TWI442348B - Personalized gait analysis method of physiological sensor - Google Patents
Personalized gait analysis method of physiological sensor Download PDFInfo
- Publication number
- TWI442348B TWI442348B TW97144476A TW97144476A TWI442348B TW I442348 B TWI442348 B TW I442348B TW 97144476 A TW97144476 A TW 97144476A TW 97144476 A TW97144476 A TW 97144476A TW I442348 B TWI442348 B TW I442348B
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- module
- boundary value
- exercise
- subject
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims description 19
- 230000005021 gait Effects 0.000 title claims description 16
- 230000033001 locomotion Effects 0.000 claims description 43
- 230000001133 acceleration Effects 0.000 claims description 10
- 230000036544 posture Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 description 9
- 238000009825 accumulation Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000036541 health Effects 0.000 description 6
- 230000035790 physiological processes and functions Effects 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 235000019577 caloric intake Nutrition 0.000 description 5
- 230000008602 contraction Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 208000024172 Cardiovascular disease Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 210000005246 left atrium Anatomy 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 210000005245 right atrium Anatomy 0.000 description 3
- 210000005241 right ventricle Anatomy 0.000 description 3
- 210000001013 sinoatrial node Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 238000009532 heart rate measurement Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000037081 physical activity Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000718 qrs complex Methods 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010033307 Overweight Diseases 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 206010042434 Sudden death Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 210000001992 atrioventricular node Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000009989 contractile response Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000004199 lung function Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000005037 parasympathetic nerve Anatomy 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000030074 regulation of atrial cardiomyocyte membrane repolarization Effects 0.000 description 1
- 230000034225 regulation of ventricular cardiomyocyte membrane depolarization Effects 0.000 description 1
- 230000013577 regulation of ventricular cardiomyocyte membrane repolarization Effects 0.000 description 1
- 230000002336 repolarization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000001020 rhythmical effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
本發明係有關一種具生物反饋之個人化生理感測器,特別是一種可以藉由個人化自動分析使用者的運動習慣、分析步態,以及可依不同使用者之不同的運動狀態變換合適的音樂,並於當運動超過自身心臟所能負荷的強度時,透過耳機語音提示,立即給予暫緩激烈運動的語音建議,避免過於激烈的運動行為的潛在危險之生理感測器之個人化步態分析方法。 The invention relates to a personalized physiological sensor with biofeedback, in particular to an automatic analysis of a user's exercise habits by personalization, analysis of gait, and adaptation of different exercise states according to different users. Music, and when the exercise exceeds the intensity of the load of the heart, through the voice prompts of the headphones, immediately give a voice suggestion to suspend the intense exercise, to avoid the potentially dangerous physiological sensor of the excessively intense physical behavior of the personalized gait analysis method.
高血壓、糖尿病、高血脂及體重過重等因素,為心血管疾病之主要危險因子,而心血管疾病的死亡率,一直位居國人十大死因之一,是亟待解決的問題之一。尤其是致死型心臟病常在無預警的情況發生,一旦發生通常就造成天人永隔遺憾。為了鼓勵運動風氣,近年來在政府大力推展「運動人口倍增計畫」與民眾養生意識增加下,我國運動人口,有逐年增加的趨勢。根據行政院衛生署國民健康局一份針對國民運動行為調查的結果指出,國人最常做的運動為散步(含健走)、其次為慢跑。 Hypertension, diabetes, hyperlipidemia and overweight are the main risk factors for cardiovascular disease, and the mortality rate of cardiovascular disease has been one of the top ten causes of death among Chinese people. It is one of the urgent problems to be solved. In particular, lethal heart disease often occurs without warning, and once it happens, it usually causes regrets for the world. In order to encourage the movement of the sport, in recent years, under the government's vigorous promotion of the "sports population multiplication plan" and the increase in people's health awareness, China's sports population has increased year by year. According to the results of a survey of national sports behaviors conducted by the National Health Service of the Health Department of the Executive Yuan, the most common exercise for Chinese people is walking (including walking), followed by jogging.
但一般民眾卻不清楚,雖然運動有助於提升心肺功能,但是過於激烈的運動行為卻有潛在的危險。年輕人發生的運動猝死,往往是心血管潛藏解剖學的缺陷,在激烈的運動時誘發,而透過運動前後的心臟跳動與恢復狀況,可以簡略的評量心臟功能,提前發現可能的危險;因此,為了避免上述的遺憾,個人化生理監控智慧感測器的研發,就顯的十分重要。 But the general public is not clear, although exercise helps to improve heart and lung function, but too intense exercise behavior is potentially dangerous. Sudden death in young people is often a defect in cardiovascular anatomy. It is induced during intense exercise. Through the heartbeat and recovery of the movement before and after exercise, the heart function can be easily evaluated and the possible dangers can be discovered in advance. In order to avoid the above regrets, the development of personalized physiological monitoring smart sensors is very important.
而傳統運動心率的量測,受到運動時的身體動作影響,故需要特殊的心跳測量儀器。在沒有特殊儀器的協助下,當進行運動心跳率測量時,僅 能以運動剛結束時的心跳率來代表。根據教育部針對體適能公佈的資訊中提到,心跳率的測量心跳與運動強度關係相當密切,透過運動時心跳的反應,可以讓我們了解運動時身體的負荷。運動時的強度以最大心跳率的60~80%為較佳。 The measurement of the traditional exercise heart rate is affected by the body movements during exercise, so a special heart rate measuring instrument is needed. When performing exercise heart rate measurement without the assistance of special instruments, only It can be represented by the heart rate at the end of the exercise. According to the Ministry of Education's information published on fitness, the heart rate measurement of heartbeat is closely related to exercise intensity. Through the reaction of heartbeat during exercise, we can understand the physical load during exercise. The intensity during exercise is preferably 60 to 80% of the maximum heart rate.
