TW202311282A - Compositions and vaccines for treating and/or preventing coronavirus variant infections and methods of using the same - Google Patents
Compositions and vaccines for treating and/or preventing coronavirus variant infections and methods of using the same Download PDFInfo
- Publication number
- TW202311282A TW202311282A TW111127437A TW111127437A TW202311282A TW 202311282 A TW202311282 A TW 202311282A TW 111127437 A TW111127437 A TW 111127437A TW 111127437 A TW111127437 A TW 111127437A TW 202311282 A TW202311282 A TW 202311282A
- Authority
- TW
- Taiwan
- Prior art keywords
- cov
- sars
- cells
- edv
- protein
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/52—Bacterial cells; Fungal cells; Protozoal cells
- A61K2039/523—Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/572—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/575—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6006—Cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/20011—Coronaviridae
- C12N2770/20034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Zoology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Communicable Diseases (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
在最近二十年,嚴重急性呼吸道症候群(SARS, 2002-2004 (Ksiazek等人,2003;Drosten等人,2003))及中東呼吸道症候群(MERS, 2012-至今(Zaki等人,2012))之爆發係對全球公共衛生之重大威脅。In the last two decades, outbreaks of Severe Acute Respiratory Syndrome (SARS, 2002-2004 (Ksiazek et al., 2003; Drosten et al., 2003)) and Middle East Respiratory Syndrome (MERS, 2012-present (Zaki et al., 2012)) is a major threat to global public health.
由經由密切接觸在人與人之間傳播之冠狀病毒(CoV)引起之呼吸道症候群在感染個體中導致高發病率及死亡率。儘管SARS及MERS初始表現為伴有發熱、呼吸困難及咳嗽之輕度、流行性感冒樣疾病,但進展為更嚴重症狀之特徵係非典型間質性肺炎及彌漫性肺泡損傷。SARS-CoV及MERS-CoV二者均能造成急性呼吸窘迫症候群(ARDS)(最嚴重之急性肺損傷形式),其中肺泡發炎、肺炎及缺氧性肺狀況導致50%之ARDS患者呼吸衰竭、多器官疾病及死亡(Lew等人,2003)。Respiratory syndromes caused by coronaviruses (CoVs) that are transmitted from person to person through close contact result in high morbidity and mortality in infected individuals. Although SARS and MERS initially presented with a mild, influenza-like illness with fever, dyspnea, and cough, progression to more severe symptoms was characterized by atypical interstitial pneumonia and diffuse alveolar damage. Both SARS-CoV and MERS-CoV can cause acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, in which alveolar inflammation, pneumonia, and hypoxic lung conditions lead to respiratory failure, multiple Organ disease and death (Lew et al., 2003).
一直將疫苗視為預防及根除針對人類群體之傳染病以及賦予個體長期免疫保護益處之黃金標準。雖然已開發幾種SARS-CoV-2疫苗,但其對過去一年出現之眾多SAR-CoV-2變異株之效果較差。Vaccines have been considered the gold standard for preventing and eradicating infectious diseases against the human population and conferring long-term immune protection benefits on individuals. Although several SARS-CoV-2 vaccines have been developed, they are less effective against the numerous SAR-CoV-2 variants that have emerged in the past year.
因此,需要新的組合物及方法有效刺激特別地針對SARS-CoV-2變異株之抗病毒免疫性。本發明滿足該等需求。Therefore, new compositions and methods are needed to effectively stimulate antiviral immunity especially against SARS-CoV-2 variants. The present invention fulfills these needs.
在一個態樣中,本文闡述組合物,其包含:(a) 載體,其包含編碼至少一種病毒抗原之質體,其中該病毒抗原係來自SARS-CoV-2變異株;(b) 載體,其包含CD1d識別之抗原;及(c) 至少一種醫藥上可接受之載劑,其中載體(a)及載體(b)中之至少一者係完整、細菌源性袖珍型細胞或殺死的細菌細胞。In one aspect, compositions are described herein comprising: (a) a vector comprising a plastid encoding at least one viral antigen, wherein the viral antigen is from a variant of SARS-CoV-2; (b) a vector comprising comprising an antigen recognized by CD1d; and (c) at least one pharmaceutically acceptable carrier, wherein at least one of carrier (a) and carrier (b) is an intact, bacterial-derived pocket cell or a killed bacterial cell .
在另一態樣中,SARS-CoV-2變異株選自由以下組成之群:(a) UK SARS-CoV-2變異株(B.1.1.7/ VOC-202012/01);(b) 具有E484K之B.1.1.7變異株;(c) B.1.617.2 (δ)變異株;(d) B.1.617變異株;(e) B.1.617.1 (κ)變異株;(f) B.1.617.3變異株;(g) 南非B.1.351 (β)變異株;(h) P.1 (γ)變異株;(i) B.1.525 (η)變異株;(j) B.1.526 (ι)變異株;(k) λ (譜系C.37)變異株;(l) ε (譜系B.1.429)變異株;(m) ε (譜系B.1.427)變異株;(n) ε (譜系CAL.20C)變異株;(o) ζ (譜系P.2)變異株;(p) θ (譜系P.3)變異株;(q) R.1變異株;(r) 譜系B.1.1.207變異株;及(s) 譜系B.1.620變異株。In another aspect, the SARS-CoV-2 variant is selected from the group consisting of: (a) UK SARS-CoV-2 variant (B.1.1.7/VOC-202012/01); (b) has B.1.1.7 variant of E484K; (c) B.1.617.2 (δ) variant; (d) B.1.617 variant; (e) B.1.617.1 (κ) variant; (f) B.1.617.3 variant; (g) South African B.1.351 (β) variant; (h) P.1 (γ) variant; (i) B.1.525 (η) variant; (j) B. 1.526 (ι) variant; (k) λ (lineage C.37) variant; (l) ε (lineage B.1.429) variant; (m) ε (lineage B.1.427) variant; (n) ε (lineage CAL.20C) variant; (o) ζ (lineage P.2) variant; (p) θ (lineage P.3) variant; (q) R.1 variant; (r) lineage B. 1.1.207 variant; and (s) lineage B.1.620 variant.
在另一態樣中,SARS-CoV-2變異株選自由以下組成之群:SARS-CoV-2變異株,其包含:(a) L452R棘蛋白取代;(b) E484K棘蛋白取代;(c) K417N棘蛋白取代;(d) E484K棘蛋白取代;(e) N501Y棘蛋白取代;(f) K417T棘蛋白取代;(g) E484K棘蛋白取代;(h) N501Y棘蛋白取代;及(i) SARS-CoV-2變異株,其具有以下誤義突變中之一或多者:N440、L452R、S477G/N、E484Q、E484K、N501Y、D614G、P681H、P681R及A701V。In another aspect, the SARS-CoV-2 variant is selected from the group consisting of: a SARS-CoV-2 variant comprising: (a) a L452R spinin substitution; (b) an E484K spinin substitution; (c ) K417N spinin substitution; (d) E484K spinin substitution; (e) N501Y spinin substitution; (f) K417T spinin substitution; (g) E484K spinin substitution; (h) N501Y spinin substitution; and (i) SARS-CoV-2 mutant strains, which have one or more of the following missense mutations: N440, L452R, S477G/N, E484Q, E484K, N501Y, D614G, P681H, P681R and A701V.
在一個態樣中,疫苗組合物可包含載體(a),其另外包含來自SARS-CoV-2株(例如,非變異株)之至少一種病毒抗原。舉例而言,SARS-CoV-2株可選自由以下組成之群:L株、S株、V株、G株、GR株及GH株。在另一態樣中,SARS-CoV-2病毒抗原可由包含SARS-CoV-2之序列之多核苷酸或與包含SARS-CoV-2之序列之多核苷酸具有至少80%序列一致性之多核苷酸編碼。In one aspect, the vaccine composition may comprise a carrier (a) which additionally comprises at least one viral antigen from a SARS-CoV-2 strain (eg, a non-mutant strain). For example, the SARS-CoV-2 strains can be selected from the group consisting of L strains, S strains, V strains, G strains, GR strains and GH strains. In another aspect, the SARS-CoV-2 viral antigen can be composed of a polynucleotide comprising the sequence of SARS-CoV-2 or a polynucleotide having at least 80% sequence identity to a polynucleotide comprising the sequence of SARS-CoV-2 nucleotide code.
在本文所述組合物之一個態樣中,質體編碼SARS-CoV-2或SARS-CoV-2變異株之棘(S)蛋白、核酸蛋白殼(N)蛋白、膜(M)蛋白及套膜(E)蛋白中之至少一者。另外,質體可編碼SARS-CoV-2株或變異株之棘(S)蛋白、核酸蛋白殼(N)蛋白、膜(M)蛋白及套膜(E)蛋白或其任一組合(例如,來自變異株之棘蛋白及來自非變異株之套膜蛋白)中之所有。In one aspect of the compositions described herein, the plastid encodes the spine (S) protein, nucleic acid protein shell (N) protein, membrane (M) protein, and sleeve protein of SARS-CoV-2 or SARS-CoV-2 variants. At least one of membrane (E) proteins. In addition, plastids can encode spine (S) protein, nucleic acid protein shell (N) protein, membrane (M) protein and envelope (E) protein or any combination thereof (for example, spinin from mutant strains and envelope protein from non-mutant strains).
在另一態樣中,質體可編碼SARS-CoV-2或SARS-CoV-2變異株之棘蛋白之受體結合結構域(RBD)。In another aspect, the plastid can encode the receptor binding domain (RBD) of the spike protein of SARS-CoV-2 or a variant of SARS-CoV-2.
在本文所述組合物之一個態樣中,載體(a)係第一完整、細菌源性袖珍型細胞或殺死的細菌細胞,且載體(b)係第二完整、細菌源性袖珍型細胞或殺死的細菌細胞。在另一態樣中,載體(a)及載體(b)係相同的完整、細菌源性袖珍型細胞或殺死的細菌細胞,其包含CD1d識別之抗原及編碼至少一種病毒SARS-CoV-2變異株病毒抗原之質體。在另一態樣中,載體(a)及載體(b)中之一者不為完整、細菌源性袖珍型細胞或殺死的細菌細胞,且載體(a)及載體(b)中之另一者係完整、細菌源性袖珍型細胞或殺死的細菌細胞。In one aspect of the compositions described herein, the carrier (a) is a first whole, bacteria-derived pocket cell or a killed bacterial cell, and the carrier (b) is a second whole, bacteria-derived pocket cell or killed bacterial cells. In another aspect, vector (a) and vector (b) are the same whole, bacterial-derived pocket cell or killed bacterial cell comprising an antigen recognized by CD1d and encoding at least one virus SARS-CoV-2 The plastid of the mutant virus antigen. In another aspect, one of vector (a) and vector (b) is not an intact, bacterial-derived pocket cell or a killed bacterial cell, and the other of vector (a) or vector (b) One is intact, bacteria-derived pocket cells or killed bacterial cells.
在一個實施例中,CD1d識別之抗原包含鞘醣脂。舉例而言,CD1d識別之抗原可選自由以下組成之群:α-半乳糖神經醯胺(α-GalCer)、α-半乳糖神經醯胺之C-糖苷形式(α-C-GalCer)、半乳糖神經醯胺之12碳醯基形式(β-GalCer)、β-D-葡萄哌喃糖苷神經醯胺(β-GlcCer)、l,2-二醯基-3-O-半乳糖基-sn-甘油(BbGL-II)、含有二醯基甘油之醣脂(Glc-DAG-s2)、神經節苷酯(GD3)、神經三已糖苷神經醯胺(Gg3Cer)、醣苷基磷脂醯肌醇(GPI)、α-葡糖醛醯基神經醯胺(GSL-1或GSL-4)、異球三己糖苷神經醯胺(iGb3)、脂磷聚糖(LPG)、溶血磷酯醯膽鹼(LPC)、α-半乳糖神經醯胺類似物(OCH)、蘇糖醇神經醯胺及其任一者之衍生物。In one embodiment, the antigen recognized by CDld comprises glycosphingolipids. For example, the antigen recognized by CDld can be selected from the group consisting of α-galactosylceramide (α-GalCer), the C-glycosidic form of α-galactosylceramide (α-C-GalCer), half The 12-carbon acyl form of lactosylceramide (β-GalCer), β-D-glucopyranosylceramide (β-GlcCer), l,2-diacyl-3-O-galactosyl-sn - Glycerol (BbGL-II), glycolipid containing diacylglycerol (Glc-DAG-s2), ganglioside (GD3), neurotrihexosylceramide (Gg3Cer), glycoside phosphatidylinositol ( GPI), α-glucuronyl ceramide (GSL-1 or GSL-4), isoglucotrihexosyl ceramide (iGb3), lipophosphoglycan (LPG), lysophosphatidyl choline ( LPC), α-galactosylceramide analogs (OCH), threitol ceramide, and derivatives of any of them.
在另一態樣中,CD1d識別之抗原包含α-GalCer。另外,CD1d識別之抗原可包含合成α-GalCer類似物。舉例而言,CD1d識別之抗原可包含選自以下之合成α-GalCer類似物:6′-去氧-6′-乙醯胺α-GalCer (PBS57)、萘脲α-GalCer (NU-α-GC)、NC-α-GalCer、4ClPhC-α-GalCer、PyrC-α-GalCer、α-carba-GalCer、carba-α-D-半乳糖α-GalCer類似物(RCAI-56)、1-去氧-新-肌醇α-GalCer類似物(RCAI-59)、1-O-甲基化α-GalCer類似物(RCAI-92)及HS44胺基環醇神經醯胺。In another aspect, the antigen recognized by CDld comprises α-GalCer. Alternatively, antigens recognized by CDld may include synthetic α-GalCer analogs. For example, the antigen recognized by CDld may comprise a synthetic α-GalCer analog selected from the group consisting of 6′-deoxy-6′-acetamide α-GalCer (PBS57), naphthaleneurea α-GalCer (NU-α- GC), NC-α-GalCer, 4ClPhC-α-GalCer, PyrC-α-GalCer, α-carba-GalCer, carba-α-D-galactose α-GalCer analog (RCAI-56), 1-deoxy - Neo-inositol α-GalCer analog (RCAI-59), 1-O-methylated α-GalCer analog (RCAI-92) and HS44 aminocyclitol ceramide.
在一個態樣中,CD1d識別之抗原係IFNγ激動劑。In one aspect, the antigen recognized by CDld is an IFNy agonist.
本文所述之組合物可經調配用於任何醫藥上可接受之用途。醫藥上可接受之調配物之實例包括(但不限於)經口投與、注射、經鼻投與、肺投與或局部投與。The compositions described herein may be formulated for any pharmaceutically acceptable use. Examples of pharmaceutically acceptable formulations include, but are not limited to, oral administration, injection, nasal administration, pulmonary administration or topical administration.
在另一態樣中,涵蓋包含至少一種完整、細菌源性袖珍型細胞或殺死的細菌細胞之疫苗組合物,且在該袖珍型細胞或細胞內包含:(a) 編碼來自以下中之一或多者之棘蛋白之質體:SARS-CoV-2變異株α (B.1.1.7.UK)、SARS-CoV-2變異株β (B.1.351. SA)、SARS-CoV-2變異株δ (B.1.617.2印度(India))及/或SARS-CoV-2變異株γ (P.1巴西(Brazil));及(b) α-半乳糖神經醯胺。另外,疫苗組合物可在單一袖珍型細胞內包含(a)及(b)。此外,疫苗組合物之質體可編碼來自以下中每一者之棘蛋白:SARS-CoV-2變異株α (B.1.1.7.UK)、SARS-CoV-2變異株β (B.1.351. SA)、SARS-CoV-2變異株δ (B.1.617.2印度)及SARS-CoV-2變異株γ (P.1巴西)。In another aspect, vaccine compositions comprising at least one whole, bacterially-derived miniature cell or killed bacterial cell, and comprising within the miniature cell or cells: (a) Plastids of spiky proteins in multiples: SARS-CoV-2 variant α (B.1.1.7.UK), SARS-CoV-2 variant β (B.1.351. SA), SARS-CoV-2 variant Strain δ (B.1.617.2 India (India)) and/or SARS-CoV-2 variant γ (P.1 Brazil (Brazil)); and (b) α-galactosylceramide. Alternatively, the vaccine composition may comprise (a) and (b) within a single pocket cell. In addition, the plastids of the vaccine composition may encode spike proteins from each of: SARS-CoV-2 variant alpha (B.1.1.7.UK), SARS-CoV-2 variant beta (B.1.351 . SA), SARS-CoV-2 variant δ (B.1.617.2 India) and SARS-CoV-2 variant γ (P.1 Brazil).
本揭示內容亦涵蓋治療病毒感染及/或疫苗接種以對抗病毒感染之方法,其包含向有需要之個體投與本文所述之組合物。The disclosure also encompasses methods of treating viral infections and/or vaccinating against viral infections comprising administering to an individual in need thereof a composition described herein.
在一個態樣中,個體罹患淋巴球減少症或處於發展其之風險下。在另一態樣中,認為個體處於因病毒感染而患嚴重疾病及/或嚴重併發症之風險下。舉例而言,處於因病毒感染而患嚴重疾病及/或嚴重併發症之較高風險下之「老年」個體係約50歲或以上、約55歲或以上、約60歲或以上或約65歲或以上。In one aspect, the individual suffers from or is at risk of developing lymphopenia. In another aspect, the individual is considered to be at risk of serious disease and/or serious complications from viral infection. For example, an "elderly" individual who is at higher risk of serious illness and/or serious complications from a viral infection is about 50 years or older, about 55 years or older, about 60 years or older, or about 65 years old or above.
在本文所述方法中之另一態樣中,個體罹患一或多種選自由以下組成之群之既有病況:糖尿病、氣喘、呼吸病症、高血壓及心臟病。在仍另一態樣中,個體係免疫受損。舉例而言,個體可由於AIDS、癌症、癌症治療、肝炎、自體免疫疾病、類固醇接受、免疫衰老或其任一組合而免疫受損。In another aspect of the methods described herein, the individual suffers from one or more pre-existing conditions selected from the group consisting of diabetes, asthma, respiratory disorder, hypertension, and heart disease. In yet another aspect, the individual is immunocompromised. For example, an individual may be immunocompromised due to AIDS, cancer, cancer treatment, hepatitis, autoimmune disease, steroid reception, immunosenescence, or any combination thereof.
在一個實施例中,本文所述組合物之投與增加暴露於冠狀病毒後之存活機會。舉例而言,存活機會可增加約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%或約100%,如使用任何臨床上認可之技術所量測。In one embodiment, administration of a composition described herein increases the chance of survival after exposure to a coronavirus. For example, the chance of survival can be increased by about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or about 100%, if using Measured by any clinically recognized technique.
在仍另一態樣中,本文所述組合物之投與降低冠狀病毒之傳播風險。舉例而言,傳播風險之降低可為約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%或約100%,如使用任何臨床上認可之技術所量測。In yet another aspect, administration of the compositions described herein reduces the risk of transmission of the coronavirus. For example, the reduction in risk of transmission can be about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or about 100%, As measured using any clinically recognized technique.
在本文所述之所有方法中,投與步驟可經由任何醫藥上可接受之方法實施。In all methods described herein, the administering step can be performed by any pharmaceutically acceptable method.
在另一態樣中,個體可暴露於或預期暴露於具有冠狀病毒傳染性之個體。另外,具有冠狀病毒傳染性之個體可具有一或多種選自由以下組成之群之症狀:發熱、咳嗽、呼吸短促、腹瀉、打噴嚏、流鼻涕及喉痛。In another aspect, an individual may be exposed or expected to be exposed to an individual with coronavirus infectivity. Additionally, an individual with coronavirus infectivity may have one or more symptoms selected from the group consisting of fever, cough, shortness of breath, diarrhea, sneezing, runny nose, and sore throat.
在一個實施例中,本文所述方法之個體係健康照護工作者、60歲或以上、經常旅行者、軍事人員、照護者或具有因感染導致死亡風險增加之既有病況之個體。In one embodiment, individuals of the methods described herein are health care workers, 60 years of age or older, frequent travelers, military personnel, caregivers, or individuals with pre-existing conditions that increase the risk of death from infection.
在另一態樣中,方法進一步包含投與一或多種抗病毒藥物。舉例而言,一或多種抗病毒藥物可選自由以下組成之群:氯喹(chloroquine)、達如那韋(darunavir)、加利昔韋(galidesivir)、干擾素β、洛匹那韋(lopinavir)、利托那韋(ritonavir)、瑞德西韋(remdesivir)及三氮唑核苷(triazavirin)。In another aspect, the method further comprises administering one or more antiviral drugs. For example, one or more antiviral drugs may be selected from the group consisting of: chloroquine, darunavir, galidesivir, interferon beta, lopinavir , ritonavir, remdesivir and triazavirin.
在本揭示內容之方法中,CD1d識別之抗原在個體中誘導Th1細胞介素反應。舉例而言,細胞介素可包含IFNγ。In the methods of the present disclosure, an antigen recognized by CDld induces a Th1 interleukin response in an individual. For example, interleukins can include IFNγ.
在另一態樣中,將包含CD1d識別之抗原之第一袖珍型細胞及包含編碼至少一種SARS-CoV-2變異株病毒抗原之質體之第二袖珍型細胞同時投與給個體。在仍另一態樣中,將包含CD1d識別之抗原之第一袖珍型細胞及包含編碼至少一種病毒抗原之質體之第二袖珍型細胞依序投與給個體。或者,本揭示內容涵蓋其中將包含CD1d識別之抗原之第一袖珍型細胞及包含編碼至少一種病毒抗原之質體之第二袖珍型細胞重複投與給個體之方法。In another aspect, a first pocket-sized cell comprising an antigen recognized by CDld and a second pocket-sized cell comprising a plastid encoding at least one SARS-CoV-2 variant viral antigen are administered to the individual simultaneously. In yet another aspect, a first pocket-sized cell comprising an antigen recognized by CDld and a second pocket-sized cell comprising a plastid encoding at least one viral antigen are sequentially administered to the individual. Alternatively, the present disclosure encompasses methods in which a first pocket-sized cell comprising an antigen recognized by CDld and a second pocket-sized cell comprising a plastid encoding at least one viral antigen are repeatedly administered to an individual.
在本文所述之方法中,包含CD1d識別之抗原之第一袖珍型細胞及包含編碼至少一種病毒抗原之質體之第二袖珍型細胞可至少每週一次、每週二次、每週三次或每週四次投與給個體。In the methods described herein, the first pocket-sized cells comprising an antigen recognized by CDld and the second pocket-sized cells comprising a plastid encoding at least one viral antigen can be administered at least once a week, twice a week, three times a week, or Administered to individual four times per week.
上述發明內容及以下圖示簡單說明及實施方式係實例性及解釋性的。其意欲提供本發明之進一步細節,但不應解釋為限制。其他目標、優點及新穎特徵自本發明之以下實施方式對熟習此項技術者將顯而易見。The above summary of the invention and the following brief description and implementation are exemplary and explanatory. It is intended to provide further details of the invention but should not be construed as limiting. Other objects, advantages and novel features will be apparent to those skilled in the art from the following description of the invention.
相關申請案之交叉參考Cross References to Related Applications
本申請案主張對2021年7月22日提出申請之美國臨時專利申請案第63/224,838號;及2021年9月20日提出申請之美國專利申請案第17/480,073號之優先權,其整體揭示內容係以整體引用的方式併入本文中。 I. 概述 This application claims priority to U.S. Provisional Patent Application No. 63/224,838, filed July 22, 2021; and U.S. Patent Application No. 17/480,073, filed September 20, 2021, in their entirety The disclosure is incorporated herein by reference in its entirety. I. Overview
本揭示內容係關於新穎組合物,可用於治療冠狀病毒感染及/或疫苗接種對抗冠狀病毒感染病毒,且尤其在患者群體為老年人、免疫受損(例如,來自癌症、HIV、肝炎、自體免疫疾病、接受免疫抑制療法之器官移植患者)及/或患有共病時。該等患者群體不太可能自現有COVID-19疫苗中之任一者產生強健抗COVID免疫反應。目前在世界上至少一個地區使用之COVID-19疫苗包括Pfizer/BioNTech Comirnaty ®COVID-19疫苗、Moderna COVID-19疫苗(mRNA 1273)、由Johnson & Johnson開發之Janssen/Ad26.COV 2.S、SII/Covishield及AstraZeneca/AZD1222疫苗(由AstraZeneca/Oxford開發且分別由India之State Institute及SK Bio製造)、由Beijing Bio-Institute of Biological Products Co Ltd (China National Biotec Group (CNBG)之子公司)生產之Sinopharm COVID-19疫苗及Sinovac Biotech Ltd. CoronaVac COVID-19疫苗。 This disclosure relates to novel compositions useful for treating and/or vaccinating against coronavirus infection viruses, and particularly in patient populations that are elderly, immunocompromised (e.g., from cancer, HIV, hepatitis, autologous immune diseases, organ transplant patients receiving immunosuppressive therapy) and/or with comorbidities. These patient populations are unlikely to mount a robust anti-COVID immune response from any of the existing COVID-19 vaccines. COVID-19 vaccines currently in use in at least one region of the world include Pfizer/BioNTech Comirnaty ® COVID-19 Vaccine, Moderna COVID-19 Vaccine (mRNA 1273), Janssen/Ad26.COV 2.S, SII developed by Johnson & Johnson /Covishield and AstraZeneca/AZD1222 vaccines (developed by AstraZeneca/Oxford and manufactured by State Institute of India and SK Bio, respectively), Sinopharm manufactured by Beijing Bio-Institute of Biological Products Co Ltd (subsidiary of China National Biotec Group (CNBG)) COVID-19 vaccine and Sinovac Biotech Ltd. CoronaVac COVID-19 vaccine.
SARS-CoV-2 (嚴重急性呼吸道症候群-冠狀病毒2型)係COVID-19大流行之致病物且儘管全球開展了疫苗接種工作,但大流行並未減弱,特別地隨著高關注變異株(variants of concern, VOC)之持續出現。結構上,SARS-CoV-2具有4種蛋白;棘(S)、套膜、膜及核酸蛋白殼(Chan等人,2020)。S-蛋白受體結合結構域(RBD)結合至宿主細胞上之人類血管收縮肽-轉化酶2 (hACE2)受體(Song等人,2018),且在病毒感染期間負責細胞附著及融合。S-蛋白之長度為1273個胺基酸(aa)且由位於N-末端之信號肽(1-13 aa)、包含N-末端結構域(14-305 aa)及RBD (319-541 aa)之S1次單元(14 - 685 aa)及S2次單元(殘基686-1273 aa)組成(Lan等人,2020)。RBD係關鍵中和靶標且當前疫苗主要旨在引發RBD特異性中和抗體及T細胞反應(Brouwer等人,2020)。SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus Type 2) is the causative agent of the COVID-19 pandemic and despite global vaccination efforts, the pandemic has not abated, especially with the high concern variant (variants of concern, VOC) continued to appear. Structurally, SARS-CoV-2 has 4 proteins; spine (S), mantle, membrane, and nucleic acid protein shell (Chan et al., 2020). The S-protein receptor binding domain (RBD) binds to the human vasoconstrictor peptide-converting enzyme 2 (hACE2) receptor on host cells (Song et al., 2018) and is responsible for cell attachment and fusion during viral infection. The S-protein is 1273 amino acids (aa) in length and consists of an N-terminal signal peptide (1-13 aa), including an N-terminal domain (14-305 aa) and an RBD (319-541 aa) The composition of the S1 subunit (14 - 685 aa) and the S2 subunit (residues 686-1273 aa) of the 2020 (Lan et al., 2020). RBD is a key neutralizing target and current vaccines are mainly aimed at eliciting RBD-specific neutralizing antibodies and T cell responses (Brouwer et al., 2020).
根據美國疾病管製與預防中心(US Centers for Disease Control and Prevention, CDC),SARS-CoV-2變異株具有一或多個將其與流通中之其他變異株區分開來。如所預期,在整個大流行期間,美國及全球均記錄了SARS-CoV-2之多種變異株。為了為當地疫情調查提供信息並瞭解全國趨勢,科學家比較病毒之間之基因差異,以鑑別變異株以及其彼此之關係。美國衛生與人群服務部(US Department of Health and Human Services, HHS)建立SARS-CoV-2機構間小組(Interagency Group, SIG),以改良CDC、國立衛生研究院(National Institutes of Health, NIH)、食品藥品管理局(Food and Drug Administration, FDA)、生物醫學高階研究和發展管理局(Biomedical Advanced Research and Development Authority, BARDA)及國防部(DoD)之協調。此機構間小組專注於對新興變異株之快速表徵並積極監測其對關鍵SARS-CoV-2對策之潛在效應,包括疫苗、療法及診斷。https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html (於2021年7月21日存取)。According to the US Centers for Disease Control and Prevention (CDC), a variant of SARS-CoV-2 has one or more characteristics that distinguish it from other variants in circulation. As expected, multiple variants of SARS-CoV-2 have been documented in the United States and globally throughout the pandemic. To inform local outbreak investigations and understand national trends, scientists compare genetic differences between viruses to identify variants and how they are related to each other. The US Department of Health and Human Services (HHS) established the SARS-CoV-2 Interagency Group (SIG) to improve CDC, National Institutes of Health (NIH), Coordination between Food and Drug Administration (FDA), Biomedical Advanced Research and Development Authority (BARDA) and Department of Defense (DoD). This interagency group is focused on the rapid characterization of emerging variants and actively monitoring their potential effects on key SARS-CoV-2 countermeasures, including vaccines, therapeutics and diagnostics. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html (accessed July 21, 2021).
在整個COVID-19大流行期間,SARS-CoV-2之基因變異株已出現並在世界各地傳播。在美國,病毒突變及變異株係藉助基於序列之監控、實驗室研究及流行病學調查進行慣常監測。Throughout the COVID-19 pandemic, genetic variants of SARS-CoV-2 have emerged and spread around the world. Viral mutations and variant strains are routinely monitored in the United States by means of sequence-based surveillance, laboratory studies, and epidemiological investigations.
免疫學家及衛生當局警告,並非所有人在感染Covid-19後均產生強健免疫反應,尤其係老年人或免疫系統較弱的人。免疫反應亦可取決於人暴露於多少病毒或其病情之嚴重程度。疫苗似乎較感染提供更持續保護。 Wall Street Journal, 「COVID-19 Immune Response Could be Long Lasting, but Variants Present Risks」(2021年7月16日)。許多免疫受損者即使在完全疫苗接種後亦不能引發強烈免疫反應。隨著以色列(Israel)由δ變異株引起之病例增加,其已開始對免疫系統較弱者進行加強注射。同上。CDC之顧問小組排定於下週討論為免疫受損個體提供額外劑量之可能性。同上。因此,特別需要將對此高風險患者群體有效之疫苗。 Immunologists and health authorities warn that not everyone develops a robust immune response to Covid-19, especially the elderly or those with weakened immune systems. The immune response can also depend on how much virus a person is exposed to or the severity of their illness. Vaccines appear to provide longer-lasting protection than infections. Wall Street Journal , "COVID-19 Immune Response Could be Long Lasting, but Variants Present Risks" (July 16, 2021). Many immunocompromised persons fail to elicit a strong immune response even after full vaccination. As the number of cases caused by the delta variant increases in Israel, it has begun booster shots for those with weakened immune systems. Ditto. A CDC advisory panel is scheduled to discuss the possibility of additional doses for immunocompromised individuals next week. Ditto. Therefore, there is a particular need for a vaccine that will be effective in this high-risk patient population.
