TWI306023B - Monitoring apparatus for physical movements of a body organ and method for acouiring the same - Google Patents
Monitoring apparatus for physical movements of a body organ and method for acouiring the same Download PDFInfo
- Publication number
- TWI306023B TWI306023B TW94147473A TW94147473A TWI306023B TW I306023 B TWI306023 B TW I306023B TW 94147473 A TW94147473 A TW 94147473A TW 94147473 A TW94147473 A TW 94147473A TW I306023 B TWI306023 B TW I306023B
- Authority
- TW
- Taiwan
- Prior art keywords
- monitoring device
- physical activity
- human organ
- pulse wave
- antenna
- Prior art date
Links
- 210000000056 organ Anatomy 0.000 title claims description 37
- 238000000034 method Methods 0.000 title claims description 10
- 238000012544 monitoring process Methods 0.000 title description 8
- 238000012806 monitoring device Methods 0.000 claims description 64
- 230000037081 physical activity Effects 0.000 claims description 40
- 239000003990 capacitor Substances 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000004891 communication Methods 0.000 claims 1
- 210000002321 radial artery Anatomy 0.000 description 11
- 210000001367 artery Anatomy 0.000 description 10
- 210000004204 blood vessel Anatomy 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 210000003090 iliac artery Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 210000001260 vocal cord Anatomy 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 208000008454 Hyperhidrosis Diseases 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000004717 laryngeal muscle Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
1306023 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種人體器官之物理活動的監視裝置與其 擷取方法,特別係關於一種使用一超寬頻電磁波(ultra wideband electromagnetic wave ’ UWB)偵測人體器官之物理 活動的監視裝置與其擷取方法。 【先前技術】1306023 IX. Description of the Invention: [Technical Field] The present invention relates to a monitoring device for physical activity of a human organ and a method for capturing the same, and particularly relates to an ultra wideband electromagnetic wave (UWB) detection using an ultra wideband electromagnetic wave (UWB) A monitoring device for the physical activity of human organs and a method of capturing it. [Prior Art]
使用監視儀器設備監視病人之生命跡象(諸如心跳、脈搏 等)的主要目的係用以警示病人本人或其照顧者有無不正 常的心血管狀況發生。目前使用在病人身上的脈搏監視系 統與技術,大都是在人體上的脈搏血管上,藉由壓電/壓力 感測器擷取所需的生理訊號。 US4,489,73 1揭示一種使用壓電晶體偵測脈搏跳動所引 起之音波震顫的技術。US5,759,300揭示一種包含壓電感測 器之元件,其可安置於大姆指附近之腕部表面(即平行於手 指勃帶束)的放射狀動脈上,以便得到更好的訊號雜訊比。 大多數用於監測心跳的技術都是利用皮膚電極(shn electrodes)來擷取心電圖(electrocardi〇gram)訊號在上述 的先前技藝中,不論採用壓力感測器或是皮膚電極都必須 緊壓著病人的皮膚’以便能得到良好的量測訊號品質。缺 而’長時間擠壓皮膚組織之操作可能道 月匕导致病人不適,也可 能引發皮膚過敏、發炎與流汗,進而上 退而導致訊號雜訊比遞減 及訊號基線(baseline)的漂移。 波偵測心臟、肺臟 US5,759,012揭示一種使用超寬頻電磁 1306023 及聲帶活動的量測元件。該量測元件使用一種運作於反覆 模式(repetitive mode)之非聲學(non-acoustic)脈波雷達,藉 以平均眾多的反射脈波。該量測元件採用一種範圍延遲產 生器(range delay generator),其藉由時閘技術(time gate scheme)產生時閘脈波(time gating pulse)。該時閘脈波導致 接收路徑之選擇性地導通,而經由人體反射之反射脈波再 利用接收器天線予以接收。該量測元件使用振幅調變和都 卜勒效應(Doppler effect)將偵測到的電壓轉換為可以聽得 到的音頻訊號。此外,該量測元件係設計為遠端操作,因 此無法配戴在一接受檢驗之病人身上。故,它不適合應用 於可攜式長時間監視之用途上。 鑑於上述問題, ,產業上確實需要一種可配戴在病人身上 、提供長效穩定運作特性、小尺寸且低價位之人體器官之 物理活動的監視裝置。 【發明内容】The primary purpose of using a monitoring instrument to monitor a patient's vital signs (such as heartbeat, pulse, etc.) is to alert the patient or his caregiver to an abnormal cardiovascular condition. The pulse monitoring systems and techniques currently used on patients are mostly on the pulse vessels of the human body, and the desired physiological signals are extracted by piezoelectric/pressure sensors. US 4,489,73 1 discloses a technique for detecting sonic chatter caused by pulse pulsation using a piezoelectric crystal. No. 5,759,300 discloses an element comprising a pressure sensor that can be placed on the radial artery of the wrist surface near the thumb (ie parallel to the finger belt) for better signal to noise ratio . Most techniques for monitoring heartbeat use shh electrodes to extract electrocardigram signals. In the above prior art, the pressure sensor or skin electrode must be pressed against the patient. The skin's in order to get good measurement signal quality. Lack of 'long-term squeezing of skin tissue may cause discomfort to the patient, may also cause skin irritation, inflammation and sweating, and thus retreat, resulting in a decrease in signal noise ratio and a baseline shift in the signal. Wave detection of the heart and lungs US 5,759,012 discloses a measuring element using ultra-wideband electromagnetic 1306023 and vocal cord activity. The measuring component uses a non-acoustic pulse wave radar operating in a repetitive mode to average a plurality of reflected pulse waves. The measuring component employs a range delay generator that generates a time gating pulse by a time gate scheme. At this time, the brake pulse wave causes the receiving path to be selectively turned on, and the reflected pulse wave reflected by the human body is received by the receiver antenna. The measuring component converts the detected voltage into an audible audio signal using amplitude modulation and a Doppler effect. In addition, the measuring element is designed for distal operation and therefore cannot be worn on a patient undergoing testing. Therefore, it is not suitable for use in portable long-term monitoring. In view of the above problems, the industry does require a monitoring device that can be worn on a patient, provides long-term stable operation characteristics, and has small physical activities of human organs at a low price. [Summary of the Invention]
官之物理活動的監視裝置及其擷取方法。 為達成上述目的,本發明提供一種人體 一種人體器官之物理活動The monitoring device of the physical activity of the official and its extraction method. In order to achieve the above object, the present invention provides a physical activity of a human body organ
板、一類比板、一數位板及一 可輻射UWB電磁波(探測脈波) 及一用以接收經該人體器官散 該類比板包含複數個電子元件 之物理活動的類比訊號。該數 號轉換成數位訊號的電子元件 100210 106071 005366837 •8· 1306023 。該顯示元件可顯示該人體器官之物理活動狀態。特而言 之’該類比板之電子元件包含一第一脈波產生器、一第二 脈波產生器及一平衡混波器。該第一脈波產生器係用以產 生該探測脈波,該第二脈波產生器係用以產生一參考脈波 ’該第二脈波產生器係電氣連接於該平衡混波器之一第一 輸入埠,且該接收天線係電氣連接於該平衡混波器之一第 二輸入埠,用以產生代表該人體器官之物理活動的相位差 訊號。 本發明之人體器官之物理活動的擷取方法首先發射一連 串之超寬頻UWB電磁波(探測脈波)至該人體器官再量測經 該人體器官之物理活動散射之探測脈波與一參考脈波之間 的相位差Ap : = A奶一 A 供2 = c M = VTa /表示該探測脈波序列之頻率,c表示光速,£表示人體 之皮膚組織的相對介電常數,r表示該人體器官往該探測脈 波方向之物理移動的移動速度,Γα表示當該人體器官移動一 預定距離鈕的時間。因此,該人體器官之物理活動μ是線 性正比於△沪。 【實施方式】 圖1(a)、圖1(b)及圖1(c)例示本發明之監視裝置1〇配戴於 人體上某處,用以偵測心血管之物理活動。然而,該監視 裝置10顯而易見地亦具有其它應用之可能性。例如,該監 視裝置ίο亦可配戴在人體的其他部位,包含胸部後面之Ζ 100210 1〇β〇7ΐ 0053668^7 -9- 1306023 臟'胎兒、聲帶及肌肉等。為了簡化起見,下文係使用心 血管之物理活動監視為實施例。該監視裝置10藉由一帶子 12’即可無需施力施壓而配戴在病人的身體上。A plate, a type of plate, a digital plate, and a radiatable UWB electromagnetic wave (detecting pulse wave) and an analog signal for receiving physical activity of the plurality of electronic components through the human organ. The digital signal is converted into a digital signal 100210 106071 005366837 • 8· 1306023. The display element can display the physical activity state of the human organ. In particular, the electronic components of the analog panel comprise a first pulse generator, a second pulse generator and a balanced mixer. The first pulse generator is configured to generate the detection pulse wave, and the second pulse wave generator is configured to generate a reference pulse wave. The second pulse wave generator is electrically connected to one of the balanced wave mixers. The first input port is electrically connected to the second input port of the balanced mixer for generating a phase difference signal representative of the physical activity of the human body. The method for extracting the physical activity of the human organ of the present invention firstly emits a series of ultra-wideband UWB electromagnetic waves (detecting pulse waves) to the human body to measure the detected pulse wave of the physical activity scattering of the human body and a reference pulse wave. The phase difference between Ap: = A milk A A 2 = c M = VTa / represents the frequency of the detected pulse sequence, c represents the speed of light, £ represents the relative dielectric constant of the skin tissue of the human body, and r represents the body organ The moving speed of the physical movement of the detected pulse direction, Γα, represents the time when the human organ moves a predetermined distance button. Therefore, the physical activity μ of the human organ is linearly proportional to △ Shanghai. [Embodiment] Figs. 1(a), 1(b) and 1(c) illustrate that the monitoring device 1 of the present invention is worn somewhere on the human body to detect cardiovascular physical activity. However, the monitoring device 10 obviously also has the possibility of other applications. For example, the monitoring device ίο can also be worn on other parts of the human body, including the back of the chest. 100210 1〇β〇7ΐ 0053668^7 -9- 1306023 Dirty 'fetus, vocal cords and muscles. For the sake of simplicity, the following uses physical activity monitoring of the blood vessels as an embodiment. The monitoring device 10 can be worn on the patient's body without applying a force by a belt 12'.