因此,醫療與健康照護帶給電子資訊領域新的衝擊,而資訊科技也正逐漸的改變醫療健康產業,更進一步的改變了傳統的醫療模式,期能在未來提供健康照護之應用,且加入視聽娛樂的元素,並應用生物反饋系統,提供使用者更人性化的使用模式,進而改變生活行為模式,降低心血管疾病之發生機率。 Therefore, medical and health care has brought new impacts in the field of electronic information, and information technology is gradually changing the medical and health industry, further changing the traditional medical model, providing health care applications in the future, and joining the audio-visual application. The elements of entertainment, and the application of bio-feedback systems, provide users with a more user-friendly mode of use, thereby changing lifestyle patterns and reducing the incidence of cardiovascular disease.
本發明的主要目的在於提供一種生理感測器之個人化步態分析方法,可以藉由個人化自動分析使用者的運動習慣、分析步態,以及可於受測者運動超過自身心臟所能負荷之心跳率時,立即透過語音給予提醒,讓運動中的人員能隨時掌握心律狀況,確保運動安全。 The main object of the present invention is to provide a personalized gait analysis method for a physiological sensor, which can automatically analyze the user's exercise habits, analyze the gait by personalization, and can load the subject beyond the load of the heart. When the heart rate is reached, the reminder is given immediately by the voice, so that the person in motion can grasp the heart rhythm condition at any time and ensure the safety of the exercise.
因此,為達上述目的,本發明所揭露之個人化生物反饋之生理感測器係包含有心電圖訊號擷取模組、三軸加速器感應模組、類比轉數位訊號轉換模組、微處理器、以及語音播放模組。透過心電圖訊號擷取模組與三軸加速器感應模組,分別偵測受測者之心電圖訊號與動作訊號,經由類比轉數位訊號轉換模組轉換為數位化訊號後,微處理器接收動作訊號,並用『四分位』法判斷出受測者之運動狀態,並根據四分位演算法計算運動狀態與基準之臨界生理狀態訊號,並加以比對臨界生理狀態訊號與心電圖訊號, 若心電圖訊號超出臨界生理狀態訊號之範圍時,播放通知語音提醒受測者,避免過於激烈的運動行為的潛在危險。 Therefore, in order to achieve the above objective, the physiological sensor of the personalized biofeedback disclosed in the present invention comprises an electrocardiogram signal acquisition module, a three-axis accelerator sensor module, an analog-to-digital signal conversion module, a microprocessor, And a voice playback module. The electrocardiogram signal capture module and the three-axis accelerator sensor module respectively detect the electrocardiogram signal and the motion signal of the subject, and the microprocessor receives the action signal after being converted into the digitized signal by the analog-to-digital digital signal conversion module. The "quartile" method is used to judge the motion state of the subject, and the critical physiological state signal of the motion state and the reference is calculated according to the quartile algorithm, and the critical physiological state signal and the electrocardiogram signal are compared. If the ECG signal exceeds the critical physiological state signal range, the notification sound is played to remind the subject to avoid the potential danger of excessively intense exercise behavior.
另一方面,生理感測器可更包含有儲存模組,係可將數位化之心電圖訊號與三軸動作訊號予以儲存,並透過無線傳輸模組,傳輸至電腦系統內分析,而建立個人化之資訊,再反饋回感測器中,以配合各種運動狀態使語音模組播放對應之音樂,並供微處理器進行判斷之基準。 On the other hand, the physiological sensor can further include a storage module, which can store the digitized ECG signal and the three-axis motion signal, and transmit it to the computer system for analysis through the wireless transmission module, thereby establishing personalization. The information is then fed back to the sensor to match the various motion states to enable the voice module to play the corresponding music, and the microprocessor can make a reference for the judgment.
同時,亦可藉由衛星定位模組,用以偵測受測者之運動路徑,而提供計算受測者之平均心率、卡路里消耗累積、與運動距離累積。 At the same time, the satellite positioning module can be used to detect the motion path of the subject, and the average heart rate, the calorie consumption accumulation, and the exercise distance accumulation of the subject are calculated.
為使對本發明的目的、特徵及其功能有進一步的了解,茲配合圖式詳細說明如下: In order to further understand the purpose, features and functions of the present invention, the drawings are described in detail as follows:
如第一圖所示,為本發明之實施例所提供之具生物反饋之生理感測器之示意圖。 As shown in the first figure, a schematic diagram of a physiological sensor with biofeedback provided by an embodiment of the present invention.
根據本發明所揭露之個人化生物反饋之生理感測器,係包含有微處理器101、三軸加速器感應模組102、心電圖訊號擷取模組103、衛星定位模組104、類比轉數位訊號轉換模組105、語音播放模組106、電池模組107、儲存模組108、顯示模組109、無線傳輸模組110以及輸入模組111。 The physiological sensor of the personalized biofeedback disclosed in the present invention comprises a microprocessor 101, a three-axis accelerator sensor module 102, an electrocardiogram signal acquisition module 103, a satellite positioning module 104, and an analog-to-digital signal. The conversion module 105, the voice playback module 106, the battery module 107, the storage module 108, the display module 109, the wireless transmission module 110, and the input module 111.