對於COVID-19疫苗,高親和力抗原特異性抗體、CD8 +T細胞及記憶B細胞反應對於最大限度地保護免於高關注變異株(VOC)至關重要。本文闡述利用細菌源性之非活的奈米細胞(EDV TM)免疫之小鼠及人類志願者的結果,該等奈米細胞包裝有表現SARS-CoV-2之棘蛋白及IFNγ刺激佐劑α-半乳糖神經醯胺之細菌質體(EDV-COVID-αGC)。EDV-COVID-αGC顯示引發iNKT許可之樹突細胞活化/成熟,濾泡輔助性T細胞同源幫助B細胞經歷基於生發中心之體細胞超突變並產生能夠中和α、β、γ、δ及ο VOC之高親和力抗體,包括記憶B細胞反應。亦達成I型及II型干擾素刺激及S特異性CD8 +T細胞。EDV-COVID-αGC經凍乾,在室溫下儲存並運輸。 For COVID-19 vaccines, high-affinity antigen-specific antibodies, CD8 + T-cell, and memory B-cell responses are critical for maximal protection against variant strains of high concern (VOC). This paper presents the results of immunization of mice and human volunteers with bacterially-derived non-viable nanocells (EDV TM ) packaged with SARS-CoV-2 expressing spinin and the IFNγ-stimulating adjuvant α - Bacterial plastids of galactosylceramide (EDV-COVID-αGC). EDV-COVID-αGC was shown to trigger iNKT-permissive dendritic cell activation/maturation, and follicular helper T cell homology helps B cells undergo germinal center-based somatic hypermutation and produce cells capable of neutralizing α, β, γ, δ and ο High affinity antibodies to VOCs, including memory B cell responses. Type I and Type II interferon stimulation and S-specific CD8 + T cells were also achieved. EDV-COVID-αGC was lyophilized, stored and shipped at room temperature.
為使疫苗成功,宿主需要強健免疫系統,此在免疫受損患者(例如癌症、HIV)中係次佳的,且因此該等患者仍易於感染SARS-CoV-2及VOC (Haidar等人,2021;Liang等人,2020;Pegu等人,2021;Uriu等人,2021)。此外,由於目前批准之疫苗需要在-20℃至-70℃之溫度下儲存及運輸,儲放壽命僅為3至6個月,因此存在物流問題。For a vaccine to be successful, the host needs a robust immune system, which is sub-optimal in immunocompromised patients (e.g. cancer, HIV), and thus these patients remain susceptible to infection with SARS-CoV-2 and VOCs (Haidar et al., 2021 ; Liang et al., 2020; Pegu et al., 2021; Uriu et al., 2021). In addition, since the currently approved vaccines need to be stored and transported at a temperature of -20°C to -70°C, the storage life is only 3 to 6 months, so there are logistics problems.
在一個態樣中,本揭示內容闡述新型疫苗(命名為EDV-COVID-αGC),其包含亞微米直徑、非活的、染色體奈米細胞EDV TM(EnGeneIC Dream Vector),其包裝有(i) 攜帶S-蛋白編碼序列之I型干擾素刺激細菌基因表現重組質體,(ii) 表現在奈米細胞細胞質中所產生S-蛋白之質體,及(iii) II型干擾素刺激醣脂佐劑αGC ( 圖 11A)。EDV係源自突變株非病原性鼠傷寒沙氏桿菌細菌,該細菌由於染色體突變誘導之不對稱細胞分裂而在其正常複製過程中自細菌中萌發(MacDiarmid等人,2009;MacDiarmid等人,2007)。在幾個實體腫瘤之I期及IIa期臨床試驗中,單鏈Fv雙特異性(scFv)抗體靶向EDV已用於將細胞毒性酬載及小分子遞送至實體癌。在用盡所有治療選擇之該等患者中已達成腫瘤穩定/消退、延長之總存活及儘管重複給藥但毒性最小至無毒性(Kao等人,2015;van Zandwijk等人,2017;Whittle等人,2015)。 A. 臨床數據 In one aspect, the present disclosure sets forth a novel vaccine (designated EDV-COVID-αGC) comprising submicron diameter, non-live, chromosomal nanocell EDV ™ (EnGeneIC Dream Vector) packaged with (i) Type I interferons carrying S-protein coding sequences stimulate bacterial gene expression recombinant plastids, (ii) plastids expressing S-proteins produced in the cytoplasm of nanocells, and (iii) type II interferons stimulate glycolipid adjuvant Agent αGC ( Figure 11A ). The EDV line was derived from a mutant non-pathogenic Salmonella typhimurium bacterium that germinated from the bacterium during its normal replication due to chromosomal mutation-induced asymmetric cell division (MacDiarmid et al., 2009; MacDiarmid et al., 2007 ). Single-chain Fv bispecific (scFv) antibodies targeting EDV have been used to deliver cytotoxic payloads and small molecules to solid cancers in several Phase I and Phase IIa clinical trials in solid tumors. Tumor stabilization/regression, prolonged overall survival, and minimal to no toxicity despite repeated dosing have been achieved in these patients who have exhausted all treatment options (Kao et al., 2015; van Zandwijk et al., 2017; Whittle et al. , 2015). A. Clinical Data
本文所述之數據顯示,例如,EDV-COVID-αGC可將SARS-CoV-2 S蛋白及αGC遞送至樹突細胞(DC),從而引發S特異性體液及細胞反應,其中對野生型、α、β、γ及δ變異株之廣譜中和率大於90%,且對ο變異株之廣譜中和率大於70%。此外,呈現EDV-COVID-αGC I期臨床試驗之前4名志願者之結果,其與迄今為止之臨床前數據相呼應。The data presented here show, for example, that EDV-COVID-αGC can deliver the SARS-CoV-2 S protein and αGC to dendritic cells (DCs), thereby eliciting S-specific humoral and cellular responses, where wild-type, αGC , β, γ and δ mutant strains have a broad-spectrum neutralization rate greater than 90%, and the broad-spectrum neutralization rate of the ο mutant strain is greater than 70%. In addition, the results of 4 volunteers prior to the phase I clinical trial of EDV-COVID-αGC are presented, which echo the preclinical data to date.
儘管兩年多來全球為遏制COVID-19大流行做出前所未有的努力,但由於VOC之不斷出現導致疫苗保護效能不同程度地下降,這一努力受挫。另外,當前疫苗在免疫受損群體(例如,患有癌症、HIV、器官移植及自體免疫疾病之群體)中展示有限的保護效能。物流問題(例如需要在-20℃至-70℃下儲存及運輸疫苗以及僅3至6個月之儲放壽命)使得難以將該等疫苗提供給鄉村人口,特別地非洲之鄉村人口。本文闡述易於克服該等限制之新穎COVID-19疫苗。Despite more than two years of unprecedented global efforts to contain the COVID-19 pandemic, this effort has been thwarted by the persistent emergence of VOCs that has led to varying degrees of decline in vaccine protective efficacy. In addition, current vaccines display limited protective efficacy in immunocompromised populations (eg, those with cancer, HIV, organ transplants, and autoimmune diseases). Logistical issues such as the need to store and transport vaccines at -20°C to -70°C and a shelf life of only 3 to 6 months make it difficult to provide these vaccines to rural populations, especially in Africa. A novel COVID-19 vaccine that readily overcomes these limitations is described herein.
疫苗包含源自鼠傷寒沙氏桿菌之非病原性菌株體之亞微米(例如在一個態樣中400 nm)非活的、染色體奈米細胞(EDV™;EnGeneIC Dream Vector)。細菌菌株攜帶在正常細菌細胞分裂期間導致不對稱細胞分裂之突變,其中EDV在突變株菌株之兩極萌發(MacDiarmid等人,2007)。經純化EDV在組成型基因表現、經修飾β-內醯胺酶啟動子(EDV-COVID)預先包裝有細菌基因表現重組質體,該質體攜帶SARS-CoV-2 S蛋白編碼基因(或本文揭示之其他SARS-CoV蛋白)。質體在正常細菌生長期間在細菌細胞質中表現S-蛋白,且當形成EDV時,顯著濃度之S-蛋白分離至EDV細胞質中。另外,EDV-COVID奈米細胞進一步包裝有αGC (EDV-COVID-αGC)。109個EDV顯示每EDV攜帶約16ng之S-蛋白、約30ng之αGC及約100個質體拷貝。The vaccine comprises submicron (eg 400 nm in one aspect) non-viable, chromosomal nanocells (EDV™; EnGeneIC Dream Vector) derived from a non-pathogenic strain of S. typhimurium. Bacterial strains carry mutations that lead to asymmetric cell division during normal bacterial cell division, where EDV germinates at the poles of mutant strains (MacDiarmid et al., 2007). Purified EDV was prepackaged with bacterial gene expression recombinant plastids carrying the SARS-CoV-2 S protein-encoding gene (or the other SARS-CoV proteins disclosed). Plastids express the S-protein in the bacterial cytoplasm during normal bacterial growth, and when EDV is formed, significant concentrations of the S-protein segregate into the EDV cytoplasm. In addition, EDV-COVID nanocells were further packaged with αGC (EDV-COVID-αGC). 109 EDVs showed about 16 ng of S-protein, about 30 ng of αGC and about 100 plastid copies per EDV.
先前研究已顯示,全身投與後,EDV由諸如巨噬細胞及DC等專業吞噬細胞吞噬並在溶酶體中降解,以將藥物、核酸或佐劑酬載釋放至細胞質中(MacDiarmid等人,2007)。流式細胞術研究顯示,EDV-COVID-αGC有效將S-多肽及αGC二者遞送至鼠類骨髓源性JAWSII DC且αGC醣脂抗原呈現MHC I類樣分子CD1d以與游離αGC相似之效率藉助呈現於DC表面上( 圖 5B)。相同DC亦可藉助MHC II類分子將S-多肽呈現於細胞表面上( 圖 11C)。 Previous studies have shown that after systemic administration, EDV is phagocytosed by professional phagocytes such as macrophages and DCs and degraded in lysosomes to release drug, nucleic acid or adjuvant payloads into the cytoplasm (MacDiarmid et al. 2007). Flow cytometry studies showed that EDV-COVID-αGC efficiently delivered both S-polypeptide and αGC to murine bone marrow-derived JAWSII DC and αGC glycolipid antigen presented MHC class I-like molecule CD1d with similar efficiency as free αGC presented on the DC surface ( Figure 5B ). The same DC can also present the S-polypeptide on the cell surface via MHC class II molecules ( FIG . 11C ).
αGC:CD1d在DC細胞表面之展示招募iNKT細胞,該等細胞攜帶已知與DC上之CD1d相關αGC結合之不變的TCR,此導致IFNγ之快速分泌(Bricard及Porcelli, 2007),如僅在EDV-COVID-αGC小鼠組所見( 圖 11E)。使用EDV-COVID-αGC進行疫苗接種在6名人類志願者中到第28天導致顯著血清IFNγ釋放( 圖 14B),此表明iNKT細胞經由APC上之αGC:CD1d展示活化( 圖 12G)。相比之下,目前批准之mRNA疫苗(BNT162b2)顯示短暫血清IFNγ釋放,其到第8天減弱(Bergamaschi等人,2021)。此並不令人驚訝,此乃因mRNA疫苗並未經由iNKT/DC路徑引發抗原特異性抗體。此iNKT細胞活化及IFNγ分泌對 圖 12G中所繪示高親和力抗體產生路徑之活化至關重要。 Display of αGC:CD1d on the DC cell surface recruits iNKT cells carrying an invariant TCR known to bind to CD1d-associated αGC on DCs, which leads to rapid secretion of IFNγ (Bricard and Porcelli, 2007), as seen only in EDV-COVID-αGC mouse group seen ( Figure 11E ). Vaccination with EDV-COVID-αGC resulted in significant serum IFNγ release by day 28 in 6 human volunteers ( FIG . 14B ), suggesting activation of iNKT cells via αGC:CDld display on APCs ( FIG. 12G ). In contrast, the currently licensed mRNA vaccine (BNT162b2) showed transient serum IFNγ release that waned by day 8 (Bergamaschi et al., 2021). This is not surprising since the mRNA vaccine did not elicit antigen-specific antibodies via the iNKT/DC pathway. This iNKT cell activation and IFNγ secretion is critical for the activation of the high affinity antibody production pathway depicted in Figure 12G .
吞沒EDV之DC進一步經由病原體相關分子模式(PAMP)(如EDV相關LPS)活化(Sagnella等人,2020)。此活化釋放TNFα,此在所有四個含EDV組中均明顯( 圖 11H)。 DCs that engulf EDV are further activated by pathogen-associated molecular patterns (PAMPs) such as EDV-associated LPS (Sagnella et al., 2020). This activation released TNF[alpha], which was evident in all four EDV-containing groups ( FIG. 11H ).
已展示,經活化iNKT細胞經由CD40/40L信號傳導及細胞介素IFNγ及TNFα促進DC成熟(Hermans等人,2003)。亦確立DC表現共刺激分子CD80/86,但在經iNKT細胞活化後,該等分子之表現迅速上調,如EnGeneIC之癌症研究中所示(數據未顯示)。DC表面上CD40L之上調誘導其成熟及IL-12之分泌( 圖 11F)。再次,僅在EDV-COVID-αGC組中觀察到IL-12之分泌。此促進細胞毒性CD8+ T細胞之細胞溶解功能及CD4+T細胞之啟動(Vinuesa等人,2016),以為B細胞產生抗體提供同源幫助。 Activated iNKT cells have been shown to promote DC maturation through CD40/40L signaling and the cytokines IFNγ and TNFα (Hermans et al., 2003). It was also established that DC express the co-stimulatory molecule CD80/86, but upon activation by iNKT cells, the expression of these molecules was rapidly upregulated, as shown in a cancer study by EnGeneIC (data not shown). Upregulation of CD40L on the surface of DCs induced their maturation and secretion of IL-12 ( Fig . 1 IF ). Again, the secretion of IL-12 was only observed in the EDV-COVID-αGC group. This promotes the cytolytic function of cytotoxic CD8+ T cells and the priming of CD4+ T cells (Vinuesa et al., 2016) to provide cognate help for antibody production by B cells.
與所有其他組相比,來自經EDV-COVID-αGC免疫之小鼠之脾臟CD8+細胞毒性T細胞展現最高數量之CD3+/CD69+細胞毒性T細胞( 圖 13C, D)。T細胞反應對於早期病毒清除及記憶S特異性T細胞之長期保護甚為重要(Sattler等人,2020)。此數據表明,攜帶S蛋白之EDV能夠誘導CD8+ T細胞特異性,此進一步藉由αGC之納入而增強。 Splenic CD8+ cytotoxic T cells from mice immunized with EDV-COVID-αGC exhibited the highest number of CD3+/CD69+ cytotoxic T cells compared to all other groups ( FIG. 13C , D ). T cell responses are important for early viral clearance and long-term protection of memory S-specific T cells (Sattler et al., 2020). This data indicated that EDV carrying the S protein was able to induce CD8+ T cell specificity, which was further enhanced by the incorporation of αGC.
已確立,具有MHC II類呈現蛋白抗原之B細胞首先在富含T細胞之區域與二級淋巴組織之B細胞濾泡之間之接面處與TFH細胞同源相互作用(Eertwegh等人,1993;Garside等人,1998;Toellner等人,1996)。該等B細胞上之MHC II類/抗原複合物與TFH細胞表面TCR之接合導致同源輔助共刺激分子CD40L (Ma及Deenick, 2014)、可誘導T細胞共刺激物ICOS (Beier等人,2000)及PD-1之迅速上調( 圖 12G)。 It is well established that B cells bearing MHC class II-presented protein antigens first interact homologously with TFH cells at the junction between T cell-rich regions and B-cell follicles of secondary lymphoid tissue (Eertwegh et al., 1993 ; Garside et al., 1998; Toellner et al., 1996). Engagement of the MHC class II/antigen complex on these B cells with the TCR on the TFH cell surface results in the cognate co-stimulatory molecule CD40L (Ma and Deenick, 2014), the inducible T-cell co-stimulator ICOS (Beier et al., 2000 ) and rapid upregulation of PD-1 ( FIG. 12G ).
在幼稚B細胞上表現(Hu等人,2011)之ICOS配體與TFH細胞上之ICOS結合係前TFH發展至完全分化TFH細胞之必要條件。ICOS/ICOSL信號傳導亦導致多種細胞介素之釋放,包括IFNγ、IL‐4、IL‐10、IL‐17、IL‐2、IL-6及IL-21 (Bauquet等人,2009;Bonhagen等人,2003;Crotty, 2014;Löhning等人,2003)。Binding of ICOS ligand expressed on naive B cells (Hu et al., 2011 ) to ICOS on TFH cells is a necessary condition for the development of pre-TFH to fully differentiated TFH cells. ICOS/ICOSL signaling also results in the release of several cytokines, including IFNγ, IL-4, IL-10, IL-17, IL-2, IL-6, and IL-21 (Bauquet et al., 2009; Bonhagen et al. , 2003; Crotty, 2014; Löhning et al., 2003).
IL-6已顯示在免疫反應期間促進經活化CD4+ T細胞至TFH細胞之分化。與所有對照相比,已顯示IL-6在EDV-COVID-αGC注射組中升高( 圖 11 I)。TNFα及IL-6之分泌( 圖 11 H , I)係短期、自限性的,且沒有小鼠經歷任何顯著副作用。IL-10亦具有抗發炎性質,此在限制宿主對發炎性細胞介素細(如TNFα)之反應中起關鍵作用。IL-10係對EDV相關LPS之先天免疫反應之一部分,且因此在所有含有EDV之組中以相同程度出現( 圖 11 K)。當利用S蛋白三聚體刺激時,來自經EDV免疫之小鼠的脾臟細胞顯示來自EDV-COVID及EDV-COVID-αGC小鼠之CD4+T細胞產生IFNγ而不產生IL-4,但來自其他組之彼等則不然( 圖 13 E),此指示CD4+T細胞在疫苗接種後引發抗原特異性Th1型反應。 IL-6 has been shown to promote the differentiation of activated CD4+ T cells into TFH cells during immune responses. IL-6 has been shown to be elevated in the EDV-COVID-αGC injected group compared to all controls ( Fig. 11I ). The secretion of TNF[alpha] and IL-6 ( Fig. 11H , I ) was short-term, self-limited and none of the mice experienced any significant side effects. IL-10 also has anti-inflammatory properties, which play a key role in limiting the host response to inflammatory interleukin cells such as TNFα. IL-10 is part of the innate immune response to EDV - associated LPS, and thus was present to the same extent in all EDV-containing groups ( Fig. 11K ). When stimulated with S protein trimer, spleen cells from EDV-immunized mice showed that CD4+ T cells from EDV-COVID and EDV-COVID-αGC mice produced IFNγ but not IL-4, but not IL-4 from other This was not the case for the group ( FIG. 13E ), indicating that CD4+ T cells elicited antigen -specific Th1-type responses after vaccination.
IL-21主要由TFH細胞表現並刺激B細胞之增殖及其至漿細胞之分化。與CD-40L相互作用之B細胞至IgG及IgA之類別轉換亦由IL-21促進(Avery等人,2008)。亦僅在EDV-COVID-αGC治療之小鼠中觀察到IL-21之高度顯著增加( 圖 11J),此表明EDV-COVID中之αGC對於活化CD4+ TFH細胞係至關重要的,此可能係由於iNKT許可之TFH細胞之DC活化。就S特異性抗體反應而言,IL-21在T細胞依賴性B細胞活化、分化、生發中心(GC)反應(Avery等人,2010)及分泌抗原特異性親和力抗體之B細胞的選擇中起關鍵作用。目前尚無關於mRNA疫苗後IL-21分泌之報告。 IL-21 is mainly expressed by TFH cells and stimulates the proliferation of B cells and their differentiation into plasma cells. Class switching of B cells interacting with CD-40L to IgG and IgA is also promoted by IL-21 (Avery et al., 2008). A highly significant increase in IL-21 was also observed only in EDV-COVID-αGC-treated mice ( FIG . 11J ), suggesting that αGC in EDV-COVID is critical for activating the CD4+ TFH cell line, possibly due to DC activation of TFH cells licensed by iNKT. In terms of S-specific antibody responses, IL-21 plays a role in T cell-dependent B cell activation, differentiation, germinal center (GC) responses (Avery et al., 2010) and selection of B cells that secrete antigen-specific affinity antibodies Key role. There are no reports on IL-21 secretion after mRNA vaccines.
B細胞活化導致產生長壽命抗體之B細胞作為漿母細胞在濾泡外增殖,或其進入GC用於隨後發育記憶或漿細胞(MacLennan等人,2003)。在濾泡中TFH細胞同源相互作用之後,增殖性B細胞產生GC並在其免疫球蛋白V區基因中經歷體細胞超突變(SHM)及親和力成熟,此產生更高親和力之漿細胞及記憶細胞(Ansel等人,1999;Breitfeld等人,2000;Gunn等人,1998;Jacob等人,1991;Kim等人,2001;MacLennan, 1994;Schaerli等人,2000)。在GC內,TFH細胞主要藉助IL-21之分泌及CD40L共刺激來提供進一步B細胞幫助,此係B細胞活化及分化之兩個主要因素。IL-21亦藉由人類幼稚B細胞誘導至IgG1及IgG3之類別轉換且增加人類記憶B細胞對該等Ig同型之分泌(Pène等人,2004)。B cell activation leads to the extrafollicular proliferation of long-lived antibody-producing B cells as plasmablasts, or their entry into the GC for subsequent development of memory or plasma cells (MacLennan et al., 2003). Following homologous interaction of TFH cells in follicles, proliferating B cells generate GCs and undergo somatic hypermutation (SHM) and affinity maturation in their immunoglobulin V region genes, which generate higher affinity plasma cells and memory cells (Ansel et al., 1999; Breitfeld et al., 2000; Gunn et al., 1998; Jacob et al., 1991; Kim et al., 2001; MacLennan, 1994; Schaerli et al., 2000). In GC, TFH cells provide further B cell help mainly through the secretion of IL-21 and CD40L co-stimulation, which are the two main factors of B cell activation and differentiation. IL-21 also induces class switching to IgGl and IgG3 by human naive B cells and increases secretion of these Ig isotypes by human memory B cells (Pène et al., 2004).
初始注射後第28天自小鼠骨髓分離之B細胞在與S-蛋白共培育時顯示,與所有其他組相比,來自EDV-COVID-αGC免疫小鼠之B細胞產生顯著更高含量之S特異性IgM ( 圖 13A)及IgG ( 圖 13B)。此指示,EDV-COVID-αGC治療誘導可對S蛋白再暴露迅速作出反應之SARS-CoV-2特異性記憶B細胞。 B cells isolated from mouse bone marrow at day 28 after the initial injection, when co-incubated with S-protein, showed that B cells from EDV-COVID-αGC-immunized mice produced significantly higher levels of S compared to all other groups Specific IgM ( Figure 13A ) and IgG ( Figure 13B ). This indicates that EDV-COVID-αGC treatment induces SARS-CoV-2-specific memory B cells that can respond rapidly to S protein re-exposure.
在EDV-COVID-αGC疫苗接種後28天在6名健康志願者之PBMC中檢測到抗原特異性記憶B細胞之存在( 圖 14I),其中在初始注射標記後大約60天出現血清轉化( 圖 14J, K)。 The presence of antigen-specific memory B cells was detected in PBMCs of 6 healthy volunteers 28 days after EDV-COVID - αGC vaccination ( Fig . , K ).
在兩個劑量含量下,在初始劑量後28天且在第21天給予加強劑量,在大多數經EDV-COVID-αGC免疫i小鼠的血清中檢測到高含量之抗S蛋白IgM ( 圖 12 A)及IgG ( 圖 12 B)抗體效價。經EDV-COVID免疫之小鼠亦引發IgM及IgG抗體,但IgG反應較低( 圖 12 A 、 B)。將αGC納入EDV-COVID中導致S特異性IgG效價之顯著且持續升高。EDV-COVID及EDV-COVID-αGC在第7天及第21天之S特異性IgG反應相似( 圖 12 D 、 E 、 F),然而,增強效應僅在第28天在EDV-COVID-αGC免疫之小鼠中顯著,此表明αGC之納入可能將EDV-COVID-αGC引導至iNKT許可之DC途徑,此已知導致生發中心B細胞活化/成熟以及高效價抗體分泌。 At both dose levels, 28 days after the initial dose and a booster dose was given on the 21st day, high levels of anti-S protein IgM were detected in the serum of most EDV-COVID-αGC immunized i mice ( Fig . 12 A ) and IgG ( FIG. 12B ) antibody titers. Mice immunized with EDV-COVID also elicited IgM and IgG antibodies, but IgG responses were lower ( Fig. 12A , B ). Incorporation of αGC into EDV-COVID resulted in a significant and sustained increase in S-specific IgG titers. The S-specific IgG responses of EDV-COVID and EDV-COVID-αGC were similar on day 7 and 21 ( Fig. 12D , E , F ), however, the potentiation effect was only observed on day 28 in EDV-COVID-αGC Significantly in mice of αGC, suggesting that the incorporation of αGC may direct EDV-COVID-αGC to the iNKT-permissive DC pathway, which is known to lead to germinal center B cell activation/maturation and high-titer antibody secretion.
感興趣地,EDV-COVID預期將不會經由iNKT/DC/TFH路徑引發S特異性抗體,且因此預期將不會如經由由EDV-COVID-αGC引發之iNKT/DC/TFH路徑所預期那樣,引發自初始IgM反應至IgG之免疫球蛋白類別轉換。Interestingly, EDV-COVID is not expected to elicit S-specific antibodies via the iNKT/DC/TFH pathway, and thus is not expected to elicit via the iNKT/DC/TFH pathway elicited by EDV-COVID-αGC, Immunoglobulin class switching from an initial IgM response to IgG is initiated.
替代病毒中和測試顯示100%之經EDV-COVID-αGC免疫之小鼠對野生型SARS-CoV-2病毒之中和抗體呈陽性( 圖 13 F 及 13 G)。相比之下,僅在50% ( 圖 13 F)及75% ( 圖 13 G)之經EDV-COVID免疫小鼠中檢測到中和抗體,此突出了αGC在此疫苗中之重要性。當針對4種常見SARS-CoV-2變異株α (B.1.1.7)、β (B.1.351)、γ (P.1)及δ (B.1.617.2)進行測試時,經3 × 10 9EDV-COVID-αGC免疫之小鼠強烈中和α (100%; 圖 13 H)、β (80%; 圖 13 I)、γ (90%; 圖 13 J)及δ (90%; 圖 13 K) S-蛋白之結合。與此相比,EDV-COVID不充分地中和α (50%; 圖 13 F)、β (0%; 圖 13 I)、γ (40%; 圖 13 J)及δ (50%; 圖 13 K)變異株。 Surrogate virus neutralization tests showed that 100% of mice immunized with EDV-COVID-αGC were positive for neutralizing antibodies to wild-type SARS-CoV-2 virus ( Figure 13F and 13G ). In contrast, neutralizing antibodies were only detected in 50% ( Fig. 13F ) and 75% ( Fig. 13G ) of EDV-COVID-immunized mice, highlighting the importance of αGC in this vaccine. When tested against 4 common SARS-CoV-2 variant strains α (B.1.1.7), β (B.1.351), γ (P.1) and δ (B.1.617.2), the results were 3 × 10 9 EDV-COVID-αGC-immunized mice strongly neutralized α (100%; Fig. 13 H ), β (80%; Fig. 13 I ), γ (90%; Fig. 13 J ) and δ (90%; Fig . 13K ) S-protein binding. In contrast, EDV-COVID insufficiently neutralized α (50%; FIG. 13F ), β (0% ; FIG. 13I ), γ (40 % ; FIG. 13J ) and δ (50%; FIG. 13J ). K ) mutant strains.
在4名健康人類志願者中看到類似結果,其中在第28天血清抗體之PRNT90 (各別RBD與hACE2之結合減少90%)病毒中和顯示來自武漢(100%)、α (100%)、β (100%)、γ (100%)、δ (100%) 及ο (75%)之RBD的強中和。與此相比,來自mRNA疫苗(BNT162b2)之數據僅供PRNT50分析(僅需要RBD之50%中和)使用且該等結果需要2倍(α)、5至10倍(β)、2至5倍(γ)、2至10倍(δ)之血清稀釋降低以達成PRNT50 (https://covid19.who.int/, 2021),且對於ο超過22倍(Cele等人,2021)。Similar results were seen in 4 healthy human volunteers, where PRNT90 (90% reduction in binding of the respective RBD to hACE2) virus neutralization by serum antibodies at day 28 showed Wuhan (100%), α (100%) Strong neutralization of RBD of , β (100%), γ (100%), δ (100%) and ο (75%). In contrast, data from the mRNA vaccine (BNT162b2) was only available for PRNT50 analysis (only 50% neutralization of the RBD was required) and these results required 2-fold (α), 5-10-fold (β), 2-5 Fold (γ), 2- to 10-fold (delta) serum dilutions are reduced to achieve PRNT50 (https://covid19.who.int/, 2021), and more than 22-fold for o (Cele et al., 2021).
在T細胞之幫助下,與蛋白質抗原反應之B細胞可分化為濾泡外漿細胞,產生低親和力抗體之快速波,或在濾泡中生長並分化,產生生發中心。來自sVNT之數據顯示,經由EDV-COVID-αGC引發之抗體可提供來自VOC之RBD的高位準中和,此表明該等係高親和力抗體,可能係由於B細胞進入GC並經歷SHM而導致高親和力抗體。與此相比,藉由EDV-COVID免疫生成之抗體不能賦予針對VOC RBD之保護,此表明該等B細胞沒有接受完全同源TFH幫助,導致釋放漿細胞之形成,產生對VOC RBD無效之低親和力抗體。With the help of T cells, B cells that react with protein antigens can differentiate into extrafollicular plasma cells, producing a rapid wave of low-affinity antibodies, or grow and differentiate in follicles, producing germinal centers. Data from sVNT showed that antibodies elicited by EDV-COVID-αGC could provide a high level of neutralization of RBD from VOC, suggesting that these are high-affinity antibodies, possibly due to B cells entering GC and undergoing SHM resulting in high affinity Antibody. In contrast, antibodies generated by immunization with EDV-COVID did not confer protection against the VOC RBD, suggesting that these B cells did not receive help from the fully cognate TFH, resulting in the formation of released plasma cells, resulting in a low-lying effect against the VOC RBD. Affinity antibodies.
此數據表明,即使在高度免疫受損群體中,EDV-COVID-αGC疫苗亦可具有早期活化具有廣泛抗病毒免疫反應之免疫系統之潛力,且若該等患者感染SARS-CoV-2或其變異株,可有助於抵禦該等患者中嚴重淋巴球減少症之發生。亦有趣的是注意到,與在小鼠研究中獲得之結果相反,在人類志願者中未觀察到EDV疫苗投與後IL6以及TNFα之早期升高。This data suggests that even in highly immunocompromised populations, the EDV-COVID-αGC vaccine may have the potential to early activate the immune system with a broad antiviral immune response, and if these patients are infected with SARS-CoV-2 or its variants strains, may help to protect against the occurrence of severe lymphopenia in such patients. It is also interesting to note that, contrary to the results obtained in the mouse study, no early elevation of IL6 and TNFα after EDV vaccine administration was observed in human volunteers.
來自Covid疫苗I期臨床試驗之6名健康志願者的血清sVNT到第28天對SARS-CoV2病毒之野生型、δ及ο變異株展現強中和活性(>PRNT90當量)。亦顯示來自5名已接受至少2個劑量之Pfizer疫苗之志願者之ο變異株的中和結果作為比較( 圖 14A)。該等結果展示本文所述疫苗與目前批准產品相比之有效性,尤其針對ο變異株,SARS-CoV2病毒之當前主要變異株。 Serum sVNT from 6 healthy volunteers of the Covid vaccine Phase I clinical trial showed strong neutralizing activity (> PRNT90 equivalent) to the wild type, delta and o variants of SARS-CoV2 virus by day 28. Neutralization results for the o variant from 5 volunteers who had received at least 2 doses of Pfizer vaccine are also shown for comparison ( FIG. 14A ). These results demonstrate the effectiveness of the vaccines described herein compared to currently approved products, especially against the o variant, the current major variant of the SARS-CoV2 virus.