圖2(a)及圖2(b)例示本發明之監視裝置10。如圖2(a)所示 ’该監視裝置10包含一天線板23、一類比板24以及一數位 板25。該天線板23可發射電波到一動脈血管26,並接收其 反射波。該天線板23包含一發射天線2 1以及一接收天線22 ,該發射天線21及該接收天線22係經由一薄膜20分別發送 探測脈波及接收經人體反射之探測脈波。該發射天線2 i及 該接收天線22可為領結狀(bow-tie)天線,如圖2(b)所示。該 薄膜20並非用以轉換訊號能量,僅為該監視裝置1〇之整體 組件之一。因此,該薄膜20的材料性質不應導致該探測脈 波的能量衰減,較佳地,該薄膜2〇係由聚合物材料構成(例 如厚度為0.2至0·5毫米之矽樹脂合成橡膠或聚碳酸酯 圖3(a)顯示該探測脈波之時脈圖。每一探測脈波係由一衰 退正弦波動(damped sinusoidal oscillation)構成,其共振頻 率係取決於該發射天線的實體尺寸。圖3(13)顯示該探測脈波 之頻譜圖。該探測脈波之中心頻率和頻寬係取決於衰退正 弦波動之持續期間(duration)。當該衰退正弦波動的持續期 間趨近於零(為一理想的脈波形狀),則其中心頻率及頻率頻 譜的頻寬即趨近於無限大(inHnity)。 圖4顯示該監視裝置1〇之功能方塊圖。該發射天線21和該 接收天線22係設置於該天線板23上,且兩者均為領結狀天2(a) and 2(b) illustrate the monitoring device 10 of the present invention. As shown in Fig. 2(a), the monitoring device 10 includes an antenna board 23, an analog board 24, and a digital board 25. The antenna plate 23 can emit electric waves to an artery 26 and receive its reflected waves. The antenna board 23 includes a transmitting antenna 21 and a receiving antenna 22. The transmitting antenna 21 and the receiving antenna 22 respectively transmit a detecting pulse wave and a detecting pulse reflected by the human body via a film 20. The transmitting antenna 2 i and the receiving antenna 22 may be a bow-tie antenna as shown in Fig. 2(b). The film 20 is not used to convert signal energy and is only one of the integral components of the monitoring device. Therefore, the material properties of the film 20 should not cause energy attenuation of the detecting pulse wave. Preferably, the film 2 is made of a polymer material (for example, a resin synthetic rubber or poly having a thickness of 0.2 to 0.5 mm). Carbonate Figure 3(a) shows the clock map of the detected pulse wave. Each probe pulse wave is composed of a damped sinusoidal oscillation whose resonance frequency depends on the physical size of the transmitting antenna. (13) showing a spectrogram of the detected pulse wave. The center frequency and bandwidth of the detected pulse wave are determined by the duration of the sinusoidal fluctuation of the decay. When the duration of the sinusoidal fluctuation is approaching zero (for one) In the ideal pulse shape, the bandwidth of the center frequency and the frequency spectrum approaches infinity. In Fig. 4, a functional block diagram of the monitoring device 1 is shown. The transmitting antenna 21 and the receiving antenna 22 are Set on the antenna board 23, and both are bow-tie days
線’其係寬頻雙極天線(broadband dipole antenna)之一。兮 100210 1〇6〇71 005366837 -10- 1306023The line 'is one of the broadband dipole antennas.兮 100210 1〇6〇71 005366837 -10- 1306023
類比板24包含一連接到該接收天線22的平衡混波器4、一連 接到該平衡混波器4的高通濾波器5、一連接到該高通濾波 器5的第一低通濾波器6、一連接到該低通濾波器6的第一放 大器7、一連接到該第一放大器7的第二低通濾波器8、_連 接到該第二低通濾波器8的第二放大器9、一連接到該平衡 混波器4的第一脈波產生器15、一連接到該第一脈波產生器 15的延遲線14、一連接到該發射天線21的第二脈波產生器 16、連接到該第二脈波產生器16及該延遲線14的時脈產 生器2。該數位板25包含一具有一嵌入式類比/數位轉換器 17之微控制器18以及一通用型非同步無線收發器丨9。 該動脈血管26周圍之人體組織可反射該探測脈波而形成 諸夕訊號成分,而該類比板24上的類比訊號處理電路則從 該訊號成分中選擇性地分離出代表該動脈血管26之物理活 動的訊號。該微控制器1 8可將偵測到之訊號予以數位化, 並藉由該數位板25之無線收發器15>傳送數位化後之訊號。 數位化訊號可藉由RS232或USB纜線27傳送到一外部資料 處理/顯示單元28。 本發明選用UWB電磁波係考量下列優點: 1 · UWB電磁波可降低散逸功率的頻譜密度。電磁波散逸 影響醫生及病人,而使用UWB電磁波不但可降低散逸 功率’亦可避免和醫院内其他醫療設備產生彼此的電 磁波干擾。 2. 減少儀器之整體體積。The analog board 24 includes a balanced mixer 4 connected to the receiving antenna 22, a high pass filter 5 connected to the balanced mixer 4, a first low pass filter 6 connected to the high pass filter 5, a first amplifier 7 connected to the low pass filter 6, a second low pass filter 8 connected to the first amplifier 7, a second amplifier 9 connected to the second low pass filter 8, and a a first pulse generator 15 connected to the balanced mixer 4, a delay line 14 connected to the first pulse generator 15, a second pulse generator 16 connected to the transmitting antenna 21, and a connection The second pulse generator 16 and the clock generator 2 of the delay line 14 are connected. The tablet 25 includes a microcontroller 18 having an embedded analog/digital converter 17 and a general purpose non-synchronous wireless transceiver 丨9. The human tissue surrounding the arterial blood vessel 26 can reflect the detection pulse wave to form an imaginary signal component, and the analog signal processing circuit on the analog plate 24 selectively separates the physics representing the arterial blood vessel 26 from the signal component. Activity signal. The microcontroller 18 digitizes the detected signal and transmits the digitized signal via the wireless transceiver 15> of the tablet 25. The digitized signal can be transmitted to an external data processing/display unit 28 via an RS232 or USB cable 27. The UWB electromagnetic wave system of the present invention considers the following advantages: 1 · UWB electromagnetic wave can reduce the spectral density of the dissipated power. Electromagnetic wave dissipation affects doctors and patients, and the use of UWB electromagnetic waves not only reduces the power dissipation, but also avoids electromagnetic interference with other medical devices in the hospital. 2. Reduce the overall volume of the instrument.