心電圖訊號擷取模組103用以擷取受測者的心電圖訊號,心臟的肌肉是人體肌肉中,唯一具有自發性跳動及節律性收縮的肌肉,而心電圖(ECG)是記錄心臟組織電壓變化的電氣訊號,心電圖其頻率在150Hz以下(也有一說250Hz),訊號大小約為1mV,若要處理心電訊號就須將心電圖放大1200 倍左右的大小,以方便處理。 The electrocardiogram signal capture module 103 is used to extract the electrocardiogram signal of the subject. The muscle of the heart is the only muscle in the human muscle that has spontaneous beat and rhythmic contraction, and the electrocardiogram (ECG) records the voltage change of the heart tissue. The electrical signal, the ECG's frequency is below 150Hz (also there is a 250Hz), the signal size is about 1mV, to process the ECG signal, the ECG must be enlarged 1200 Double the size to facilitate handling.
心臟可以區分為左心房、左心室與右心房、右心室,心臟的收縮便是由右心房上竇房結(SA node)產生每分鐘大約60次的微小電脈衝訊所控制。一般靜止情況下的心臟細胞是屬於荷電(帶負電),或稱作「極化(polarized)」,一旦受到電刺激便「去極化(deporlarized)」,帶正電並產生收縮反應。雖然心臟能夠獨立由竇房結運作,但還是可以藉者交感神經(刺激收縮)與副交感神經(鎮定)藉著傳遞大腦與身體各部分的種種信號輔助心臟調整心搏的速率,加快或降低血液循環速度以因應外界各種情況的發生。 The heart can be divided into the left atrium, the left ventricle, the right atrium, and the right ventricle. The contraction of the heart is controlled by a small electrical impulse of about 60 times per minute produced by the right atrial sinus node (SA node). Generally, the heart cells in a static state are charged (negatively charged), or "polarized". Once they are electrically stimulated, they are "deporlarized", positively charged and produce a contractile response. Although the heart can operate independently from the sinoatrial node, it is possible to borrow the sympathetic nerve (stimulation contraction) and the parasympathetic nerve (sedation) to speed up or lower the blood by transmitting signals from the brain and various parts of the body to assist the heart to adjust the heart rate. The cycle speed is taken in response to various external situations.
三軸加速器感應模組102主要用來量取受測者的肢體運動狀態,而獲得運動狀態訊號,並用『四分位』法,判別出受測者的各種不同的運動狀態,譬如為靜止、走路、跑步等身體活動狀態。由於每人跑步及走路方式不盡相同,因此,可藉由先行利用三軸加速器感應模組102偵測個人化跑步等各種運動姿態的訊號,再經學習後的參數,而可作為後續分析判別的依據。 The triaxial accelerator sensor module 102 is mainly used to measure the limb movement state of the subject, and obtain the motion state signal, and use the "quartile" method to discriminate the various motion states of the subject, such as being stationary. Physical activity such as walking and running. Since each person runs and walks in different ways, the three-axis accelerator sensor module 102 can be used to detect signals of various sports postures such as personalized running, and then the parameters after learning can be used as subsequent analysis. Basis.
衛星定位模組110用以偵測受測者的位置訊號,其係為全球衛星定位系統(Global Position System,GPS),利用規模遍及全球的人造衛星之航法系統,由24顆人造衛星所構成,利用對民間開放的C/A碼標準測法,能得到數十米的精度。當衛星接收機定位後,便經由輸出管道開始傳送有效的定位資料,包含如下經度、緯度、定位完成代號、採用有效的衛星顆數、所用的衛星編號,及仰角,方向角,接收訊號強度、衛星方位角、高 度、相對位移位移速度、相對位移位移方向角度、日期、UTC時間、DOP誤差參考值、衛星狀態及接收狀態等。因而可提供計算受測者之運動路徑、平均心率、卡路里消耗累積、與運動距離累積等相關運動資訊。 The satellite positioning module 110 is configured to detect the position signal of the subject, which is a Global Position System (GPS), which is composed of 24 artificial satellites using a satellite navigation system of a global scale. Using the C/A code standard measurement method open to the public, the accuracy of tens of meters can be obtained. After the satellite receiver is positioned, the effective positioning data is transmitted through the output pipeline, including the following longitude, latitude, positioning completion code, the number of effective satellites used, the satellite number used, and the elevation angle, direction angle, received signal strength, Satellite azimuth, high Degree, relative displacement displacement velocity, relative displacement displacement direction angle, date, UTC time, DOP error reference value, satellite status and reception status. Therefore, it is possible to provide information about the motion of the subject, the average heart rate, the calorie consumption accumulation, and the exercise distance accumulation.
類比轉數位訊號轉換模組105用以將三軸加速器感應模組102所感應的動作訊號、以及心電圖訊號擷取模組103所偵測的心電圖訊號予以轉換為數位化訊號,以方便後續進行處理,轉換的模式最常見者為單通道、循序通道、重複單通道、重複循序通道等。 The analog-to-digital digital signal conversion module 105 is configured to convert the motion signal sensed by the three-axis accelerator sensor module 102 and the electrocardiogram signal detected by the electrocardiogram signal acquisition module 103 into a digitized signal for subsequent processing. The most common conversion modes are single channel, sequential channel, repeated single channel, repeated sequential channel, and so on.
