分鐘23次,且目標呼吸次數為每分鐘18次(即,需要增加10%的目標奧提斯曲線)。接著,處理單元153再計算出調整後目標奧提斯曲線的目標潮氣容積值及目標呼吸次數,且進一步判斷是否需要調整輔助呼吸程度。For example, the current patient is spontaneous breathing, and the respirator 110 uses a PS mode with a pressure of 16 cmH2O. The processing unit 153 calculates that the current spontaneous tidal volume value of the patient falls within ±10% of the target tidal volume value (667 ml), the current spontaneous respiration number is 23 times per minute, and the target respiratory number is 18 times per minute. (ie, you need to increase the target Otis curve by 10%). Next, the processing unit 153 recalculates the target tidal volume value of the adjusted target Otis curve and the target number of breaths, and further determines whether the assisted breathing degree needs to be adjusted.
而若當前自發性呼吸次數趨緩(例如,維持某一時間的變化一、兩次以下,且小於三、四次等的次數變化門檻值),與目標呼吸次數間之差距小於呼吸次數範圍且平穩(例如,維持某一時間的變化範圍在5℅、10℅等以下,且小於15℅、18℅等的變化門檻值),則在步驟S270中,若呼吸參數符合目標奧提斯曲線其中一者,則處理單元153取得最佳每分鐘通氣量。也就是說,當前自發性呼吸次數及當前自發性潮氣容積值能符合選定目標曲線。而由於目標奧提斯曲線是能符合使用者呼吸作功最小的自發性呼吸次數,因此在當前自發性潮氣容積值及目標潮氣容積值間的差距符合潮氣容積值範圍的前提下,若當前自發性呼吸次數能落於目標呼吸次數的呼吸次數範圍,則表示當前呼吸器110所提供的每分鐘通氣量是能讓使用者維持最舒適的自發性呼吸次數。If the current number of spontaneous breathing is slowed down (for example, maintaining a change in the time of one or two times and less than three or four times, the difference between the number of times of breathing and the target number of breaths is less than the range of breathing times and Smooth (for example, maintaining a variation range of 5c/o, 10c/o, etc., and less than 15c/o, 18c/o, etc.), then in step S270, if the breathing parameter meets the target Otis curve In one case, the processing unit 153 obtains the optimal per minute ventilation. That is to say, the current number of spontaneous breathing and the current spontaneous tidal volume value can meet the selected target curve. Since the target Otis curve is the number of spontaneous respirations that can meet the minimum respiratory effort of the user, the current spontaneous tidal volume volume and the target tidal volume volume are in line with the tidal volume value range, if the current spontaneous The number of breaths that can fall within the target number of breaths indicates that the minute breath provided by the current respirator 110 is the number of spontaneous breaths that the user can maintain the most comfortable.
舉例而言,當前病人為自發性呼吸,呼吸器110使用PS模式,且其壓力值為18 cmH2O。處理單元153計算出病人的當前自發性潮氣容積值(660毫升)落在目標潮氣容積值(667毫升)的±10%範圍內,且當前自發性呼吸次數為每分鐘19次,而目標呼吸次數為每分鐘18次(即,落入±10%的呼吸次數範圍內)且平穩。接著,處理單元153便會判斷當前每分鐘呼吸量落入最佳每分鐘通氣量之範圍內。For example, the current patient is spontaneous breathing, and the respirator 110 uses the PS mode with a pressure of 18 cmH2O. The processing unit 153 calculates that the patient's current spontaneous tidal volume value (660 ml) falls within ±10% of the target tidal volume value (667 ml), and the current spontaneous respiration rate is 19 times per minute, and the target number of respirations It is 18 times per minute (ie, falls within ±10% of the number of breaths) and is stable. Next, the processing unit 153 determines that the current breath rate per minute falls within the range of the optimal minute ventilation.
也就是,人在自發性呼吸,在相同的每分鐘通氣量並克服氣道阻力與胸腔彈性負荷下,呼吸次數會實現在吸氣作功最小的呼吸次數上。而當氣道阻力變差(呼吸次數增加),需以呼吸次數為慢的實現,較為省力。而當胸廓彈性變差(呼吸次數減少),呼吸次數的實現則需以呼吸次數為快,較為省力來呼吸。同時,本發明實施例亦是接受呼吸器110之病人在使用呼吸器110、血氧飽和度足夠且自發性呼吸的情況下,得知每分鐘通氣量(即為真實的需要量)。相較於以往研究在著重於沒有使用呼吸器、自行負荷呼吸甚至是臨床人員自行為病人估算的情況,有所不同。That is, when the person is spontaneously breathing, at the same minute ventilation and overcoming the airway resistance and the chest elastic load, the number of breaths will be achieved at the minimum number of breaths for the inspiratory effort. When the airway resistance becomes worse (the number of breaths increases), it is necessary to achieve a slower number of breaths, which is more labor-saving. When the thoracic elasticity is worse (the number of breaths is reduced), the number of breaths is achieved by taking the number of breaths as fast and saving effort. At the same time, in the embodiment of the present invention, the patient receiving the respirator 110 knows the ventilation per minute (that is, the actual required amount) when the respirator 110 is used, and the oxygen saturation is sufficient and the spontaneous breathing is performed. Compared to previous studies, the focus is on the absence of respirators, self-loading of breathing, or even the clinical staff's own estimates for patients.