3. 減少外部干擾的發生及影響,且能增加量測的可靠 100210 1〇6〇71 005366837 •11- 1306023 度。 如同建構常見的窄頻雷達,本發明之監視裝置ι〇(可 一刪雷達)使用電磁波對兩個具有不同散射參數之齡 邊界的散射特性,而料參數的設定係根據十分知名的理 論。雷達所輻射出來的電磁波由—移動中的物體予以散射 ,散射脈波之震盈頻率巧料勒效應而改變,冑率變化導 致震藍週射變化,而散射脈波内的震盈數目依然維持相同 數目。如此,散射脈波的區間Γ改變。由於相同的效應,由 物體κ所散射之電磁波的重複頻率及相應之重複週期厂也 會同時改變。這些變化的特徵都取決於待測目標相對於侦 測雷達的移動方向,且變化值亦取決於待測目標的徑向速 度。 然而,必須注意的是UWB雷達係用以偵測及測量移動目 標的參數,其採用某些特性。在—般的情形下,上文提到 之脈波序列的三種參數變化皆被使用,以便分離某一特定 訊號。然而,單-散射脈波之振i頻率變化相#小,這是 因為單-散射脈波的區間7非常短。舉例來說,對於脈波區 間為一.2奈秒(nanoseconds)而言,它並未包含震遺頻率為 1死赫(GHz)之任-周期。因&,欲使用習知滤波技術而決 定單一散射脈波之頻率變化是不可能的。 然而,測量一連串之散射脈波與探測脈波之間的相位差 疋可旎的。相位差可以根據下列的公式予以估算。當一物 體以一預疋速度K向雷達移動時’散射脈波之重複週期變成 100210 1〇6〇71 005366837 -12- (1) 1306023 τ〇=τ 1-Γ c代表光速。在物體移動期間之相位差及其變化特性可根 據下列方程式予以確定。如果探測脈波的瞬間相位值為 汽2妨,其中y表示探測脈波的重複頻率。探測脈波由設置 於位置R處之固定物體予以散射後之瞬間相位值為: (Ρ〇^)=φα{ή+2π·/~ = 2π^ + ~] , c K c J (2) 如此,探測脈波及散射脈波之間的相位差可表示如下: —香 (3) 該動脈血管26之物理活動所導致探測脈波及散射脈波之 間的相位差’可根據方程式(3)推導而得。如果該動脈血管 26係位於距離卜A + A處,其中A表示該天線板此表面與 該皮膚13之表面間的距離’ A表示該動脈血管以之表面與 該皮膚13之表面間的距離,如此散射脈波之瞬間相位值為 ι(ρ0+ρ^) t + jPo+D^)' (4) (5) 探測脈波與散射脈波之間的相位差為: Δ^1 = <Pu (ή~φοι (t) = -4π · 如果該動脈血管26移動到距離雷達尽的位置處, 則散射脈波之瞬間相位值為: Ψ〇2 (ή = <Ρα+2π· = 2(p〇 + A V^y (6) 探測脈波與散射脈f之間的相位差亦可表示如下 ^Ψι = Ψη W- <Ρ〇2 (ή = -4π ι〇〇2ΐ〇 106071 〇〇53668q7 -13- (7) 1306023 方程式(5)減去方程式(7),可得因該動脈血管26之移動而 導致的相位差,如下所示: Αφ (ή = Αφι-Αφ2 =⑻ 如此,各週期之相位差知不相同,且其變化趨勢係隨著 該動脈血管26之移動速度Γ及振盪之移動週期&而變化。若 探測脈波之重複頻率/=10百萬赫兆(MHz),f=4〇,且該動 脈血管26之物理移動量gA_A=2〇毫米,則相位差之變化 △供=0·3度,上述的數據可以使用現成的相位量測元件偵測而 得。 該監視裝置10之操作將在下文中詳細描述。圖5(a)、5(b) 、5(c)及5(d)係本發明之類比板24的電路圖。該時脈產生器 2係由一邏輯反向器102予以實現。該時脈產生器2產生方波 ’並對在該類比板2 4之類比訊號處理電路做同步化之處理 。該時脈產生器2的時脈準確性係取決於一石英晶體1 〇3。 低價位的石英晶體將會有的誤差。電阻1〇4可緩衝該 石英晶體103之尖銳邏輯位準轉變,並避免寄生振盪模式。 電谷105及電谷106之組合可構成一近似之負載電容,甘如 石英晶體103之規格所載明者。電阻1〇4在臨界值或在平均 值知·供一電阻式負回授以偏壓反相器102,並提供一通過石 央晶體103的交流回授來控制振盈頻率。 由邏輯反相器108及邏輯反相器1〇9構成之第二脈波產生 器16(可視為發射器之探測脈波的修形器)係連接於該發射 天線21。該發射天線21之一斷續器(vibrator)的邊緣連接有 一上拉電阻220(50歐姆),其係用以降低該發射天線21之振 1306023 盈時距(或稱為響鈴時距時脈訊號係經由一緩衝器而進入 一接收器電路’且該緩衝器是藉由一邏輯反相器32予以實 現。該邏輯反相器32可降低接收器對傳送電路和時脈產生 器2之運作的影響。 參考脈波係從該時脈產生器2之延遲時脈訊號而產生,且 經由該第一脈波產生器15將其修改成較短之脈波後,傳送 至電阻35及電阻36之接點處,其中該脈波產生器15係由邏 • 輯反相器33、電容34及電阻35、36構成。該延遲線14係用 以匹配該探測脈波及參考脈波之間的時序,如此該平衡混 波器4即可正確地量測兩者之相位差,其中該延遲線丨4係由 一可變電阻43及一電容44構成。該參考脈波的時間延遲 (U可根據下列方程式予以確定: ^,=2(J7+7l'VJ) (9) 其中£>。表示該天線板23表面與該皮膚13之間的距離。a 表示該動脈血管26與該皮膚13之間的距離。c表示光速,在表 | 示人類皮膚組織之相對介電質常數。如圖5(a)所示, ’其中RC是該可變電阻43的電阻值及電容44的電 容值的乘積,以上兩者組成該延遲線14。特而言之,可 藉由調整該可變電阻43的電阻值而調整其數值。反射之探 測脈波經由接收天線22接收之後,繼續進入平衡混波器4 的輸入點。電阻負載30、3 1係對稱式接收天線22之匹配負 載。 圖6(a)及圖6(b)說明該平衡混波器4的運作方式。在參考 脈波的正半週期中,二極體VD2及VD3都被導通,而將已接 100210 106071 005366837 -15- 1306023 收之探測脈波傳送到該平衡混波器4的輸出端,如圖6⑷所 丁在參考脈波的負半週期巾,二極體都被導通 ,而將探測脈波以-18〇度之相位偏移傳送到該平衡混波器 4的輸出#,如圖6(b)所示。該平衡混波以之輸出電壓可由 下列方程式予以定義: UWAD = R(lmi - Ivda)+R(Ivdi ~ IW3) ( i 0 )3. Reduce the occurrence and impact of external interference, and increase the reliability of measurement 100210 1〇6〇71 005366837 •11- 1306023 degrees. As with the construction of a common narrow-band radar, the monitoring device ι〇 of the present invention uses electromagnetic waves to scatter characteristics of two age boundaries having different scattering parameters, and the setting of the material parameters is based on well-known theory. The electromagnetic wave radiated by the radar is scattered by the moving object, and the shock frequency of the scattered pulse wave is changed by the effect of the material. The change of the frequency causes the earthquake blue to change, and the number of earthquakes in the scattered pulse wave remains. The same number. Thus, the interval 散射 of the scattered pulse wave changes. Due to the same effect, the repetition frequency of the electromagnetic wave scattered by the object κ and the corresponding repetition period will also change at the same time. The characteristics of these changes depend on the direction of movement of the target to be measured relative to the radar, and the value of the change depends on the radial speed of the target to be measured. However, it must be noted that the UWB radar is used to detect and measure the parameters of the moving target, which uses certain characteristics. In the general case, all three parameter variations of the pulse sequence mentioned above are used in order to separate a particular signal. However, the frequency-synchronization phase # of the single-scattered pulse wave is small because the interval 7 of the single-scattered pulse wave is very short. For example, for a pulse interval of 1. 2 nanoseconds, it does not contain any-cycles with a seismic frequency of 1 GHz. It is impossible to determine the frequency variation of a single scattered pulse wave using the conventional filtering technique. However, measuring the phase difference between a series of scattered pulse waves and the detected pulse wave is awkward. The phase difference can be estimated according to the following formula. When an object moves toward the radar at a pre-twisting speed K, the repetition period of the scattered pulse wave becomes 100210. 1〇6〇71 005366837 -12- (1) 1306023 τ〇=τ 1-Γ c represents the speed of light. The phase difference and its variation characteristics during the movement of the object can be determined according to the following equation. If the instantaneous phase value of the detected pulse wave is V 2 , where y represents the repetition frequency of the detected pulse wave. The instantaneous phase value of the detected pulse wave scattered by the fixed object set at the position R is: (Ρ〇^)=φα{ή+2π·/~ = 2π^ + ~] , c K c J (2) The phase difference between the detecting pulse wave and the scattered pulse wave can be expressed as follows: - aroma (3) The phase difference between the detecting pulse wave and the scattered pulse wave caused by the physical activity of the arterial blood vessel 26 can be derived according to equation (3). Got it. If the arterial line 26 is located at a distance A + A, where A indicates the distance between the surface of the antenna plate and the surface of the skin 13 'A' indicates the distance between the surface of the artery and the surface of the skin 13, The instantaneous phase value of the scattered pulse wave is ι(ρ0+ρ^) t + jPo+D^)' (4) (5) The phase difference between the detected pulse wave and the scattered pulse wave is: Δ^1 = < Pu (ή~φοι (t) = -4π · If the arterial blood vessel 26 moves to a position far from the radar, the instantaneous phase value of the scattered pulse wave is: Ψ〇2 (ή = <Ρα+2π· = 2 (p〇+ AV^y (6) The phase difference between the detection pulse wave and the scattering pulse f can also be expressed as follows ^Ψι = Ψη W- <Ρ〇2 (ή = -4π ι〇〇2ΐ〇106071 〇〇 53668q7 -13- (7) 1306023 Equation (5) minus equation (7), the phase difference caused by the movement of the artery 26 can be obtained as follows: Αφ (ή = Αφι-Αφ2 = (8) So, each The phase difference of the period is different, and the trend of the change varies with the moving speed of the artery 26 and the moving period of the oscillation. If the frequency of the pulse is repeated /= 10 million Hertz (MHz), f=4〇, and the physical movement amount of the artery 26 is gA_A=2〇mm, then the phase difference is changed by Δ·0.3·3 degrees. The above data can use the ready-made phase measuring component. The operation of the monitoring device 10 will be described in detail below. Figures 5(a), 5(b), 5(c) and 5(d) are circuit diagrams of the analog board 24 of the present invention. The generator 2 is implemented by a logic inverter 102. The clock generator 2 generates a square wave 'and synchronizes the analog signal processing circuit of the analog plate 24. The clock generator 2 The accuracy of the clock depends on a quartz