無線模組110可供生理感測器與電腦系統進行通訊,一般常見者,為採用藍芽(Bluetooth)的短距離射頻無線連接技術的標準,其主要是用來提供短距離、低成本、低耗電的無線網路通訊傳輸,由於其可以被運用在資訊、通訊及消費性電子等3C領域產品的互相連接,以提供包括手機語音、訊號資料、影像等傳輸功能,目前已廣泛的應用在各種可攜式裝置上。 The wireless module 110 can be used for communication between the physiological sensor and the computer system. Generally, the standard is a short-range radio frequency wireless connection technology using Bluetooth, which is mainly used to provide short distance, low cost and low. Power-consuming wireless network communication transmission, because it can be used in the 3C field of information, communication and consumer electronics, to provide mobile phone voice, signal data, video and other transmission functions, has been widely used in On a variety of portable devices.
儲存模組108用以儲存三軸加速器感應模組102所感應的動作訊號、心電圖訊號擷取模組103所偵測的心電圖訊號、以及衛星定位模組104所偵測之定位訊號,因而可提供計算受測者之運動路徑、平均心率、卡路里消耗累積、與運動距離累積等相關運動資訊。當然,亦可儲存語音播放模組106所需播放的語音資料。一般來說,最常見者為Micro Secure Digital(又稱Trans Flash)的儲存裝置,其體積只有15×11×1mm(0.59×0.43×0.04英吋)是一種使用快閃記憶體(Flash Memory)與控制晶片所組成的儲存裝置。 The storage module 108 is configured to store an action signal sensed by the three-axis accelerator sensor module 102, an electrocardiogram signal detected by the electrocardiogram signal capture module 103, and a position signal detected by the satellite positioning module 104, thereby providing Calculate the motion information of the subject's motion path, average heart rate, calorie expenditure accumulation, and exercise distance accumulation. Of course, the voice data to be played by the voice playing module 106 can also be stored. In general, the most common storage device for Micro Secure Digital (also known as Trans Flash) is only 15×11×1mm (0.59×0.43×0.04 inches), which is a flash memory and Control the storage device composed of the wafer.
電池模組107用以提供個模組及微處理器101執行操作所需要的電 力,其可採用充電鋰電池,而可透過譬如為USB或電壓器方式來進行充電。 The battery module 107 is used to provide a module and the power required by the microprocessor 101 to perform operations. The force can be charged by a rechargeable lithium battery, and can be charged by, for example, a USB or a voltage device.
顯示模組109用以顯示生理感測器的各種資訊,同時作為與受測者溝通顯示的介面,一般最常見者為液晶顯示器(LCD)。 The display module 109 is used to display various information of the physiological sensor, and at the same time, as an interface for communicating with the subject, the most common one is a liquid crystal display (LCD).
輸入模組111係供使用者輸入一輸入訊息,如時間、身高、體重與控制選單等,而輸入模組111連結於微處理器101,其中,輸入模組111一般最常見者為按鍵或搖桿。 The input module 111 is for the user to input an input message, such as time, height, weight and control menu, and the input module 111 is connected to the microprocessor 101. The input module 111 is generally the most common button or shake. Rod.
語音播放模組106具有音樂解碼IC,可支援譬如為MPEG1.0 & 2.0 audio layer Ⅲ(CBR,VBR,ABR);layers I & II optional;WAV(PCM+IMA ADPCM)等音樂格式,內建高品質立體的DAC,可直接把解碼後的MP3音樂資料串流(Bitstream),透過立體耳機輸出音效。此外,此語音播放模組更包含有一錄音單元,而可供受測者錄製個人化之語音、音樂。 The voice playing module 106 has a music decoding IC, which can support music formats such as MPEG1.0 & 2.0 audio layer III (CBR, VBR, ABR); layers I & II optional; WAV (PCM + IMA ADPCM), built-in high The quality stereo DAC can directly stream the decoded MP3 music data (Bitstream) and output the sound through the stereo headphones. In addition, the voice playing module further includes a recording unit, and the subject can record personalized voice and music.
因此,受測者於運動過程中,可藉由語音播放模組106由儲存模組108中讀取音樂檔案予以播放,同時,也可依不同使用者,做運動的姿勢(激烈或緩和)變換合適的音樂,讓運動時的樂曲風格能契合當時的運動型態,期以增加使用意願及運動時間。 Therefore, during the exercise, the subject can be played by the voice play module 106 by reading the music file from the storage module 108, and at the same time, the posture of the exercise ( intense or tempered) can be changed according to different users. Appropriate music, so that the style of the music during the exercise can match the sporting style of the time, in order to increase the willingness to use and exercise time.