另外,到第28天觀察到CD4+及CD8+中央記憶T細胞之顯著增加,進而抗原特異性B細胞以及記憶B細胞之數量增加,此表明成功的B細胞活化,如圖 12G所示。 In addition, a significant increase in CD4+ and CD8+ central memory T cells was observed by day 28, followed by an increase in the number of antigen-specific B cells as well as memory B cells, indicating successful B cell activation, as shown in Figure 12G .
IFNγ可在經SARS-CoV-2棘蛋白刺激之離體PBMC之上清液中檢測到( 圖 14F),此確證所提出之路徑( 圖 12G)。此外,離體PBMC中CD69+ T細胞之數量在S-蛋白刺激進一步增加,此在第1天未觀察到( 圖 14G)。此指示,循環T細胞群體係SARS-CoV-2抗原特異性的,如利用其他疫苗所觀察到的(Ewer等人,2021)。 IFNγ could be detected in the supernatant of ex vivo PBMCs stimulated with SARS-CoV-2 spinin ( FIG. 14F ), confirming the proposed pathway ( FIG. 12G ). Furthermore, the number of CD69+ T cells in ex vivo PBMCs further increased upon S-protein stimulation, which was not observed at day 1 ( FIG. 14G ). This indicates that circulating T cell populations are specific for SARS-CoV-2 antigens, as observed with other vaccines (Ewer et al., 2021).
目前認為成功的疫苗接種依賴於抗體及T細胞介導之免疫,且儘管已認識到至少I型及II型干擾素可引發廣泛抗病毒免疫性,但由於該等干擾素展現之多種效應,很可能為了遏制當前及未來的病毒大流行,可需要廣泛特異性及非特異性抗病毒免疫與特異性記憶B及T細胞反應之組合。Successful vaccination is currently believed to be dependent on antibody and T cell-mediated immunity, and although at least type I and type II interferons have been recognized to elicit broad antiviral immunity, due to the diverse effects these interferons exhibit, few Likely to contain current and future viral pandemics, a combination of broad specific and non-specific antiviral immunity and specific memory B and T cell responses may be required.
更重要的係由本文所述疫苗引發之抗體類型。大多數疫苗不會引發iNKT許可之DC途徑且因此B細胞迅速釋放低親和力抗體,其然後無法中和VOC RBD。與此相比,由於B細胞在GC中經歷親和力成熟及SHM,iNKT許可之DC路徑引發高親和力抗體且該等高親和力抗體在中和VOC RBD方面可係高度有效的。Even more important are the types of antibodies elicited by the vaccines described herein. Most vaccines do not elicit the iNKT-licensed DC pathway and thus B cells rapidly release low-affinity antibodies, which are then unable to neutralize the VOC RBD. In contrast, as B cells undergo affinity maturation and SHM in GC, the DC pathway permissive by iNKT elicits high-affinity antibodies and these high-affinity antibodies can be highly effective in neutralizing VOC RBDs.
基於EDV之癌症治療劑或COVID疫苗可在製造後凍乾且可在室溫下在世界各地儲存及運輸。EDV癌症治療劑之儲放壽命目前已顯示超過3年且EDV-COVID-αGC疫苗具有超過1年之穩定性。 B. 本揭示內容之態樣 EDV based cancer therapeutics or COVID vaccines can be lyophilized after manufacture and can be stored and shipped around the world at room temperature. The shelf life of EDV cancer therapeutics has now been shown to exceed 3 years and the EDV-COVID-αGC vaccine has a stability of more than 1 year. B. The state of this disclosure
本文所述之SARS-CoV-2疫苗組合物包含至少一種來自SARS-CoV-2變異株之抗原,且在其他態樣中可包含至少一種來自多個SARS-CoV-2變異株(例如α、β、γ、δ)之抗原。疫苗組合物可另外包含來自非變異株SARS-CoV-2菌株之SARS-CoV-2抗原。The SARS-CoV-2 vaccine compositions described herein comprise at least one antigen from a variant of SARS-CoV-2, and in other aspects may comprise at least one antigen from a plurality of variants of SARS-CoV-2 (e.g., α, β, γ, δ) antigens. The vaccine composition may additionally comprise a SARS-CoV-2 antigen from a non-mutant SARS-CoV-2 strain.
成熟SARS-CoV-2病毒具有四種結構蛋白,即,套膜、膜、核酸蛋白殼及棘。據信,所有該等蛋白均可用作抗原以刺激中和抗體及增加CD4+/ CD8+ T細胞反應。在一個態樣中,本文所述組合物中利用來自SARS-CoV-2變異株之棘蛋白抗原。如上所述,組合物可另外包含來自SARS-CoV-2非變異株之病毒抗原。The mature SARS-CoV-2 virus has four structural proteins, namely, mantle, membrane, nucleic acid protein shell, and spines. It is believed that all of these proteins can be used as antigens to stimulate neutralizing antibodies and increase CD4+/CD8+ T cell responses. In one aspect, the spinin antigen from a variant strain of SARS-CoV-2 is utilized in the compositions described herein. As noted above, the composition may additionally comprise viral antigens from a non-mutant strain of SARS-CoV-2.
在另一態樣中,來自變異株或非變異株之SARS-CoV-2抗原可為棘蛋白之受體結合結構域(RBD),即涉及結合至人類ACE2受體之位點。In another aspect, the SARS-CoV-2 antigen from the mutant or non-mutant strain can be the receptor binding domain (RBD) of spinin, the site involved in binding to the human ACE2 receptor.
在一個態樣中,本文所述之疫苗組合物在單一袖珍型細胞內包含編碼至少一種SARS-CoV-2抗原(例如棘蛋白)之細菌基因表現質體、由該質體表現之棘蛋白(或其他SARS-CoV-2抗原)及作為佐劑引發IFNγ反應之α-半乳糖神經醯胺。在其他態樣中,質體可編碼多於一種SARS-CoV-2抗原,例如來自SARS-CoV-2變異株(例如α、β、γ、δ或本文所闡述或尚未鑑別出之其他變異株)以及SARS-CoV-2株之棘蛋白。In one aspect, the vaccine compositions described herein comprise, within a single pocket-sized cell, a bacterial gene-expressed plastid encoding at least one SARS-CoV-2 antigen (e.g., spinin), the spinin expressed by the plastid ( or other SARS-CoV-2 antigens) and α-galactosylceramide as an adjuvant to trigger IFNγ responses. In other aspects, plastids may encode more than one SARS-CoV-2 antigen, for example from SARS-CoV-2 variants (e.g., α, β, γ, δ, or other variants described herein or not yet identified) ) and the spike protein of the SARS-CoV-2 strain.
在其他態樣中,本揭示內容涵蓋組合物,其包含含有α-半乳糖神經醯胺作為佐劑引發IFNγ反應之第一袖珍型細胞及包含編碼至少一種SARS-CoV-2抗原(例如棘蛋白)之細菌基因表現質體之第二袖珍型細胞及由該質體表現之棘蛋白(或其他SARS-CoV-2抗原)。再次,在其他態樣中,質體可編碼多於一種SARS-CoV-2抗原,例如,來自SARS-CoV-2變異株(例如α、β、γ、δ或本文所闡述或尚未鑑別出之其他變異株)以及SARS-CoV-2株之棘蛋白。In other aspects, the present disclosure encompasses compositions comprising a first pocket-sized cell that elicits an IFNγ response comprising α-galactosylceramide as an adjuvant and comprising a protein encoding at least one SARS-CoV-2 antigen (e.g., spinin). ) of the bacterial gene expression plastid of the second pocket cell and the spike protein (or other SARS-CoV-2 antigen) expressed by the plastid. Again, in other aspects, plastids may encode more than one SARS-CoV-2 antigen, e.g., from SARS-CoV-2 variants (e.g., α, β, γ, δ, or those described herein or not yet identified). other mutant strains) and the spike protein of SARS-CoV-2 strains.
不像當前COVID-19疫苗那樣,預期細菌袖珍型細胞冠狀病毒疫苗有效對抗COVID-19變異株,現有變異株以及新興變異株二者。此係由於,如本文所述,細菌袖珍型細胞冠狀病毒疫苗之設計導致廣泛抗病毒有效性,此與當前所用之所有COVID-19疫苗形成對比。有效對抗變異株對於COVID-19大流行之長期成功及管理至關重要。Unlike current COVID-19 vaccines, bacterial pocket-sized coronavirus vaccines are expected to be effective against COVID-19 variants, both existing and emerging variants. This is due to, as described herein, the design of the bacterial pocket cell coronavirus vaccine resulting in broad antiviral efficacy, in contrast to all currently used COVID-19 vaccines. Effectively combating mutant strains is critical to the long-term success and management of the COVID-19 pandemic.
本文所述之本發明疫苗組合物優於其他COVID-19疫苗之實例性優點詳述於下表中。
圖 1-3繪示根據本揭示內容之各種實例性疫苗構築體。第一構築體( 圖 2A)顯示典型EDV-COVID-19疫苗組合物,其包含含有以下各項之組合之細菌袖珍型細胞:(i) 編碼棘蛋白之細菌基因表現質體,(ii) 由該質體表現之棘蛋白,及(iii) 作為佐劑引發IFNγ反應之醣脂α-半乳糖神經醯胺,且第二構築體( 圖 3)顯示EDV-COVID-19疫苗組合物,其包含含有以下各項之組合之細菌袖珍型細胞:(i) 編碼SARS-CoV-2之棘蛋白以及多個變異株編碼之棘蛋白之細菌基因表現質體,(ii) 多個棘蛋白,包括由該質體編碼之來自COVID-19變異株之棘蛋白,及(iii) 作為佐劑之醣脂α-半乳糖神經醯胺。兩種質體均係細菌表現質體,因此棘蛋白係在EDV細胞質中產生。 1-3 depict various exemplary vaccine constructs according to the present disclosure. The first construct ( FIG. 2A ) shows a typical EDV-COVID-19 vaccine composition comprising bacterial pocket-sized cells containing a combination of: (i) a bacterial gene expression plasmid encoding spinin, (ii) composed of The plastid expresses spinin, and (iii) glycolipid α-galactosylceramide as an adjuvant to elicit an IFNγ response, and the second construct ( FIG . 3 ) shows the EDV-COVID-19 vaccine composition comprising Bacterial pocket cells containing combinations of: (i) bacterial gene expression plasmids encoding the spike protein of SARS-CoV-2 and spike proteins encoded by multiple variant strains, (ii) multiple spike proteins, including spike proteins produced by The spike protein encoded by the plasmid, and (iii) glycolipid α-galactosylceramide as an adjuvant. Both plastids are bacterial expression plastids, so spinin is produced in the cytoplasm of EDV.
該等實例性構築體之關鍵點在於質體係具有細菌複製起點之細菌表現,且因此其不會在人類細胞中複製且不會整合於染色體中。質體保持游離型並在細胞完成其生命週期時降解。A key point of these exemplary constructs is that the plastid has the bacterial expression of the bacterial origin of replication, and thus it does not replicate in human cells and does not integrate into the chromosome. Plastids remain episomal and degrade when the cell completes its life cycle.
在本文之另一態樣中,本文所述之疫苗組合物包含一種或多種袖珍型細胞,該等袖珍型細胞包含具有細菌基因表現啟動子之質體,該啟動子在親代細菌菌株中產生SARS-CoV-2抗原(例如棘蛋白或其他SARS-CoV-2抗原),且其然後分離成重組袖珍型細胞。因此,在一個態樣中,組合物在同一袖珍型細胞中或在多個袖珍型細胞中攜帶質體、棘蛋白(或其他SARS-CoV-2抗原)及α-半乳糖神經醯胺。In another aspect herein, the vaccine compositions described herein comprise one or more pocket-sized cells comprising a plastid with a bacterial gene expression promoter produced in the parental bacterial strain SARS-CoV-2 antigens (such as spinin or other SARS-CoV-2 antigens), which are then isolated into recombinant pocket cells. Thus, in one aspect, the composition carries plastids, spinin (or other SARS-CoV-2 antigens), and α-galactosylceramide in the same pocket cell or in multiple pocket cells.
在另一態樣中,質體可攜帶哺乳動物基因表現啟動子,因此僅在袖珍型細胞被吞噬、質粒釋放且mRNA在哺乳動物細胞核中表現時,棘蛋白才在人類專業吞噬細胞中表現。因此,此組合物不同於上述組合物,此乃因此袖珍型細胞組合物攜帶具有哺乳動物基因表現啟動子之重組質體及來自SARS-CoV-2及在啟動子下游選殖之突變株或變異株SARS-CoV-2之棘蛋白基因(或其他SARS-CoV-2抗原)及α-半乳糖神經醯胺。因此,在此疫苗組合物中,袖珍型細胞中缺少棘蛋白。In another variant, plastids can carry mammalian gene expression promoters, so spinin is expressed in human professional phagocytes only when the pocket cells are phagocytized, the plasmid is released, and the mRNA is expressed in the mammalian nucleus. Therefore, this composition differs from the ones described above in that the pocket-sized cell composition carries recombinant plastids with mammalian gene expression promoters and mutants or variations from SARS-CoV-2 and colonized downstream of the promoters Spiny protein gene (or other SARS-CoV-2 antigen) and α-galactosylceramide of strain SARS-CoV-2. Thus, in this vaccine composition, spinin is absent from the pocket cells.
在另一態樣中,來自SARS-CoV-2及在質體中選殖之突變株/變異株SARS-CoV-2病毒之基因序列可包含整個棘蛋白編碼基因或僅人類ACE2受體結合(RBD)基因序列,此乃因期望抗體反應係針對該等病毒棘蛋白(或其他SARS-CoV-2抗原)之RBD區。In another aspect, the gene sequence from SARS-CoV-2 and mutant/mutant SARS-CoV-2 viruses selected in plastids may include the entire spinin-encoding gene or only the human ACE2 receptor binding ( RBD) gene sequence, this is because it is expected that the antibody response is directed against the RBD region of these viral spike proteins (or other SARS-CoV-2 antigens).
圖 1-3繪示根據本揭示內容之各種實例性疫苗構築體。第一構築體( 圖 2A)顯示典型EDV-COVID-19疫苗組合物,其包含含有以下各項之組合之細菌袖珍型細胞:(i) 編碼棘蛋白之細菌基因表現質體,(ii) 由該質體表現之棘蛋白,及(iii) 作為佐劑引發IFNγ反應之醣脂α-半乳糖神經醯胺,且第二構築體( 圖 3)顯示EDV-COVID-19疫苗組合物,其包含含有以下各項之組合之細菌袖珍型細胞:(i) 編碼SARS-CoV-2之棘蛋白以及多個變異株編碼之棘蛋白之細菌基因表現質體,(ii) 多個棘蛋白,包括由該質體編碼之來自COVID-19變異株之棘蛋白,及(iii) 作為佐劑之醣脂α-半乳糖神經醯胺。兩種質體均係細菌表現質體,因此棘蛋白係在EDV細胞質中產生。 1-3 depict various exemplary vaccine constructs according to the present disclosure. The first construct ( FIG. 2A ) shows a typical EDV-COVID-19 vaccine composition comprising bacterial pocket-sized cells containing a combination of: (i) a bacterial gene expression plasmid encoding spinin, (ii) composed of The plastid expresses spinin, and (iii) glycolipid α-galactosylceramide as an adjuvant to elicit an IFNγ response, and the second construct ( FIG . 3 ) shows the EDV-COVID-19 vaccine composition comprising Bacterial pocket cells containing combinations of: (i) bacterial gene expression plasmids encoding the spike protein of SARS-CoV-2 and spike proteins encoded by multiple variant strains, (ii) multiple spike proteins, including spike proteins produced by The spike protein encoded by the plasmid, and (iii) glycolipid α-galactosylceramide as an adjuvant. Both plastids are bacterial expression plastids, so spinin is produced in the cytoplasm of EDV.
此外,細菌袖珍型細胞或EDV僅被專業吞噬細胞吞沒,例如巨噬細胞、樹突細胞及NK細胞。其不能進入正常細胞。最後,已將超過2,400個攜帶各種藥物、核酸及糖酯之EDV (細菌袖珍型細胞)劑量投與給澳大利亞(Australia)及美國之170多名終末期癌症患者,儘管重複給藥(在許多患者中15至50個重複劑量),但毒性副作用極小至沒有。Furthermore, bacterial pocket cells or EDVs are only engulfed by professional phagocytes such as macrophages, dendritic cells and NK cells. It cannot enter normal cells. Finally, more than 2,400 doses of EDV (bacterial pocket cells) carrying various drugs, nucleic acids, and sugar esters have been administered to more than 170 terminal cancer patients in Australia and the United States, despite repeated dosing (in
質體亦可為哺乳動物表現質體,其中基因表現啟動子可為哺乳動物表現啟動子。因此,棘蛋白並不在EDV細胞質中產生。相反,當EDV在諸如巨噬細胞、樹突細胞、NK細胞等專業吞噬細胞之溶酶體中分解時,質體經釋放,輸出至細胞核並在哺乳動物基因表現啟動子表現mRNA後,表現棘蛋白。The plastid can also be a mammalian expressing plastid, wherein the gene expressing promoter can be a mammalian expressing promoter. Therefore, spinin is not produced in the cytoplasm of EDV. Conversely, when EDV is decomposed in the lysosomes of professional phagocytes such as macrophages, dendritic cells, and NK cells, the plastids are released, exported to the nucleus, and express spines after expressing mRNA from mammalian gene expression promoters. protein.
EDV-COVID-19疫苗可經肌內、鼻內或經口投與。一般而言,肌內投與係較佳的。然而,疫苗可經鼻內或經口給予以在黏膜道及肺中誘導分泌性IgA反應。而且,此將在肺及口腔通道中引發先天及適應性免疫反應。The EDV-COVID-19 vaccine can be administered intramuscularly, intranasally, or orally. In general, intramuscular administration is preferred. However, the vaccine can be administered intranasally or orally to induce secretory IgA responses in the mucosal tract and lungs. Furthermore, this will trigger innate and adaptive immune responses in the lung and oral passages.
疫苗可經混合及匹配,此乃因相同疫苗可經肌內及經鼻內給予以引發強健之全身及黏膜免疫反應。Vaccines can be mixed and matched because the same vaccine can be given intramuscularly and intranasally to elicit robust systemic and mucosal immune responses.
具體而言, 圖 1A繪示掃描電子顯微鏡影像,其顯示EnGeneIC Dream Vector (EDV)奈米細胞自安全的細菌鼠傷寒沙氏桿菌菌株之產生,且 圖 1B繪示透射式電子顯微照片影像,其顯示空的EDV細菌奈米細胞之結構,其中直徑為約400 nm。 圖 2A係包含細菌表現質體(「EDV」)(例如圖1B中所示)之EDV-COVID-19疫苗組合物之圖形繪示,其中EDV首先在EDV細胞質中表現SARS-CoV-2之棘蛋白且另外攜帶醣脂α-半乳糖神經醯胺IFN-γ刺激劑。由SARS-CoV-2編碼之經表現棘蛋白係由圖2A上之星形指定。 圖 2B顯示含有凍乾EDV-COVID-19疫苗組合物之實例性小瓶。 Specifically, Figure 1A shows a scanning electron microscope image showing the generation of EnGeneIC Dream Vector (EDV) nanocells from a safe strain of bacteria Salmonella typhimurium, and Figure 1B shows a transmission electron micrograph image, It shows the structure of empty EDV bacterial nanocells, where the diameter is about 400 nm. Figure 2A is a graphical representation of an EDV-COVID-19 vaccine composition comprising a bacterial expression plasmid ("EDV"), such as that shown in Figure 1B, wherein the EDV first expresses the spine of SARS-CoV-2 in the EDV cytoplasm protein and additionally carries the glycolipid α-galactosylceramide IFN-γ stimulator. The expressed spinins encoded by SARS-CoV-2 are designated by the stars on Figure 2A. Figure 2B shows exemplary vials containing lyophilized EDV-COVID-19 vaccine compositions.
圖 3係包含細菌表現質體(「EDV」)(例如圖1B中所示)之EDV-COVID-19疫苗組合物之圖形繪示,其中EDV含有(i) 質體,其表現來自原始SARS-CoV-2及多個基因變異株(例如δ變異株及巴西變異株)之經選殖棘蛋白,(ii)基因表現啟動子,其在EDV細胞質中將所有蛋白質表現為單一mRNA及單獨蛋白質,(iii) 多個棘蛋白,其包括由SARS-CoV-2產生之棘蛋白、巴西變異株棘蛋白及δ變異株棘蛋白,及(iv) 作為佐劑或IFN-γ刺激劑之CD1d限制型iNKT細胞抗原醣脂α-半乳糖神經醯胺(α-GalCer)。經編碼之經表現棘蛋白係由圖3上之星形指定。 Figure 3 is a graphical representation of an EDV-COVID-19 vaccine composition comprising a bacterial expression plasmid ("EDV") (such as that shown in Figure 1B), wherein the EDV contains (i) a plasmid expressed from the original SARS- Selected spike proteins of CoV-2 and multiple genetic variants (e.g., delta variant and Brazilian variant), (ii) a gene expression promoter that expresses all proteins as a single mRNA and individual proteins in the EDV cytoplasm, (iii) Multiple spinins, including spinins produced by SARS-CoV-2, Brazilian variant spinins, and delta variant spinins, and (iv) CD1d-restricted forms as adjuvants or IFN-γ stimulators iNKT cell antigen glycolipid α-galactosylceramide (α-GalCer). The encoded expressed spinins are designated by the stars on FIG. 3 .
EDV-COVID-19疫苗組合物可容易地凍乾,在室溫下儲存,其中儲放壽命超過3年。EDV-COVID-19疫苗組合物可快遞運送至世界任何地方並儲存在例如醫院藥局。輸送及儲存亦可在室溫下進行。此外,其製造成本低,此意味著EDV-COVID-19疫苗組合物在全世界均可負擔得起。The EDV-COVID-19 vaccine composition can be easily lyophilized and stored at room temperature with a shelf life of more than 3 years. The EDV-COVID-19 vaccine composition can be shipped by courier anywhere in the world and stocked eg in a hospital pharmacy. Delivery and storage can also be performed at room temperature. Furthermore, its low manufacturing cost means that the EDV-COVID-19 vaccine composition is affordable worldwide.
已知許多不同SARS-CoV-2病毒株及變異株(包括該等病毒之棘蛋白)之基因體序列。參見例如 圖 9。當病毒經歷一或多個以某種方式改變其行為之突變時,出現一種新病毒株,但當病毒經歷任何類型之突變時,便產生變異株。SARS-CoV-2株之實例包括L株、S株、V株、G株、GR株及GH株。www.sciencedaily.com/releases/2020/08/200803105246.htm. The genome sequences of many different SARS-CoV-2 strains and variants, including the spike proteins of these viruses, are known. See eg Figure 9 . A new virus strain arises when a virus undergoes one or more mutations that change its behavior in some way, but a mutant strain occurs when a virus undergoes any type of mutation. Examples of SARS-CoV-2 strains include L strains, S strains, V strains, G strains, GR strains and GH strains. www.sciencedaily.com/releases/2020/08/200803105246.htm.
已知SARS-CoV-2變異株之實例包括(但不限於)(1) UK SARS-CoV-2變異株(B.1.1.7/ VOC-202012/01),亦稱為α變異株(B.1.1.7 (α));(2) 具有E484K之B.1.1.7變異株;(3) B.1.617.2 (δ)變異株;(4) B.1.351 (β)變異株,亦稱為南非變異株;(5) P.1 (γ)變異株;(6) B.1.525 (η)變異株;(7) B.1.526 (ι)變異株;(8) B.1.617 (κ、δ)變異株;(9) B.1.617.1 (κ)變異株;(10) B.1.617.2變異株;(11) B.1.617.3變異株;(12) λ (譜系C.37)變異株;(13) ε (譜系B.1.429、B.1.427、CAL.20C)變異株;(14) ζ (譜系P.2)變異株;(15) θ (譜系P.3)變異株;(16) R.1變異株;(17) 譜系B.1.1.207變異株;及(18) 譜系B.1.620變異株。Examples of known SARS-CoV-2 variants include (but are not limited to) (1) UK SARS-CoV-2 variant (B.1.1.7/VOC-202012/01), also known as alpha variant (B .1.1.7 (α)); (2) B.1.1.7 variant with E484K; (3) B.1.617.2 (δ) variant; (4) B.1.351 (β) variant, also Known as the South African variant; (5) P.1 (γ) variant; (6) B.1.525 (η) variant; (7) B.1.526 (ι) variant; (8) B.1.617 (κ , δ) mutant strain; (9) B.1.617.1 (κ) mutant strain; (10) B.1.617.2 mutant strain; (11) B.1.617.3 mutant strain; (12) λ (lineage C. 37) mutant strains; (13) ε (lineage B.1.429, B.1.427, CAL.20C) mutant strains; (14) ζ (lineage P.2) mutant strains; (15) θ (lineage P.3) mutation strain; (16) R.1 variant; (17) lineage B.1.1.207 variant; and (18) lineage B.1.620 variant.
其他SARs-CoV-2變異株包括具有(1) L452R棘蛋白取代、(2) E484K棘蛋白取代、(3) K417N、E484K、N501Y棘蛋白取代、(4) K417T、E484K、N501Y棘蛋白取代之SARS-CoV-2變異株,及(5) 具有以下誤義突變中之一或多者之SARS-CoV-2變異株:N440、L452R、S477G/N、E484Q、E484K、N501Y、D614G、P681H、P681R及A701V。Other SARs-CoV-2 variants include (1) L452R spike protein substitution, (2) E484K spike protein substitution, (3) K417N, E484K, N501Y spike protein substitution, (4) K417T, E484K, N501Y spike protein substitution SARS-CoV-2 mutant strains, and (5) SARS-CoV-2 mutant strains with one or more of the following erroneous mutations: N440, L452R, S477G/N, E484Q, E484K, N501Y, D614G, P681H, P681R and A701V.
亦參見(1) Lu等人,「Genomic Characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding,」 The Lancet, 395:565-574 (2020年2月22日);(2) Galloway等人,「Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, 2020年12月29日 - 2021年1月12日,」 Centers for Disease Control and Prevention, 70(3):95-99 (2021年1月22日) (SARS-CoV-2 UK變異體定序,B.1.1.7譜系(20I/501Y.V1));(3) Toovey等人,「Introduction of Brazilian SARS-CoV-2 484K.V2 related variants s into the UK,」 J. Infect., 82(5):e23-e24 (2021年2月3日) (闡述兩種巴西變異體);(4) Sah等人,「Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal,」 ASM Journals, Microbiology Resource Announcements, 9(11) (2020年3月11日);及(5) 「Variants of SARS-CoV-2」, www.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Notable_missense_mutations。 See also (1) Lu et al., "Genomic Characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding," The Lancet , 395 :565-574 (2020-02-22); (2) Galloway et al. People, "Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020 - January 12, 2021," Centers for Disease Control and Prevention , 70 (3):95-99 (January 22, 2021) (SARS-CoV-2 UK variant sequencing, lineage B.1.1.7 (20I/501Y.V1)); (3) Toovey et al., “Introduction of Brazilian SARS-CoV- 2 484K.V2 related variants s into the UK," J. Infect. , 82 (5):e23-e24 (February 3, 2021) (describes two Brazilian variants); (4) Sah et al., " Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal," ASM Journals, Microbiology Resource Announcements , 9 (11) (March 11, 2020); and (5) "Variants of SARS- CoV-2”, www.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Notable_missense_mutations .
令人驚訝地且與目前使用之至少一些COVID-19疫苗相比,本文所述之疫苗組合物生成免疫性,如藉由針對多種SARS-CoV-2變異株之IgG效價所量測。具體而言,
圖 10A-D顯示在投與給五組不同小鼠後IgG效價之結果(
n= 6隻/組;ELISA試樣一式三份運行):第1組= 鹽水;第2組= EDV (沒有酬載之細菌袖珍型細胞);第3組= EDV
control(攜帶沒有表現棘蛋白之插入物之質體(即,僅質體骨架)之EDV);第4組= EDV
Covid(包含質體及經編碼SARS-CoV-2棘蛋白之細菌袖珍型細胞)及第5組= EDV
Covid +α
GC(
圖 2A中所示之構築體)。小鼠給予3 × 10
9EDV。
圖 10A-D中所示詳述分次劑量IM後在第28天S1次單元特異性IgG效價之結果展示,自利用EDV-COVID-GC治療之小鼠獲得之血清IgG效價與所有四種突變株病毒棘蛋白強烈結合:(1) SARS-CoV-2變異株α (B.1.1.7.UK) (
圖 10A);(2) SARS-CoV-2變異株β (B.1.351. SA) (圖10B);(3) SARS-CoV-2變異株δ (B.1.617.2印度);及(4) SARS-CoV-2變異株γ (P.1巴西)。
II. 組合物 Surprisingly and in contrast to at least some COVID-19 vaccines currently in use, the vaccine compositions described herein generate immunity as measured by IgG titers against various SARS-CoV-2 variants. Specifically, Figures 10A-D show the results of IgG titers following administration to five different groups of mice ( n =6/group; ELISA samples were run in triplicate):
組合物包含以下各項之組合:(a) 載體,其包含編碼至少一種來自SARS-CoV-2病毒變異株之病毒抗原及視情況另外的來自SARS-CoV-2之病毒抗原之質體;及(b) 載體,其包含CD1d識別之抗原,其中該兩種載體中之至少一者係完整、細菌源性袖珍型細胞或殺死的細菌細胞,且其中該兩種載體存在於至少一種醫藥上可接受之載劑中。實例性CD1d識別之抗原係α-半乳糖神經醯胺(α-GalCer),其刺激IFNγ,而IFNγ對病毒免疫性至關重要。在另一態樣中,兩種載體均係完整、細菌源性袖珍型細胞或殺死的細菌細胞,包括兩種單獨的細菌源性袖珍型細胞或殺死的細菌細胞或一起在單一細菌源性袖珍型細胞或殺死的細菌細胞中。The composition comprises a combination of: (a) a vector comprising a plasmid encoding at least one viral antigen from a variant of the SARS-CoV-2 virus and optionally additional viral antigens from SARS-CoV-2; and (b) a vector comprising an antigen recognized by CD1d, wherein at least one of the two vectors is an intact, bacterial-derived pocket cell or a killed bacterial cell, and wherein the two vectors are present on at least one pharmaceutical in an acceptable carrier. An exemplary antigen recognized by CDld is α-galactosylceramide (α-GalCer), which stimulates IFNγ, which is critical for viral immunity. In another aspect, both vectors are whole, bacterial-derived pocket cells or killed bacterial cells, including two separate bacterial-derived pocket cells or killed bacterial cells or together in a single bacterial source Sexual pocket cells or killed bacterial cells.
在另一態樣中,載體或完整、細菌源性袖珍型細胞可包含SARS-CoV-2病毒或變異株之四種主要結構蛋白中之一或多者或其抗原性片段,例如棘(S)蛋白、核酸蛋白殼(N)蛋白、膜(M)蛋白及套膜(E)蛋白。In another aspect, the vector or intact, bacterial-derived pocket cells may comprise one or more of the four major structural proteins of the SARS-CoV-2 virus or variant strain or antigenic fragments thereof, such as spine (S ) protein, nucleic acid protein shell (N) protein, membrane (M) protein and envelope (E) protein.