crystal 1 〇 3. The low-cost quartz crystal will have an error. The resistor 1〇4 can buffer the sharp logic level transition of the quartz crystal 103 and avoid the parasitic oscillation mode. The combination of the valley 105 and the valley 106 can constitute an approximate load capacitance, as stated in the specification of the quartz crystal 103. The resistance 1 〇 4 is at a critical value or at a mean value for a resistive negative feedback. The inverter 102 is voltage-controlled and provides an AC feedback through the core crystal 103 to control the oscillation frequency. The second pulse generator 16 (which can be regarded as a shape detector for detecting the pulse wave of the transmitter) formed by the phase detector 108 and the logic inverter 1〇9 is connected to the transmitting antenna 21. One of the transmitting antennas 21 is intermittent The edge of the vibrator is connected to a pull-up resistor 220 (50 ohms), which is used to reduce the time interval of the 1302063 of the transmitting antenna 21 (or the time interval of the clock signal is entered via a buffer). A receiver circuit 'and the buffer is implemented by a logic inverter 32. The logic inverter 32 reduces the effects of the receiver on the operation of the transmitting circuit and the clock generator 2. The reference pulse wave is generated from the delayed clock signal of the clock generator 2, and is modified into a shorter pulse wave by the first pulse generator 15, and then transmitted to the contact of the resistor 35 and the resistor 36. The pulse generator 15 is composed of a logic inverter 33, a capacitor 34, and resistors 35, 36. The delay line 14 is used to match the timing between the detection pulse wave and the reference pulse wave, so that the balanced mixer 4 can correctly measure the phase difference between the two, wherein the delay line 丨4 is controlled by a variable The resistor 43 and a capacitor 44 are formed. The time delay of the reference pulse wave (U can be determined according to the following equation: ^, = 2 (J7 + 7l 'VJ) (9) where £> represents the distance between the surface of the antenna plate 23 and the skin 13. a represents the distance between the artery 26 and the skin 13. c represents the speed of light, and the relative dielectric constant of the human skin tissue is shown in Table | As shown in Fig. 5(a), where RC is the variable resistor The product of the resistance value of 43 and the capacitance value of the capacitor 44 constitutes the delay line 14. In particular, the value of the resistor 43 can be adjusted by adjusting the resistance value of the variable resistor 43. The reflected pulse wave is reflected. After receiving the receiving antenna 22, it continues to enter the input point of the balanced mixer 4. The resistive loads 30, 31 are matched loads of the symmetric receiving antenna 22. Figure 6(a) and Figure 6(b) illustrate the balanced mixer The operation mode of 4. In the positive half cycle of the reference pulse wave, the diodes VD2 and VD3 are both turned on, and the detected pulse wave transmitted to the balanced mixer 4 is transmitted to the 100210 106071 005366837 -15-1306023. The output end, as shown in Figure 6 (4), is in the negative half cycle of the reference pulse wave, and the diodes are turned on. The detection pulse wave is transmitted to the output # of the balanced mixer 4 at a phase shift of -18 degrees, as shown in Fig. 6(b). The output voltage of the balanced mixture can be defined by the following equation: UWAD = R (lmi - Ivda)+R(Ivdi ~ IW3) ( i 0 )
其中π表示電阻35及電阻36的電阻值。二極體的電壓電流 特性可由三階多項式予以估計: ^νϋ=α〇+ αλυ + a2U2 + a3U3 將上述的多項式代人方程式⑽中,可得如下的兩個方 程式: (11) (12) r(Ivdi -Im4) = 2R -^ + la2 ^-Uw+a3^- + 3a3U2w / 2 2 > 也2 - U = 2七 A ¥ + 2a2 $Uio - a辱—3说。 將方程式(11)及(12)相加,可得:Where π represents the resistance value of the resistor 35 and the resistor 36. The voltage-current characteristics of the diode can be estimated by a third-order polynomial: ^νϋ=α〇+ αλυ + a2U2 + a3U3 In the above equation (10), the following two equations can be obtained: (11) (12) r (Ivdi -Im4) = 2R -^ + la2 ^-Uw+a3^- + 3a3U2w / 2 2 > Also 2 - U = 2 7 A ¥ + 2a2 $Uio - a humiliation - 3 said. Adding equations (11) and (12), you can get:
^load = 4i?a2C/fifULO (13) 方程式(1 3 )顯示該平衡混波器4實現了接收之探測脈波 ί^與參考脈波Uw的乘法運算。 圖7(a)顯示該平衡混波器4接收之探測脈波&與參考脈 波其中接收之探測脈波係以實線表示,而參考脈波 則以虛線表示。當該動脈血管26移向或遠離該監視裝置 10時,圖7(a)顯示之相位差的相應時間變化產生如圖7(b)顯 示之平衡混波器4的輸出端之正脈波及負脈波。總而言之, 該第一低通濾波器6的輸出端將會產生一輸出訊號。圖8(a)^load = 4i?a2C/fifULO (13) Equation (13) shows that the balanced mixer 4 achieves multiplication of the received detection pulse ί^ with the reference pulse Uw. Fig. 7(a) shows the detection pulse wave & and the reference pulse wave received by the balanced mixer 4, wherein the detected pulse wave system is indicated by a solid line, and the reference pulse wave is indicated by a broken line. When the arterial blood vessel 26 is moved toward or away from the monitoring device 10, the corresponding time variation of the phase difference shown in Fig. 7(a) produces a positive pulse and a negative at the output of the balanced mixer 4 as shown in Fig. 7(b). Pulse wave. In summary, the output of the first low pass filter 6 will produce an output signal. Figure 8 (a)
100210 005366837 •16· 1306023 血管振動狀態下 及圖8 (b)更進一步比對靜止狀態下之動脈 的動脈血管26的時序圖。 。該平衡混波器4的輸出脈波繼續傳送到該第一低通濾波 器6,其濾除不需要之高頻部分而產生所需的輪出⑺。如 圖9所示涉員率為土所心之譜線分別表示接收到之探測脈 波的重複頻率^與參考脈波的重複頻率&之整數倍。該第 一低通濾波器6濾除訊號(F)以外之高頻成分(”‘±耐^),而100210 005366837 • 16· 1306023 The vascular vibration state and FIG. 8(b) further compare the timing diagram of the arterial blood vessel 26 of the artery in a resting state. . The output pulse of the balanced mixer 4 continues to be passed to the first low pass filter 6, which filters out unwanted high frequency portions to produce the desired turn (7). As shown in Fig. 9, the line of the rate of the employee's heart is the integer frequency of the repetition frequency of the received pulse wave and the repetition frequency of the reference pulse wave. The first low pass filter 6 filters out high frequency components ("±±^) other than the signal (F), and
頻率為F之譜線(其可視為由該動脈血管%之物理活動予以 調變之訊號)則被選取。 該平衡混波器4容許輸入訊號與參考脈波間的乘法運算 有更大的精確度。換句話說,可得一個失真明顯降低之混 波器輸出訊號。該平衡電路結構允許高度隔離一個輸入訊 號(來自天線)與參考脈波訊號,並高度隔離該輸入訊號與混 波器之輸出訊號(絕緣的平均值為4〇分貝(dB))。因此,可降 低該平衡混波器4的參考脈波和接收天線22的輻射滲透。 複參圖5(a),由電容41及電容42構成之高通濾波器5移除 直流(DC)成分,而這一直流成分係由該動脈血管26之週遭 靜止組織所產生。由電阻38、電容40、電阻37及電容3 9構 成之第一低通遽波器6則用以選擇相應於該動脈血管26之 物理活動的低頻訊號。A line of frequency F (which can be seen as a signal modulated by the physical activity of the arterial vessel) is selected. The balanced mixer 4 allows for greater precision in the multiplication between the input signal and the reference pulse. In other words, a mixer output signal with significantly reduced distortion is available. The balanced circuit structure allows a high isolation of an input signal (from the antenna) and a reference pulse signal, and highly isolates the input signal from the output signal of the mixer (the average value of the insulation is 4 〇 decibels (dB)). Therefore, the reference pulse of the balanced mixer 4 and the radiation penetration of the receiving antenna 22 can be reduced. Referring to Fig. 5(a), a high-pass filter 5 composed of a capacitor 41 and a capacitor 42 removes a direct current (DC) component which is generated by the surrounding stationary tissue of the artery 26. A first low pass chopper 6 comprising a resistor 38, a capacitor 40, a resistor 37 and a capacitor 3 9 is used to select a low frequency signal corresponding to the physical activity of the arterial vessel 26.