使用上時,受測者可藉由先期的學習模式,受測者將運動狀態下所獲得相關資訊予以儲存於儲存模組108,並利用無線傳輸模組110傳輸至電腦系統內進行分析,而可正確地判斷出使用者所對應的運動狀態,並設定各種個人化的資訊,包含即時心率計算、人體活動的姿態做判斷(走路或跑步),並予以適時的語音回饋心率及警告,可自動偵測目前活動姿態及心率做自動音樂曲風的選擇。同時,因為衛星定位模組104,詳細記錄下運動時 候的座標位置與路徑,待受測者運動結束回到個人電腦旁,更可藉由無線傳輸模組110連線將各項生理數據上載,供電腦系統自動產生本次運動的各項資訊報表,其中可以包含了卡路里消耗、心率、運動路徑、花費時間、平均速率…等,並結合Google Earth標示出各座標點與當時生理狀況(如平均心率、卡路里消耗累積、運動距離累積),讓使用者可以輕易檢視每一次運動過程,來訂定下一次運動目標。 In use, the subject can store the relevant information obtained in the exercise state in the storage module 108 by using the advanced learning mode, and transmit the data to the computer system for analysis by using the wireless transmission module 110. It can correctly judge the movement state corresponding to the user, and set various personalized information, including instant heart rate calculation, human body activity posture judgment (walking or running), and timely feedback of heart rate and warning, which can be automatically Detect the current active posture and heart rate to make the choice of automatic music style. At the same time, because of the satellite positioning module 104, the motion is recorded in detail. The coordinate position and path of the candidate are to be returned to the personal computer by the end of the exercise, and the physiological data can be uploaded by the wireless transmission module 110 for the computer system to automatically generate various information reports of the exercise. , which can include calorie consumption, heart rate, motion path, time spent, average rate, etc., combined with Google Earth to indicate the various punctuation points and the current physiological conditions (such as average heart rate, calorie consumption accumulation, exercise distance accumulation), let use You can easily review each exercise process to set the next exercise goal.
另一方面,於運動過程中,藉由三軸加速器感應模組102隨時感應受測者的動作訊號,並根據先前學習的動作狀態對應訊號,而可正確判斷出受測者之運動狀態,並根據演算法計算運動狀態為基準之臨界生理狀態訊號,而由心電圖訊號擷取模組103隨時監控受測者之生理狀態,一旦心電圖訊號超出臨界生理狀態訊號的範圍時,則會切斷原先於語音播放模組106播放的音樂,而改為播放通知語音提醒該受測者,避免過於激烈的運動行為的潛在危險。 On the other hand, during the motion, the three-axis accelerator sensor module 102 senses the motion signal of the subject at any time, and according to the previously learned motion state corresponding signal, can correctly determine the motion state of the subject, and The algorithm calculates the critical physiological state signal based on the motion state, and the ECG signal acquisition module 103 monitors the physiological state of the subject at any time. Once the ECG signal exceeds the critical physiological state signal, the original is cut off. The music played by the voice play module 106 is instead played to announce the voice to remind the subject to avoid the potential danger of excessively intense exercise behavior.
因此,藉由本發明所提供之具生物反饋之生理感測器,當運動超過自身心臟所能負荷的強度時,透過耳機語音提示,立即給予暫緩激烈運動的語音建議。本研究亦結合GPS全球衛星定位系統,詳細記錄下運動時候的座標位置與路徑。待使用者運動結束回到PC旁,可藉由藍芽連線將各項生理數據上載,做各種應用。希望透過此裝置提供給運動的使用者,能有安全、愉悅、良好的運動經驗。讓預防醫學結合娛樂,提升智慧生理監控儀器與醫療器材之附加價值。 Therefore, the physiological sensor with biofeedback provided by the present invention immediately gives a voice suggestion for suspending intense exercise through the voice prompt of the earphone when the exercise exceeds the intensity of the load that can be carried by the heart. This study also combines the GPS global satellite positioning system to record in detail the coordinates and path of the motion. When the user's exercise ends and returns to the PC, various physiological data can be uploaded by the Bluetooth connection to make various applications. It is hoped that the user who provides the exercise through this device can have safe, pleasant and good sports experience. Let preventive medicine combine entertainment and enhance the added value of intelligent physiological monitoring instruments and medical equipment.
請參閱第二圖,為本發明之心電檢查圖(Electrocardiography;ECG) 訊號之示意圖。所謂心搏的一個週期(cycle),便是由竇房結發出電脈衝以漸進波的方式傳遞至左、右心房,造成左右心房的收縮(第2圖中之P點),電脈衝傳達房室結(AV node)後約停滯約1/10秒,這1/10秒是為了讓血液充分流至心室,接著電脈衝便藉由傳遞纖維將電脈衝傳遞(第2圖中之Q點)至左右心室造成左右心室收縮(第2圖中之R點),在一連串的電活動之後心臟暫時靜止,心室等待再極化以恢復帶負電狀態(第2圖中之T點)完成一次心搏。心室去極化與再極化現象分別為第2圖的Q、R、S、與T點,而心房卻僅有去極化的P點,沒有再極化的波形,這是因為心房再極化現象波形小且多半掩沒在Q、R、S點的複合波中因此不易察覺。因此,藉由心電檢查圖訊號,即可輕易地將P、Q、R、S、T點予以偵測出來。 Please refer to the second figure, which is an electrocardiogram (ECG) of the present invention. A schematic diagram of the signal. The so-called cycle of heart beat is the electrical pulse from the sinus node transmitted to the left and right atrium in a progressive wave, causing the contraction of the left and right atrium (point P in Figure 2). After the AV node, it is about 1/10 second. This 1/10 second is to let the blood flow to the ventricle. Then the electric pulse transmits the electric pulse by transmitting the fiber (Q point in Fig. 2). The left and right ventricles contract to the left and right ventricles (point R in Fig. 2). After a series of electrical activities, the heart is temporarily still, and the ventricles wait for repolarization to restore the negatively charged state (point T in Fig. 2) to complete a heartbeat. . The ventricular depolarization and repolarization phenomena are the Q, R, S, and T points in Fig. 2, while the atrium has only the depolarized P point, and there is no repolarized waveform. This is because the atrial repolarization The waveform of the phenomenon is small and mostly masked in the composite wave at the Q, R, and S points, so it is not easy to detect. Therefore, the P, Q, R, S, and T points can be easily detected by checking the signal signal by the electrocardiogram.