接著,處理單元153將當前自發性潮氣容積值與當前自發性呼吸次數相乘,以產生最佳每分鐘通氣量。此外,處理單元153更可將此最佳每分鐘通氣量與100%的目標奧提斯曲線相除,以產生最佳每分鐘通氣量百分比。Next, processing unit 153 multiplies the current spontaneous tidal volume value by the current number of spontaneous breaths to produce an optimal minute ventilation. In addition, processing unit 153 may further divide this optimal minute ventilation volume from the 100% target Otis curve to produce an optimal percentage of ventilation per minute.
舉例而言,當使用者自發性呼吸次數因呼吸器110輔助而舒適且呈現趨緩時,其當前潮氣容積直趨增,當前自發性呼吸次數趨緩(例如,可能在每分鐘12~16次之區域範圍)。以往非ASV模式的呼吸器無法呈現強制控制呼吸次數,但本發明實施例可在PS模式下透過顯示單元152呈現此強制控制呼吸次數,以方便操作人員判斷最佳每分鐘通氣量。For example, when the user's spontaneous breathing times are comfortable and slowed down due to the assist of the breathing apparatus 110, the current tidal volume tends to increase, and the current spontaneous breathing times tend to slow down (for example, may be 12 to 16 times per minute). Area range). In the past, the non-ASV mode respirator can not exhibit the forced control of the number of breaths. However, the embodiment of the present invention can present the forced control breath number through the display unit 152 in the PS mode to facilitate the operator to determine the optimal per minute ventilation.
另一方面,若呼吸參數未符合目標奧提斯曲線其中一者,則需要處理裝置150來調整呼吸器110的呼吸輔助程度(例如,PS模式的壓力值)。On the other hand, if the breathing parameter does not meet one of the target Otis curves, the processing device 150 is required to adjust the degree of breathing assistance of the respirator 110 (eg, the pressure value of the PS mode).
需說明的是,前述控制方法可透過軟體型式(例如,應用程式、韌體等)運作,此軟體儲存於儲存單元(未繪示)中,且處理單元153可自儲存單元(未繪示)存取並載入此軟體。It should be noted that the foregoing control method can be operated by a software type (for example, an application, a firmware, etc.), the software is stored in a storage unit (not shown), and the processing unit 153 can be a self-storage unit (not shown). Access and load this software.
為了幫助理解前述實施例步驟,以下將另舉一範例說明應用本發明實施例的操作流程。在此範例中,假設是以圖4的配置示意圖來進行。請參照圖4,此控制系統包括呼吸器401、模擬肺403、電腦405及旋鈕控制電路407(呼吸輔助調整模組的實施範例)。呼吸器401可透過USB連接線與電腦405相連,且電腦405可透過發送控制訊號,以控制旋鈕控制電路407來調整呼吸器401的呼吸輔助程度。需說明的是,此控制系統亦可應用於臨床上,即使用者配戴呼吸器401,對人肺進行呼吸調節。In order to help understand the steps of the foregoing embodiments, an operational flow of applying the embodiments of the present invention will be described below. In this example, the assumption is made in the configuration diagram of FIG. Referring to FIG. 4, the control system includes a respirator 401, a simulated lung 403, a computer 405, and a knob control circuit 407 (an embodiment of a breathing assist adjustment module). The respirator 401 can be connected to the computer 405 via a USB cable, and the computer 405 can adjust the breathing assistance level of the respirator 401 by transmitting a control signal to control the knob control circuit 407. It should be noted that the control system can also be applied clinically, that is, the user wears a respirator 401 to perform breathing regulation on the human lung.