如圖5(b)所示,由一第一級放大單元(一個低頻儀器放大 器)和一第二級放大單元構成之第一放大器7放大該低頻訊 號。藉由調整電阻51的電阻值可設定該第一級放大單元的 增益在117.27(41.38分貝)。該第一級放大單元亦抑制共模 100210 106071 ΟΟ5366837 -17- 1306023 干擾不低於110分貝。 訊號接著進入第二級放大單元,其係以運算放大器71及 72為基礎元件。該第二級放大單元之增益可由下列方程式 予以決定: K2 • R(72iy '100^0^' R(722) _ \OKOhm _ —10 (20dB) 電阻723的電阻值可由下列的方程式予以確定: 及(723)=—U9.叫 v 7 R(72l) + R(722) 110As shown in Fig. 5(b), the first amplifier 7 composed of a first stage amplifying unit (a low frequency instrument amplifier) and a second stage amplifying unit amplifies the low frequency signal. The gain of the first-stage amplifying unit can be set to 117.27 (41.38 dB) by adjusting the resistance value of the resistor 51. The first stage amplifying unit also suppresses the common mode 100210 106071 ΟΟ5366837 -17- 1306023 interference not less than 110 decibels. The signal then enters the second stage amplifying unit, which is based on operational amplifiers 71 and 72. The gain of the second stage amplifying unit can be determined by the following equation: K2 • R(72iy '100^0^' R(722) _ \OKOhm _ —10 (20dB) The resistance value of the resistor 723 can be determined by the following equation: And (723)=—U9. Call v 7 R(72l) + R(722) 110
複參圖5(c),放大之訊號進入一以運算放大器73及74為基 礎之第二低通濾波器8,其係一個4階巴特渥斯(Butterworth) 主動濾波器。此一類型之濾波器在通帶内可提供具有最均 勻的頻率響應。 濾波後之訊號進入第三級放大單元,其係位於以運算放 大器75為基礎元件之第二放大器9。第三級放大單元的增益 可藉由調整電阻751及電阻752予以設定,其增益可由下公 式予以決定:Referring to Figure 5(c), the amplified signal enters a second low pass filter 8 based on operational amplifiers 73 and 74, which is a 4th order Butterworth active filter. This type of filter provides the most uniform frequency response in the passband. The filtered signal enters a third stage amplifying unit which is located in a second amplifier 9 which is based on the operational amplifier 75. The gain of the third stage amplifying unit can be set by adjusting the resistor 751 and the resistor 752, and the gain can be determined by the following formula:
K3 〔及(751)] ’ AJkOhm、 U(752)J 、2k0hm > -2.35 (7.4dB) 接收器的整體增益等於: K = ΚλΚ2Κ3 = (117.28) -(10)- (2.35) = 2756.08 (68.8dB) 複參照圖5(d),以運算放大器80緩衝一電壓分壓器而產 生一虛接地。此一電路可在供給電壓之1/2處產生一虛接地 參考電壓。該電路包含補償機制以允許在虛接地的輸出設 有旁路電容801、52、724及753。大電容的好處不僅虛接地 呈現一很低的直流(DC)阻抗至負載,其交流(AC)阻抗也很K3 [and (751)] ' AJkOhm, U(752)J, 2k0hm > -2.35 (7.4dB) The overall gain of the receiver is equal to: K = ΚλΚ2Κ3 = (117.28) -(10)- (2.35) = 2756.08 ( 68.8dB) Referring to FIG. 5(d), an operational amplifier 80 buffers a voltage divider to generate a virtual ground. This circuit produces a virtual ground reference voltage at 1/2 of the supply voltage. The circuit includes a compensation mechanism to allow bypass capacitors 801, 52, 724, and 753 to be provided at the virtual grounded output. The benefits of large capacitors are not only virtual grounding, but also a very low direct current (DC) impedance to the load, and its alternating current (AC) impedance is also very high.
100210 1〇6〇71 ΟΟ5366837 -18- 1306023 低。該運算放大器80可吸收及釋放出超過5mA的電流,此 特性可改善負載電流之暫態時間的恢復時間。 圖11例示本發明之數位板25的電路圖。經過放大及濾波 . 後之訊號藉由一連接器76(參考圖5(C))從該類比板24傳送 . 至嵌設在該微控制器18内之類比/數位轉換器。該微控制器 1 8較佳地為使用簡化指令集處理器(Reduced Set100210 1〇6〇71 ΟΟ5366837 -18- 1306023 Low. The op amp 80 can sink and discharge more than 5 mA, which improves the recovery time of the transient time of the load current. Figure 11 illustrates a circuit diagram of the tablet 25 of the present invention. After amplification and filtering, the subsequent signal is transmitted from the analog board 24 by a connector 76 (refer to FIG. 5(C)) to an analog/digital converter embedded in the microcontroller 18. The microcontroller 18 is preferably a reduced instruction set processor (Reduced Set)
Computer,RISC)架構的8位元低功率(^〇8微控制器,其實 魯 現了從類比訊號處理電路進行資料收集及資料傳送。資料 傳送可以藉由RS-232或是USB介面來完成。序列埠驅動器 78藉由RS-232介面連接至該數位板25,其具有外部資料處 理及顯示單元28。純發器19和電子可抹除式記憶體㈣ 經由USB介面進行通訊。該收發器19可為一種USB單晶片通 用非同步收發傳輸器,其以局達920k鮑(baud)之資料傳送率 之USB傳送-連串的資料。電子可抹除式記憶體”係用以 儲存結構參數,包含USB販售者識別碼、產品識別碼、序 • 1及控制器字串等。具有三端點之可調整分流調節器79的 參考電壓源係用以供給該類比板2 3之類比訊號處理電路及 該數位板25之微控制器之類比/數位轉換器的參考電壓。 複參圖10,該監視裝置1〇在能量效能上之改善係由於進 入該發射天線21之訊號振幅頻譜220與該發射天線21之頻 • 率效能U0之匹配。因此,輻射的訊號能量幾乎是常見元件 (具有訊號頻譜封包120和相同的天線頻率效能)的兩倍。訊 號振幅頻譜與天線頻率效能之間的匹配可藉由選擇合適的 發射天線,例如迴路天線(1〇〇p antenna)、領結狀天線終 1306023 鈿半波天線(terminating half-wave antenna)及螺旋天線 (spiral antenna)’ 分別顯示於圖 12⑷、12(b)、12(。)及12⑷ 〇 圖13(a)及圖13(b)顯示由該監視裝置1〇擷取之橈骨動脈 sfl號波形和心電圖訊號波形的對照圖。如圖13(幻及圖13(b) 所示,該監視裝置10之效能可在臨床裝置予以證實,其係 藉由比對該監視裝置1〇所取得之橈骨動脈脈搏訊號2〇〇和 心電圖210。圖13(a)所顯示之波形係從一具有正常心跳節律 的病人身上取得。反之,圖13(b)顯示之波形是從一具有動 脈過早攣縮(artenal premature c〇ntracti〇n ’ Apc)症狀的病 人身上取得。兩個結果都顯示相當清楚的心跳波形,表示 該監視裝置10確實可作為一個具有心臟疾病之病人的診斷 工具。 圖14中例示本發明之監視裝置1〇之類比板24,的一部分 。相較於圖5(a)所示之類比板24,使用單端輸出(single_ended output)發射天線21,圖14所示之類比板24,使用差動輪出 (differential output)發射天線21 *。使用該差動輸出發射天線 2Γ之監視裝置1〇可以大幅地增加頻寬,並大幅地增加代表 人體器官之物理活動的波形振幅。 圖15(a)顯示使用單端輸出發射天線21之監視裝置1〇的頻 寬。圖15(b)顯示使用差動輸出發射天線2Γ之監視裝置1〇的 頻寬。使用差動輸出發射天線21,之監視裝置10的頻寬約 44.7百萬赫兆(如圖15(b)所示者),而使用單端輸出發射天 線21之監視裝置1〇的頻寬僅約為44.7百萬赫兆(如圖i5(a)Computer, RISC) architecture 8-bit low-power (^〇8 microcontroller, in fact, the data collection and data transmission from analog signal processing circuit is available. Data transmission can be done by RS-232 or USB interface. The serial port driver 78 is connected to the tablet 25 via an RS-232 interface, and has an external data processing and display unit 28. The transmitter 19 and the electronic erasable memory (4) communicate via a USB interface. It can be a USB single-chip universal non-synchronous transceiver, which transmits a series of data with a data transfer rate of 920 kbaud (baud). The electronic erasable memory is used to store structural parameters. The USB vendor identifier, the product identifier, the sequence 1 and the controller string are included. The reference voltage source of the three-terminal adjustable shunt regulator 79 is used to supply the analog signal processing of the analog board 23. The reference voltage of the circuit and the analog/digital converter of the microcontroller of the tablet 25. Referring to Figure 10, the improvement in energy performance of the monitoring device 1 is due to the signal amplitude spectrum 220 entering the transmitting antenna 21 and The frequency of the antenna 21 is matched by the efficiency U0. Therefore, the radiated signal energy is almost twice that of the common component (with the signal spectrum packet 120 and the same antenna frequency performance). The match between the signal amplitude spectrum and the antenna frequency performance The selection of a suitable transmitting antenna, such as a loop antenna (1〇〇p antenna), a collared antenna end 1306023, a terminating half-wave antenna, and a spiral antenna, respectively, is shown in Figure 12(4). 