取樣得到未濾波心電圖訊號後,經過高通及低通濾波器組成的帶通濾波器以強化QRS複合波,心電圖信號經過濾波之後,藉由微分器可將QRS複合波的特徵更加突顯出來,此時R波已可明確分辨出來,而相對的P波及T波則再次減小。接著再將所得的心電圖作絕對值平方、並經過視窗平均法將訊號特徵化(Smooth),而可將心電圖訊號轉成類似方波的訊號。 After sampling the unfiltered ECG signal, the bandpass filter consisting of high-pass and low-pass filters is used to enhance the QRS complex. After the ECG signal is filtered, the characteristics of the QRS complex can be more prominent by the differentiator. The R wave can be clearly distinguished, while the relative P and T waves are again reduced. Then, the obtained electrocardiogram is squared in absolute value, and the signal is characterized by a window averaging method, and the electrocardiogram signal can be converted into a signal similar to a square wave.
請參閱第三圖,係為本發明之生理感測器之個人化步態分析方法之步驟流程圖。受測者可透過一輸入模組(例如:按鍵組)輸入一預定學習模式,藉由三軸加速器感應模組偵測個人化跑步及走路各種運動姿態的運動訊號,微處理器將所獲得運動訊號以四分位演算法判別出受測者的各種不同的運動狀態。個人化步態分析方法之步驟流程圖包含: 步驟S30:輸入一預設學習模式,如預設時間為10秒,受測者可開始進行運動動作;步驟S31:讀取受測者所需學習時間。 Please refer to the third figure, which is a flow chart of the steps of the personalized gait analysis method of the physiological sensor of the present invention. The test subject can input a predetermined learning mode through an input module (for example, a button group), and the three-axis accelerator sensor module detects the motion signals of the personalized running and walking various motion postures, and the microprocessor obtains the motion. The signal uses the quartile algorithm to determine the various motion states of the subject. The flow chart of the steps of the personalized gait analysis method includes: Step S30: input a preset learning mode. If the preset time is 10 seconds, the subject can start the motion action; and step S31: read the learning time required by the subject.
步驟S32:判斷受測者之學習時間是否達到預設學習時間,若否,則執行步驟S33,若是,執行步驟S34。 Step S32: determining whether the learning time of the subject reaches the preset learning time. If not, executing step S33, and if yes, executing step S34.
步驟S33:儲存一三軸加速器模組之波形數值於一陣列(Array List)中,並再次執行步驟S31。 Step S33: Store the waveform values of a three-axis accelerator module in an array (Array List), and perform step S31 again.
步驟S34:對陣列中所儲存的波形數值由低至高遞增排序,其中,三軸加速器模組係依據受測者肢體運動而分別產生X軸、Y軸、Z軸方向之三軸加速度的波形及數值。 Step S34: sorting the waveform values stored in the array from low to high increments, wherein the three-axis accelerator module generates waveforms of three-axis accelerations in the X-axis, the Y-axis, and the Z-axis according to the motion of the subject. Value.
步驟S35:依據陣列大小(iSize)計算出一加速度之邊界值第一位準點(Q1p,Q1p=iSize*low)及一加速度之邊界值第二位準點(Q3p,Q3p=iSize*high),其中,可各取排序後之波形數值25%或75%的資料為參數值,一般預設值low_level=0.25,high level=0.75,也可依使用者習慣調整位準點以設定靈敏度,例如:高靈敏度(low=0.2,high=0.7)、中靈敏度(low=0.3,high=0.8)及低靈敏度(low=0.4,high=0.9)。 Step S35: Calculate a boundary value of the acceleration first point (Q1p, Q1p=iSize*low) and a boundary value of the acceleration to the second level (Q3p, Q3p=iSize*high) according to the array size (iSize), wherein The data of the sorted waveform value of 25% or 75% can be taken as the parameter value. Generally, the preset value is low_level=0.25, high level=0.75, and the level can be adjusted according to the user's habit to set the sensitivity, for example: high sensitivity. (low=0.2, high=0.7), medium sensitivity (low=0.3, high=0.8) and low sensitivity (low=0.4, high=0.9).
步驟S36:判斷加速度之邊界值第一位準點及加速度之邊界值第二位準點是否有小數位值,若否,則執行步驟S37,若是,則執行步驟S38。 Step S36: determining whether the boundary value of the first boundary value of the acceleration and the boundary value of the acceleration value have a decimal place value. If not, step S37 is performed, and if yes, step S38 is performed.
步驟S37:第二位準點中的數值為一跑步的步閥值(Q3),而第一位準點中的數值為一走路的步閥值(Q1);其中,Q1與Q3方程式如下列式(1)與式(2):
步驟S38:取出第一位準點(Q1,Q1p=取整數Q1p)及第二位準點(Q3,Q3p=取整數Q3p)的整數部分為新位準點。 Step S38: Take the integer part of the first level (Q1, Q1p=take integer Q1p) and the second level point (Q3, Q3p=take integer Q3p) as the new level.