在另一態樣中,如上所述,質體酬載及CD1d識別之酬載中之一個或另一個(但非兩者)可經由不為完整、細菌源性袖珍型細胞或殺死的細菌細胞之載體投與。該等非袖珍型細胞載體之實例係脂質體、聚合載體、重組病毒套膜(病毒體)及免疫刺激複合物(ISCOM)。例如,參見Bungener等人(2002),Kersten等人(2003),Daemen等人(2005),Chen等人(2012)及Yue等人(2013)。參見https://www.ncbi.nlm.nih.gov/pubmed/12428908 (Bungener);https://www.meta.org/papers/liposomes-and-iscoms/12547602 (Kersten);https://www.ncbi.nlm.nih.gov/pubmed/15560951 (Daemen);https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039039 (Chen);https://pubs.rsc.org/en/content/articlelanding/2013/bm/c2bm00030j#!divAbstract (Yue)。In another aspect, as described above, one or the other (but not both) of the plastid payload and the CDld-recognized payload can be passed through cells that are not intact, bacteria-derived miniature cells, or killed bacteria. Vector administration of cells. Examples of such non-pocket-sized cellular carriers are liposomes, polymeric carriers, recombinant viral envelopes (virions), and immunostimulatory complexes (ISCOMs). See, eg, Bungener et al. (2002), Kersten et al. (2003), Daemen et al. (2005), Chen et al. (2012) and Yue et al. (2013). Available at https://www.ncbi.nlm.nih.gov/pubmed/12428908 (Bungener); https://www.meta.org/papers/liposomes-and-iscoms/12547602 (Kersten); https://www .ncbi.nlm.nih.gov/pubmed/15560951 (Daemen); https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039039 (Chen); https://pubs.rsc .org/en/content/articlelanding/2013/bm/c2bm00030j#!divAbstract (Yue).
組合物可經由任何醫藥上可接受之方法投與,例如但不限於注射(非經腸、肌內、靜脈內、門靜脈內、肝內、腹膜、皮下、腫瘤內或真皮內投與)、經口投與、將調配物施加至體腔,亦可採用吸入、吹入、經鼻投與、肺部投與或任何組合途徑。The compositions can be administered via any pharmaceutically acceptable method, such as, but not limited to, injection (parenteral, intramuscular, intravenous, intraportal, intrahepatic, peritoneal, subcutaneous, intratumoral, or intradermal administration), via Oral administration, application of the formulation to a body cavity, inhalation, insufflation, nasal administration, pulmonary administration, or any combination can also be used.
組合物可作為疫苗投與給處於SARS-CoV-2變異株感染風險之個體,或組合物可作為治療劑投與給罹患SARS-CoV-2變異株感染病毒感染之個體。The composition can be administered as a vaccine to individuals at risk of infection with a variant of SARS-CoV-2, or the composition can be administered as a therapeutic agent to an individual suffering from infection with a variant of SARS-CoV-2 infection.
已顯示,在高度免疫受損之終末期癌症患者中,完整的細菌袖珍型細胞(亦稱為「EnGeneIC Dream Vector™」或EDV™)導致:(1) CD8+ T細胞、巨噬細胞、NK細胞、樹突細胞及iNKT細胞之活化及增殖。此結果恰好係CoV-2治療劑/疫苗所期望的。In highly immunocompromised end-stage cancer patients, intact bacterial pocket cells (also known as "EnGeneIC Dream Vector™" or EDV™) have been shown to lead to: (1) CD8+ T cells, macrophages, NK cells , activation and proliferation of dendritic cells and iNKT cells. This result is exactly what would be expected for a CoV-2 therapeutic/vaccine.
根據一個態樣,本揭示內容提供重組、完整細菌袖珍型細胞在製造組合物中之用途,該等袖珍型細胞包含編碼病毒蛋白之質體,其用於藉由將組合物投與給病毒感染者或處於病毒感染風險者用於治療及/或預防疾病之方法中。在此上下文中所治療之疾病係SARS-CoV-2病毒或變異株感染。According to one aspect, the present disclosure provides the use of recombinant, whole bacterial pocket cells comprising plastids encoding viral proteins for infection by administering the composition to the virus in the manufacture of compositions or in a method for treating and/or preventing disease in a person who is at risk of viral infection. The disease to be treated in this context is infection with the SARS-CoV-2 virus or variant strains.
目前正探索之針對SARS-CoV2之治療/疫苗之主要領域包括:(1) 抗病毒藥物(例如Gilead Sciences;核苷酸類似物瑞德西韋(Remdesivir));(2) 雞尾酒單株抗體(例如Regeneron);及(3) 減毒病毒,其作為疫苗以刺激對病毒蛋白之強效抗體反應。該等策略中之每一者均面臨困難,但最重要的是,該等方法均無法解決老年人及免疫受損患者之淋巴球減少問題,以能夠克服病毒感染。在不存在強健免疫系統之情況下,此患者群體仍將係最脆弱的且很可能死於該疾病。The main areas of treatment/vaccine against SARS-CoV2 currently being explored include: (1) antiviral drugs (eg Gilead Sciences; the nucleotide analog Remdesivir); (2) cocktail monoclonal antibodies ( such as Regeneron); and (3) an attenuated virus used as a vaccine to stimulate a potent antibody response to viral proteins. Each of these strategies faces difficulties, but most importantly, none of these approaches can solve the problem of lymphopenia in elderly and immunocompromised patients to be able to overcome viral infections. In the absence of a robust immune system, this patient population remains the most vulnerable and most likely to die from the disease.
在先前EnGeneIC揭示內容中,已展示質體經包裝之袖珍型細胞在治療腫瘤疾病中之用途,其中質體之主要功能係編碼siRNA或miRNA,以使癌細胞中負責細胞增殖或抗藥性之基因沉默。In previous EnGeneIC disclosures, the use of plastid-packaged pocket cells in the treatment of neoplastic diseases has been demonstrated, where the main function of the plastid is to encode siRNA or miRNA to deactivate genes responsible for cell proliferation or drug resistance in cancer cells silence.
在本發明揭示內容中,完整組合物之質體經包裝之袖珍型細胞組分(其包括CD1d識別之抗原,例如α-GC經包裝之袖珍型細胞)之功能具有先前未顯示或闡述之新功能。特定地,質體用於編碼親代細菌細胞中之病毒蛋白,且該等蛋白質在不對稱細胞分裂時分離成袖珍型細胞。該等病毒蛋白遞送至抗原加工及呈現細胞(APC)(例如巨噬細胞及樹突細胞)之溶酶體。在抗原加工後,病毒蛋白表位經由MHC I類及II類分子展示於APC表面上,此預計導致對病毒蛋白之強效抗體反應。另外,自身為雙鏈核酸之質體係由APC中之核酸感測蛋白識別,且此然後觸發I型干擾素(IFNα及IFNβ)之分泌。In the present disclosure, the function of the plastid-packaged minicells component of the complete composition, which includes CDld-recognized antigens, such as α-GC-packaged minicells, has novel functions not previously shown or described. Function. Specifically, plastids are used to encode viral proteins in the parent bacterial cell, and these proteins segregate into pocket-sized cells upon asymmetric cell division. These viral proteins are delivered to the lysosomes of antigen processing and presentation cells (APCs) such as macrophages and dendritic cells. Following antigen processing, viral protein epitopes are displayed on the surface of APCs via MHC class I and II molecules, which is expected to result in a potent antibody response to the viral protein. In addition, plastids, which are themselves double-stranded nucleic acids, are recognized by nucleic acid sensing proteins in APCs, and this then triggers the secretion of type I interferons (IFNα and IFNβ).
此對病毒蛋白之抗體反應及I型干擾素反應之獨特雙重觸發不僅導致清除自受感染細胞釋放之病毒顆粒,亦導致免疫系統之細胞能夠識別病毒感染之細胞並將其殺死。此雙重觸發先前未闡述,特別地I型干擾素觸發藉由其可識別並殺死病毒感染細胞之迄今為止未表徵之機制的能力。 在本發明揭示內容中,α-GC/CD1d呈現給iNKT細胞受體後,IFNγ之觸發係增強抗病毒免疫性之關鍵。確切的作用機制尚不清楚,但IFNγ在鑑別及破壞病毒感染細胞方面至關重要。另外,從未報告IFNγ增強血清IgG抗體對任何抗原之反應。本發明係首次展示此現象。此發現在圖6B至6D及圖7A至7D中清晰可見,其中攜帶質體及棘蛋白之EDV組合物並不引發針對棘蛋白之高含量IgG抗體。與此相比,攜帶相同COVID質體及棘蛋白且另外亦攜帶αGC之EDV組合物提供針對棘蛋白之IgG抗體效價之顯著提高。αGC之唯一功能係快速觸發IFNγ之分泌,IFNγ然後刺激大量抗病毒免疫反應。此係顯示IFNγ之一或多種效應係增強抗病毒血清IgG抗體效價之首次發現。 This unique dual triggering of antibody responses to viral proteins and type I interferon responses not only results in clearance of viral particles released from infected cells, but also enables cells of the immune system to recognize virus-infected cells and kill them. This dual trigger has not been described previously, in particular the ability of type I interferons to trigger a hitherto uncharacterized mechanism by which they can recognize and kill virus-infected cells. In the present disclosure, the triggering of IFNγ after presentation of α-GC/CDld to iNKT cell receptors is key to enhance antiviral immunity. The exact mechanism of action is unknown, but IFNγ is critical in identifying and destroying virus-infected cells. In addition, IFNγ has never been reported to enhance serum IgG antibody responses to any antigen. The present invention demonstrates this phenomenon for the first time. This finding is clearly visible in Figures 6B-6D and Figures 7A-7D, where EDV compositions carrying plastids and spinin did not elicit high levels of IgG antibodies against spinin. In contrast, EDV compositions carrying the same COVID plasmid and spinin, and additionally carrying αGC, provided a significant increase in IgG antibody titers to spinin. The sole function of αGC is to rapidly trigger the secretion of IFNγ, which then stimulates a massive antiviral immune response. This is the first discovery showing that one or more effectors of IFNγ enhance antiviral serum IgG antibody titers.
在美國,已實施幾個臨床試驗,其中加載抗癌劑之完整、細菌源性袖珍型細胞及加載微小RNA模擬物之完整、細菌源性袖珍型細胞已在治療癌症之方法中投與給人類。參見例如ClinicalTrials.gov標識符第NCT02766699號、第NCT02687386號及第NCT02369198號。另外,在澳大利亞,在終末期癌症患者之IIa期臨床試驗中,正將加載有α-GC之細菌袖珍型細胞投與給患者。結果已顯示,加載有α-GC之完整、細菌源性袖珍型細胞係IFN-γ之強效刺激物。參見試驗ID第ACTRN12619000385145號。因此,已顯示加載有CD1d識別之抗原之完整、細菌源性袖珍型細胞在人類中之活體內效能,且另外已顯示加載有靶標化合物(例如抗癌化合物,而非病毒抗原)之完整、細菌源性袖珍型細胞在人類中之效能。In the United States, several clinical trials have been conducted in which intact, bacterial-derived pocket cells loaded with anticancer agents and intact, bacterial-derived pocket cells loaded with microRNA mimics have been administered to humans in methods for treating cancer . See, eg, ClinicalTrials.gov Identifier Nos. NCT02766699, NCT02687386, and NCT02369198. Also, in Australia, bacterial pocket cells loaded with α-GC are being administered to patients in a phase IIa clinical trial in terminal cancer patients. The results have shown that the intact, bacterial-derived miniature cell line loaded with α-GC is a potent stimulator of IFN-γ. See Trial ID No. ACTRN12619000385145. Thus, the in vivo efficacy of intact, bacterial-derived pocket cells loaded with CD1d-recognized antigens has been shown in humans, and has additionally been shown that intact, bacterial cells loaded with target compounds (e.g., anticancer compounds, rather than viral antigens) Efficacy of derived miniature cells in humans.
另外,所揭示組合物具有使老年人及免疫受損患者自淋巴球減少症(包括巨噬細胞、樹突細胞、NK細胞及CD8+ T細胞在內之淋巴球之迅速耗盡)恢復之另一關鍵功能,淋巴球減少症係如SARS-CoV-2之病毒在該等患者中佔優勢且最終導致呼吸窘迫症候群並最終死亡之主要原因。特定地,組合物之袖珍型細胞自身經由識別病原體相關分子模式(PAMP)(例如LPS)活化巨噬細胞。此為骨髓中之靜止單核細胞提供活化、成熟及增殖信號,導致經活化巨噬細胞及樹突細胞之顯著增加。另外,袖珍型細胞相關之PAMP亦活化NK細胞且亦激發該等細胞增殖。更進一步,經活化巨噬細胞及樹突細胞進入感染區域並吞沒病毒感染之凋亡細胞。然後其遷移至引流淋巴結中並活化幼稚CD8+ T細胞,然後該等T細胞被活化並增殖。Additionally, the disclosed compositions have the additional benefit of restoring elderly and immunocompromised patients from lymphopenia (rapid depletion of lymphocytes including macrophages, dendritic cells, NK cells, and CD8+ T cells). Key function, lymphopenia is the main reason why viruses like SARS-CoV-2 predominate in these patients and eventually cause respiratory distress syndrome and eventually death. In particular, the pocket cells of the composition themselves activate macrophages via recognition of pathogen-associated molecular patterns (PAMPs) such as LPS. This provides activation, maturation and proliferation signals to quiescent monocytes in the bone marrow, resulting in a marked increase in activated macrophages and dendritic cells. In addition, pocket cell-associated PAMPs also activate NK cells and also stimulate proliferation of these cells. Furthermore, activated macrophages and dendritic cells enter the infected area and engulf the virus-infected apoptotic cells. They then migrate into the draining lymph nodes and activate naive CD8+ T cells, which are then activated and proliferate.
因此,組合物之袖珍型細胞組分借助PAMP信號能夠克服該等老年人及免疫受損患者之淋巴球減少症,且該等淋巴球之活化有助於克服病毒感染並防止患者陷入呼吸窘迫並死亡。 A . 關於 SARS - CoV -2 變異株之背景 Therefore, the pocket-sized cell component of the composition can overcome lymphopenia in these elderly and immunocompromised patients by means of PAMP signaling, and the activation of these lymphocytes helps to overcome viral infection and prevent patients from falling into respiratory distress and die. A. Background on SARS - CoV - 2 variants
越來越多的研究表明,感染及接種均引發針對Covid-19之持續數月甚至數年之免疫反應,但疫苗對抗已知變異株之能力使得疫苗接種對遏制病毒至關重要。最近研究顯示,包括目前在美國佔主導地位之δ株在內之變異株變種可部分地逃避來自先前感染及疫苗接種之免疫反應。全面疫苗接種似乎仍可以提供對抗其之堅實保護。流行病學家說,隨著δ變異株在美國站穩腳跟,來自感染及疫苗接種之免疫性之組合將可能作為緩衝。但病毒仍有機會傳播。 Wall Street Journal, 「COVID-19 Immune Response Could be Long Lasting, but Variants Present Risks」(2021年7月16日)。 A growing body of research shows that both infection and vaccination trigger an immune response to Covid-19 that lasts for months or even years, but the vaccine's ability to fight known variants makes vaccination critical to containing the virus. Recent studies have shown that mutant strain variants, including the delta strain currently dominant in the United States, can partially evade immune responses from previous infections and vaccinations. Comprehensive vaccination still appears to provide solid protection against it. As the delta variant takes hold in the United States, a combination of immunity from infection and vaccination will likely act as a buffer, epidemiologists say. But the virus still has a chance to spread. Wall Street Journal , "COVID-19 Immune Response Could be Long Lasting, but Variants Present Risks" (July 16, 2021).
美國政府SARS-CoV-2機構間小組(SIG)開發變異株分類方案,該方案定義三類SARS-CoV-2變異株:(1)SARS-CoV-2之需留意變異株(Variant of Interest);(2) SARS-CoV-2之高關注變異株(Variant of Concern);及(3)SARS-CoV-2之高衝擊變異株(Variant of High Consequence)。The U.S. Government SARS-CoV-2 Interagency Group (SIG) developed a variant classification scheme that defines three types of SARS-CoV-2 variants: (1) SARS-CoV-2 Variant of Interest ; (2) Variant of Concern of SARS-CoV-2; and (3) Variant of High Consequence of SARS-CoV-2.
SARS-CoV-2「需留意變異株」由CDC定義為具有特定基因標記之變異株,該等標記與受體結合之變化、針對先前感染或疫苗接種產生之抗體的中和降低、治療效能降低、潛在診斷影響或傳播性或疾病嚴重程度之預計增加相關聯。SARS-CoV-2 "mutants to watch out for" are defined by the CDC as variants with specific genetic markers, changes in receptor binding, reduced neutralization of antibodies against previous infection or vaccination, reduced therapeutic efficacy , potential diagnostic impact, or projected increases in transmissibility or disease severity.
VOI之可能屬性包括例如預計影響傳播、診斷、治療或免疫逃逸之特定基因標記,及/或其係病例比例增加或獨特爆發集群之原因的證據。Possible attributes of a VOI include, for example, specific genetic markers predicted to affect transmission, diagnosis, treatment, or immune escape, and/or evidence that it is the cause of an increased proportion of cases or a unique cluster of outbreaks.
SARS-CoV-2需留意變異株(VOI)包括B.1.427 (Pango譜系),其具有棘蛋白取代:L452R、D614G,且已命名為「Ε」。其首次係在美國(加利福尼亞(California))鑑別出。值得注意的屬性包括約20%之傳播增加及對巴尼韋單抗(bamlanivimab)及埃特司韋單抗(etesevimab)之組合之敏感性略有下降;然而,此下降之臨床意義尚不清楚。替代單株抗體治療係可用的,且變異株展現恢復期及疫苗接種後血清之中和降低。2021年6月29日,由於B.1.427譜系病毒在全國傳播之比例顯著下降且現有數據指示疫苗及治療有效對抗此變異株,此變異株自VOC降級。SARS-CoV-2 variants of note (VOI) include B.1.427 (Pango lineage), which has spinin substitutions: L452R, D614G, and has been named "E". It was first identified in the United States (California). Notable attributes include approximately 20% increase in transmission and a slight decrease in sensitivity to the combination of bamlanivimab and etesevimab; however, the clinical significance of this decrease is unclear . Alternative monoclonal antibody therapy is available, and mutant strains exhibit reduced serum neutralization during convalescence and post-vaccination. On June 29, 2021, this variant was downgraded from VOC due to the significant decrease in the proportion of B.1.427 lineage viruses circulating nationwide and available data indicating that vaccines and treatments are effective against this variant.
第二SARS-CoV-2 VOI係B.1.429 (Pango譜系),其具有棘蛋白取代:S13I、W152C、L452R、D614G,且已命名為「Ε」。值得注意的屬性包括約20%之增加傳播及對巴尼韋單抗及埃特司韋單抗之組合之敏感性下降;然而,此下降之臨床意義尚不清楚。替代單株抗體治療係可用的,且變異株展現恢復期及疫苗接種後血清之中和降低。2021年6月29日,由於B.1.429譜系病毒在全國傳播之比例顯著下降且現有數據指示疫苗及治療有效對抗此變異株,此變異株自VOC降級。The second SARS-CoV-2 VOI line, B.1.429 (Pango lineage), has spinin substitutions: S13I, W152C, L452R, D614G, and has been designated "E". Notable attributes include an approximately 20% increase in transmission and a decrease in sensitivity to the combination of banivirumab and eltersuumab; however, the clinical significance of this decrease is unclear. Alternative monoclonal antibody therapy is available, and mutant strains exhibit reduced serum neutralization during convalescence and post-vaccination. On June 29, 2021, this variant was downgraded from VOC due to the significant decrease in the proportion of B.1.429 lineage viruses circulating nationwide and available data indicating that vaccines and treatments are effective against this variant.
第三SARS-CoV-2 VOI係B.1.525 (Pango譜系),其具有棘蛋白取代:A67V、69del、70del、144del、E484K、D614G、Q677H、F888L,指定為「η」。變異株首次係在英國(United Kingdom)/奈及利亞(Nigeria) - 2020年12月鑑別出。值得注意的屬性包括一些緊急使用授權(Emergency Use Authorization, EUA)單株抗體治療之中和可能降低及恢復期及疫苗接種後血清之中和可能降低。A third SARS-CoV-2 VOI line, B.1.525 (Pango lineage), has spinin substitutions: A67V, 69del, 70del, 144del, E484K, D614G, Q677H, F888L, designated "n". The variant was first identified in United Kingdom/Nigeria - December 2020. Notable attributes include a potential reduction in therapeutic neutralization for some Emergency Use Authorization (EUA) monoclonal antibodies and a reduction in serum neutralization potential during recovery and post-vaccination.
第四SARS-CoV-2 VOI係B.1.526 (Pango譜系),其具有棘蛋白取代:L5F、(D80G*)、T95I、(Y144-*)、(F157S*)、D253G、(L452R*)、(S477N*)、E484K、D614G、A701V、(T859N*)、(D950H*)、(Q957R*),且命名為「ι」。變異株首次係在美國(紐約(New York))- 2020年12月鑑別出。值得注意的屬性包括對巴尼韋單抗及埃特司韋單抗單株抗體治療之組合的敏感性降低;然而,此下降之臨床意義尚不清楚。替代單株抗體治療係可用的,且變異株展現恢復期及疫苗接種後血清之中和降低。B.1.526.1亞譜系已與此親代譜系合併。A fourth SARS-CoV-2 VOI lineage B.1.526 (Pango lineage) with spinin substitutions: L5F, (D80G*), T95I, (Y144-*), (F157S*), D253G, (L452R*), (S477N*), E484K, D614G, A701V, (T859N*), (D950H*), (Q957R*), and named "ι". The variant strain was first identified in the United States (New York) - December 2020. Notable attributes include decreased sensitivity to the combination of banivirumab and etesivirumab monoclonal antibody therapy; however, the clinical significance of this decrease is unclear. Alternative monoclonal antibody therapy is available, and mutant strains exhibit reduced serum neutralization during convalescence and post-vaccination. The B.1.526.1 subpedigree has been merged with this parental pedigree.
第五SARS-CoV-2 VOI係B.1.617.1 (Pango譜系),其具有棘蛋白取代:(T95I)、G142D、E154K、L452R、E484Q、D614G、P681R、Q1071H,且命名為「κ」。變異株首次係在印度- 2020年12月鑑別出。值得注意的屬性包括一些EUA單株抗體治療之中和可能降低及疫苗接種後血清之中和可能降低。The fifth SARS-CoV-2 VOI lineage B.1.617.1 (Pango lineage) has spinin substitutions: (T95I), G142D, E154K, L452R, E484Q, D614G, P681R, Q1071H, and is named "κ". Variant strain identified for the first time in India - December 2020. Notable attributes include the potential for treatment neutralization of some EUA monoclonal antibodies and the potential for decreased serum neutralization after vaccination.
第六SARS-CoV-2 VOI係B.1.617.3 (Pango譜系),其具有棘蛋白取代:T19R、G142D、L452R、E484Q、D614G、P681R、D950N,且命名為「20A」。變異株首次係在印度(India)- 2020年10月鑑別出。值得注意的屬性包括一些EUA單株抗體治療之中和可能降低及疫苗接種後血清之中和可能降低。The sixth SARS-CoV-2 VOI line B.1.617.3 (Pango lineage) has spinin substitutions: T19R, G142D, L452R, E484Q, D614G, P681R, D950N, and is named "20A". The mutant strain was first identified in India - October 2020. Notable attributes include the potential for treatment neutralization of some EUA monoclonal antibodies and the potential for decreased serum neutralization after vaccination.
SARS-CoV-2「高關注變異株」(VOC)係由CDC定義為有傳播性增加、更嚴重之疾病(例如增加之住院或死亡)、在先前感染或疫苗接種期間產生之抗體之中和顯著降低、治療或疫苗之有效性降低,或診斷檢測失敗之證據的變異株。A SARS-CoV-2 "variant of very high concern" (VOC) is defined by the CDC as having increased transmissibility, more severe disease (such as increased hospitalization or death), neutralizing antibodies developed during previous infection or vaccination Variant strains with evidence of significantly reduced, reduced effectiveness of treatments or vaccines, or failure of diagnostic tests.
除VOI之可能屬性以外,VOC之可能屬性包括:(a) 對診斷、治療或疫苗有影響之證據;(b) 廣泛干擾診斷測試靶標;(c) 實質上降低一或多類療法之敏感性之證據;(d) 在先前感染或疫苗接種期間所生成抗體之中和顯著降低之證據;(e) 疫苗誘發之對嚴重疾病之保護降低之證據;(f) 傳播性增加之證據;及(g) 疾病嚴重性增加之證據。Potential attributes of a VOC, in addition to those of a VOI, include: (a) evidence of diagnostic, therapeutic, or vaccine impact; (b) broad interference with diagnostic test targets; (c) materially reduced sensitivity to one or more classes of therapy (d) evidence of a neutral and significant reduction in antibodies produced during prior infection or vaccination; (e) evidence of reduced vaccine-induced protection from severe disease; (f) evidence of increased transmissibility; and ( g) Evidence of increased disease severity.
第一VOC係B.1.1.7 (Pango譜系),其具有棘蛋白取代:69del、70del、144del、(E484K*)、(S494P*)、N501Y、A570D、D614G、P681H、T716I、S982A、D1118H (K1191N*),且命名為「α」。變異株首次係在英國鑑別出,且值得注意之屬性包括(1) 約50%傳播增加,(2) 基於住院率及病死率,可能增加之嚴重程度,(3) 對EUA單株抗體治療之敏感性無影響,及(4) 對恢復期及疫苗接種後血清之中和之最小影響。The first VOC line B.1.1.7 (Pango lineage) with spinin substitutions: 69del, 70del, 144del, (E484K*), (S494P*), N501Y, A570D, D614G, P681H, T716I, S982A, D1118H ( K1191N*), and named "α". The variant was first identified in the UK and notable attributes include (1) approximately 50% increased transmission, (2) possible increased severity based on hospitalization and case fatality rates, (3) limited response to EUA monoclonal antibody therapy No effect on susceptibility, and (4) minimal effect on convalescence and post-vaccination seroneutralization.
第二VOC係B.1.351 (Pango譜系),其具有棘蛋白取代:D80A、D215G、241del、242del、243del、K417N、E484K、N501Y、D614G、A701V,且命名為「β」。變異株首次係在南非鑑別出,且值得注意之屬性包括(1) 約50%傳播增加,(2) 對巴尼韋單抗及埃特司韋單抗單株抗體治療之組合之敏感性顯著降低,但其他EUA單株抗體治療係可用的,及(3) 恢復期及疫苗接種後血清之中和降低。The second VOC line, B.1.351 (Pango lineage), has spinin substitutions: D80A, D215G, 241del, 242del, 243del, K417N, E484K, N501Y, D614G, A701V, and is named "β". The variant was identified for the first time in South Africa, and notable attributes include (1) an approximately 50% increase in transmission, (2) a marked sensitivity to the combination of banivirumab and eltersuvirumab monoclonal antibody therapy decreased, but other EUA monoclonal antibody treatments are available, and (3) serum neutralization decreased during convalescence and post-vaccination.
第三VOC係B.1.617.2 (Pango譜系),其具有棘蛋白取代:T19R、(V70F*)、T95I、G142D、E156-、F157-、R158G、(A222V*)、(W258L*)、(K417N*)、L452R、T478K、D614G、P681R、D950N,且命名為「δ」。變異株首次係在印度鑑別出,值得注意之屬性包括(1) 增加之傳染性,(2) 一些EUA單株抗體治療之中和的可能降低,及(3) 疫苗接種後血清之中和的可能降低。AY.1、AY.2及AY.3目前與B.1.617.2聚集在一起。A third VOC line B.1.617.2 (Pango lineage) with spinin substitutions: T19R, (V70F*), T95I, G142D, E156-, F157-, R158G, (A222V*), (W258L*), ( K417N*), L452R, T478K, D614G, P681R, D950N, and named "δ". Variant strains were first identified in India, and noteworthy properties include (1) increased infectivity, (2) potential decreased treatment neutralization of some EUA monoclonal antibodies, and (3) post-vaccination serum neutralization possibly lower. AY.1, AY.2, and AY.3 are currently clustered with B.1.617.2.
第三VOC係P.1 (Pango譜系),其具有棘蛋白取代:L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、D614G、H655Y、T1027I,且命名為「γ」。變異株首次係在日本/巴西鑑別出,且值得注意之屬性包括(1) 對巴尼韋單抗及埃特司韋單抗單株抗體治療之組合之敏感性顯著降低,但其他EUA單株抗體治療係可用的,及(2) 恢復期及疫苗接種後血清之中和降低。The third VOC line, P.1 (Pango lineage), has spinin substitutions: L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I, and is named "γ". The variant was first identified in Japan/Brazil, and notable properties include (1) significantly reduced sensitivity to the combination of banivirumab and eltersuvir monoclonal antibody treatment, but other EUA monoclonal antibodies Antibody therapy is available, and (2) serum neutralization decreases during recovery and post-vaccination.
最後,SARS-CoV-2「高衝擊變異株」(variant of high consequence, VHC)由CDC定義為有明確證據表明預防措施或醫療對策(MCM)相對於先前流行之變異株之有效性顯著降低之變異株。除VOC之可能屬性以外,VHC之可能屬性亦包括對醫療對策(MCM)之以下影響:(1) 展示診斷失敗,(2) 疫苗有效性顯著降低、疫苗突破性病例數量之比例偏高或疫苗誘導之對嚴重疾病之保護極低之證據,(3) 對多種緊急使用授權(EUA)或批准之治療劑的敏感性顯著降低,以及(4) 更嚴重的臨床疾病及住院增加。VHC將需要根據國際衛生條例(International Health Regulations)通知WHO,向CDC報告,宣佈預防或遏制傳播之策略,並提出更新的治療及疫苗的建議。目前,沒有上升至高衝擊位準之SARS-CoV-2變異株。Finally, a SARS-CoV-2 "variant of high consequence" (VHC) is defined by the CDC as one with clear evidence that preventive measures or medical countermeasures (MCM) are significantly less effective relative to previously circulating variants. mutant strain. In addition to possible attributes of VOC, possible attributes of VHC include the following effects on medical countermeasures (MCM): (1) exhibiting diagnostic failure, (2) significantly reduced vaccine effectiveness, a higher proportion of vaccine breakthrough cases, or Evidence of minimal protection against severe disease induced, (3) markedly reduced susceptibility to multiple Emergency Use Authorization (EUA) or approved therapeutic agents, and (4) increased clinical illness and hospitalization for more severe disease. VHCs will be required to notify the WHO under the International Health Regulations, report to the CDC, announce strategies to prevent or contain transmission, and recommend updated treatments and vaccines. Currently, there are no variants of SARS-CoV-2 that have risen to high shock levels.
截至2021年6月28日,已報告在美國有四種值得注意之SARS-CoV-2變異株:B.1.1.7 (α)、B.1.351 (β)、P.1 (γ)及B.1.617.2 (δ)。「About Variants of the Virus that Causes COVID-19」, www.cdc.gov/coronavirus/2019-ncov/variants/variant.html (2021年6月28日)。As of June 28, 2021, four notable variants of SARS-CoV-2 have been reported in the United States: B.1.1.7 (α), B.1.351 (β), P.1 (γ), and B. .1.617.2 (δ). “About Variants of the Virus that Causes COVID-19,” www.cdc.gov/coronavirus/2019-ncov/variants/variant.html (June 28, 2021).
B.1.1.7 (α)變異株在美國係2020年12月首次檢測出。其初始係在英國檢測出。α. (B.1.1.7) COVID-19變異株似乎更易於傳播,與先前循環之變異株相比,傳播增加約50%。此變異株亦可能具有增加之住院及死亡之風險。 www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/covid-variant/faq-20505779(2021年7月16日存取)。 The B.1.1.7 (α) mutant strain was first detected in December 2020 in the United States. It was initially detected in the UK. α. (B.1.1.7) Variant strains of COVID-19 appear to be more transmissible, with an approximately 50% increase in transmission compared to previously circulating variant strains. This variant strain may also have an increased risk of hospitalization and death. www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/covid-variant/faq-20505779 (accessed 16 July 2021).