12(b), 12(.), and 12(4) FIG. 13(a) and FIG. 13(b) show a comparison diagram of the sfl-number waveform and the electrocardiogram signal waveform of the radial artery captured by the monitoring device 1. As shown in Fig. 13(b), the performance of the monitoring device 10 can be confirmed in a clinical device by comparing the radial artery pulse signal 2〇〇 and the electrocardiogram 210 obtained by the monitoring device. a) The displayed waveform is taken from a patient with a normal heartbeat rhythm. Conversely, the waveform shown in Figure 13(b) is from a patient with arterial premature c〇ntracti〇n 'Apc' symptoms. Both results show a fairly clear heartbeat waveform, indicating that the monitoring device 10 does serve as a diagnostic tool for a patient with a heart disease. Figure 14 illustrates a portion of the analog plate 24 of the monitoring device of the present invention. Compared to the analog plate 24 shown in Fig. 5(a), a single-ended output transmitting antenna 21 is used, and the analog plate 24 shown in Fig. 14 uses a differential output transmitting antenna 21*. The monitoring device 1 using the differential output transmitting antenna can greatly increase the bandwidth and greatly increase the waveform amplitude representing the physical activity of the human body. Fig. 15 (a) shows the bandwidth of the monitoring device 1 使用 using the single-ended output transmitting antenna 21. Fig. 15 (b) shows the bandwidth of the monitoring device 1 使用 using the differential output transmitting antenna 2 。. Using the differential output transmit antenna 21, the bandwidth of the monitoring device 10 is about 44.7 megahertz (as shown in Figure 15(b)), while the bandwidth of the monitoring device 1〇 using the single-ended output transmit antenna 21 is only Approximately 44.7 million megahertz (Figure i5(a)
100210100210
IO607I ΟΟ5366837 -20- 1306023 斤丁者)日月顯地’選用差動輸出發射天線21,之監視裝置 ,其頻寬大約可增加七倍。 圖wu)顯不使用單端輸出發射天線21之監視裝置職取 之棱骨動脈訊號波形’而圖16(1))顯示使用差動輸出發射天 線21之皿視裝置1Q擷取之徺骨動脈訊號波形。明顯地,圖 (b)所示之橈骨動脈訊號波形的振幅大約圖16(幻之橈骨 動脈訊號波形的振幅之兩倍。換句話說,使用差動輸出發 射天線21’可以增加代表人體器官之物理活動之訊號的振幅 〇 圖17中例示本發明之撓性槽縫天線3〇〇。該撓性槽縫天線 300包含一由聚亞醯胺製成之撓性基板3〇2、一設置於該撓 性基板302上之發射天線31〇以及一與該發射天線31〇相同 之接收天線320。該撓性基板3〇2使得該撓性槽縫天線3〇〇 可更容易地配戴在人體身上。該發射天線31〇包含一對金屬 塊304八及3048’其中各金屬塊304八及3048至少具有一槽縫 3 12(例如以鏡像設置之三角形槽縫),且各金屬塊3〇4八及 304B之饋入端308A的橫向寬度(lateral width)小於自由端 3 08B之橫向寬度。此外,該撓性槽缝天線3〇〇另包含一連接 到該金屬塊304A之饋入端308A的微帶線306。較佳地,該 金屬塊304A可為三角形,風扇形(fan_shapecj)或T形 (T-shaped),且該微帶線3 06的長度為超寬頻電磁波之波長 的一半。 圖1 8(a)顯示使用撓性槽縫天線300之監視裝置1 〇的頻寬 ,而圖18(b)顯示使用撓性天線300'之監視裝置1〇的頻寬, V0/ 100210 1〇6〇71 005366837 -21- 1306023 其中撓性天線300'具有設置在硬基板3〇2'上之無槽縫發射 天線310,及接收天線320,,如圖17(b)所示。使用圖17(1^所 示之撓性天線300,的監視裝置1〇之頻寬僅約為12〇百萬赫兆 ’而使用圖18(a)所示之撓性槽縫天線3〇〇的監視裝置1〇之頻 寬則尚達1 _ 145兆赫。明顯地,使用撓性基板3〇2並在金屬 塊304A及304B中設置槽縫312有助於增加該監視裝置1〇之 頻寬約十倍。 圖19(a)顯示使用撓性槽縫天線3〇〇之監視裝置1〇操取之 橈骨動脈訊號波形,而圖19(b)顯示使用撓性天線3〇〇,之監 視裝置ίο擷取之橈骨動脈訊號波形。明顯地,圖19(a)之橈 骨動脈訊號波形的振幅約為圖19(b)i橈骨動脈訊號波形之 振幅的四倍。換句話說,使用撓性基板3〇2並在金屬塊3〇4a 及304B中設置槽縫312有助於增加人體器官之物理活動的 訊號振幅。 本發明之技術内容及技術特點已揭示如上,然而熟悉本 項技術之人士仍可基於本發明之教示及揭示而作種種不背 離本發明精神之替換及修飾。因此,本發明之保護範圍應 不限於實施例所揭示者,而應包括各種不背離本發明之替 換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡單說明】 圖1(a)、圖1(b)及圖1(c)例示本發明之監視裝置配戴於可 偵測到人體動脈血管活動之位置; 圖2(a)及圖2(b)例示本發明之監視裝置; 圖30)顯示探測脈波的時序圖; 100210 1〇6〇71 005366837 -22- 1306023 圖3(b)顯示輻射的探測脈波的頻譜圖; 圖4顯示本發明之監視裝置的功能方塊圖; 圖叫、圖5⑻、圖5⑷及圖5⑷顯示本發明之類比板的 電路圖; 圖6(a)及圖6(b)顯示本發明之平衡混波器的運作方式; 圖7(a)顯示該平衡混波器接收之探測脈波與參考脈波之 相對關係; • 圖7(b)顯示在平衡混波器之輸出端與第一低通濾波器之 輸出端之間的訊號時序圖; 圖8(a)及圖8(b)比對靜止狀態下之動脈血管及行進狀態 下的動脈血管的時序圖; 圖9顯示本發明之平衡混波器的輸出端訊號之頻譜圖; 圖10顯示本發明輸入到發射天線之訊號頻譜封包與天線 之頻率效能; 圖11顯示本發明之數位板的電路圖; • 圖12(a)顯示本發明之監視裝置的迴路天線; 圖12(b)顯示本發明之監視裝置的領結狀天線; 圖12(c)顯示本發明之監視裝置的終端半波天線; 圖12(d)顯示本發明之監視裝置的螺旋天線; 圖13(a)及圖13(b)比對使用本發明之監視裝置擷取之動 脈訊號波形與心電圖訊號波形; 圖14顯示本發明之監視裝置之類比板之一部分; 圖15(a)顯示使用單端輸出發射天線之監視裝置的頻寬; 圖15(b)顯示使用差動輸出發射天線之監視裝置的頻寬; 100210 1〇6〇71 005366837 -23- 1306023 圖16(a)顯不使用單端輸出發射天線之監視裝置擷取之橈 骨動脈訊號波形; 圖16(b)顯示使用差動輸出發射天線之監視裝置擷取之 橈骨動脈訊號波形; 圖17(a)顯示本發明之撓性槽縫天線; 圖17(b)顯示本發明之撓性天線; 圖1 8(a)顯示撓性槽縫天線之頻寬; 圖18(b)顯示撓性天線之頻寬; 圖i9(a)顯示使用撓性槽縫天線之監視裝置擷取之橈骨動 脈訊號波形;以及 圖19(b)顯示使用撓性天線之監視裝置擷取之橈骨動脈 訊號波形。 【主要元件符號說明】 2 時脈產生器 4 平衡混波器 5 高通濾波器 6 第一低通濾波器 7 第一放大器 8 第二低通濾波器 9 第二放大器 10 監視裝置 11 帶子 12 延遲線 13 第一脈波產生器 14 第二脈波產生器 15 類比/數位轉換器 18 微控制器 19 通用型的非同步無線收20 薄膜 發器 21 發射天線 21, 發射天線 22 接收天線 23 天線板 -24-IO607I ΟΟ5366837 -20- 1306023 jin Ding)) The use of the differential output transmitting antenna 21, the monitoring device, the bandwidth can be increased by about seven times. Figure wu) shows the rib artery signal waveform of the monitoring device employed by the single-ended output transmitting antenna 21 and FIG. 16(1) shows the radial artery captured by the device 1Q using the differential output transmitting antenna 21. Signal waveform. Obviously, the amplitude of the radial artery signal waveform shown in Figure (b) is approximately twice the amplitude of the waveform of the sacral iliac artery signal. In other words, the use of the differential output transmitting antenna 21' can increase the representation of the human body. The amplitude of the signal of the physical activity The flexible slot antenna 3 of the present invention is illustrated in Fig. 17. The flexible slot antenna 300 comprises a flexible substrate 3, 2 made of polyamido, and is disposed on a transmitting antenna 31A on the flexible substrate 302 and a receiving antenna 320 identical to the transmitting antenna 31. The flexible substrate 3〇2 allows the flexible slot antenna 3 to be more easily worn on the human body. The transmitting antenna 31A includes a pair of metal blocks 304 and 3048', wherein each of the metal blocks 304 and 3048 has at least one slot 3 12 (for example, a triangular slot provided in a mirror image), and each metal block 3〇4 The lateral width of the feed end 308A of the eight and 304B is smaller than the lateral width of the free end 308B. In addition, the flexible slot antenna 3A further includes a feed end 308A connected to the metal block 304A. Microstrip line 306. Preferably, the metal block 304 A may be a triangle, a fan shape (fan_shapecj) or a T-shape, and the length of the microstrip line 306 is half the wavelength of the ultra-wideband electromagnetic wave. Figure 1 8(a) shows the use of a flexible slot antenna The bandwidth of the monitoring device 1 of 300 is shown, and FIG. 18(b) shows the bandwidth of the monitoring device 1〇 using the flexible antenna 300', V0/100210 1〇6〇71 005366837 -21- 1306023 where the flexible antenna 300 'The slotless transmit antenna 310 having the hard substrate 3〇2' and the receive antenna 320 are as shown in Fig. 17(b). Monitoring using the flexible antenna 300 shown in Fig. 17 (1) The bandwidth of the device is only about 12 mega-megahertz, and the bandwidth of the monitoring device 1 using the flexible slot antenna 3 shown in Fig. 18(a) is still 1 _ 145 MHz. Obviously, the use of flexible substrate 3〇2 and the provision of slots 312 in metal blocks 304A and 304B helps to increase the bandwidth of the monitoring device 1 by a factor of about 10. Figure 19(a) shows the use of a flexible slot antenna. The