而圖5是依據本發明一實施例說明一種控制方法之流程圖。請參照圖5,本實施例的方法適用於圖4中的控制系統。下文中,將搭配控制系統中的各項裝置、元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。FIG. 5 is a flow chart illustrating a control method according to an embodiment of the invention. Referring to FIG. 5, the method of the present embodiment is applied to the control system of FIG. Hereinafter, the method described in the embodiments of the present invention will be described in conjunction with various devices, components, and modules in the control system. The various processes of the method can be adjusted accordingly according to the implementation situation, and are not limited thereto.
電腦405呈現提醒選項(例如,人工氣道是否通暢?人工氣道有無漏氣?等)(步驟S501),並判斷血氧飽和度是否足夠(步驟S505),並在血氧飽和度足夠的情況下進入下一步驟(即,步驟S510)。此呼吸器401是被設定在PS模下來使用(步驟S510),而電腦405會接收使用者的參數輸入操作所輸入的理想體重,並取得來自呼吸器401的呼吸參數(步驟S520)。電腦405可依據理想體重來計算目標奧提斯曲線,並在螢幕上呈現這些目標奧提斯曲線和當前呼吸參數(步驟S530)。The computer 405 presents a reminder option (for example, whether the artificial airway is unobstructed? Is there any air leak in the artificial airway?) (step S501), and determines whether the blood oxygen saturation is sufficient (step S505), and enters when the blood oxygen saturation is sufficient. The next step (ie, step S510). The respirator 401 is set to be used in the PS mode (step S510), and the computer 405 receives the ideal weight input by the user's parameter input operation, and takes the breathing parameter from the respirator 401 (step S520). The computer 405 can calculate the target Otis curve based on the ideal weight and present these target Otis curves and current breathing parameters on the screen (step S530).
舉例而言,圖6是使用者介面的範例。請參照圖6,使用者介面600包括通訊介面及參數設定區塊610、最佳每分鐘通氣量的指示區塊630、數據呈現區塊650。通訊介面及參數設定區塊610用以呈現通訊介面及接收訊號的設定、理想體重之參數、每分鐘通氣量設定、每分鐘通氣量百分比等。最佳每分鐘通氣量的指示區塊630可呈現是否以取得最佳每分鐘通氣量及最佳每分鐘通氣量百分比值。而數據呈現區塊650更包括如圖3所示自發性呼吸次數-潮氣容積座標圖之座標圖651,以呈現目標奧提斯曲線和當前呼吸參數。For example, Figure 6 is an example of a user interface. Referring to FIG. 6, the user interface 600 includes a communication interface and a parameter setting block 610, an indication block 630 for optimal minute ventilation, and a data presentation block 650. The communication interface and parameter setting block 610 is used to display the setting of the communication interface and the received signal, the parameters of the ideal weight, the ventilation setting per minute, the percentage of ventilation per minute, and the like. The indicator block 630 for optimal minute ventilation may be presented to obtain an optimal per minute ventilation and an optimal percentage per minute ventilation. The data presentation block 650 further includes a coordinate graph 651 of the spontaneous breathing times-tidal volume coordinate map as shown in FIG. 3 to present the target Otis curve and the current breathing parameters.
接著,電腦405基於當前呼吸參數代入Otis方程式(1),進而選定目標奧提斯曲線(步驟S540)。例如,選擇110%的目標奧提斯曲線作為選定目標奧提斯曲線。接著,電腦405判斷當前自發性潮氣容積值及目標潮氣容積值間之差距(步驟S545)。若此潮氣容積值範圍在±10%以外,則電腦405判斷當前自發性潮氣容積值是否大於目標潮氣容積值(步驟S549)。Next, the computer 405 substitutes the current breathing parameter into the Otis equation (1), and then selects the target Otis curve (step S540). For example, select 110% of the target Otis curve as the selected target Otis curve. Next, the computer 405 determines the difference between the current spontaneous tidal volume value and the target tidal volume value (step S545). If the tidal volume value ranges outside of ±10%, the computer 405 determines whether the current spontaneous tidal volume value is greater than the target tidal volume value (step S549).
若當前自發性潮氣容積值未大於目標潮氣容積值,則電腦405透過旋鈕控制電路407對呼吸器401調昇呼吸輔助程度(例如,增加5cmH2O壓力值)(步驟S550)。反之,當前自發性潮氣容積值大於目標潮氣容積值,則電腦405透過旋鈕控制電路407對呼吸器401調降呼吸輔助程度(例如,減少5cmH2O)(步驟S560)。接著,電腦405取得下一口氣的當前自發性潮氣容積值(步驟S570),並返回步驟S545。If the current spontaneous tidal volume value is not greater than the target tidal volume value, the computer 405 raises the respiratory assist level (eg, increases the 5 cm H 2 O pressure value) to the respirator 401 through the knob control circuit 407 (step S550). On the other hand, if the current spontaneous tidal volume value is greater than the target tidal volume value, the computer 405 lowers the respiratory assist level (for example, by 5 cm H 2 O) to the respirator 401 through the knob control circuit 407 (step S560). Next, the computer 405 obtains the current spontaneous tidal volume value of the next breath (step S570), and returns to step S545.