其中,跑步的步閥值(Q3)則為新位準點之第二位準點上一個與下一個位置中的數值之平均值,走路的步閥值(Q1)則為新位準點第一位準點上一個與下一個位置中的數值之平均值,而Q1與Q3之平均值方程式如下式(3)與式(4):
步驟S39:儲存跑步的步閥值及走路的步閥值,以供後續分析步態的判別依據。 Step S39: storing the step threshold of the running and the step threshold of the walking for the subsequent analysis of the gait.
由於每個人將本發明之個人化生物反饋之生理感測器配戴於身體部位及方式不同,運動後所產生的加速度也不盡相同,藉此,由上述個人化步態分析方法得知,可正確分辨出走路或跑步的狀態,以提高量測之準確度。 Since each person applies the personalized biofeedback physiological sensor of the present invention to the body part and the manner is different, the acceleration generated after the exercise is also different, thereby being known by the above personalized gait analysis method. The state of walking or running can be correctly distinguished to improve the accuracy of the measurement.
請參閱第四圖,係為本發明之生理感測器之個人化生理感測方法之步驟流程圖。受測者可藉由一無線傳輸模組(如藍芽模組)下載一個人化資訊,以配合各種運動狀態使語音模組播放對應之音樂,個人化生理感測方法包含: 步驟S41:下載一個人化資訊於該生理感測器中,其中,個人化資訊包含運動醫囑(例如:應消耗卡路里與應有的心跳強度)、一個人預設運動資訊(例如:預計運動路長、路徑座標或預計運動時間)及一個人資料(身高、體重、年齡或心電圖生物辨識模版)等資訊。 Please refer to the fourth figure, which is a flow chart of the steps of the personalized physiological sensing method of the physiological sensor of the present invention. The test subject can download a personalized information by using a wireless transmission module (such as a Bluetooth module) to match the various motion states to enable the voice module to play the corresponding music. The personalized physiological sensing method includes: Step S41: downloading a personalized information in the physiological sensor, wherein the personalized information includes a sports medical order (for example, calories burned and the heart rate should be expected), and a person preset motion information (for example, an estimated exercise path length, Information such as path coordinates or estimated exercise time) and a person's profile (height, weight, age, or ECG biometric template).
步驟S42:判斷受測者之心電圖是否符合心電圖生物辨識模版,若否,則再次下載個人化資訊,若是,則執行步驟S43。 Step S42: determining whether the electrocardiogram of the subject conforms to the electrocardiogram biometric template, and if not, downloading the personalized information again, and if yes, executing step S43.
步驟S43:判斷受測者是否儲存有步態分析之參數值,其中,步態分析之參數值可為跑步的步閥值及走路的步閥值,若否,則執行步驟S44,若是,則執行步驟S45。 Step S43: determining whether the subject stores the parameter value of the gait analysis, wherein the parameter value of the gait analysis may be the running step value and the step threshold of the walking, if not, executing step S44, and if yes, Step S45 is performed.
步驟S44:進行四分位演算法以計算出步態分析之參數值。 Step S44: Perform a quartile algorithm to calculate a parameter value of the gait analysis.
步驟S45:計算受測者之卡路里與運動強度,其中,個人化生理感測器係依據三軸動作訊號、步態分析之參數值、心電圖訊號、GPS運動路徑以計算出卡路里消耗數據與運動強度(如運動心率),再依運動強度以自動調整音樂節奏及選曲並播出予受測者。 Step S45: calculating the calorie and exercise intensity of the subject, wherein the personalized physiological sensor calculates the calorie consumption data and the exercise intensity according to the three-axis motion signal, the parameter value of the gait analysis, the electrocardiogram signal, and the GPS motion path. (such as exercise heart rate), according to the intensity of the exercise to automatically adjust the music rhythm and song selection and broadcast to the subject.
步驟S46:判斷是否有達成個人化資訊之運動醫囑,若大於運動醫囑中應有的運動數值,則執行步驟S47,若小於運動醫囑中應有的運動數值,則執行步驟S48,若符合運動醫囑中應有的運動數值,則執行步驟S49。 Step S46: determining whether there is a sports medical plan that achieves personalized information, if it is greater than the exercise value that should be in the exercise order, step S47 is performed, if it is less than the exercise value that should be in the exercise order, step S48 is performed, if the exercise order is met If there is a motion value in the middle, step S49 is performed.
步驟S47:輸出已超過運動量或負載的警告語音,以確保受測者的運動安全。 Step S47: Output a warning voice that has exceeded the amount of exercise or load to ensure the motion of the subject.
步驟S48:運動量不足並提醒運動的警告語音。 Step S48: The amount of exercise is insufficient and the warning voice of the movement is reminded.
步驟S49:輸出一提示語音並播放音樂予受測者,如輸出鼓勵受測者之 提示語音並播放特定的音樂,以提高使用者之運動樂趣及使用率。 Step S49: output a prompt voice and play music to the subject, such as outputting the encouraged subject Prompt voice and play specific music to improve the user's enjoyment of sports and usage.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.