monitoring device of the 3〇〇 device performs the waveform of the radial artery signal, and FIG. 19(b) shows the waveform of the radial artery signal captured by the monitoring device using the flexible antenna 3〇〇. The amplitude of the radial artery signal waveform of Fig. 19(a) is about four times the amplitude of the waveform of the iliac artery signal of Fig. 19(b). In other words, the flexible substrate 3〇2 is used and the metal block 3〇4a The provision of slots 312 in 304B helps to increase the signal amplitude of the physical activity of the human body. The technical content and technical features of the present invention have been disclosed above, but those skilled in the art can still make based on the teachings and disclosures of the present invention. Various substitutions and modifications may be made without departing from the spirit of the invention. Therefore, the scope of the present invention is not limited by the scope of the invention, and the invention is intended to cover various alternatives and modifications. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1(a), FIG. 1(b) and FIG. 1(c) illustrate the position of the monitoring device of the present invention at a position where an arterial blood vessel activity can be detected; FIG. 2(a) and FIG. 2(b) illustrates the monitoring device of the present invention; FIG. 30) shows a timing chart of the detected pulse wave; 100210 1〇6〇71 005366837 -22- 1306023 FIG. 3(b) shows a spectrogram of the detected pulse wave of the radiation; A functional block diagram showing the monitoring device of the present invention; FIG. 5(8), FIG. 5(4), and FIG. 5(4) show circuit diagrams of the analog board of the present invention; FIGS. 6(a) and 6(b) show the balanced mixer of the present invention. Figure 7(a) shows the relative relationship between the detected pulse wave received by the balanced mixer and the reference pulse wave; • Figure 7(b) shows the output of the balanced mixer and the first low-pass filter. Figure 10 (a) and Figure 8 (b) compare the timing of the arterial vessels in the resting state and the arteries in the traveling state; Figure 9 shows the balanced mixer of the present invention Spectrum diagram of the output signal; Figure 10 shows the frequency performance of the signal spectrum packet and antenna input to the transmitting antenna of the present invention; Figure 12 (a) shows a loop antenna of the monitoring device of the present invention; Figure 12 (b) shows a bow-tie antenna of the monitoring device of the present invention; Figure 12 (c) shows the present invention The terminal half-wave antenna of the monitoring device; Figure 12 (d) shows the helical antenna of the monitoring device of the present invention; Figure 13 (a) and Figure 13 (b) compare the arterial signal waveform and electrocardiogram captured by the monitoring device of the present invention. Signal waveform; Figure 14 shows a portion of the analog panel of the monitoring device of the present invention; Figure 15 (a) shows the bandwidth of the monitoring device using a single-ended output transmitting antenna; Figure 15 (b) shows the monitoring using a differential output transmitting antenna The bandwidth of the device; 100210 1〇6〇71 005366837 -23- 1306023 Figure 16 (a) shows the waveform of the radial artery signal captured by the monitoring device using the single-ended output transmitting antenna; Figure 16 (b) shows the use of the differential output Fig. 17(a) shows the flexible slot antenna of the present invention; Fig. 17(b) shows the flexible antenna of the present invention; Fig. 18(a) shows flexibility The bandwidth of the slot antenna; Figure 18(b) shows the flexible antenna Wide; FIG i9 (a) a flexible display slot signal waveform of the radial artery fetched antenna of the monitoring device; and FIG. 19 (b) show the signal waveform of the radial artery using fetched flexible antenna of the monitoring device. [Major component symbol description] 2 Clock generator 4 Balanced mixer 5 High-pass filter 6 First low-pass filter 7 First amplifier 8 Second low-pass filter 9 Second amplifier 10 Monitoring device 11 Band 12 Delay line 13 First pulse generator 14 Second pulse generator 15 Analog/digital converter 18 Microcontroller 19 Universal non-synchronous wireless receiver 20 Transmitter 21 Transmitting antenna 21, Transmitting antenna 22 Receiving antenna 23 Antenna board - twenty four-
;:y 100210 106071 0〇5366837 1306023;:y 100210 106071 0〇5366837 1306023
24 類比板 24' 類比板 25 數位板 27 RS232或USB纜線 28 資料處理及顯示單元 30 電阻 31 電阻 32 邏輯反相器 33 邏輯反相器 34 電容 36 電阻 37 電阻 38 電阻 39 電容 40 電容 41 電容 42 電容 51 可變電阻 52 旁路電容 71 運算放大器 72 運算放大器 73 運算放大器 74 運算放大器 75 運算放大器 76 連接器 77 電子可抹除式記憶體 78 序列埠驅動器 79 可調整分流調節器 80 運算放大器 102 邏輯反向器 103 石英晶體 104 電阻 105 電容 106 電容 108 邏輯反相器 109 邏輯反相器 220 上拉電阻 300 撓性槽縫天線 300' 撓性天線 302 撓性基板 302' 硬基板 304A金屬塊 304B金屬塊 306 微帶線 308A饋入端 308 自由端 310 發射天線 310, 無槽縫發射天線24 analog board 24' analog board 25 digital board 27 RS232 or USB cable 28 data processing and display unit 30 resistor 31 resistor 32 logic inverter 33 logic inverter 34 capacitor 36 resistor 37 resistor 38 resistor 39 capacitor 40 capacitor 41 capacitor 42 Capacitor 51 Resistor 52 Bypass Capacitor 71 Operational Amplifier 72 Operational Amplifier 73 Operational Amplifier 74 Operational Amplifier 75 Operational Amplifier 76 Connector 77 Electronically Erasable Memory 78 Serial 埠 Driver 79 Adjustable Shunt Regulator 80 Operational Amplifier 102 Logic inverter 103 quartz crystal 104 resistor 105 capacitor 106 capacitor 108 logic inverter 109 logic inverter 220 pull-up resistor 300 flexible slot antenna 300' flexible antenna 302 flexible substrate 302' hard substrate 304A metal block 304B Metal block 306 microstrip line 308A feed end 308 free end 310 transmit antenna 310, slotless transmit antenna
25- 1306023 接收天線 312 槽縫 320 320'接收天線25- 1306023 Receiving Antenna 312 Slot 320 320' Receiving Antenna
•26·•26·
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW94147473A TWI306023B (en) | 2005-12-30 | 2005-12-30 | Monitoring apparatus for physical movements of a body organ and method for acouiring the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW94147473A TWI306023B (en) | 2005-12-30 | 2005-12-30 | Monitoring apparatus for physical movements of a body organ and method for acouiring the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW200724094A TW200724094A (en) | 2007-07-01 |
| TWI306023B true TWI306023B (en) | 2009-02-11 |
Family
ID=45071280
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW94147473A TWI306023B (en) | 2005-12-30 | 2005-12-30 | Monitoring apparatus for physical movements of a body organ and method for acouiring the same |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI306023B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9134404B2 (en) | 2012-11-30 | 2015-09-15 | Industrial Technology Research Institute | Electronic device and method for sensing active state of object |