而若當前自發性潮氣容積值及目標潮氣容積值間之差距在±10%以內,則電腦405比較當前自發性呼吸次數及目標呼吸次數間之差距是否在±10%以內(步驟S547)。若當前自發性呼吸次數及目標呼吸次數間之差距大於±10%,則返回步驟S530。反之,若當前自發性呼吸次數及目標呼吸次數間之差距小於±10%,則電腦405將當前自發性呼吸次數與當前潮氣容積值相乘以取得最佳每分鐘通氣量(步驟S590)。If the difference between the current spontaneous tidal volume value and the target tidal volume value is within ±10%, the computer 405 compares whether the difference between the current spontaneous breathing number and the target breathing number is within ±10% (step S547). If the difference between the current spontaneous breathing number and the target breathing number is greater than ±10%, the process returns to step S530. On the other hand, if the difference between the current spontaneous breathing number and the target breathing number is less than ±10%, the computer 405 multiplies the current spontaneous breathing number by the current tidal volume value to obtain the optimal minute ventilation (step S590).
本發明實施例所取得的最佳每分鐘通氣量可作為「喘」的一個新的指標,並藉以判斷當前呼吸器所提供的每分鐘通氣量是否為使用者最舒適的量。經文獻(長庚大學臨床醫學研究所碩士論文「最佳每分鐘通氣量百分比與機械通氣病人相關性的探討」作者吳淑芬 中華民國104年3月)指出,運用在加護病房中使用呼吸器的病人,其所測得之最佳每分鐘通氣量百分比與死亡率及呼吸管脫離失敗率有顯著的相關性。相較於習知僅以是否超過某個單一門檻值(例如,每分鐘10公升)作為判斷,最佳每分鐘通氣量百分比更能有效作為病人不喘且保有自發性呼吸的通氣量,並與病人預後之預測具有一定程度的相關。The optimal per minute ventilation obtained in the embodiment of the present invention can be used as a new indicator of "puffing", and it is judged whether the per minute ventilation provided by the current respirator is the most comfortable amount for the user. According to the literature (Study on the correlation between the percentage of per minute ventilation and mechanical ventilation patients in the Chang Gung University Institute of Clinical Medicine, author Wu Shufen, Republic of China, March, 104), using patients who use respirators in intensive care units, The percentage of optimal minute ventilation measured was significantly associated with mortality and respiratory detachment failure rates. The best percentage of ventilation per minute is more effective as a percentage of the patient's non-breathing and spontaneous breathing, as opposed to knowing whether to exceed a single threshold (eg, 10 liters per minute). The prediction of patient prognosis has a certain degree of correlation.
綜上所述,本發明實施例的呼吸器的控制方法、控制系統及處理裝置,其有別於習知透過ASV模式,在呼吸器處於PS模式下,透過取得之呼吸參數與依據理想體重所產生之目標奧提斯曲線進行比較,判斷是否需要調整呼吸輔助程度,以讓呼吸參數能符合目標奧提斯曲線。而若當前自發性潮氣容積值及當前自發性呼吸次數都能滿足判斷標準,則更能進一步取得最佳每分鐘通氣量。藉此,多數支援類似PS模式之自發性呼吸輔助模式的呼吸器便能透過本發明實施例的處理裝置來控制,以取得最佳每分鐘通氣量。In summary, the control method, the control system and the processing device of the respirator according to the embodiment of the present invention are different from the conventional ASV mode, and the breathing parameters obtained according to the ideal weight are obtained when the respirator is in the PS mode. The resulting target Ortis curve is compared to determine if the level of breathing assistance needs to be adjusted so that the breathing parameters can conform to the target Ortis curve. If the current spontaneous tidal volume volume and the current number of spontaneous respirations can meet the judgment criteria, the optimal per minute ventilation can be further obtained. Thereby, most of the respirator supporting the spontaneous breathing assistance mode like the PS mode can be controlled by the processing device of the embodiment of the present invention to achieve the optimal per minute ventilation.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100:控制系統 405:電腦 110、401:呼吸器 407:旋鈕控制電路 150:處理裝置 630:最佳每分鐘通氣量的指示區塊 151:訊號接收模組 651:座標圖 152:顯示單元 153:處理單元 S210~S270、S501~S590:步驟 300、600:使用者介面 301:當前呼吸參數 310:呼吸次數-潮氣容積座標圖 311、313、315:目標奧提斯曲線 317:當前配合奧提斯曲線 320、650:數據呈現區塊 350、610:通訊介面及參數設定區塊 403:模擬肺100: control system 405: computer 110, 401: respirator 407: knob control circuit 150: processing device 630: optimal per minute ventilation indication block 151: signal receiving module 651: coordinate map 152: display unit 153: Processing units S210-S270, S501-S590: Steps 300, 600: User interface 301: Current breathing parameter 310: Number of breaths - Tidal volume coordinate map 311, 313, 315: Target Ortis curve 317: Current cooperation with Ortis Curves 320, 650: data presentation block 350, 610: communication interface and parameter setting block 403: simulated lung