B.1.351 (β)變異株在美國係2021年1月底首次檢測出。其初始係在南非於2020年12月檢測出。β (B.1.351)變異株似乎更易於傳播,與先前循環之變異株相比,傳播增加約50%。其亦降低一些單株抗體醫藥及由先前COVID-19感染或COVID-19疫苗生成之抗體的有效性。 www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/covid-variant/faq-20505779(2021年7月16日存取)。 The B.1.351 (β) mutant strain was first detected in the United States at the end of January 2021. Its initial strain was detected in South Africa in December 2020. The β (B.1.351) variant appears to be more transmissible, with approximately a 50% increase in transmission compared to previously circulating variants. It also reduces the effectiveness of some monoclonal antibody medicines and antibodies produced from previous COVID-19 infections or COVID-19 vaccines. www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/covid-variant/faq-20505779 (accessed 16 July 2021).
P.1 (γ)變異株在美國係2021年1月首次檢測出。P.1初始係自來自巴西之旅行者鑑別出,該等旅行者在1月初在日本機場之例行篩查期間接受檢測。γ (P.1)變異株降低一些單株抗體醫藥及由先前COVID-19感染或COVID-19疫苗生成之抗體的有效性。 www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/covid-variant/faq-20505779(2021年7月16日存取)。 The P.1 (γ) variant was first detected in January 2021 in the United States. P.1 was initially identified from travelers from Brazil who were tested during routine screening at Japanese airports in early January. Gamma (P.1) variants reduce the effectiveness of some monoclonal antibody medicines and antibodies generated from previous COVID-19 infection or COVID-19 vaccines. www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/covid-variant/faq-20505779 (accessed 16 July 2021).
最後,B.1.617.2 (δ)變異株在美國係2021年3月首次檢測出。其初始係在印度於2020年12月鑑別出。藉由當前數據,變異株B.1.1.7 (δ)係美國最常見變異株。同上。B.1.1.7 (δ)變異株潛在地較其他變異株更易於傳播。研究已顯示,其易於在室內運動場所及家庭中傳播。此變異株亦可能降低一些單株抗體治療及由COVID-19疫苗生成之抗體之有效性。 www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/covid-variant/faq-20505779(2021年7月16日存取)。 Finally, the B.1.617.2 (δ) variant was detected for the first time in March 2021 in the US lineage. Its original strain was identified in India in December 2020. Based on current data, variant B.1.1.7 (δ) is the most common variant in the United States. Ditto. B.1.1.7 (δ) mutant strains are potentially more transmissible than other mutant strains. Studies have shown that it spreads easily in indoor sports facilities and in households. This variant may also reduce the effectiveness of some monoclonal antibody treatments and antibodies produced by the COVID-19 vaccine. www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/covid-variant/faq-20505779 (accessed 16 July 2021).
該等變異株似乎較其他變異株更容易且更快地傳播,此可會導致更多COVID-19病例。同上。病例數量之增加將對醫療資源造成更大壓力,導致更多住院,且可能更多的死亡。「About Variants of the Virus that Causes COVID-19」, www.cdc.gov/coronavirus/2019-ncov/variants/variant.html(2021年6月28日)。 These variants appear to spread more easily and faster than other variants, which may lead to more cases of COVID-19. Ditto. An increase in the number of cases will put more pressure on medical resources, lead to more hospitalizations, and possibly more deaths. “About Variants of the Virus that Causes COVID-19,” www.cdc.gov/coronavirus/2019-ncov/variants/variant.html (June 28, 2021).
不同變異株已在巴西、加利福尼亞及其他地區出現。稱為B.1.351之變異株(其首次出現於南非)可具有重新感染已自冠狀病毒之早期版本恢復的人之能力。其亦可能對一些正開發之冠狀病毒疫苗有一定抗性。儘管如此,目前正測試之其他疫苗似乎可保護感染B.1.351的人免受嚴重疾病。 www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/a-new-strain-of-coronavirus-what-you-should-know(2021年7月16日存取)。 Different variants have emerged in Brazil, California, and elsewhere. A variant known as B.1.351, which first appeared in South Africa, may have the ability to reinfect people who have recovered from earlier versions of the coronavirus. It may also have some resistance to some coronavirus vaccines being developed. Nonetheless, other vaccines currently being tested appear to protect people infected with B.1.351 from severe disease. www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/a-new-strain-of-coronavirus-what-you-should-know (accessed July 16, 2021).
感染SARS-CoV或MERS-CoV之患者初始呈現為輕度流行性感冒樣疾病,伴有發燒、呼吸困難及咳嗽。大多數患者可自此疾病恢復。然而,最易受感染之群體係年齡超過65歲之患者及伴有導致免疫抑制之共病(例如癌症、HIV等)之患者,其中疾病發展至更嚴重症狀且特徵為非典型間質性肺炎及彌漫性肺泡損傷。SARS-CoV及MERS-CoV二者均能引起急性呼吸窘迫症候群(ARDS)(急性肺損傷之最嚴重形式),其中肺泡發炎、肺炎及肺缺氧狀況導致呼吸衰竭、多器官疾病且50%之ARDS患者死亡。隨著疾病進展,通常觀察到淋巴球減少症。因CoV-2感染導致之大多數死亡係免疫受損患者之嚴重淋巴球減少症之結果,且該疾病佔優勢,導致ARDS。Patients infected with SARS-CoV or MERS-CoV initially present with mild influenza-like illness with fever, dyspnea, and cough. Most patients recover from this disease. However, the most vulnerable groups are patients over 65 years of age and patients with comorbidities (such as cancer, HIV, etc.) that lead to immunosuppression, where the disease progresses to more severe symptoms and is characterized by atypical interstitial pneumonia and diffuse alveolar damage. Both SARS-CoV and MERS-CoV can cause acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, in which alveolar inflammation, pneumonia, and lung hypoxia lead to respiratory failure, multi-organ disease and 50% ARDS patients died. As the disease progresses, lymphopenia is usually observed. Most deaths due to CoV-2 infection are the result of severe lymphopenia in immunocompromised patients, and the disease predominates, leading to ARDS.
冠狀病毒(SARS-CoV-2;COVID-19)在感染者中引起非典型肺炎且症狀包括發燒、乾咳及疲勞。大多數患者具有淋巴球減少症(白血球計數下降,特別地T細胞、B細胞及NK細胞)。目前的觀察結果指示,最可能死於此疾病之患者係免疫受損之彼等(老年人及患有免疫抑制疾病(例如癌症)之患者)以及患有糖尿病及其他潛在健康問題(例如高血壓、心臟病及呼吸病症)之患者。前一組患者最可能因淋巴球減少症而病情加重,且因此雙肺之病毒複製及感染失去控制,導致急性呼吸窘迫症候群(ARDS)。Coronavirus (SARS-CoV-2; COVID-19) causes atypical pneumonia in infected individuals and symptoms include fever, dry cough, and fatigue. Most patients have lymphopenia (decreased white blood cell count, especially T cells, B cells and NK cells). Current observations indicate that patients most likely to die from the disease are those who are immunocompromised (the elderly and those with immunosuppressive diseases such as cancer) and those with diabetes and other underlying health problems such as hypertension , heart disease and respiratory disease) patients. Patients in the former group are most likely to be exacerbated by lymphopenia and thus uncontrolled viral replication and infection in both lungs, resulting in acute respiratory distress syndrome (ARDS).
一旦免疫系統之主要細胞(例如,T細胞、B細胞、巨噬細胞及NK細胞)耗盡,病毒增殖便佔優勢。在老年患者中,免疫功能不像年輕人那樣強健。研究已顯示,在大多數人中,其免疫功能在60多歲甚至70多歲時都很好。免疫功能在75歲或80歲之後快速下降。Once the key cells of the immune system (eg, T cells, B cells, macrophages and NK cells) are depleted, viral proliferation prevails. In older patients, immune function is not as robust as in younger patients. Research has shown that, in most people, their immune function is good in their 60s and even into their 70s. Immune function declines rapidly after
COVID-19藉由人傳人迅速傳播,其中中值潛伏期為3.0天(範圍0至24.0),且自症狀發作至發展為肺炎之時間為4.0天(範圍2.0至7.0) (Guan等人,2020)。發燒、乾咳及疲勞係COVID-19發作時之常見症狀(Huang等人,2020)。大多數患者具有淋巴球減少症及胸部CT掃描中雙側毛玻璃陰影改變(Huang等人,2020;Duan及Qin, 2020)。沒有特異性抗病毒治療或疫苗可用。迫切需要開發基於SARS-CoV-2之疫苗。COVID-19 spreads rapidly through human-to-human transmission, with a median incubation period of 3.0 days (
認為基於全病毒顆粒之疫苗製備(包括不活化及減毒病毒疫苗)係可取的,因為其係基於關於季節性流行性感冒疫苗之預防及控制之先前研究(Grohskopf等人,2018)。首個SARS-CoV-2 (Wuhan-Hu-1)之基因體序列已完成(基因庫登錄號MN908947.3;Wu等人,2020)。已實施SARS-CoV-2之大規模培養,並藉助使用已確立之物理及化學方法(例如UV光、甲醛及β-丙內酯)製備不活化病毒疫苗(Jiang等人,2005)。減毒病毒疫苗之開發亦可藉由篩選與野生型病毒相比致病性降低(例如誘導最小肺損傷、減少有限嗜中性球流入及增加抗發炎細胞介素表現)之連續傳播之SARS-CoV-2來實現(Regla-Nava等人,2015)。不活化及減毒病毒疫苗二者均具有各自缺點及副作用(表1;自Shang等人,2020複製)。
正開發之所有新療法均係(i) 用以全身性的阻止病毒增殖之抗病毒藥物,或(ii)作為疫苗以刺激對病毒蛋白之強效抗體反應之減毒病毒。All of the new therapies being developed are either (i) antiviral drugs used systemically to prevent viral multiplication, or (ii) attenuated viruses used as vaccines to stimulate a strong antibody response to viral proteins.
該等療法均不可能如目前在流行性感冒病毒感染患者之情形中所看到的那樣阻止被感染免疫受損患者之死亡。每年因流感感染死亡之人數最多的係免疫受損患者及老年人。None of these therapies is likely to prevent the death of infected immunocompromised patients as is currently seen in the case of influenza virus infected patients. The largest number of deaths due to influenza infection each year are immunocompromised patients and the elderly.
治療諸如癌症之疾病之有效免疫療法策略係取決於先天及適應性免疫反應之活化。先天免疫系統之細胞經由保守樣式辨識受體與病原體相互作用,而適應性免疫系統之細胞藉助體細胞DNA重排生成之各種抗原特異性受體識別病原體。不變的自然殺手T (iNKT)細胞係橋接先天及適應性免疫系統之淋巴球之子集(I型NKT)。iNKT細胞表現不變的α鏈T細胞受體(在人類中Vα24-Jα18且在小鼠中Vα14-Jα18),該受體由在非多形性MHC I類樣蛋白CD1d之情形中存在之某些醣脂特異性活化。CD1d結合至各種二烷基脂質及醣脂,例如鞘醣脂α-半乳糖神經醯胺(α-GalCer)。CD1d-脂質複合物之iNKT細胞TCR識別導致促發炎及調節性細胞介素(包括Th1細胞介素干擾素γ (IFNγ))之釋放。細胞介素之釋放進而活化適應性細胞(例如T及B細胞)及先天細胞(例如樹突細胞及NK細胞)。Effective immunotherapy strategies for the treatment of diseases such as cancer depend on the activation of innate and adaptive immune responses. Cells of the innate immune system interact with pathogens through conserved pattern recognition receptors, while cells of the adaptive immune system recognize pathogens through various antigen-specific receptors generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cell lines bridge a subset of lymphocytes of the innate and adaptive immune systems (type I NKT). iNKT cells express an invariant α-chain T-cell receptor (Vα24-Jα18 in humans and Vα14-Jα18 in mice) mediated by a certain protein present in the context of the non-pleomorphic MHC class I-like protein CD1d. Some glycolipids are specifically activated. CDld binds to various dialkyl lipids and glycolipids, such as the glycosphingolipid alpha-galactosylceramide (α-GalCer). iNKT cell TCR recognition of CDld-lipid complexes leads to the release of pro-inflammatory and regulatory cytokines, including the Th1 cytokine interferon gamma (IFNγ). The release of cytokines in turn activates adaptive cells (such as T and B cells) and innate cells (such as dendritic cells and NK cells).
α-GalCer (亦稱為KRN7000,化學式C 50H 99NO 9)係合成醣脂,其源於自海綿 Agelas mauritianus分離之半乳糖神經醯胺之結構-活性關係研究。α-GalCer係強免疫刺激劑且在許多活體內模型中顯示強效抗腫瘤活性。使用α-GalCer用於免疫療法之主要挑戰係其在iNKT細胞中誘導無反應性,此乃因其可由外周血中之其他CD1d表現細胞(例如B細胞)呈現。α-GalCer之遞送亦顯示誘導肝毒性。 B. SARS-CoV-2 α-GalCer (also known as KRN7000, chemical formula C 50 H 99 NO 9 ) is a synthetic glycolipid derived from the structure-activity relationship study of galactosylceramide isolated from the sponge Agelas mauritianus . α-GalCer is a potent immunostimulant and exhibits potent antitumor activity in a number of in vivo models. A major challenge of using α-GalCer for immunotherapy is that it induces anergy in iNKT cells as it can be presented by other CDld expressing cells in peripheral blood such as B cells. Delivery of α-GalCer was also shown to induce hepatotoxicity. B. SARS-CoV-2
冠狀病毒基因體編碼四種主要結構蛋白:棘(S)蛋白、核酸蛋白殼(N)蛋白、膜(M)蛋白及套膜(E)蛋白,所有該等均需要產生結構完整的病毒顆粒。一些CoV不需要結構蛋白之完全整合以形成完整、具傳染性病毒粒子,此表明一些結構蛋白可係非必需的,或該等CoV可能編碼具有重疊補償功能之其他蛋白質。個別地,每一蛋白質主要在病毒顆粒之結構中起作用,但其亦參與複製週期之其他態樣。S蛋白介導病毒至宿主細胞表面受體之附著以及隨後病毒與宿主細胞膜之間之融合,以促進病毒進入宿主細胞。在一些CoV中,S在細胞膜處之表現亦可介導感染細胞與毗鄰未感染細胞之間之細胞-細胞融合。已認為此巨大、多核細胞或合胞體之形成係允許病毒在細胞之間直接傳播之策略,此破壞病毒中和抗體。The coronavirus genome encodes four major structural proteins: the spine (S) protein, the nucleic acid protein shell (N) protein, the membrane (M) protein, and the envelope (E) protein, all of which are required to produce structurally complete virus particles. Some CoVs do not require full integration of structural proteins to form complete, infectious virions, suggesting that some structural proteins may be dispensable, or that these CoVs may encode other proteins with overlapping compensatory functions. Individually, each protein plays a major role in the structure of the virus particle, but it also participates in other aspects of the replication cycle. The S protein mediates attachment of the virus to host cell surface receptors and subsequent fusion between the virus and host cell membranes to facilitate virus entry into the host cell. In some CoVs, expression of S at the cell membrane can also mediate cell-cell fusion between infected cells and adjacent uninfected cells. This formation of giant, multinucleated cells, or syncytia, is thought to be a strategy to allow direct transmission of the virus between cells, which destroys virus neutralizing antibodies.
已顯示,SARS-CoV-2棘(S)醣蛋白結合至細胞膜蛋白血管收縮肽-轉化酶2 (ACE2)以進入人類細胞。COVID-19已顯示經由其表面上之S蛋白結合至ACE2。在感染期間,S蛋白分裂為次單元S1及S2。S1含有受體結合結構域(RBD),其允許冠狀病毒直接結合至ACE2之肽酶結構域(PD)。S2因此可能在膜融合中起作用。The SARS-CoV-2 spine (S) glycoprotein has been shown to bind to the cell membrane protein vasoconstrictor-converting enzyme 2 (ACE2) for entry into human cells. COVID-19 has been shown to bind to ACE2 via the S protein on its surface. During infection, the S protein splits into subunits S1 and S2. S1 contains a receptor binding domain (RBD) that allows the coronavirus to bind directly to the peptidase domain (PD) of ACE2. S2 thus likely plays a role in membrane fusion.
不像其他主要結構蛋白,N係唯一主要用於與CoV RNA基因體結合以構成核酸蛋白殼之蛋白質。儘管N在很大程度上參與了與病毒基因體相關之過程,但其亦參與CoV複製週期之其他態樣以及宿主細胞對病毒感染之反應。N之瞬時表現顯示實質上增加一些CoV中病毒樣顆粒(VLP)之產生,此表明其可能並非套膜形成所必需的,而是完整的病毒粒子形成所必需的。Unlike other major structural proteins, N is the only protein mainly used to combine with the CoV RNA genome to form the nucleic acid protein coat. Although N is largely involved in processes associated with the viral genome, it is also involved in other aspects of the CoV replication cycle and the host cell's response to viral infection. Transient expression of N was shown to substantially increase the production of virus-like particles (VLPs) in some CoVs, suggesting that it may not be required for envelope formation, but for full virion formation.
M蛋白係最豐富之結構蛋白且界定病毒套膜之形狀。將其視為CoV組裝之中心組織者,與所有其他主要冠狀病毒結構蛋白相互作用。M蛋白之間之同型相互作用係病毒粒子套膜形成背後之主要驅動力,但其單獨不足以形成病毒粒子。M與N之結合穩定病毒粒子之核酸蛋白殼(N蛋白-RNA複合物)以及內核,並最終促進病毒組裝之完成。M與E一起構成病毒套膜且其相互作用足以產生及釋放VLP。The M protein is the most abundant structural protein and defines the shape of the viral envelope. Think of it as the central organizer of CoV assembly, interacting with all other major coronavirus structural proteins. Homotypic interactions between M proteins are the main driving force behind virion envelope formation, but alone are not sufficient for virion formation. The combination of M and N stabilizes the nucleic acid protein shell (N protein-RNA complex) and core of the virus particle, and finally promotes the completion of virus assembly. Together, M and E constitute the viral envelope and their interaction is sufficient to generate and release VLPs.
CoV套膜(E)蛋白係主要結構蛋白中之最小者。其係膜主體蛋白,其參與病毒生命週期之多個態樣,例如組裝、出芽、套膜形成及致病性。在複製週期期間,E在感染細胞內大量表現,但僅一小部分併入病毒粒子套膜中。大部分蛋白質位於細胞內運輸部位,在其中其參與CoV之組裝及出芽。缺乏E之重組CoV展現顯著降低之病毒效價、嚴重受損之病毒成熟或產生繁殖無能後代,此證實E在病毒生產及成熟中之重要性。The CoV envelope (E) protein is the smallest of the major structural proteins. Its mesangial body protein, which is involved in multiple aspects of the virus life cycle, such as assembly, budding, mantle formation, and pathogenicity. During the replication cycle, E is expressed in large quantities within infected cells, but only a small fraction is incorporated into the virion envelope. Most of the proteins are located in intracellular trafficking sites, where they participate in CoV assembly and budding. Recombinant CoVs lacking E displayed significantly reduced virus titers, severely impaired virus maturation, or produced reproductively incompetent progeny, demonstrating the importance of E in virus production and maturation.
冠狀病毒係其中基因體係單鏈mRNA、具有3'-UTR及poly-A尾之病毒。在包括2019-nCoV、SARS及MERS在內之冠狀病毒子集中,3'-UTR含有高度保守之序列(在其他方面相當可變之訊息中),該序列摺疊成獨特的結構,稱為s2m(莖二基序)。儘管s2m在序列上看起來極其保守,且係病毒存活所必需的,但其確切功能尚未得知。2019武漢新型冠狀病毒(COVID-19, 原2019-nCoV)具有與SARS幾乎完全相同之s2m序列(且因此結構)。The coronavirus is a virus in which the gene system is single-stranded mRNA, with a 3'-UTR and a poly-A tail. In a subset of coronaviruses including 2019-nCoV, SARS and MERS, the 3'-UTR contains a highly conserved sequence (among an otherwise quite variable message) that folds into a unique structure called s2m( stem two motif). Although s2m appears to be extremely conserved in sequence and is required for viral survival, its exact function is unknown. The 2019 Wuhan novel coronavirus (COVID-19, formerly 2019-nCoV) has an almost identical s2m sequence (and thus structure) to SARS.
SARS-CoV-2基因體序列已經發佈且已發表於https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/ ( 於 2020 年 3 月 24 日下載 ),包括來自世界各地病毒之多個完整核苷酸序列以及特定病毒基因之序列,例如S基因、N基因、M基因等。實例包括基因庫登錄號MN908947.3、MN975262.1、NC_045512.2、MN997409.1、MN985325.1、MN988669.1、MN988668.1、MN994468.1、MN994467.1、MN988713.1及MN938384.1。SARS-CoV-2係有套膜之單鏈及正鏈RNA病毒,其基因體包含29,891個核苷酸,該等核苷酸編碼負責病毒結構及非結構蛋白之合成的12個推定開放閱讀框(Wu等人,2020;Chen等人,2020)。成熟SARS-CoV-2具有四種結構蛋白,即,套膜、膜、核酸蛋白殼及棘(Chen等人,2020)。所有該等蛋白質可用作抗原以刺激中和抗體及增加CD4+/ CD8+ T細胞反應(Jiang等人,2015)。然而,次單元疫苗需要多次加強注射及適宜佐劑以發揮作用,且某些次單元疫苗(例如B型肝炎表面抗原、PreS1及PreS2)在臨床測試時可能無法產生保護性反應。更易於設計並極快進入臨床試驗之DNA及mRNA疫苗仍處於試驗階段。基於病毒載體之疫苗亦可在沒有佐劑之情況下快速構建及使用。然而,在鑑別出含有中和表位之抗原之前,可能不會開始開發此類疫苗。E及M蛋白在冠狀病毒之病毒組裝中具有重要功能,且N蛋白係病毒RNA合成所必需的。E蛋白之缺失消除CoV之毒力,且幾項研究已探索具有突變E蛋白之重組SARS-CoV或MERS-CoV作為減毒活疫苗之潛力。M蛋白可增強N蛋白DNA疫苗誘導之針對SARS-CoV之免疫反應;然而,CoV家族中保守之N蛋白意味著其並非用於疫苗開發之適宜候選者,且針對SARS-CoV-2之N蛋白之抗體並不提供針對感染之免疫力。SARS-CoV-2之關鍵醣蛋白S負責病毒結合及進入。SARS-CoV-2之S前體蛋白可以蛋白水解方式分裂成S1 (685 aa)及S2 (588 aa)次單元。S2蛋白在SARS-CoV-2病毒中極為保守且與蝙蝠SARS-CoV共有99%一致性。基於S2蛋白之疫苗設計可加強廣譜抗病毒效應且值得在動物模型中測試。已發現針對流行性感冒血球凝集素之保守莖區之抗體展現廣泛地交叉反應免疫性,但在中和A型流行性感冒病毒方面之效力較弱。與此相比,S1次單元係由受體結合結構域(RBD)組成,其藉助宿主血管收縮肽-轉化酶2 (ACE2)受體介導病毒進入敏感細胞。2019-nCoV之S1蛋白與人類SARS-CoV共有約70%一致性。RBD中最高數量之胺基酸變化位於外部子結構域,該子結構域負責病毒與宿主受體之間之直接相互作用。 C. 所揭示組合物如何起作用以治療病毒感染及 / 或疫苗接種以對抗病毒感染之概述 The SARS-CoV-2 genome sequence has been released and published at https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/ ( downloaded on March 24 , 2020 ) , including Multiple complete nucleotide sequences of viruses from all over the world and sequences of specific viral genes, such as S gene, N gene, M gene, etc. Examples include GenBank Accession Nos. MN908947.3, MN975262.1, NC_045512.2, MN997409.1, MN985325.1, MN988669.1, MN988668.1, MN994468.1, MN994467.1, MN988713.1, and MN138384.1. SARS-CoV-2 is an enveloped single- and positive-sense RNA virus whose genome consists of 29,891 nucleotides encoding 12 putative open reading frames responsible for the synthesis of viral structural and nonstructural proteins (Wu et al., 2020; Chen et al., 2020). Mature SARS-CoV-2 has four structural proteins, namely, mantle, membrane, nucleic acid protein shell, and spine (Chen et al., 2020). All of these proteins can be used as antigens to stimulate neutralizing antibodies and increase CD4+/CD8+ T cell responses (Jiang et al., 2015). However, subunit vaccines require multiple booster injections and appropriate adjuvants to be effective, and some subunit vaccines (such as hepatitis B surface antigen, PreS1 and PreS2) may not produce protective responses in clinical trials. DNA and mRNA vaccines, which are easier to design and can enter clinical trials very quickly, are still in the experimental phase. Vaccines based on viral vectors can also be rapidly constructed and administered without adjuvants. However, the development of such vaccines may not begin until antigens containing neutralizing epitopes are identified. The E and M proteins have important functions in the viral assembly of coronaviruses, and the N protein is necessary for the synthesis of viral RNA. Deletion of the E protein abolishes the virulence of CoVs, and several studies have explored the potential of recombinant SARS-CoV or MERS-CoV with mutant E proteins as live attenuated vaccines. The M protein can enhance the immune response against SARS-CoV induced by the N protein DNA vaccine; however, the conserved N protein in the CoV family means that it is not a suitable candidate for vaccine development, and the N protein against SARS-CoV-2 Antibodies do not provide immunity against infection. The key glycoprotein S of SARS-CoV-2 is responsible for virus binding and entry. The S precursor protein of SARS-CoV-2 can be proteolytically split into S1 (685 aa) and S2 (588 aa) subunits. The S2 protein is extremely conserved among SARS-CoV-2 viruses and shares 99% identity with bat SARS-CoV. Vaccine design based on S2 protein can enhance broad-spectrum antiviral effect and is worthy of testing in animal models. Antibodies directed against the conserved stem region of influenza hemagglutinin have been found to exhibit broadly cross-reactive immunity but are less potent at neutralizing influenza A virus. In contrast, the S1 subunit consists of a receptor-binding domain (RBD) that mediates viral entry into sensitive cells via the host vasoconstrictor-converting enzyme 2 (ACE2) receptor. The S1 protein of 2019-nCoV shares about 70% identity with human SARS-CoV. The highest number of amino acid changes in the RBD are located in the external subdomain, which is responsible for the direct interaction between the virus and the host receptor. C. Summary of How the Disclosed Compositions Work to Treat Viral Infections and / or Vaccine Against Viral Infections
本發明旨在干預病毒、例如冠狀病毒(例如SARS-CoV或MERS-CoV)感染前或感染後之早期階段。組合物及方法解決包括以下之問題: (i)克服淋巴球減少症以防止病毒感染/疾病超越患者之自身免疫防禦, (ii)刺激針對暴露於病毒表面上之蛋白質之高效價全身性抗體,以迅速清除自感染細胞釋放之病毒顆粒並由此限制其他健康細胞之感染, (iii)刺激強效I型及II型干擾素反應,其已知藉助多種效應(例如,抗病毒免疫性之特異性刺激及病毒感染細胞消除)迅速對抗一系列不同病毒感染,及(iv) 引發病毒特異性CD8+ T細胞反應,其迅速鑑別並殺死病毒感染細胞。 The present invention aims to intervene in the early stages before or after infection of a virus, such as a coronavirus (eg SARS-CoV or MERS-CoV). The compositions and methods address problems including: (i) overcoming lymphopenia to prevent viral infection/disease from overtaking the patient's own immune defenses, (ii) stimulating high titer systemic antibodies against proteins exposed on the surface of the virus, to rapidly clear viral particles released from infected cells and thereby limit infection of other healthy cells, (iii) stimulate potent type I and type II interferon responses, which are known to be specific by virtue of multiple effects (e.g., antiviral immunity) sexual stimulation and elimination of virus-infected cells) rapidly combats a range of different viral infections, and (iv) elicits virus-specific CD8+ T cell responses that rapidly identify and kill virus-infected cells.
為解決該等及其他需求,根據一個態樣,本發明提供包含以下各項之組合之組合物: (i)載體,其可係完整細菌源性袖珍型細胞,該等細胞視情況重組且包裝有編碼起到刺激對病毒蛋白之抗體反應及刺激I型干擾素之病毒蛋白之質體之作用; (ii)載體,其可係完整細菌源性袖珍型細胞,該等細胞視情況重組且包裝有CD1d識別之抗原,及(iii) 至少一種醫藥上可接受之載劑。包裝有CD1d識別之抗原(例如α-GalCer)之載體起刺激II型干擾素之作用。袖珍型細胞載體自身之作用係刺激免疫系統細胞之活化、成熟及增殖。在另一態樣中,完整細菌源性袖珍型細胞亦可用殺死的細菌細胞代替。 To address these and other needs, according to one aspect, the present invention provides compositions comprising combinations of: (i) vectors, which may be whole pocket cells of bacterial origin, which are optionally reconstituted and packaged There are plasmids encoding viral proteins that stimulate antibody responses to viral proteins and stimulate type I interferons; (ii) vectors, which may be whole pocket cells of bacterial origin, which are optionally reconstituted and packaged There is an antigen recognized by CD1d, and (iii) at least one pharmaceutically acceptable carrier. Carriers packaged with antigens recognized by CDld (such as α-GalCer) act to stimulate type II interferons. The role of the pocket cell carrier itself is to stimulate the activation, maturation and proliferation of immune system cells. In another aspect, whole bacterial-derived pocket cells can also be replaced with killed bacterial cells.
因此,在某些實施例中,本文闡述包含免疫原性有效量之以下各項之組合的組合物:(a) 載體或完整、細菌源性袖珍型細胞或殺死的細菌細胞,其包封一或多種病毒抗原及質體,及(b) 載體或完整、細菌源性袖珍型細胞或殺死的細菌細胞,其包封CD1d識別之抗原,例如α-半乳糖神經醯胺(α-GalCer)。在一些實施例中,經包封CD1d識別之抗原能被吞噬細胞(例如樹突細胞或巨噬細胞)攝取。攝取後,CD1d識別之細胞抗原與吞噬細胞溶酶體內之CD1d形成複合物且隨後輸送至吞噬細胞之表面,在此處與CD1d結合之CD1d識別之抗原呈現以由iNKT細胞識別。在一些實施例中,CD1d識別之細胞抗原藉由iNKT細胞誘導Th1細胞介素反應、特定地IFNγ,iNKT細胞識別吞噬細胞表面上與CD1d結合之CD1d識別之細胞抗原。IFNγ亦已知觸發強效抗病毒免疫反應。CD1d限制型NKT細胞活化先天及適應性免疫反應之能力使得產生該等細胞可調節對傳染原之免疫性之想法。另外,CD1d限制型iNKT細胞可直接促成宿主抗性,此乃因其表現可介導抗微生物效應之各種效應物分子。CD1蛋白質係將脂質抗原呈現給T細胞之抗原呈現分子。Thus, in certain embodiments, described herein are compositions comprising an immunogenic effective amount of a combination of: (a) a vector or whole, bacterial-derived pocket cells or killed bacterial cells that encapsulate One or more viral antigens and plastids, and (b) vectors or intact, bacterial-derived pocket cells or killed bacterial cells that encapsulate antigens recognized by CD1d, such as α-galactosylceramide (α-GalCer ). In some embodiments, the antigen recognized by the encapsulated CDld can be taken up by phagocytes (eg, dendritic cells or macrophages). After uptake, CDld-recognized cellular antigens form complexes with CDld in lysosomes of phagocytic cells and are subsequently transported to the surface of phagocytes, where CDld-recognized antigens bound to CDld are presented for recognition by iNKT cells. In some embodiments, the cell antigen recognized by CD1d is induced by iNKT cells to respond to Th1 cytokines, specifically IFNγ, and the iNKT cells recognize the cell antigen recognized by CD1d bound to CD1d on the surface of phagocytic cells. IFNγ is also known to trigger a potent antiviral immune response. The ability of CDld-restricted NKT cells to activate innate and adaptive immune responses led to the idea that these cells could modulate immunity to infectious agents. In addition, CDld-restricted iNKT cells can directly contribute to host resistance due to the expression of various effector molecules that can mediate antimicrobial effects. The CD1 protein is an antigen-presenting molecule that presents lipid antigens to T cells.