| US9877659B2 (en) | 2012-11-30 | 2018-01-30 | Industrial Technology Research Institute | Sensing system and method for physiology measurements |
Families Citing this family (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9198608B2 (en) | 2005-04-28 | 2015-12-01 | Proteus Digital Health, Inc. | Communication system incorporated in a container |
| US8730031B2 (en) | 2005-04-28 | 2014-05-20 | Proteus Digital Health, Inc. | Communication system using an implantable device |
| JP2008539047A (en) | 2005-04-28 | 2008-11-13 | プロテウス バイオメディカル インコーポレイテッド | Pharma Informatics System |
| WO2007028035A2 (en) | 2005-09-01 | 2007-03-08 | Proteus Biomedical, Inc. | Implantable zero-wire communications system |
| CN105468895A (en) | 2006-05-02 | 2016-04-06 | 普罗透斯数字保健公司 | Patient customized therapeutic regimens |
| US8945005B2 (en) | 2006-10-25 | 2015-02-03 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
| EP2069004A4 (en) | 2006-11-20 | 2014-07-09 | Proteus Digital Health Inc | Active signal processing personal health signal receivers |
| US8858432B2 (en) | 2007-02-01 | 2014-10-14 | Proteus Digital Health, Inc. | Ingestible event marker systems |
| MY154556A (en) | 2007-02-14 | 2015-06-30 | Proteus Digital Health Inc | In-body power source having high surface area electrode |
| WO2008112577A1 (en) | 2007-03-09 | 2008-09-18 | Proteus Biomedical, Inc. | In-body device having a multi-directional transmitter |
| US8540632B2 (en) | 2007-05-24 | 2013-09-24 | Proteus Digital Health, Inc. | Low profile antenna for in body device |
| DK2192946T3 (en) | 2007-09-25 | 2022-11-21 | Otsuka Pharma Co Ltd | In-body device with virtual dipole signal amplification |
| EP2215726B1 (en) | 2007-11-27 | 2018-01-10 | Proteus Digital Health, Inc. | Transbody communication systems employing communication channels |
| ES2636844T3 (en) | 2008-03-05 | 2017-10-09 | Proteus Biomedical, Inc. | Ingestible multimode communication systems and markers, and methods to use them |
| MY172060A (en) | 2008-07-08 | 2019-11-13 | Proteus Digital Health Inc | Ingestible event marker data framework |
| CA2746650A1 (en) | 2008-12-11 | 2010-06-17 | Proteus Biomedical, Inc. | Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same |
| US9439566B2 (en) | 2008-12-15 | 2016-09-13 | Proteus Digital Health, Inc. | Re-wearable wireless device |
| TWI503101B (en) | 2008-12-15 | 2015-10-11 | Proteus Digital Health Inc | Body-associated receiver and method |
| US9659423B2 (en) | 2008-12-15 | 2017-05-23 | Proteus Digital Health, Inc. | Personal authentication apparatus system and method |
| SG172846A1 (en) | 2009-01-06 | 2011-08-29 | Proteus Biomedical Inc | Ingestion-related biofeedback and personalized medical therapy method and system |
| TWI517050B (en) | 2009-11-04 | 2016-01-11 | 普羅托斯數位健康公司 | System for supply chain management |
| AU2011210648B2 (en) | 2010-02-01 | 2014-10-16 | Otsuka Pharmaceutical Co., Ltd. | Data gathering system |
| TWI557672B (en) | 2010-05-19 | 2016-11-11 | 波提亞斯數位康健公司 | Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device |
| EP2683291B1 (en) | 2011-03-11 | 2019-07-31 | Proteus Digital Health, Inc. | Wearable personal body associated device with various physical configurations |
| WO2015112603A1 (en) | 2014-01-21 | 2015-07-30 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
| US9756874B2 (en) | 2011-07-11 | 2017-09-12 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
| JP6144678B2 (en) | 2011-07-21 | 2017-06-07 | プロテウス デジタル ヘルス, インコーポレイテッド | Mobile communication device, system, and method |
| US9235683B2 (en) | 2011-11-09 | 2016-01-12 | Proteus Digital Health, Inc. | Apparatus, system, and method for managing adherence to a regimen |
| JP6498177B2 (en) | 2013-03-15 | 2019-04-10 | プロテウス デジタル ヘルス, インコーポレイテッド | Identity authentication system and method |
| WO2014197402A1 (en) | 2013-06-04 | 2014-12-11 | Proteus Digital Health, Inc. | System, apparatus and methods for data collection and assessing outcomes |
| CN110098914B (en) | 2013-09-20 | 2021-10-29 | 大冢制药株式会社 | Method, device and system for receiving and decoding signals |
| JP2016537924A (en) | 2013-09-24 | 2016-12-01 | プロテウス デジタル ヘルス, インコーポレイテッド | Method and apparatus for use with electromagnetic signals received at frequencies that are not accurately known in advance |
| US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
| CN109843149B (en) | 2016-07-22 | 2020-07-07 | 普罗秋斯数字健康公司 | Electromagnetic sensing and detection of ingestible event markers |
-
2005
- 2005-12-30 TW TW94147473A patent/TWI306023B/en active
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9134404B2 (en) | 2012-11-30 | 2015-09-15 | Industrial Technology Research Institute | Electronic device and method for sensing active state of object |
| US9877659B2 (en) | 2012-11-30 | 2018-01-30 | Industrial Technology Research Institute | Sensing system and method for physiology measurements |
Also Published As
| Publication number | Publication date |
|---|---|
| TW200724094A (en) | 2007-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI306023B (en) | Monitoring apparatus for physical movements of a body organ and method for acouiring the same | |
| AU2019257529B2 (en) | Diagnostic method for detection of fluid changes | |
| US20060094937A1 (en) | Monitoring apparatus of arterial pulses and method for the same | |
| AU2007297614A1 (en) | Apparatus and method for non-invasive thoracic radio interrogation | |
| CN101371785B (en) | Methods of acquisition of physical activity of human organs | |
| Tan et al. | Non-contact heart rate tracking using Doppler radar | |
| Buxi et al. | Cuffless blood pressure estimation from the carotid pulse arrival time using continuous wave radar | |
| CN101692976A (en) | Hemodynamics detection method based on microwave and radio frequency Doppler effect and device thereof | |
| US11800986B2 (en) | Non-pressure continuous blood pressure measuring device and method | |
| Obeid et al. | Position-free vital sign monitoring: Measurements and processing | |
| CN210249824U (en) | A heart rate sticker and heart rate monitor | |
| Calzone et al. | Innovations in biomedicine: Measuring physiological parameters becomes as simple as applying a plaster on the body | |
| US20240415395A1 (en) | Ear-worn eddy current measurement device and ear-worn sensor | |
| WO2024192054A1 (en) | System and method for monitoring health parameters | |
| Rothfuss | Automatic Blood Vessel Patency Detection for Wireless Implantable Medical Devices | |
| Golonek et al. | Home ultrasound device for heart beats monitoring based on ARM microcontroller | |
| TW201225908A (en) | Apparatus and method for cardiovascular pulse measurement |