圖1是依據本發明一實施例說明一種控制系統的方塊圖。 圖2是依據本發明一實施例說明一種控制方法之流程圖。 圖3是具有奧提斯曲線之使用者介面的範例。 圖4的是依據本發明一實施例說明控制系統的配置示意圖。 圖5是依據本發明一實施例說明一種控制方法之流程圖。 圖6是使用者介面的範例。1 is a block diagram showing a control system in accordance with an embodiment of the present invention. 2 is a flow chart illustrating a control method in accordance with an embodiment of the invention. Figure 3 is an example of a user interface with an Otis curve. FIG. 4 is a schematic diagram showing the configuration of a control system according to an embodiment of the invention. FIG. 5 is a flow chart illustrating a control method according to an embodiment of the invention. Figure 6 is an example of a user interface.
S210~S270:步驟S210~S270: Steps
Claims (17)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW105108423A TWI605841B (en) | 2016-03-18 | 2016-03-18 | Control method, control system and processing apparatus for ventilator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW105108423A TWI605841B (en) | 2016-03-18 | 2016-03-18 | Control method, control system and processing apparatus for ventilator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201733632A TW201733632A (en) | 2017-10-01 |
| TWI605841B true TWI605841B (en) | 2017-11-21 |
Family
ID=61021491
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW105108423A TWI605841B (en) | 2016-03-18 | 2016-03-18 | Control method, control system and processing apparatus for ventilator |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI605841B (en) |
-
2016
- 2016-03-18 TW TW105108423A patent/TWI605841B/en active
Also Published As
| Publication number | Publication date |
|---|---|
| TW201733632A (en) | 2017-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7002940B2 (en) | Methods and equipment for oxygenation and / or CO2 clearance | |
| JP6782267B2 (en) | Servo ventilator, method, and computer readable storage medium | |
| US20200330708A1 (en) | Methods and apparatus for providing ventilation to a patient | |
| US11247009B2 (en) | Anomaly detection device and method for respiratory mechanics parameter estimation | |
| US8789529B2 (en) | Method for ventilation | |
| TWI658816B (en) | Methods and devices of real-time detection of periodic breathing | |
| US20200114101A1 (en) | Breathing device and method for controlling a respiratory gas source | |
| US20140261424A1 (en) | Methods and systems for phase shifted pressure ventilation | |
| US20130047989A1 (en) | Methods and systems for adjusting tidal volume during ventilation | |
| CN110049799A (en) | Method and system for driving pressure spontaneous ventilation | |
| JP6258917B2 (en) | System and method for awake sleep detection alarm | |
| US10758693B2 (en) | Method and system for adjusting a level of ventilatory assist to a patient | |
| JP2013513449A (en) | System and method for supporting subphysiological and physiological tidal volume during spontaneous or non-spontaneous breathing during high frequency ventilation | |
| JP2015037579A5 (en) | ||
| US20210393902A1 (en) | One-touch ventilation mode | |
| WO2022104808A1 (en) | Respiratory support device and ventilation control method therefor, and computer readable storage medium | |
| CN116528756A (en) | Improvements relating to respiratory support | |
| CN112996434B (en) | Capacity reactivity assessment method and medical equipment | |
| CN116600844A (en) | Respiratory support equipment, monitoring equipment, medical equipment system and parameter processing method | |
| US11020554B2 (en) | Artificial ventilation apparatus with ventilation modes suited to cardiac massage | |
| WO2022141125A1 (en) | Respiratory support device and control method therefor, and storage medium | |
| US11052213B2 (en) | Oxygen delivery system for providing controlled flow of oxygen-enriched gas to a patient | |
| US9901691B2 (en) | Exsufflation synchronization | |
| WO2021189198A1 (en) | Method and apparatus for monitoring ventilation of patient | |
| TWI605841B (en) | Control method, control system and processing apparatus for ventilator |