在一個態樣中,將本文所述組合物投與給有需要之個體之目的係使個體迅速擺脫淋巴球減少症且同時活化免疫系統之關鍵細胞,以對抗病毒感染,特別地老年人及免疫受損患者。此將防止該等患者之病毒感染惡化及因此導致之死亡。因此,感染個體將罹患輕度流感樣症狀並隨著身體自身之免疫系統使平衡轉向恢復而更快速地恢復。In one aspect, the purpose of administering the compositions described herein to an individual in need is to rapidly free the individual from lymphopenia and at the same time activate key cells of the immune system to fight viral infections, especially the elderly and immune impaired patients. This will prevent the progression of viral infection and resulting death in these patients. As a result, infected individuals will suffer from mild flu-like symptoms and recover more quickly as the body's own immune system turns the balance back.
在揭示內容之一個態樣中,將所有四種SARS-CoV-2結構蛋白(套膜、膜、核酸蛋白殼及棘)編碼基因選殖於攜帶細菌複製起點之質體中且基因使用細菌基因表現啟動子進行轉錄,以使得蛋白質僅表現於產生EDV™之細菌細胞中並分離至EDV™細胞質中。因此,所有四種SARS-CoV-2蛋白均可自單一細菌表現啟動子表現。或者,基因可在哺乳動物基因表現啟動子下轉錄,以使得蛋白質僅由哺乳動物細胞表現。重組質體可轉變於產生袖珍型細胞之鼠傷寒沙氏桿菌菌株中。此一重組完整、細菌源性袖珍型細胞治療劑預計對所有四種CoV-2蛋白均引發強效抗體反應。In one aspect of the disclosure, genes encoding all four SARS-CoV-2 structural proteins (mantle, membrane, nucleic acid protein shell, and spines) were colonized in plastids carrying bacterial origins of replication and bacterial genes were used for the genes The expression promoter is transcribed so that the protein is expressed only in EDV™ producing bacterial cells and sequestered into the EDV™ cytoplasm. Thus, all four SARS-CoV-2 proteins can be expressed from a single bacterially expressed promoter. Alternatively, the gene can be transcribed under a mammalian gene expression promoter such that the protein is expressed only by mammalian cells. Recombinant plastids can be transformed in S. typhimurium strains that produce pocket-sized cells. This recombinant intact, bacteria-derived pocket-sized cell therapeutic is expected to elicit potent antibody responses to all four CoV-2 proteins.
另外,當重組完整、細菌源性袖珍型細胞全身性投與CoV-2病毒感染患者中時,完整、細菌源性袖珍型細胞迅速被專業吞噬細胞(例如巨噬細胞及樹突細胞)吞沒且完整、細菌源性袖珍型細胞在溶酶體中分解,釋放質體DNA。此DNA然後由細胞內DNA感測器(如cGAS、AIM2、IFI16及其他)識別且此將觸發I型干擾素(IFNα及IFNβ)反應。該等干擾素已知係抗病毒防禦之強效誘導物。In addition, when recombinant intact, bacteria-derived pocket cells were systemically administered to patients infected with the CoV-2 virus, the intact, bacteria-derived pocket cells were rapidly engulfed by professional phagocytes such as macrophages and dendritic cells and Intact, bacterial-derived pocket cells disintegrate in lysosomes, releasing plastid DNA. This DNA is then recognized by intracellular DNA sensors such as cGAS, AIM2, IFI16 and others and this will trigger a type I interferon (IFNα and IFNβ) response. These interferons are known to be potent inducers of antiviral defense.
眾所周知,在感染早期,IFN刺激導致改變細胞轉錄程序,從而導致特徵在於活化大量具有部分界定之抗病毒功能之宿主基因之抗病毒狀態(Schoggins等人,2011)。It is well known that early in infection, IFN stimulation leads to changes in the cellular transcriptional program leading to an antiviral state characterized by the activation of a large number of host genes with partially defined antiviral functions (Schoggins et al., 2011).
在一些實施例中,CD1d識別之抗原係鞘醣脂。在一些實施例中,鞘醣脂選自α-半乳糖神經醯胺(α-GalCer)、α-半乳糖神經醯胺(α-C-GalCer)之C-糖苷形式、半乳糖神經醯胺之12碳醯基形式(β-GalCer)、β-D-葡萄哌喃糖苷神經醯胺(β-GlcCer)、l,2-二醯基-3-O-半乳糖基-sn-甘油(BbGL-II)、含有二醯基甘油之醣脂(Glc-DAG-s2)、神經節苷酯(GD3)、神經三已糖苷神經醯胺(Gg3Cer)、醣苷基磷脂醯肌醇(GPI)、α-葡糖醛醯基神經醯胺(GSL-1或GSL-4)、異球三己糖苷神經醯胺(iGb3)、脂磷聚糖(LPG)、溶血磷酯醯膽鹼(LPC)、α-半乳糖神經醯胺類似物(OCH)、蘇糖醇神經醯胺及其任一者之衍生物。在一些實施例中,鞘醣脂係α-GalCer。在一些實施例中,鞘醣脂係合成α-GalCer類似物。在一些實施例中,合成α-GalCer類似物選自6′-去氧-6′-乙醯胺α-GalCer (PBS57)、萘脲α-GalCer (NU-α-GC)、NC-α-GalCer、4ClPhC-α-GalCer、PyrC-α-GalCer、α-carba-GalCer、carba-α-D-半乳糖α-GalCer類似物(RCAI-56)、1-去氧-新-肌醇α-GalCer類似物(RCAI-59)、1-O-甲基化α-GalCer類似物(RCAI-92)及HS44胺基環醇神經醯胺。在一些實施例中,CD1d識別之抗原源自細菌抗原、真菌抗原或原生動物抗原。In some embodiments, the antigen recognized by CDld is a glycosphingolipid. In some embodiments, the glycosphingolipid is selected from the group consisting of α-galactosylceramide (α-GalCer), C-glycosidic form of α-galactosylceramide (α-C-GalCer), galactosylceramide 12-carbon acyl form (β-GalCer), β-D-glucopyranosylceramide (β-GlcCer), l,2-diacyl-3-O-galactosyl-sn-glycerol (BbGL- II), glycolipid containing diacylglycerol (Glc-DAG-s2), ganglioside (GD3), neurotrihexosylceramide (Gg3Cer), glycoside phosphatidylinositol (GPI), α- Glucuronylceramide (GSL-1 or GSL-4), isotrihexosylceramide (iGb3), lipophosphoglycan (LPG), lysophosphatidylcholine (LPC), α- Galactosylceramide analogs (OCH), threitolceramide and derivatives of any of them. In some embodiments, the glycosphingolipid is α-GalCer. In some embodiments, the glycosphingolipids are synthetic α-GalCer analogs. In some embodiments, the synthetic α-GalCer analog is selected from 6′-deoxy-6′-acetamide α-GalCer (PBS57), naphthaleneurea α-GalCer (NU-α-GC), NC-α- GalCer, 4ClPhC-α-GalCer, PyrC-α-GalCer, α-carba-GalCer, carba-α-D-galactose α-GalCer analog (RCAI-56), 1-deoxy-neo-inositol α- GalCer analogs (RCAI-59), 1-O-methylated α-GalCer analogs (RCAI-92), and HS44 aminocyclylceramide. In some embodiments, the antigen recognized by CDld is derived from a bacterial antigen, a fungal antigen, or a protozoan antigen.
在一些實施例中,靶細胞中產生之免疫反應包含產生I型干擾素,包括干擾素-α及/或干擾素-β。In some embodiments, the immune response generated in the target cells comprises the production of type I interferons, including interferon-alpha and/or interferon-beta.
此細菌袖珍型細胞治療將降低幾乎所有患者之疾病的嚴重程度及減少疾病之持續時間,此使得其更像普通感冒。This bacterial pocket cell therapy will reduce the severity and duration of the disease in almost all patients, making it more like the common cold.
或者,該治療可作為疫苗投與給健康人以防止病毒感染,其中病毒攜帶由袖珍型細胞所攜帶重組質體編碼之蛋白質。Alternatively, the treatment can be administered as a vaccine to healthy individuals to prevent infection by viruses carrying proteins encoded by recombinant plastids carried by the pocket cells.
在一個實施例中,佐劑組合物包含(a) 免疫原性有效量之經包封CD1d識別之抗原,及(b) 攜帶編碼一或多種病毒抗原之重組質體之袖珍型細胞。In one embodiment, the adjuvant composition comprises (a) an immunogenically effective amount of an antigen recognized by encapsulated CDld, and (b) a pocket-sized cell carrying a recombinant plastid encoding one or more viral antigens.
在一個實施例中,CD1d識別之抗原及重組質體包裝於兩個完整細菌源性袖珍型細胞或殺死的細菌細胞內。In one embodiment, the CDld-recognized antigen and the recombinant plasmid are packaged in two intact bacteria-derived miniature cells or killed bacterial cells.
CD1d識別之抗原包含於第一完整細菌源性袖珍型細胞或殺死的細菌細胞內,且編碼病毒抗原之重組質體包含於第二完整細菌源性袖珍型細胞或殺死的細菌細胞內。The antigen recognized by CDld is contained within the first whole bacterium-derived miniature cell or killed bacterial cell, and the recombinant plasmid encoding the viral antigen is contained within the second whole bacterium-derived miniature cell or killed bacterial cell.
在一些實施例中,經包封CD1d識別之抗原(例如α-GalCer)及攜帶編碼至少一種病毒抗原之重組質體之袖珍型細胞係同時投與。在一些實施例中,經包封CD1d識別之抗原(例如α-GalCer)及攜帶編碼病毒抗原之重組質體之袖珍型細胞係依序投與。在一些實施例中,經包封CD1d識別之抗原(例如α-GalCer)及攜帶編碼病毒抗原之重組質體之袖珍型細胞係投與多次。在一些實施例中,經包封CD1d識別之抗原(例如α-GalCer)及攜帶編碼病毒抗原之重組質體之袖珍型細胞係至少每週一次或每週二次或每週三次或每週四次投與,直至疾病消退。In some embodiments, the encapsulated CDld-recognized antigen (eg, α-GalCer) and a pocket cell line carrying a recombinant plasmid encoding at least one viral antigen are administered simultaneously. In some embodiments, pocket cell lines encapsulating CDld-recognized antigens (eg, α-GalCer) and carrying recombinant plastids encoding viral antigens are administered sequentially. In some embodiments, a pocket cell line encapsulating an antigen recognized by CDld (eg, α-GalCer) and carrying a recombinant plasmid encoding a viral antigen is administered multiple times. In some embodiments, at least once a week or twice a week or three times a week or every Thursday the pocket cell line encapsulates the antigen recognized by CD1d (such as α-GalCer) and carries the recombinant plasmid encoding the viral antigen administration until the disease subsides.
在感染SARS-CoV-2後,此療法之目的將係達成以下:(1) 經由自骨髓招募新鮮單核球及樹突細胞並活化NK細胞刺激先天及適應性免疫性。此將在疾病進展時使患者之免疫狀態保持較高,並防止淋巴球減少症之發展。(2) 生理上充分耐受I型(IFNα及IFNβ)及II型(IFNγ)干擾素之分泌。眾所周知,在病毒感染早期,IFN刺激導致改變細胞轉錄程序,從而導致特徵在於活化大量具有部分界定之抗病毒功能之宿主基因之抗病毒狀態。此活化將能夠迅速消除病毒感染細胞以及減少病毒複製。(3) 分泌針對病毒之四種結構蛋白(套膜、膜、棘及核酸蛋白殼)之抗體且此旨在將清除自感染細胞釋放之大量病毒顆粒。以上所有預計具有最小至無毒性。 III. 完整細菌源性袖珍型細胞 After infection with SARS-CoV-2, the purpose of this therapy will be to achieve the following: (1) Stimulate innate and adaptive immunity by recruiting fresh monocytes and dendritic cells from bone marrow and activating NK cells. This will keep the patient's immune status high as the disease progresses and prevent the development of lymphopenia. (2) Physiologically fully tolerate the secretion of type I (IFNα and IFNβ) and type II (IFNγ) interferons. It is well known that early in viral infection, IFN stimulation results in altered cellular transcriptional programs, resulting in an antiviral state characterized by the activation of a large number of host genes with partially defined antiviral functions. This activation will enable rapid elimination of virus-infected cells and reduction of viral replication. (3) Secretion of antibodies against the four structural proteins of the virus (envelope, membrane, spine and nucleic acid protein shell) and this is aimed at clearing the bulk of virus particles released from infected cells. All of the above are expected to have minimal to no toxicity. III. Whole Bacteria-Derived Pocket Cells
本文使用術語「袖珍型細胞」來表示缺乏染色體(「不含染色體」)且係藉由在二分裂期間擾亂細胞分裂與DNA分離之配合所產生之細菌細胞的衍生物。袖珍型細胞不同於其他小囊泡,例如所謂的「膜泡」(大小約0.2 µm或更小),該等小囊泡在某些情況下係自發生成並釋放,但其並非由於特定基因重排或游離型基因表現。本揭示內容中所用之細菌源性袖珍型細胞係完全完整的且區別於特徵在於外膜或界定膜經破壞或降解、甚至去除之其他不含染色體形式之細菌細胞衍生物。表徵本揭示內容之袖珍型細胞之完整膜允許將治療酬載保留於袖珍型細胞內,直至釋放酬載。The term "pocket cell" is used herein to denote a derivative of a bacterial cell that lacks chromosomes ("chromosome-free") and is produced by disrupting the coordination of cell division and DNA segregation during binary fission. Pocket cells differ from other small vesicles, such as so-called "membrane vesicles" (approximately 0.2 µm or smaller in size), which are spontaneously produced and released under certain conditions, but not due to specific genetic reprogramming. row or episomal gene expression. Bacterial-derived miniature cell lines as used in the present disclosure are completely intact and are distinguished from other derivatives of bacterial cells that do not contain chromosome-free forms characterized by disruption or degradation, or even removal, of the outer or delimiting membrane. The intact membranes of the pocket cells that characterize the present disclosure allow retention of therapeutic payloads within the pocket cells until release of the payload.
完整、細菌源性袖珍型細胞或EDV™係無核、非活奈米顆粒,其係使控制正常細菌細胞分裂之基因不活化、由此使細胞之極性位點去抑制而產生。此外,與例如僅可包裝約14,000個分子/顆粒之當前隱形脂質體藥物載劑(如,DOXIL) (脂質體多柔比星(doxorubicin))或可攜帶少於5個藥物分子之「武裝抗體」相比,細菌袖珍型細胞可容易地容納高達1百萬個藥物分子之酬載。Intact, bacterial-derived minicells, or EDV™, are non-nucleated, non-viable nanoparticles produced by inactivating genes that control normal bacterial cell division, thereby derepressing the cell's polar sites. In addition, compared with, for example, current stealth liposomal drug carriers (e.g., DOXIL) (liposomal doxorubicin) that can only pack about 14,000 molecules/particle or "armed antibodies" that can carry less than 5 drug molecules In contrast, bacterial pocket cells can easily accommodate a payload of up to 1 million drug molecules.
本揭示中所用之袖珍型細胞可自細菌細胞(例如大腸桿菌( E. coli)及鼠傷寒沙氏桿菌( S. typhimurium))製備。原核染色體複製與涉及中間細胞隔膜(mid-cell septum)形成之正常二分裂有關。舉例而言,在大腸桿菌中,min基因(例如minCD)之突變可去除細胞分裂期間細胞兩極處隔膜形成之抑制,致使生成正常子細胞及染色體較少之袖珍型細胞。 Pocket cells used in the present disclosure can be prepared from bacterial cells such as E. coli and S. typhimurium . Prokaryotic chromosome duplication is associated with normal binary fission involving the formation of the mid-cell septum. For example, in E. coli, mutations in min genes such as minCD abrogate the inhibition of septum formation at the cell poles during cell division, resulting in normal daughter cells and pocket-sized cells with fewer chromosomes.
除最小操縱子突變外,在一系列影響隔膜形成之其他基因重排或突變後,亦生成染色體較少之袖珍型細胞,例如,在枯草桿菌( B. subtilis)中之divIVB1中。袖珍型細胞亦可在涉及細胞分裂/染色體分離之蛋白質之基因表現位準之擾動後形成。例如,minE之過表現導致袖珍型細胞之極體分裂及產生。類似地,染色體較少之袖珍型細胞可起因於染色體分離中之缺陷,例如枯草桿菌中之smc突變、枯草桿菌中之spoOJ缺失、大腸桿菌中之mukB突變及大腸桿菌中之parC突變。此外,CafA可在複製之後增強細胞分裂之速率及/或抑制染色體分配,此導致形成鏈狀細胞(chained cells)及染色體較少之袖珍型細胞。 In addition to minimal operon mutations, pocket-sized cells with fewer chromosomes are also generated following a series of other gene rearrangements or mutations affecting septum formation, eg, in divIVB1 in B. subtilis . Pocket cells can also be formed following perturbations in the expression levels of genes involved in cell division/chromosomal segregation. For example, overexpression of minE leads to division and generation of polar bodies of pocket cells. Similarly, pocket-sized cells with fewer chromosomes can result from defects in chromosome segregation, such as the smc mutation in B. subtilis, the spoOJ deletion in B. subtilis, the mukB mutation in E. coli, and the parC mutation in E. coli. In addition, CafA can enhance the rate of cell division and/or inhibit chromosome partitioning after replication, which leads to the formation of chained cells and pocket-sized cells with fewer chromosomes.
因此,由於該等細菌中之細菌細胞分裂之保守性質,本揭示內容之袖珍型細胞可自任何細菌細胞(無論係革蘭氏陽性(Gram-positive)或革蘭氏陰性源)製備。此外,如上所述,本揭示內容中使用之袖珍型細胞應具有完整細胞壁(即,係「完整的袖珍型細胞」),且應與不由特定基因重排或游離型基因表現引起之其他小囊泡(例如膜泡)區分及分離。Thus, due to the conserved nature of bacterial cell division among these bacteria, the pocket cells of the disclosure can be prepared from any bacterial cell, whether of Gram-positive or Gram-negative origin. In addition, as noted above, the miniature cells used in this disclosure should have intact cell walls (i.e., be "intact miniature cells") and should be isolated from other vesicles not caused by specific gene rearrangements or episomal gene expression. Vesicles (eg, membrane vesicles) are differentiated and separated.
在既定實施例中,袖珍型細胞之親代(源)細菌可為革蘭氏陽性的,或其可為革蘭氏陰性。在一個態樣中,親代細菌係選自以下中之一或多者:Terra-/Glidobacteria (BV1)、變形菌門(Proteobacteria)(BV2)、BV4 (包括螺旋體門(Spirochaete)、鞘脂桿菌綱(Sphingobacteria)及浮黴菌門-疣微菌門/衣原體門(Planctobacteria))。根據另一態樣,細菌係選自以下中之一或多者:厚壁菌門(Firmicute)(BV3)(例如桿菌(Bacilli)、梭菌(Clostridia))或軟壁菌門/柔膜菌綱(Tenericute/Mollicute)或放線菌門(Actinobacteria)(BV5)(例如放線菌目(Actinomycetales)或雙歧桿菌目(Bifidobacteriales))。In a given embodiment, the parental (source) bacterium of the pocket-sized cells may be Gram-positive, or it may be Gram-negative. In one aspect, the parental bacterium is selected from one or more of the following: Terra-/Glidobacteria (BV1), Proteobacteria (BV2), BV4 (including Spirochaete, Sphingobacteria Class (Sphingobacteria) and Planctobacteria-Verrucobacteria/Chlamydia (Planctobacteria)). According to another aspect, the bacterial line is selected from one or more of the following: Firmicutes (BV3) (for example Bacilli, Clostridia) or Softicutes/Mollicutes Class Tenericute/Mollicute or Actinobacteria (BV5) (eg Actinomycetales or Bifidobacteriales).
根據本揭示內容,殺死的細菌細胞係細菌、藍細菌(cyanobateria)、真細菌(eubacteria)及古細菌(archaebacteria)之非活原核細胞,如第2版 Bergey’s Manual Of Systematic Biology中所定義。該等細胞若具有完整細胞壁及/或細胞膜且含有細菌物種內源性之遺傳物質(核酸),則認為其係「完整的」。製備殺死的細菌細胞之方法闡述於例如U.S. 2008/0038296中。 According to the present disclosure, the bacterial cells killed are non-viable prokaryotic cells of bacteria, cyanobacteria, eubacteria and archaebacteria, as defined in Bergey's Manual Of Systematic Biology, 2nd edition. Such cells are considered "intact" if they have intact cell walls and/or membranes and contain genetic material (nucleic acid) endogenous to the bacterial species. Methods for preparing killed bacterial cells are described, for example, in US 2008/0038296.
在仍其他態樣中,細菌係選自以下中之一或多者:真細菌(Eubacteria)(綠彎菌門(Chloroflexi)、異常球菌-棲熱菌門(Deinococcus-Thermus))、藍細菌、熱脫硫桿菌門(Thermodesulfobacteria)、嗜熱菌(thermophiles)(產水菌門(Aquificae)、熱袍菌門(Thermotogae))、α、β、γ (腸桿菌科(Enterobacteriaceae))、δ或ε變形菌門、螺旋體門、纖維桿菌門(Fibrobacteres)、綠菌門/擬桿菌門(Chlorobi/Bacteroidetes)、衣原體門/疣微菌門(Chlamydiae/Verrucomicrobia)、浮黴菌門(Planctomycetes)、酸桿菌門(Acidobacteria)、產金菌門(Chrysiogenetes)、脫鐵桿菌門(Deferribacteres)、梭桿菌門(Fusobacteria)、芽單胞菌門(Gemmatimonadetes)、硝化螺旋菌門(Nitrospirae)、互養菌門(Synergistetes)、網團菌門(Dictyoglomi)、黏膠球形菌綱(Lentisphaerae)、芽孢桿菌目(Bacillales)、有芽胞桿菌科(Bacillaceae)、李斯特菌科(Listeriaceae)、葡萄球菌科(Staphylococcaceae)、乳桿菌目(Lactobacillales)、腸球菌科(Enterococcaceae)、乳酸桿菌科(Lactobacillaceae)、明串珠菌科(Leuconostocaceae)、鏈球菌科(Streptococcaceae)、梭菌目(Clostridiales)、鹽厭氧菌目(Halanaerobiales)、熱厭氧菌目(Thermoanaerobacterales)、枝原體目(Mycoplasmatales)、蟲原體目(Entomoplasmatales)、厭氧原體目(Anaeroplasmatales)、無膽甾原體目(Acholeplasmatales)、嗜鹽體目(Haloplasmatales)、放線菌亞目(Actinomycineae)、放線菌科(Actinomycetaceae)、棒桿菌亞目(Corynebacterineae)、分枝桿菌科(Mycobacteriaceae)、諾卡氏菌科(Nocardiaceae)、棒狀桿菌科(Corynebacteriaceae)、弗蘭克氏菌亞目(Frankineae)、弗蘭克氏菌科(Frankiaceae)、微球菌亞目(Micrococcineae)、短桿菌科(Brevibacteriaceae)及雙歧桿菌科(Bifidobacteriaceae)。In still other aspects, the bacteria are selected from one or more of the following: Eubacteria (Chloroflexi, Deinococcus-Thermus), Cyanobacteria, Thermodesulfobacteria, thermophiles (Aquificae, Thermotogae), alpha, beta, gamma (Enterobacteriaceae), delta or epsilon Proteobacteria, Spirochetes, Fibrobacteres, Chlorobi/Bacteroidetes, Chlamydiae/Verrucomicrobia, Planctomycetes, Acidobacteria (Acidobacteria), Chrysiogenetes, Deferribacteres, Fusobacteria, Gemmatimonadetes, Nitrospirae, Synergistetes ), Dictyoglomi, Lentisphaerae, Bacillales, Bacillaceae, Listeriaceae, Staphylococcaceae, Milk Lactobacillales, Enterococcaceae, Lactobacillaceae, Leuconostocaceae, Streptococcaceae, Clostridiales, Halanaerobiales , Thermoanaerobacterales, Mycoplasmatales, Entomoplasmatales, Anaeroplasmatales, Acholeplasmatales, Halophiles ( Haloplasmatales), Actinomycineae, Actinomycetaceae, Corynebacterineae, Mycobacteriaceae, Nocardiaceae, Corynebacteriaceae , Frankinae, Frankiaceae, Micrococcineae, Brevibacteriaceae and Bifidobacteriaceae.
對於醫藥用途,本揭示內容之組合物應包含儘可能充分與免疫原性組分及其他有毒污染物分離之袖珍型細胞或殺死的細菌細胞。純化細菌源性袖珍型細胞以去除游離內毒素及親代細菌細胞之方法闡述於例如WO 2004/113507中。簡言之,純化達成以下各項之去除:(a) 較小的囊泡,例如膜泡,其大小通常小於0.2 µm,(b) 自細胞膜釋放之游離內毒素,及(c) 親代細菌(無論係活的還是死的)及其碎片,其亦係游離內毒素之來源。該移除尤其可利用用以去除較小囊泡及細胞碎片之0.2 µm過濾器、用以在誘導親代細胞形成絲狀物後去除親代細胞之0.45 µm過濾器、用以殺死活細菌細胞之抗生素及對抗游離內毒素之抗體來執行。For pharmaceutical use, compositions of the present disclosure should contain miniature cells or killed bacterial cells that are separated as fully as possible from immunogenic components and other toxic contaminants. Methods for purifying bacterial-derived miniature cells to remove free endotoxin and parental bacterial cells are described, for example, in WO 2004/113507. Briefly, purification achieves the removal of (a) smaller vesicles, such as membrane vesicles, typically less than 0.2 µm in size, (b) free endotoxin released from cell membranes, and (c) parental bacterial (whether living or dead) and their fragments, which are also sources of free endotoxin. This removal is especially useful with 0.2 µm filters to remove smaller vesicles and cell debris, 0.45 µm filters to remove parental cells after they are induced to form filaments, to kill live bacteria Cell antibiotics and antibodies against free endotoxin are performed.
下面的純化程序係本發明者發現的,儘管其細菌來源不同,但所有完整袖珍型細胞之大小均為約400 nm,即大於膜泡及其他較小囊泡,但仍小於親代細菌。袖珍型細胞之大小確定可藉由使用固態技術(例如電子顯微鏡)或基於液體之技術(例如動態光散射)來實施。藉由每一該技術產生之大小值可具有誤差範圍,且且該等值在技術之間可有所不同。因此,呈乾燥狀態之袖珍型細胞可經由電子顯微鏡量測為大約400 nm ± 50 nm。動態光散射可量測相同袖珍型細胞之大小為大約500 nm ± 50 nm。此外,藥物經包裝、配體經靶向之袖珍型細胞可再次使用動態光散射量測為約400 nm至600 nm ± 50 nm。Following the purification procedure, the present inventors discovered that despite their different bacterial origins, all intact pocket cells were approximately 400 nm in size, ie larger than membrane vesicles and other smaller vesicles, but still smaller than the parent bacteria. Size determination of pocket cells can be performed by using solid-state techniques such as electron microscopy or liquid-based techniques such as dynamic light scattering. The magnitude values produced by each such technique may have a margin of error, and such values may vary between techniques. Thus, pocket cells in a dry state can be measured by electron microscopy to be approximately 400 nm ± 50 nm. Dynamic light scattering can measure the size of the same pocket-sized cells to be about 500 nm ± 50 nm. In addition, drug-packaged, ligand-targeted pocket cells can again be measured using dynamic light scattering to approximately 400 nm to 600 nm ± 50 nm.
殺死的細菌細胞或源自革蘭氏陰性細菌之袖珍型細胞之另一結構元素係脂多醣(LPS)之O-多醣組分,其經由脂質A錨包埋於外膜中。該組分係重複碳水化合物殘基單元之鏈,每一鏈之重複單元具有多達70至100個4至5個糖之重複單元。由於該等鏈不為剛性的,因此在液體環境中,例如在活體內,其可採取波浪形、撓性結構而產生在珊瑚海環境中海藻之整體外觀;即,鏈與液體一起移動,同時保持錨定至袖珍型細胞膜。Another structural element of killed bacterial cells or pocket cells derived from Gram-negative bacteria is the O-polysaccharide component of lipopolysaccharide (LPS), which is embedded in the outer membrane via lipid A anchors. This component is a chain of repeating carbohydrate residue units, each chain of repeating units having as many as 70 to 100 repeating units of 4 to 5 sugars. Since the chains are not rigid, in liquid environments, such as in vivo, they can adopt a wavy, flexible structure to produce the overall appearance of algae in Coral Sea environments; that is, the chains move with the liquid while Remains anchored to the pocket cell membrane.
如上所述,受O-多醣組分之影響,動態光散射可提供約500 nm至約600 nm之袖珍型細胞大小值。然而,來自革蘭氏陰性及革蘭氏陽性細菌之袖珍型細胞同樣易於穿過0.45 µm過濾器,此證實400 nm ± 50 nm之有效袖珍型細胞大小。上述大小之散佈由本發明涵蓋,且特別地,藉由在片語「大小大約400 nm」中之修飾語「大約」及諸如此類表示。As mentioned above, dynamic light scattering can provide pocket cell size values from about 500 nm to about 600 nm, influenced by the O-glycan fraction. However, pocket cells from Gram-negative and Gram-positive bacteria equally readily pass through 0.45 µm filters, demonstrating an effective pocket cell size of 400 nm ± 50 nm. The above-mentioned size spreads are encompassed by the present invention, and are in particular indicated by the modifier "about" and the like in the phrase "about 400 nm in size".
關於有毒污染物,本揭示內容之組合物較佳包含少於約350 EU游離內毒素。就此而言例示者係以下游離內毒素之含量:約250 EU或以下、約200 EU或以下、約150 EU或以下、約100 EU或以下、約90 EU或以下、約80 EU或以下、約70 EU或以下、約60 EU或以下、約50 EU或以下、約40 EU或以下、約30 EU或以下、約20 EU或以下、約15 EU或以下、約10 EU或以下、約9 EU或以下、約8 EU或以下、約7 EU或以下、約6 EU或以下、約5 EU或以下、約4 EU或以下、約3 EU或以下、約2 EU或以下、約1 EU或以下、約0.9 EU或以下、約0.8 EU或以下、約0.7 EU或以下、約0.6 EU或以下、約0.5 EU或以下、約0.4 EU或以下、約0.3 EU或以下、約0.2 EU或以下、約0.1 EU或以下、約0.05 EU或以下或約0.01 EU或以下。With regard to toxic contaminants, compositions of the present disclosure preferably contain less than about 350 EU of free endotoxin. Exemplary in this regard are the following free endotoxin levels: about 250 EU or less, about 200 EU or less, about 150 EU or less, about 100 EU or less, about 90 EU or less, about 80 EU or less, about 70 EU or less, about 60 EU or less, about 50 EU or less, about 40 EU or less, about 30 EU or less, about 20 EU or less, about 15 EU or less, about 10 EU or less, about 9 EU or less, about 8 EU or less, about 7 EU or less, about 6 EU or less, about 5 EU or less, about 4 EU or less, about 3 EU or less, about 2 EU or less, about 1 EU or less , about 0.9 EU or less, about 0.8 EU or less, about 0.7 EU or less, about 0.6 EU or less, about 0.5 EU or less, about 0.4 EU or less, about 0.3 EU or less, about 0.2 EU or less, about 0.1 EU or less, about 0.05 EU or less, or about 0.01 EU or less.