101‧‧‧微處理器 101‧‧‧Microprocessor
102‧‧‧三軸加速器感應模組 102‧‧‧Three-axis accelerator sensor module
103‧‧‧心電圖訊號擷取模組 103‧‧‧Electrocard signal acquisition module
104‧‧‧衛星定位模組 104‧‧‧Satellite Positioning Module
105‧‧‧類比轉數位訊號轉換模組 105‧‧‧ Analog to digital signal conversion module
106‧‧‧語音播放模組 106‧‧‧Voice play module
107‧‧‧電池模組 107‧‧‧Battery module
108‧‧‧儲存模組 108‧‧‧Storage module
109‧‧‧顯示模組 109‧‧‧Display module
110‧‧‧無線傳輸模組 110‧‧‧Wireless transmission module
111‧‧‧輸入模組 111‧‧‧Input module
第一圖係為本發明之實施例所提供之具生物反饋之生理感測器之示意圖。 The first figure is a schematic diagram of a physiological sensor with biofeedback provided by an embodiment of the present invention.
第二圖係為本發明之心電檢查圖(Electrocardiography;ECG)訊號之示意圖。 The second figure is a schematic diagram of the electrocardiogram (ECG) signal of the present invention.
第三圖係為本發明之個人化步態分析方法之步驟流程圖。 The third figure is a flow chart of the steps of the personalized gait analysis method of the present invention.
第四圖係為本發明之生理感測器之個人化生理感測方法之步驟流程圖。 The fourth figure is a flow chart of the steps of the personalized physiological sensing method of the physiological sensor of the present invention.
101‧‧‧微處理器 101‧‧‧Microprocessor
102‧‧‧三軸加速器感應模組 102‧‧‧Three-axis accelerator sensor module
103‧‧‧心電圖訊號擷取模組 103‧‧‧Electrocard signal acquisition module
104‧‧‧衛星定位模組 104‧‧‧Satellite Positioning Module
105‧‧‧類比轉數位訊號轉換模組 105‧‧‧ Analog to digital signal conversion module
106‧‧‧語音播放模組 106‧‧‧Voice play module
107‧‧‧電池模組 107‧‧‧Battery module
108‧‧‧儲存模組 108‧‧‧Storage module
109‧‧‧顯示模組 109‧‧‧Display module
110‧‧‧無線傳輸模組 110‧‧‧Wireless transmission module
111‧‧‧輸入模組 111‧‧‧Input module
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW97144476A TWI442348B (en) | 2008-11-18 | 2008-11-18 | Personalized gait analysis method of physiological sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW97144476A TWI442348B (en) | 2008-11-18 | 2008-11-18 | Personalized gait analysis method of physiological sensor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201019902A TW201019902A (en) | 2010-06-01 |
| TWI442348B true TWI442348B (en) | 2014-06-21 |
Family
ID=44831962
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW97144476A TWI442348B (en) | 2008-11-18 | 2008-11-18 | Personalized gait analysis method of physiological sensor |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI442348B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI844309B (en) * | 2023-03-17 | 2024-06-01 | 宏碁股份有限公司 | Alarm system and alarm method for medical emergency |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8350706B2 (en) * | 2009-06-30 | 2013-01-08 | Gojo Industries, Inc. | Hygiene compliance monitoring system |
-
2008
- 2008-11-18 TW TW97144476A patent/TWI442348B/en active
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI844309B (en) * | 2023-03-17 | 2024-06-01 | 宏碁股份有限公司 | Alarm system and alarm method for medical emergency |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201019902A (en) | 2010-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8021312B2 (en) | Arrangement, method and computer program for determining physical activity level of human being | |
| US6881191B2 (en) | Cardiac monitoring apparatus and method | |
| US9731184B2 (en) | Exercise assistive device | |
| US20190328282A1 (en) | Multi-functional smart mobility aid devices and methods of use | |
| US9089285B2 (en) | Energy expenditure computation based on accelerometer and heart rate monitor | |
| CN105561567B (en) | A kind of meter step and motion state apparatus for evaluating | |
| US20170202486A1 (en) | Wearable activity monitoring device and related method | |
| CN103876711A (en) | Wearable electronic device and human body health monitoring and managing system | |
| KR101125672B1 (en) | Method for measuring exercise pattern and apparatus for measuring exercise quantity using the method | |
| CN104436596A (en) | Exercise support device and exercise support method | |
| CN201698169U (en) | Sports watch | |
| CN204654914U (en) | Based on the healthy adjusting device of the infantile autism crowd of physical therapy under O2O line | |
| KR20150066563A (en) | A monitoring device for analysing a sleep condition | |
| US20210186399A1 (en) | Urinary tract infection determination | |
| CN111031438A (en) | Control method of earphone assembly, earphone assembly and computer readable storage medium | |
| CN106228015A (en) | A kind of healthy and safe monitor system of intelligent medical based on technology of Internet of things | |
| CN107374632B (en) | Respiratory sound monitoring device in surgical operation and use method thereof | |
| TWI442348B (en) | Personalized gait analysis method of physiological sensor | |
| Boissy et al. | Wireless inertial measurement unit with GPS (WIMU-GPS)—wearable monitoring platform for ecological assessment of lifespace and mobility in aging and disease | |
| CN103759738A (en) | Step counter | |
| KR101817274B1 (en) | Apparatus for multi-sensor based wearable energy expenditure measurement device and method thereof | |
| CN117456338A (en) | System for internal and external load assessment and image acquisition during exercise | |
| AU2021102658A4 (en) | Intelligent earphone system for remote health monitoring using artificial intelligence | |
| CN212235945U (en) | Intelligent posture monitoring system | |
| Dinh et al. | A wearable device for physical activity monitoring with built-in heart rate variability |