本揭示內容之組合物亦可包含至少約10 9個袖珍型細胞或殺死的細菌細胞,例如至少約1 x10 9、至少約2 × 10 9、至少約5 × 10 9或至少8 × 10 9。在一些實施例中,組合物包含不多於約10 11個袖珍型細胞或殺死的細菌細胞,例如不多於約1 × 10 11或不多於約9 × 10 10或不多於約8 × 10 10。 IV. CD1d 識別之抗原 Compositions of the present disclosure may also comprise at least about 10 9 pocket cells or killed bacterial cells, such as at least about 1 x 10 9 , at least about 2 x 10 9 , at least about 5 x 10 9 , or at least 8 x 10 9 . In some embodiments, the composition comprises no more than about 10 pocket cells or killed bacterial cells, such as no more than about 1 x 10 or no more than about 9 x 10 or no more than about 8 × 10 10 . IV. Antigen recognized by CD1d
本發明組合物及方法包含載體,其可為包含CD1d識別之抗原之完整細菌源性袖珍型細胞。該等抗原導致II型干擾素(例如IFN-γ (伽馬))之含量(例如活性或表現含量)增加。IFN-γ參與免疫及發炎反應之調節;在人類中,僅存在一種干擾素-γ。其係在活化T細胞及天然殺手細胞中產生。IFN-γ增強I型IFN之效應。由Th1細胞釋放之IFN-γ將白血球招募至感染位點,導致發炎增加。其亦刺激巨噬細胞殺死已被吞沒之細菌。由Th1細胞釋放之IIFN-γ在調節Th2反應方面亦甚為重要。The compositions and methods of the invention include vectors, which may be whole bacteria-derived pocket cells containing antigens recognized by CDld. These antigens result in increased levels (eg, active or expressed levels) of type II interferons (eg, IFN-γ (gamma)). IFN-γ is involved in the regulation of immune and inflammatory responses; in humans, only one type of interferon-γ exists. It is produced in activated T cells and natural killer cells. IFN-γ enhances the effects of type I IFN. IFN-γ released by Th1 cells recruits leukocytes to the site of infection, leading to increased inflammation. It also stimulates macrophages to kill engulfed bacteria. IIFN-γ released by Th1 cells is also important in regulating Th2 responses.
IFNγ細胞介素係由先天天然殺手(NK)細胞在結合天然抗原時釋放,但鞘醣脂化合物可用作先天及獲得性免疫反應二者之強效活化劑。暴露於鞘醣脂誘導先天天然殺手T (iNKT)細胞產生強效細胞介素反應,包括II型干擾素、IFN-γ及許多介白素(Th1-、Th2-及/或Th17型細胞介素)。然後,iNKT細胞誘導DC成熟並展示T細胞輔助樣功能,此導致細胞毒性T細胞反應之發展。The IFNy cytokine is released by innate natural killer (NK) cells upon binding natural antigens, but glycosphingolipid compounds can act as potent activators of both innate and adaptive immune responses. Exposure to glycosphingolipids induces potent interleukin responses in innate natural killer T (iNKT) cells, including type II interferons, IFN-γ, and many interleukins (Th1-, Th2- and/or Th17-type interleukins ). iNKT cells then induce DCs to mature and exhibit T cell helper-like functions, which lead to the development of cytotoxic T cell responses.
可用於誘導IFN II型反應之鞘醣脂之實例闡述於本文中且包括α-半乳糖神經醯胺(α-C-GalCer)之C-糖苷形式、α-半乳糖神經醯胺(α-GalCer)、半乳糖神經醯胺之12碳醯基形式(β-GalCer)、β-D-葡萄哌喃糖苷神經醯胺(β-GlcCer)、l,2-二醯基-3-0-半乳糖基-sn-甘油(BbGL-II)、含有二醯基甘油之醣脂(Glc-DAG-s2)、神經節苷酯(GD3)、神經三已糖苷神經醯胺(Gg3Cer)、醣苷基磷脂醯肌醇(GPI)、α-葡糖醛醯基神經醯胺(GSL-1或GSL-4)、異球三己糖苷神經醯胺(iGb3)、脂磷聚糖(LPG)、溶血磷酯醯膽鹼(LPC)、α-半乳糖神經醯胺類似物(OCH)及蘇糖醇神經醯胺。在特定實施例中,本文所揭示之袖珍型細胞包含α-半乳糖神經醯胺(α-GalCer)作為之II型IFN激動劑。Examples of glycosphingolipids that can be used to induce an IFN type II response are described herein and include the C-glycosidic form of α-galactosylceramide (α-C-GalCer), α-galactosylceramide (α-GalCer ), the 12-carbon acyl form of galactosylceramide (β-GalCer), β-D-glucopyranosylceramide (β-GlcCer), l,2-diacyl-3-O-galactose Glycerol-sn-glycerol (BbGL-II), glycolipid containing diacylglycerol (Glc-DAG-s2), ganglioside (GD3), neurotrihexosylceramide (Gg3Cer), glycoside phosphatidyl Inositol (GPI), α-glucuronylceramide (GSL-1 or GSL-4), isoglotrihexosylceramide (iGb3), lipophosphoglycan (LPG), lysophosphatidylceramide Choline (LPC), α-galactosylceramide analog (OCH) and threitol ceramide. In certain embodiments, the pocket cells disclosed herein comprise α-galactosylceramide (α-GalCer) as a type II IFN agonist.
α-GC (INF II型激動劑)已知藉助活化一種稱為天然殺手T細胞(NKT細胞)之白血球刺激免疫系統。α-GC (INF type II agonist) is known to stimulate the immune system by activating a type of white blood cell called natural killer T cells (NKT cells).
袖珍型細胞可將II型IFN激動劑直接遞送至免疫系統之細胞,以求增強活體內iNKT細胞活化及II型干擾素IFN-γ產生。非靶向完整、細菌源性袖珍型細胞由免疫系統之吞噬細胞吞沒,其中其在胞內體中分解,αGC呈現給iNKT細胞用於免疫活化。因此,在一些實施例中,袖珍型細胞提供II型干擾素激動劑之靶向遞送。在其他實施例中,本文所揭示組合物包含含有II型干擾素激動劑之非靶向袖珍型細胞。Pocket cells can deliver type II IFN agonists directly to cells of the immune system in order to enhance iNKT cell activation and type II interferon IFN-γ production in vivo. Non-targeted intact, bacteria-derived pocket cells are engulfed by phagocytes of the immune system, where they are broken down in endosomes, and αGC is presented to iNKT cells for immune activation. Thus, in some embodiments, the pocket cells provide targeted delivery of Type II interferon agonists. In other embodiments, the compositions disclosed herein comprise non-targeted pocket cells comprising a Type II interferon agonist.
IFN-γ產生係由抗原呈遞細胞(APC)分泌之細胞介素、最顯著地介白素(IL)-12及IL-18控制。該等細胞介素在先天免疫反應中作為橋樑以將感染與IFN-γ產生相關聯。許多病原體之巨噬細胞識別誘導IL-12及趨化介素之分泌。該等趨化介素將NK細胞吸引至發炎位點,且IL-12促進該等細胞中IFN-γ合成。在巨噬細胞、天然殺手細胞及T細胞中,IL-12及IL-18刺激之組合進一步增加IFN-γ產生。因此,該等蛋白質中之任一者或其組合係用於本揭示內容之目的之適宜藥劑。IFN-γ production is controlled by antigen presenting cells (APC) secreted cytokines, most notably interleukin (IL)-12 and IL-18. These cytokines act as a bridge in the innate immune response to link infection to IFN-γ production. Macrophage recognition of many pathogens induces the secretion of IL-12 and chemokines. The chemokines attract NK cells to sites of inflammation, and IL-12 promotes IFN-γ synthesis in these cells. The combination of IL-12 and IL-18 stimulation further increased IFN-γ production in macrophages, natural killer cells and T cells. Accordingly, any one of these proteins, or a combination thereof, is a suitable agent for the purposes of this disclosure.
IFN-γ產生之負調節劑包括IL-4、IL-10、轉變生長因子β及糖皮質激素。抑制該等因子之蛋白質或核酸將能夠刺激IFN-γ之產生。Negative regulators of IFN-γ production include IL-4, IL-10, transforming growth factor beta, and glucocorticoids. Proteins or nucleic acids that inhibit these factors will be able to stimulate IFN-γ production.
亦適用於此情形者係編碼IFN-γ之多核苷酸或活化IFN-γ之產生及/或分泌之基因。Also suitable in this context are polynucleotides encoding IFN-γ or genes that activate the production and/or secretion of IFN-γ.
增加IFN-γ含量之藥劑亦可為病毒疫苗。許多可誘導IFN-γ產生、而不會引起感染或其他類型的不良效應之病毒疫苗係可用的。例示性之此類病毒疫苗劑係流感(流行性感冒)疫苗。Agents that increase IFN-gamma levels can also be viral vaccines. A number of viral vaccines are available that induce IFN-[gamma] production without causing infection or other types of adverse effects. An exemplary such viral vaccine agent is an influenza (influenza) vaccine.
當患者亦接受藥物經加載、雙特異性抗體靶向之袖珍型細胞或殺死的細菌細胞之投與時,有效活化宿主免疫反應所需之IFN-γ之血清濃度較低。因此,在一個態樣中,本發明方法導致不高於約30,000 pg/mL之血清IFN-γ濃度增加。在另一態樣中,血清IFN-γ濃度增加不高於約5000 pg/mL、1000 pg/mL、900 pg/mL、800 pg/mL、700 pg/mL、600 pg/mL、500 pg/mL、400 pg/mL、300 pg/mL、200 pg/mL或100 pg/mL。在另一態樣中,所得血清IFN-γ濃度係至少約10 pg/mL、或至少約20 pg/mL、30 pg/mL、40 pg/mL、50 pg/mL、60 pg/mL、70 pg/mL、80 pg/mL、90 pg/mL、100 pg/mL、150 pg/mL、200 pg/mL、300 pg/mL、400 pg/mL或500 pg/mL。Serum concentrations of IFN-γ required to effectively activate the host immune response were lower when patients also received administration of drug-loaded, bispecific antibody-targeted pocket cells, or killed bacterial cells. Thus, in one aspect, the methods of the invention result in an increase in serum IFN-γ concentration of no greater than about 30,000 pg/mL. In another aspect, the serum IFN-γ concentration does not increase by more than about 5000 pg/mL, 1000 pg/mL, 900 pg/mL, 800 pg/mL, 700 pg/mL, 600 pg/mL, 500 pg/mL mL, 400 pg/mL, 300 pg/mL, 200 pg/mL, or 100 pg/mL. In another aspect, the resulting serum IFN-γ concentration is at least about 10 pg/mL, or at least about 20 pg/mL, 30 pg/mL, 40 pg/mL, 50 pg/mL, 60 pg/mL, 70 pg/mL pg/mL, 80 pg/mL, 90 pg/mL, 100 pg/mL, 150 pg/mL, 200 pg/mL, 300 pg/mL, 400 pg/mL, or 500 pg/mL.
根據一些態樣,藥劑係IFN-γ蛋白或工程化蛋白或類似物。在一些態樣中,投與達成約0.02 ng至1微克IFN-γ/ml宿主血液。在一個態樣中,宿主血液中所達成之IFN-γ濃度係約0.1 ng至約500 ng/ml、約0.2 ng至約200 ng/ml、約0.5 ng至約100 ng/ml、約1 ng至約50 ng/ml或約2 ng至約20 ng/ml。 V . 將 SARS - CoV -2 病毒及變異株 病毒抗原及 CD 1 d 識別之抗原加載於袖珍型細胞或殺死的細菌細胞中 According to some aspects, the agent is an IFN-γ protein or an engineered protein or an analog. In some aspects, administration achieves about 0.02 ng to 1 microgram of IFN-γ/ml host blood. In one aspect, the achieved IFN-γ concentration in the blood of the host is about 0.1 ng to about 500 ng/ml, about 0.2 ng to about 200 ng/ml, about 0.5 ng to about 100 ng/ml, about 1 ng to about 50 ng/ml or about 2 ng to about 20 ng/ml. V. Loading of SARS - CoV -2 Virus and Variant Virus Antigens and Antigens Recognized by CD 1 d into Pocket Cells or Killed Bacterial Cells
病毒抗原以及CD1d識別之抗原可藉由將複數個完整袖珍型細胞或殺死的細菌細胞與抗原在緩衝液中共培育直接包裝於袖珍型細胞或殺死的細菌細胞中。緩衝液組合物可根據此領域熟知之條件改變,以最佳化抗原在完整袖珍型細胞中之加載。緩衝液亦可端視抗原而變(例如,在核酸酬載之情形中,端視欲加載於袖珍型細胞中之核苷酸序列或核酸長度)。適於加載之實例性緩衝液包括(但不限於)磷酸鹽緩衝鹽水(PBS)。一旦經包裝,抗原便留在袖珍型細胞內部且經保護免於降解。利用siRNA經包裝之袖珍型細胞在無菌鹽水中培育之延長培育研究顯示例如無siRNA之洩漏。Viral antigens and antigens recognized by CDld can be directly packaged in the miniature cells or killed bacterial cells by co-incubating a plurality of whole miniature cells or killed bacterial cells with the antigen in a buffer. Buffer composition can be varied according to conditions well known in the art to optimize antigen loading in intact miniature cells. Buffers can also vary depending on the antigen (eg, in the case of nucleic acid payloads, depending on the nucleotide sequence or the length of the nucleic acid to be loaded into the pocket cells). Exemplary buffers suitable for loading include, but are not limited to, phosphate buffered saline (PBS). Once packaged, the antigen remains inside the pocket cells and is protected from degradation. Extended incubation studies using siRNA-packaged minicells incubated in sterile saline showed, for example, no leakage of siRNA.
抗原(例如,可由核酸編碼之蛋白質)可藉由將編碼抗原之載體(例如質體)轉變為親代細菌細胞引入袖珍型細胞中。當自親代細菌細胞形成袖珍型細胞時,袖珍型細胞保留質體及/或表現產物(例如抗原)之某些拷貝。包裝及表現產物至袖珍型細胞中之更多細節提供於WO 03/033519中。An antigen (eg, a protein that can be encoded by a nucleic acid) can be introduced into a pocket-sized cell by converting an antigen-encoding vector (eg, a plastid) into a parent bacterial cell. When a miniature cell is formed from a parental bacterial cell, the miniature cell retains some copies of the plastid and/or the expressed product (eg, antigen). Further details of packaging and expression products into pocket-sized cells are provided in WO 03/033519.
例如,WO 03/033519中呈現之數據表明,攜帶哺乳動物基因表現質體之重組袖珍型細胞可遞送至吞噬細胞及非吞噬細胞。WO 03/033519亦闡述利用攜帶於游離型複製質體DNA上之異源核酸對產生袖珍型細胞之親代細菌菌株進行基因轉變。當親代細菌與袖珍型細胞分離時,一些游離型DNA分離至袖珍型細胞中。所得重組袖珍型細胞易於由哺乳動物吞噬細胞吞沒並在細胞內吞噬溶酶體降解。此外,一些重組DNA逃離吞噬溶酶體膜並運送至哺乳動物細胞核中,重組基因在其中表現。在其他實施例中,多個抗原可包裝於同一袖珍型細胞中。For example, data presented in WO 03/033519 demonstrate that recombinant pocket cells carrying mammalian gene expression plasmids can be delivered to phagocytic and non-phagocytic cells. WO 03/033519 also describes the genetic transformation of a parental bacterial strain producing pocket-sized cells using heterologous nucleic acid carried on episomally replicating plastid DNA. When the parental bacteria separate from the pocket cells, some episomal DNA segregates into the pocket cells. The resulting recombinant pocket cells are readily engulfed by mammalian phagocytes and degraded by intracellular phagolysosomes. In addition, some recombinant DNA escapes the phagolysosomal membrane and is transported to the nucleus of mammalian cells, where the recombinant gene is expressed. In other embodiments, multiple antigens can be packaged in the same pocket cell.
抗原可藉由在包含袖珍型細胞之細胞外培養基與袖珍型細胞細胞質之間產生抗原之濃度梯度包裝於袖珍型細胞中。當細胞外培養基包含較袖珍型細胞細胞質高之抗原濃度時,抗原自然地沿此濃度梯度向下移動,進入袖珍型細胞細胞質中。然而,當濃度梯度逆轉時,抗原不會移出袖珍型細胞。活性劑加載製程及其令人驚訝的性質之更多細節見於例如美國專利申請公開案第2008/0051469中。 Ⅵ. 調配物 Antigens can be packaged in the miniature cells by creating a concentration gradient of the antigen between the extracellular medium comprising the miniature cells and the cytoplasm of the miniature cells. When the extracellular medium contains a higher concentration of antigen than the cytoplasm of the miniature cells, the antigen naturally moves down this concentration gradient into the cytoplasm of the miniature cells. However, when the concentration gradient was reversed, the antigen did not move out of the pocket cells. Further details of the active agent loading process and its surprising properties are found, for example, in US Patent Application Publication No. 2008/0051469. Ⅵ. Preparation
本揭示內容在其範圍內包括包含以下各項之組合:(a) 載體、完整細菌袖珍型細胞或殺死的細菌細胞,其包含至少一種病毒抗原作為酬載;及(b) 載體、完整細菌袖珍型細胞或殺死的細菌細胞,其包含至少一種CD1d識別之抗原作為酬載,其二者存在於至少一種醫藥上可接受之載劑中。至少一種病毒抗原及至少一種CD1d識別之抗原可在相同或不同載體、完整細菌袖珍型細胞或殺死的細菌細胞中。病毒抗原及CD1d識別之抗原中之至少一者存在於完整細菌袖珍型細胞。The present disclosure includes within its scope combinations comprising: (a) vectors, whole bacterial pocket cells or killed bacterial cells comprising at least one viral antigen as payload; and (b) vectors, whole bacterial cells Miniature cells or killed bacterial cells comprising at least one CDld-recognized antigen as a payload, both present in at least one pharmaceutically acceptable carrier. The at least one viral antigen and the at least one CDld-recognized antigen may be in the same or different vectors, whole bacterial miniature cells or killed bacterial cells. At least one of the viral antigen and the antigen recognized by CDld is present in intact bacterial pocket cells.
在另一態樣中,病毒抗原及至少一種CD1d識別之抗原中之一者存在於非細菌細胞載劑中,例如脂質體載劑。In another aspect, one of the viral antigen and at least one CDld-recognized antigen is present in a non-bacterial cellular vehicle, such as a liposomal vehicle.
在一些態樣中,CD1d識別之抗原係干擾素II型激動劑α-半乳糖神經醯胺。In some aspects, the antigen recognized by CDld is the interferon type II agonist alpha-galactosylceramide.
本揭示內容之組合物可以單位劑型存在,例如在安瓿或小瓶中,或在多劑量容器中,具有或不具有添加之防腐劑。組合物可為於油性或水性媒劑中之溶液、懸浮液或乳液,且可包含調配劑,例如懸浮劑、穩定劑及/或分散劑。適宜溶液與接受者之血液係等滲的且由例如鹽水、林格氏溶液(Ringer's solution)及葡萄糖溶液例示。或者,調配物可為凍乾粉末形式,用於利用適宜媒劑(例如無菌、無熱原水或生理鹽水)複水。調配物亦可呈儲積製劑之形式。該等長效調配物可藉由植入(例如,經皮下或肌內)或藉由肌內注射投與。在一些實施例中,投與包含腸內或非經腸投與。在一些實施例中,投與包含選自經口、經頰、舌下、鼻內、直腸、陰道、靜脈內、肌內及皮下注射之投與。Compositions of the disclosure may be presented in unit dosage form, eg, in ampoules or vials, or in multi-dose containers, with or without added preservatives. The compositions may be solutions, suspensions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Suitable solutions are isotonic with the blood of the recipient and are exemplified by, for example, saline, Ringer's solution and dextrose solution. Alternatively, the formulation may be in the form of a lyophilized powder for reconstitution with a suitable vehicle such as sterile, pyrogen-free water or physiological saline. The formulations may also be in the form of a depot preparation. Such long-acting formulations can be administered by implantation (eg, subcutaneously or intramuscularly) or by intramuscular injection. In some embodiments, administering comprises enteral or parenteral administration. In some embodiments, administering comprises administration selected from the group consisting of oral, buccal, sublingual, intranasal, rectal, vaginal, intravenous, intramuscular, and subcutaneous injection.
在一些態樣中,提供包括治療有效量之病毒抗原以及治療有效量之CD1d識別之抗原之包含袖珍型細胞之組合物。抗原之「治療有效」量係當根據本揭示內容投與給個體時引起藥理學反應之量。In some aspects, compositions comprising pocket cells are provided that include a therapeutically effective amount of a viral antigen and a therapeutically effective amount of a CDld-recognized antigen. A "therapeutically effective" amount of an antigen is an amount that elicits a pharmacological response when administered to an individual in accordance with the present disclosure.
因此,在本揭示內容之上下文中,當投與攜帶治療酬載之袖珍型細胞時,治療有效量可參考在動物模型或人類個體中病毒感染之預防或改善來判定,如下文進一步闡述。在既定情況中證明對特定個體「治療有效量」之量未必對100%類似用於治療病毒感染之個體有效,即使該劑量被熟練從業者視為「治療有效量」。就此而言,適當劑量亦將根據例如病毒感染之階段及嚴重程度、以及個體是否有任何潛在不良醫學病況、年齡60+或免疫受損等而有所不同。
A. 投與途徑 Thus, in the context of the present disclosure, when administering pocket cells carrying a therapeutic payload, a therapeutically effective amount can be determined with reference to the prevention or amelioration of viral infection in animal models or human subjects, as further set forth below. An amount that proves to be a "therapeutically effective amount" for a particular individual in a given situation may not be effective in 100% of individuals similarly used to treat a viral infection, even if that amount is considered "therapeutically effective" by a skilled practitioner. In this regard, appropriate dosages will also vary depending on, for example, the stage and severity of the viral infection, and whether the individual has any underlying adverse medical conditions,
本揭示內容之調配物可經由各種途徑並投與至哺乳動物體內中之各個位點,以達成局部或全身所需之治療效應。遞送可經由任何醫藥上可接受之途徑完成,例如經口投與、將調配物施加至體腔、吸入、經鼻投與、肺投與、吹入或藉由注射(例如非經腸、肌內、靜脈內、門靜脈內、肝內、腹膜、皮下、腫瘤內或真皮內投與)。亦可採用途徑之組合。 B. 純度 The formulations of the present disclosure can be administered by various routes and to various sites in the body of a mammal to achieve a desired local or systemic therapeutic effect. Delivery can be accomplished by any pharmaceutically acceptable route, such as oral administration, application of the formulation to a body cavity, inhalation, nasal administration, pulmonary administration, insufflation, or by injection (e.g., parenteral, intramuscular , intravenous, portal vein, intrahepatic, peritoneal, subcutaneous, intratumoral, or intradermal administration). Combinations of approaches may also be used. B. Purity
細菌袖珍型細胞實質上不含污染親代細菌細胞。因此,不含袖珍型細胞之調配物較佳包含少於約1個污染親代細菌細胞/10 7個袖珍型細胞、少於約1個污染親代細菌細胞/10 8個袖珍型細胞、少於約1個污染親代細菌細胞/10 9個袖珍型細胞、少於約1個污染親代細菌細胞/10 10個袖珍型細胞或少於約1個污染親代細菌細胞/10 11個袖珍型細胞。 The bacterial pocket cells are substantially free of contaminating parental bacterial cells. Accordingly, formulations free of miniature cells preferably comprise less than about 1 contaminating parent bacterial cell per 10 miniature cells, less than about 1 contaminating parent bacterial cell per 10 miniature cells, less than In about 1 contaminating parent bacterial cell/10 9 pocket cells, in less than about 1 contaminating parent bacterial cell/10 10 pocket cells, or in less than about 1 contaminating parent bacterial cell/10 11 pocket cells type cells.
純化袖珍型細胞之方法為業內已知且闡述於PCT/IB02/04632。一種此類方法將交叉流過濾(供給流平行於膜表面;Forbes, 1987)與死端過濾(供給流垂直於膜表面)組合。視情況,過濾組合之前可係在低離心力下之差速離心,以去除一部分細菌細胞並由此使上清液富集袖珍型細胞。Methods of purifying pocket cells are known in the art and described in PCT/IB02/04632. One such method combines cross-flow filtration (feed flow parallel to the membrane surface; Forbes, 1987) with dead-end filtration (feed flow perpendicular to the membrane surface). Optionally, the filter pack may be preceded by differential centrifugation at low centrifugal force to remove a portion of the bacterial cells and thereby enrich the supernatant for miniature cells.
特別有效之純化方法利用細菌絲狀化增加袖珍型細胞純度。因此,袖珍型細胞純化方法可包括以下步驟:(a) 使含有袖珍型細胞之試樣經受誘導親代細菌細胞採取絲狀形式之條件,隨後(b) 將試樣過濾以獲得純化袖珍型細胞製劑。A particularly effective purification method utilizes bacterial filamentation to increase the purity of the pocket cells. Accordingly, a method of purifying miniature cells may comprise the steps of (a) subjecting a sample containing miniature cells to conditions that induce the parental bacterial cells to adopt a filamentous form, followed by (b) filtering the sample to obtain purified miniature cells preparation.
亦可組合已知袖珍型細胞純化方法。方法之一種高效組合係如下: 步驟A:產生袖珍型細胞之細菌細胞培養物之差速離心。此步驟可以2,000 g實施約20分鐘,其去除大多數親代細菌細胞,同時在上清液中留下袖珍型細胞; 步驟B:使用等滲及無毒之密度梯度介質之密度梯度離心。此步驟將袖珍型細胞與許多污染物(包括親代細菌細胞)分離,同時袖珍型細胞之損失最小。較佳地,在純化方法內重複此步驟; 步驟C:藉助0.45 μm過濾器之交叉流過濾以進一步減少親代細菌細胞污染。 步驟D:殘餘親代細菌細胞之應力誘發之絲狀化。此可藉由使袖珍型細胞懸浮液經受若干應力誘導之環境條件中之任一者來完成; 步驟E:抗生素治療以殺死親代細菌細胞; 步驟F:交叉流過濾以去除小的污染物(例如膜泡、膜片段、細菌碎片、核酸、培養基組分等)及濃縮袖珍型細胞。可採用0.2 μm過濾器以將袖珍型細胞與小的污染物分離,且可採用0.1 μm過濾器以濃縮袖珍型細胞; 步驟G:死端過濾以消除絲狀死的細菌細胞。此步驟可採用0.45 um過濾器;及 步驟H:自袖珍型細胞製劑去除內毒素。此步驟可採用抗脂質A塗佈之磁珠。 C. 投與時間表 Combinations of known mini-cell purification methods are also possible. A highly efficient combination of methods is as follows: Step A: Differential centrifugation of the bacterial cell culture producing pocket-sized cells. This step can be performed at 2,000 g for about 20 minutes, which removes most of the parental bacterial cells while leaving pocket-sized cells in the supernatant; Step B: Density gradient centrifugation using an isotonic and non-toxic density gradient medium. This step separates the miniature cells from many contaminants, including parental bacterial cells, with minimal loss of the miniature cells. Preferably, this step is repeated within the purification method; Step C: Cross-flow filtration with a 0.45 μm filter to further reduce parental bacterial cell contamination. Step D: Stress-Induced Filamentization of Residual Parental Bacterial Cells. This can be done by subjecting the minicell suspension to any of several stress-inducing environmental conditions; Step E: Antibiotic treatment to kill parental bacterial cells; Step F: Cross-flow filtration to remove small contaminants (such as membrane vesicles, membrane fragments, bacterial fragments, nucleic acids, media components, etc.) and enriched pocket cells. A 0.2 μm filter can be used to separate the miniature cells from small contaminants and a 0.1 μm filter can be used to concentrate the miniature cells; Step G: Dead-end filtration to eliminate filamentous dead bacterial cells. This step may use a 0.45 um filter; and Step H: Removal of endotoxin from the minicell preparation. Anti-lipid A coated magnetic beads can be used for this step. C. Investment schedule
一般而言,本文所揭示之調配物可以藉由例行測試界定之適當劑量使用,以獲得最佳生理效應,同時最小化任何潛在毒性。劑量方案可根據各種因素選擇,包括患者之年齡、體重、性別、醫學病況;欲治療之病況之嚴重程度、投與途徑以及患者之腎及肝功能。In general, the formulations disclosed herein can be used at appropriate dosages, as defined by routine testing, to achieve optimal physiological effect while minimizing any potential toxicity. Dosage regimens can be selected based on various factors, including age, weight, sex, medical condition of the patient; severity of the condition to be treated, route of administration, and renal and hepatic functions of the patient.
達成袖珍型細胞及藥物之濃度在獲得最大效能及最小副作用之範圍內之最佳精度可需要基於袖珍型細胞之動力學及抗原對靶位點及靶細胞之可用性之方案。在確定治療方案之最佳濃度時,可考慮袖珍型細胞或抗原之分佈、平衡及消除。當袖珍型細胞及抗原組合使用時,可調整其劑量以達成期望效應。Achieving optimal precision in the concentration of miniature cells and drug within a range for maximum efficacy and minimal side effects may require a regimen based on the kinetics of miniature cells and the availability of antigen to the target site and target cells. The distribution, balance and elimination of pocket cells or antigens may be considered when determining the optimal concentration for a treatment regimen. When pocket cells and antigens are used in combination, their doses can be adjusted to achieve the desired effect.
此外,調配物之劑量投與可使用藥物動力學/藥效學建模系統最佳化。舉例而言,可選擇一或多個劑量方案且可使用藥物動力學/藥效學模型來確定一或多個劑量方案之藥物動力學/藥效學輪廓。然後,可基於特定藥物動力學/藥效學輪廓選擇達成期望藥物動力學/藥效學反應之一種劑量方案進行投與。例如,參見WO 00/67776。In addition, dosage administration of formulations can be optimized using pharmacokinetic/pharmacodynamic modeling systems. For example, one or more dosage regimens can be selected and a pharmacokinetic/pharmacodynamic model can be used to determine the pharmacokinetic/pharmacodynamic profile of the one or more dosage regimens. A dosage regimen that achieves the desired pharmacokinetic/pharmacodynamic response can then be selected for administration based on the particular pharmacokinetic/pharmacodynamic profile. See, eg, WO 00/67776.
特定地,調配物可每天投與至少一次達幾天(三至四),或直至病毒感染症狀消退。在一個實施例中,調配物係每天投與至少一次,直至病毒性疾病消退。Specifically, the formulations can be administered at least once daily for several days (three to four), or until symptoms of viral infection resolve. In one embodiment, the formulation is administered at least once daily until resolution of the viral disease.
更特定而言,調配物可每天投與至少一次達約2、約3、約4、約5、約6、約7、約8、約9、約10、約11、約12、約13、約14、約15、約16、約17、約18、約19、約20、約21、約22、約23、約24、約25、約26、約27、約28、約29、約30或約31天。或者,調配物可每天投與大約一次、每約2、約3、約4、約5、約6、約7、約8、約9、約10、約11、約12、約13、約14、約15、約16、約17、約18、約19、約20、約21、約22、約23、約24、約25、約26、約27、約28、約29、約30或約31天或更長時間投與大約一次。More specifically, the formulations can be administered at least once per day for up to about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, About 14, About 15, About 16, About 17, About 18, About 19, About 20, About 21, About 22, About 23, About 24, About 25, About 26, About 27, About 28, About 29, About 30 or about 31 days. Alternatively, the formulation can be administered about once per day, every about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14 , about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30 or about Administer approximately once for 31 days or more.
組合物可以單一日劑量投與,或總日劑量可以每天兩次、三次或四次之分開劑量投與。 VII. 定義 The compositions can be administered in a single daily dose, or the total daily dosage can be administered in divided doses of two, three or four times daily. VII. Definition
除非另有定義,否則此說明書中所用之所有技術及科學術語具有熟習此項技術者通常理解之相同意義。Unless defined otherwise, all technical and scientific terms used in this specification have the same meaning as commonly understood by one of ordinary skill in the art.
為方便起見,在說明書、實例及隨附申請專利範圍中使用之某些術語及短語之含義如下提供。其他術語及片語在整個說明書中定義。For convenience, the meanings of certain terms and phrases used in the specification, examples, and appended claims are provided below. Other terms and phrases are defined throughout the specification.
除非上下文另外明確指示,否則單數形式「一(a, an)」及「該」包括複數指代。The singular forms "a, an" and "the" include plural referents unless the context clearly dictates otherwise.
如本文所用,「約」將為熟習此項技術者所瞭解,且將端視使用其之上下文而在一定程度上有所變化。若該術語之使用對於熟習此項技術者而言在使用該術語之上下文中並不清楚,則「約」將意指至多特定術語之±10%。As used herein, "about" will be understood by those skilled in the art and will vary to some extent depending on the context in which it is used. "About" will mean up to ±10% of the particular term if the use of the term is unclear to those skilled in the art in the context in which the term is used.
如本文所用,除非上下文另有要求,否則術語「包含(comprise)」及該術語之變化形式(例如「包含(comprising, comprises, comprised)」並不意欲排除其他添加劑、組分、整數或步驟。As used herein, the term "comprise" and variations of that term (eg, "comprising, comprises, comprised") are not intended to exclude other additives, components, integers or steps, unless the context requires otherwise.
片語「生物活性的(biologically active)」及「生物活性(biological activity)」用於限定或表示(視情況而定)化合物或組合物對生命物質之效應。因此,若材料與人類或動物體內之任何細胞組織相互作用或對其有作用,例如藉由與蛋白質、核酸或細胞中之其他分子反應,則該材料係生物活性的或具有生物活性。The phrases "biologically active" and "biological activity" are used to qualify or denote (as the case may be) the effect of a compound or composition on living matter. Thus, a material is biologically active or has biological activity if it interacts with or has an effect on any cellular tissue in the human or animal body, for example by reacting with proteins, nucleic acids or other molecules in the cell.
在此說明中可互換使用之術語「個體(individual)」、「個體(subject)」、「宿主」及「患者」係指期望診斷、治療或療法之任何哺乳動物個體。個體(individual)、個體(subject)、宿主或患者可為人類或非人類動物。因此,適宜個體可包括(但不限於)非人類靈長類動物、牛、馬、狗、貓、天竺鼠、兔、大鼠及小鼠。The terms "individual", "subject", "host" and "patient" used interchangeably in this specification refer to any mammalian individual for whom diagnosis, treatment or therapy is desired. An individual, subject, host or patient can be a human or a non-human animal. Thus, suitable subjects may include, but are not limited to, non-human primates, cows, horses, dogs, cats, guinea pigs, rabbits, rats, and mice.
術語「治療(treatment, treating, treat)」及諸如此類意指在患者中或達期望之藥理學及/或生理效應。該效應在完全或部分防止病毒感染方面可係預防性的及/或在效應在病毒感染方面可係治療性的。或者或另外,期望之治療效應可係總患者存活、無進展存活之增加或不良效應之減少。The terms "treatment, treating, treat" and the like mean achieving a desired pharmacological and/or physiological effect in a patient. The effect may be prophylactic in terms of completely or partially preventing viral infection and/or therapeutic in terms of effect in viral infection. Alternatively or additionally, the desired effect of treatment may be an increase in overall patient survival, progression-free survival, or a decrease in adverse effects.
片語「醫藥級」表示缺乏親代細胞污染、細胞碎片、游離內毒素及其他熱原,以充分滿足用於人類靜脈內投與之安管要求。參見例如「Guidance for Industry - Pyrogen and Endotoxins Testing」,美國食品藥品管理局(U.S. Food and Drug Administration) (2012年6月)。The phrase "pharmaceutical grade" means that it is devoid of parental cell contamination, cell debris, free endotoxin, and other pyrogens to adequately meet safety requirements for intravenous administration in humans. See, eg, "Guidance for Industry - Pyrogen and Endotoxins Testing", U.S. Food and Drug Administration (June 2012).
「酬載」在此說明書中鑑別或限定欲加載或已加載於袖珍型細胞中以遞送至靶向宿主細胞之生物活性物質。"Payload" in this specification identifies or defines a biologically active substance that is to be loaded or has been loaded in a pocket-sized cell for delivery to a targeted host cell.
術語「實質上」通常係指至少90%相似性。在一些實施例中,在第一X射線粉末繞射圖案實質上如第二X射線粉末繞射圖案中所示之上下文中,「實質上」係指± 0.2°。在一些實施例中,在第一差示掃描量熱法溫度記錄圖實質上如第二差示掃描量熱法溫度記錄圖中所示之上下文中,「實質上」係指±0.4℃。在一些實施例中,在第一熱重分析實質上如第二熱重分析中所示之上下文中,「實質上」係指±0.4重量%。在一些實施例中,「實質上純化」係指至少95%純度。此包括至少96、97、98或99%純度。在其他實施例中,「實質上純化」係指約95、96、97、98、99、99.5或99.9%純度,包括其中之增量。The term "substantially" generally means at least 90% similarity. In some embodiments, "substantially" means ± 0.2° in the context of the first X-ray powder diffraction pattern being substantially as shown in the second X-ray powder diffraction pattern. In some embodiments, "substantially" means ±0.4°C in the context of the first differential scanning calorimetry thermogram being substantially as shown in the second differential scanning calorimetry thermogram. In some embodiments, "substantially" in the context of the first thermogravimetric analysis being substantially as shown in the second thermogravimetric analysis refers to ±0.4% by weight. In some embodiments, "substantially purified" means at least 95% pure. This includes at least 96, 97, 98 or 99% purity. In other embodiments, "substantially purified" refers to about 95, 96, 97, 98, 99, 99.5, or 99.9% pure, including increments therein.
如本文所用,「治療活性」或「活性」可係指其效應與人類中之期望治療結果或非人類哺乳動物或其他物種或生物體中之期望效應一致之活性。治療活性可在活體內或活體外量測。舉例而言,期望效應可在細胞培養中分析。As used herein, "therapeutic activity" or "activity" may refer to an activity whose effects are consistent with a desired therapeutic outcome in humans or in non-human mammals or other species or organisms. Therapeutic activity can be measured in vivo or in vitro. For example, desired effects can be assayed in cell culture.
如本文所用,片語「治療有效量」應意指在大量需要此治療之個體中投與藥物時提供特定藥理學反應之藥物劑量。需要強調的是,在特定情形中投與給特定個體之治療有效量之抗原在治療本文所述之病毒感染方面並不總是有效,即使該劑量被熟習此項技術者視為治療有效量。As used herein, the phrase "therapeutically effective amount" shall mean a dose of a drug that provides a specific pharmacological response when administered to a large number of individuals in need of such treatment. It is important to emphasize that a therapeutically effective amount of an antigen administered to a particular individual in a particular situation will not always be effective in treating the viral infections described herein, even if such a dose is considered a therapeutically effective amount by those skilled in the art.
如此概括地闡述之本發明技術藉由參考以下實例將更易於理解,該等實例係以說明方式提供且並不意欲限制本發明技術。 實例 實例 1 The present technology thus broadly set forth will be more readily understood by reference to the following examples, which are provided by way of illustration and not intended to limit the present technology. Example Example 1
此實例之目的係闡述包含SARS-CoV-2疫苗變異株之抗原之SARS-CoV-2疫苗之製備。The purpose of this example is to illustrate the preparation of a SARS-CoV-2 vaccine comprising antigens from variants of the SARS-CoV-2 vaccine.
圖 1A繪示掃描電子顯微鏡影像,其顯示EnGeneIC Dream Vector (EDV™)奈米細胞(即,完整、細菌源性袖珍型細胞)自安全的細菌鼠傷寒沙氏桿菌菌株之產生,且 圖 1 B繪示透射式電子顯微照片影像,其顯示空的EDV細菌奈米細胞之結構,其中直徑為約400 nm。載體或細菌袖珍型細胞用作SARS-CoV-2變異株抗原、SARS-CoV-2抗原及本文所述佐劑之載劑。 Figure 1A depicts scanning electron microscope images showing the production of EnGeneIC Dream Vector (EDV™) nanocells (i.e., intact, bacteria- derived pocket cells) from a safe strain of the bacterium Salmonella typhimurium, and Figure 1B Depicted is a transmission electron micrograph image showing the structure of an empty EDV bacterial nanocell with a diameter of approximately 400 nm. Vectors or bacterial pocket cells are used as vehicles for SARS-CoV-2 variant antigens, SARS-CoV-2 antigens and adjuvants described herein.
圖 2A係包含細菌表現質體(「EDV」)(例如 圖 1 B中所示)之EDV-COVID-19疫苗組合物之圖形繪示,其中EDV首先在EDV細胞質中表現SARS-CoV-2之棘蛋白並另外攜帶或加載有CD1d限制型iNKT細胞抗原醣脂α-半乳糖神經醯胺(α-GalCer) IFN-γ作為佐劑或刺激劑。由SARS-CoV-2編碼之經表現棘蛋白係由圖2A上之星形指定。 圖 2B顯示含有凍乾EDV-COVID-19疫苗組合物之實例性小瓶。 Figure 2A is a graphical representation of an EDV-COVID-19 vaccine composition comprising a bacterial expression plasmid ("EDV"), such as that shown in Figure 1 B , where EDV first expresses the expression of SARS-CoV-2 in the EDV cytoplasm Spinin and additionally carried or loaded with CD1d-restricted iNKT cell antigen glycolipid α-galactosylceramide (α-GalCer) IFN-γ as an adjuvant or stimulator. The expressed spinins encoded by SARS-CoV-2 are designated by the stars on Figure 2A. Figure 2B shows exemplary vials containing lyophilized EDV-COVID-19 vaccine compositions.
圖 3係包含含有表現質體(例如 圖 1B中所示)之完整細菌袖珍型細胞之EDV-COVID-19疫苗組合物之圖形繪示,其中該細菌袖珍型細胞包含(i) 質體,其表現來自原始SARS-CoV-2、SARS-CoV-2 δ變異株及SARS-CoV-2巴西變異株之經選殖棘蛋白,(ii) 基因表現啟動子,其在EDV細胞質中將所有蛋白質表現為單一mRNA及單獨蛋白質,(iii) 多個棘蛋白,其包括由SARS-CoV-2產生之棘蛋白、巴西變異株棘蛋白及δ變異株棘蛋白,及(iv) 作為佐劑或刺激劑之CD1d限制型iNKT細胞抗原醣脂α-半乳糖神經醯胺(α-GalCer) IFN-γ。所編碼之經表現棘蛋白係由 圖 3上之星形指定。在投與給有需要之個體後,疫苗組合物之作用係刺激對病毒蛋白之抗體反應。質體雙鏈DNA由細胞內核酸感測器識別並觸發IFNα及IFNβ反應。 Figure 3 is a graphical representation of an EDV-COVID-19 vaccine composition comprising an intact bacterial pocket cell containing an expression plastid (such as shown in Figure 1B ), wherein the bacterial pocket cell comprises (i) a plastid, which Expression of the selected spike protein from the original SARS-CoV-2, SARS-CoV-2 delta variant, and SARS-CoV-2 Brazilian variant, (ii) a gene expression promoter that expresses all proteins in the cytoplasm of EDV as single mRNA and individual proteins, (iii) multiple spinins including spinin produced by SARS-CoV-2, Brazilian variant spinin and delta variant spinin, and (iv) as adjuvants or stimulators The CD1d-restricted iNKT cell antigen glycolipid α-galactosylceramide (α-GalCer) IFN-γ. The encoded expressed spinins are designated by the stars on Figure 3 . After administration to an individual in need thereof, the vaccine composition acts to stimulate an antibody response to viral proteins. Plastid dsDNA is recognized by intracellular nucleic acid sensors and triggers IFNα and IFNβ responses.
產物可經凍乾。基於完整細菌源性袖珍型細胞之產物極為穩定且當具有抗癌化合物及加載有α-GC之完整細菌源性袖珍型細胞之凍乾小瓶簡單地在醫院藥局之正常冰箱中在4℃下儲存時,小瓶已顯示多於3年之穩定性。其可經由快遞運送至世界任何地方,此先前已在美國癌症試驗中使用EDV (例如細菌袖珍型細胞)證實。The product can be lyophilized. Products based on whole bacteria-derived pocket cells are extremely stable and when lyophilized vials with anticancer compounds and whole bacteria-derived pocket cells loaded with α-GC are simply placed in a normal refrigerator at a hospital pharmacy at 4°C On storage, the vials have shown stability for more than 3 years. It can be shipped anywhere in the world by courier, as previously demonstrated in US cancer trials using EDV (eg bacterial pocket cells).
患者給藥:當患者欲給藥時,可將小瓶於1 ml無菌生理鹽水中複水並作為濃注注射i.v.注射。Patient Administration: When a patient wishes to administer, the vial can be reconstituted in 1 ml sterile saline and injected i.v. as a bolus injection.
編碼SARS-CoV-2病毒及病毒變異株蛋白質之質體可轉變於產生完整細菌源性袖珍型細胞之菌株中且其將在細菌細胞質表現病毒蛋白中。當在不對稱細菌分裂期間產生完整細菌源性袖珍型細胞時,許多蛋白質分離於完整細菌源性袖珍型細胞細胞質中。此已在幾項研究中證實,其中異源外源蛋白已在產生完整細菌源性袖珍型細胞之細菌細胞中表現,且蛋白質分離於該完整細菌源性袖珍型細胞細胞質中。Plasmids encoding proteins of the SARS-CoV-2 virus and virus variants can be transformed into strains that generate intact bacteria-derived pocket cells that will express viral proteins in the bacterial cytoplasm. Many proteins are segregated in the intact bacterium-derived pocket cell cytoplasm when they are generated during asymmetric bacterial division. This has been demonstrated in several studies in which heterologous exogenous proteins have been expressed in bacterial cells that give rise to intact bacterium-derived miniature cells, and the proteins are segregated in the cytoplasm of the intact bacterium-derived miniature cells.
質體經包裝之細菌源性袖珍型細胞之預期結果係對所有病毒蛋白之抗體反應加上I型干擾素反應。The expected outcome of plastid-packaged bacteria-derived minicells is an antibody response to all viral proteins plus a type I interferon response.
經注射之完整細菌源性袖珍型細胞將由淋巴結、肝及脾中之免疫系統之細胞(巨噬細胞、NK細胞及樹突細胞)吞沒。完整細菌源性袖珍型細胞通常進入胞內體並在溶酶體中分解並釋放質體,質體逃逸至細胞質中。The injected whole bacteria-derived pocket cells will be engulfed by cells of the immune system (macrophages, NK cells and dendritic cells) in the lymph nodes, liver and spleen. Intact bacteria-derived pocket cells typically enter endosomes and are disassembled in lysosomes and release plastids, which escape into the cytoplasm.
將識別質體DNA之胞質DNA感測器係一類模式識別受體(PRR),其誘導I型干擾素(IFNα及IFNβ)之產生並觸發快速且有效先天免疫反應之誘導。眾所周知,I型干擾素具有強效抗病毒效應。The cytoplasmic DNA sensor that will recognize plastid DNA is a class of pattern recognition receptors (PRRs), which induce the production of type I interferons (IFNα and IFNβ) and trigger the induction of a rapid and potent innate immune response. It is well known that type I interferons have potent antiviral effects.
SARS-CoV-2病毒及病毒變異株蛋白質自溶酶體中經分解之完整細菌源性袖珍型細胞釋放且經由MHC II類經歷抗原加工及呈現至細胞表面上。此觸發對病毒抗原性表位之強效抗體反應。此進一步誘發針對病毒感染細胞之CD4+/CD8+ T細胞反應且此將增強抗病毒反應。SARS-CoV-2 virus and virus variant proteins are released from intact bacteria-derived pocket cells that are disassembled in lysosomes and undergo antigen processing and presentation on the cell surface via MHC class II. This triggers a potent antibody response to viral antigenic epitopes. This further induces a CD4+/CD8+ T cell response against virus infected cells and this will enhance the antiviral response.
新鮮骨髓源性單核細胞之活化成熟及增殖連同巨噬細胞、樹突細胞、NK細胞、B細胞及T細胞之活化及增殖預計將克服在老年人及免疫受損SARS-CoV2患者中觀察到之淋巴球減少症。Activation, maturation and proliferation of fresh bone marrow-derived monocytes, together with activation and proliferation of macrophages, dendritic cells, NK cells, B cells, and T cells, is expected to overcome that observed in elderly and immunocompromised SARS-CoV2 patients Lymphopenia.
α-半乳糖神經醯胺經包裝之完整細菌源性袖珍型細胞之預期結果- 誘導IFN-γ反應:EDV™α-GC亦由淋巴結、肝及脾中之免疫系統之細胞(巨噬細胞、NK細胞及樹突細胞)吞沒。完全細菌源性袖珍型細胞在細胞內溶酶體中分解並釋放α-GC,其由溶酶體相關之CD1d (MHC I類,如參與外源醣脂呈現之分子)吸收並運輸至細胞表面。此α-GC/CD1d複合物由不變NKT細胞上之不變T細胞受體識別且此導致IFN-γ之快速釋放。已知IFN-γ係特定抗病毒免疫反應之強效刺激劑,且因此預計將增強對病毒感染之排斥。Expected outcome of α-galactosylceramide-packaged intact bacterial-derived pocket cells - induction of IFN-γ responses: EDV™ α-GC is also produced by cells of the immune system (macrophages, NK cells and dendritic cells). Pocket cells of complete bacterial origin disassemble and release α-GC in intracellular lysosomes, which are taken up by lysosome-associated CD1d (MHC class I, such as molecules involved in the presentation of exogenous glycolipids) and transported to the cell surface . This α-GC/CDld complex is recognized by the invariant T cell receptor on invariant NKT cells and this results in a rapid release of IFN-γ. IFN-γ is known to be a potent stimulator of specific antiviral immune responses and is thus expected to enhance rejection of viral infection.
完整細菌源性袖珍型細胞治療劑已顯示在人類癌症患者中係安全的,其中儘管重複給藥,但已在超過140名患者中投與超過1,500個劑量,其中極小至沒有副作用。 實例 2 Whole bacterium-derived pocket cell therapeutics have been shown to be safe in human cancer patients where over 1,500 doses have been administered in over 140 patients with minimal to no side effects despite repeated dosing. Example 2
此實例係針對評估使用加載有EDV Covid-αGC之細菌袖珍型細胞(EDV Covid-αGC)作為針對SARS-CoV-2之疫苗之可行性的研究。 This example is directed to a study evaluating the feasibility of using bacterial pocket cells loaded with EDV Covid-αGC (EDV Covid-αGC ) as a vaccine against SARS-CoV-2.
α-GC及棘蛋白以及編碼棘蛋白DNA序列之質體可成功併入一個單個EDV中(EDV Covid-αGC)。該等EDV然後藉助皮下(SC)、靜脈內(IV)及肌肉內(IM)注射投與。已發現,與所有其他測試之策略相比,藉助肌肉內注射投與在注射後8h產生最強初始干擾素反應,而且在注射後1週產生最高棘蛋白特異性IgG效價。 α-GC and spinin, as well as a plastid encoding spinin DNA sequence, can be successfully incorporated into a single EDV (EDV Covid-αGC ). The EDVs are then administered by subcutaneous (SC), intravenous (IV) and intramuscular (IM) injection. It was found that administration by intramuscular injection produced the strongest initial interferon response at 8 h post injection and the highest spinin-specific IgG titers at 1 week post injection compared to all other strategies tested.
然後藉助肌肉內注射投與EDV Covid-αGC及相應對照且在EDV中併入αGC導致治療後8 h之IFNα、TNFα、IFNγ、IL12及IL6產生顯著增加。此伴隨EDV Covid -αGC治療之小鼠脾中細胞毒性T細胞量之增加。該等T細胞因應於離體棘蛋白之刺激並表現CD69+ CD137+。 EDV Covid-αGC and corresponding controls were then administered by intramuscular injection and incorporation of αGC in EDV resulted in a significant increase in IFNα, TNFα, IFNγ, IL12 and IL6 production 8 h after treatment. This was accompanied by an increase in the amount of cytotoxic T cells in the spleens of EDV Covid -αGC- treated mice. These T cells responded to stimulation with echinin ex vivo and expressed CD69+CD137+.
圖 4 A - C顯示將包含α-半乳糖神經醯胺(α-GalCer)之細菌袖珍型細胞經39天時期投與給三名胰臟癌患者(CB03、CB17及CB41)或經46天時期投與給4名胰臟癌患者(CB11、CB14、CB18及CB41)之結果。血清IFN-α (pg/mL) ( 圖 4 A)及血清IFN-γ ( 圖 4 B)之量測值顯示於 圖 4 A及 4 B中所繪示圖表之Y軸上。數據顯示,EDV-αGC在胰臟癌患者中引發Th1反應及增加之淋巴球含量。 圖 4 A顯示在2個劑量之EDV-αGC後來自所有3名患者之血清IFNα含量持續增加,且 圖 4B顯示在2個劑量之EDV-αGC後所有3名患者之血清IFNγ含量持續增加。IFN含量係經由ELISA自整個治療週期獲取之患者血清試樣量測。 圖 4C顯示在2個劑量之EDV-αGC後經46天時期量測四名胰臟癌患者(CB11、CB14、CB18及CB41)之淋巴球計數(x10 9/L)之結果。 圖 4 C中繪示之結果顯示在四名胰臟癌患者中淋巴球計數升高至正常範圍(1.0-4.0)內。淋巴球含量係藉由病理學服務在整個治療週期自患者血液試樣量測。 Figure 4 A - C shows the administration of bacterial pocket cells containing α-galactosylceramide (α-GalCer) to three pancreatic cancer patients (CB03, CB17 and CB41) over a period of 39 days or over a period of 46 days Results of administration to 4 pancreatic cancer patients (CB11, CB14, CB18 and CB41). Measurements of serum IFN-α (pg/mL) ( FIG . 4A ) and serum IFN- γ ( FIG. 4B ) are shown on the Y-axis of the graphs plotted in FIGS . 4A and 4B . The data showed that EDV-αGC elicited a Th1 response and increased lymphocyte content in pancreatic cancer patients. Figure 4A shows a sustained increase in serum IFNα levels from all 3 patients after 2 doses of EDV-αGC , and Figure 4B shows a sustained increase in serum IFNγ levels from all 3 patients after 2 doses of EDV-αGC. IFN levels were measured by ELISA from patient serum samples obtained throughout the treatment period. Figure 4C shows the results of measuring lymphocyte counts ( xlO9 /L) in four pancreatic cancer patients (CB11, CB14, CB18 and CB41) over a period of 46 days after 2 doses of EDV-αGC. The results depicted in Figure 4C show that lymphocyte counts were elevated within the normal range (1.0-4.0) in four pancreatic cancer patients. Lymphocyte levels were measured from patient blood samples throughout the treatment period by the pathology service.
在初始治療後4週,與所有測試之對照相比,注射EDV Covid-αGC之小鼠含有最高量之棘蛋白特異性IgG及IgM。自該等小鼠提取之B細胞能夠離體因應棘蛋白刺激產生IgG及IgM。另外,來自EDVCovid-αGC治療之小鼠之脾細胞含有最高量之抗病毒CD69+ CD137+細胞毒性T細胞且該等脾細胞使用棘蛋白之離體刺激產生病毒抗原特異性CD69+ 細胞毒性T細胞之增加。此外,EDV Covid-αGC注射之小鼠的血清在活體外展現出對棘蛋白與hACE受體結合之最強抑制,此指示所產生抗體被中和。感興趣的是,來自接受任何形式之αGC之小鼠的血清亦展現可量測但非抗原特異性抗病毒效應。 Four weeks after initial treatment, mice injected with EDV Covid-αGC contained the highest amount of spinin-specific IgG and IgM compared to all tested controls. B cells extracted from these mice were able to produce IgG and IgM in response to spikin stimulation in vitro. In addition, splenocytes from EDVCovid-αGC-treated mice contained the highest amount of antiviral CD69+ CD137+ cytotoxic T cells and ex vivo stimulation of these splenocytes using spinin produced an increase in viral antigen-specific CD69+ cytotoxic T cells. Furthermore, sera from EDV Covid-αGC- injected mice exhibited the strongest inhibition of spinin binding to hACE receptors in vitro, indicating neutralization of the antibodies produced. Interestingly, sera from mice receiving any form of αGC also exhibited measurable but non-antigen-specific antiviral effects.
總之,將αGC併入EDV Covid對於獲得最大SARS-CoV-2棘蛋白效能極為重要。此研究之結果指示,I.M.投與EDV Covid-αGC係對抗當前Covid-19大流行之可行策略。 In conclusion, incorporation of αGC into EDV Covid is extremely important for maximal SARS-CoV-2 spike protein potency. The results of this study indicate that IM administration of EDV Covid-αGC is a viable strategy to combat the current Covid-19 pandemic.
材料及方法Materials and methods
SARS - CoV -2 棘蛋白細菌表現質體設計:表現盒係藉由將SARS-Cov-2 (Covid-19)棘蛋白(Genebank MN908947.3)之編碼核苷酸序列置於經修飾β-內醯胺酶啟動子之3’-末端生成,該啟動子先前已測試在鼠傷寒沙氏桿菌株中之表現(Su, Brahmbhatt等人, Infection and Immunity, 60(8):3345-3359 (1992))。然後將表現盒插入PUC57-Kan骨架質體之M13多選殖位點之Kpn 5’與Sal I 3’位點之間以產生P-Blac-Cov2S。對照質體P-Blac係藉由自P-Blac-Cov2S去除Cov2S序列產生。 SARS - CoV -2 Spike Protein Bacterial Expression Plasmid Design : The Expression Cassette is prepared by placing the coding nucleotide sequence of SARS-CoV-2 (Covid-19) Spike Protein (Genebank MN908947.3) in the modified β- Generation of the 3'-end of the amidase promoter, which had previously been tested for expression in a strain of Salmonella typhimurium (Su, Brahmbhatt et al., Infection and Immunity , 60 (8): 3345-3359 (1992) ). The expression cassette was then inserted between the Kpn 5' and Sal I 3' sites of the M13 multiple selection site of the PUC57-Kan backbone plastid to generate P-Blac-Cov2S. The control plasmid P-Blac was generated by removing the Cov2S sequence from P-Blac-Cov2S.
圖 5 A - H顯示EDV-SARs-CoV-2疫苗之構築體設計( 圖 5 A)。表現盒係藉由將SARS-Cov-2 (Covid-19)棘蛋白(Genebank MN908947.3)之編碼核苷酸序列置於經修飾β-內醯胺酶啟動子之3’-末端生成,該啟動子先前已測試在鼠傷寒沙氏桿菌株中之表現(Su等人, Infection and Immunity, 60(8):3345-3359 (1992))。然後將表現盒插入PUC57-Kan骨架質體之M13多選殖位點之Kpn 5’與Sal I 3’位點之間以產生P-Blac-Cov。 Figures 5A - H show the construct design of the EDV-SARs-CoV-2 vaccine ( Figure 5A ). The expression cassette is generated by placing the coding nucleotide sequence of the SARS-Cov-2 (Covid-19) spike protein (Genebank MN908947.3) at the 3'-end of the modified β-lactamase promoter, which The promoter was previously tested for expression in a S. typhimurium strain (Su et al., Infection and Immunity , 60 (8):3345-3359 (1992)). The expression cassette was then inserted between the Kpn 5' and Sal I 3' sites of the M13 multiple selection site of the PUC57-Kan backbone plastid to generate P-Blac-Cov.
將 P - Blac - Cov 2 S 及 P - Blac - Cov 2 S 選殖於鼠傷寒沙氏桿菌產生 EDV 之菌株中並隨後將 P - Lac - Cov 2 S 及棘蛋白併入 EDV 中 :將P-Blac-Cov2S及P-Blac-Cov2S使用Gene Pulser Xcell™ (Bio-Rad, Hercules CA)使用設定200歐姆、25Hz、2.5 mV電穿孔於化學勝任鼠傷寒沙氏桿菌中間菌株(4004)(其缺少質體限制機制)。轉形體於TSB培養基中在37℃下恢復1.5小時,然後平板接種於含有75 µg/ml康黴素(kanamycin) (#K4000, Sigma-Aldrich, St. Louis, Missouri)之TSB瓊脂板上。將分離物挑取至具有75 µg/ml康黴素之TSB肉湯中並使用Qiagen miniprep套組(#27104, Qiagen, Hilden, Germany)根據製造商之說明書提取質體DNA。隨後,將來自4004之經提取質體DNA如上所述電穿孔於EnGeneIC Pty. Ltd.產生EDV之鼠傷寒沙氏桿菌株(ENSm001)中。含有P-Blac-Cov2S之細菌將產生經編碼Covid2棘蛋白,該棘蛋白與質體DNA一起併入EDV中以產生EDV COVID。含有P-Blac之EDV (EDVCONT)將用作對照。 P - Blac - Cov 2 S and P - Blac - Cov 2 S were selected and colonized in the EDV - producing strain of Salmonella typhimurium and then P - Lac - Cov 2 S and spinin were incorporated into EDV : P- Blac-Cov2S and P-Blac-Cov2S were electroporated on the chemically competent Salmonella typhimurium intermediate strain (4004) (which lacks plasmid body restriction mechanism). Transformants were recovered in TSB medium at 37°C for 1.5 hours, and then plated on TSB agar plates containing 75 µg/ml kanamycin (#K4000, Sigma-Aldrich, St. Louis, Missouri). Isolates were picked into TSB broth with 75 µg/ml kanamycin and plastid DNA was extracted using a Qiagen miniprep kit (#27104, Qiagen, Hilden, Germany) according to the manufacturer's instructions. Subsequently, the extracted plastid DNA from 4004 was electroporated into an EDV-producing S. typhimurium strain (ENSm001 ) of EnGeneIC Pty. Ltd. as described above. Bacteria harboring P-Blac-Cov2S will produce the encoded Covid2 spike protein which is incorporated into EDV along with plastid DNA to produce EDV COVID . EDV (EDVCONT) containing P-Blac will be used as a control.
為確定EDV COVID及EDV CONT之質體含量,使用Qiaprep Spin miniprep套組(Qiagen)按照製造商之說明書,自2x10 9EDV提取質體。空的EDV以相同方式處理並用作對照。然後使用生物光度計(Eppendorf)藉由在260 nm處之吸收量測DNA質體之數量。質體之拷貝數係使用以下計算: To determine the plastid content of EDV COVID and EDV CONT , plastids were extracted from 2x109 EDV using the Qiaprep Spin miniprep kit (Qiagen) according to the manufacturer's instructions. Empty EDVs were treated in the same manner and served as controls. The number of DNA plasmids was then measured by absorbance at 260 nm using a biophotometer (Eppendorf). The copy number of the plastid was calculated using the following:
西方墨點 (Western Blot):使用補充有10% (v/v)溶菌酶(Sigma-Aldrich)及1% (v/v) DNaseI (Qiagen)之100 µL B-PER™ (Thermo Fisher)細菌蛋白提取試劑自2x10
10EDVCOVID提取蛋白質。然後將所提取試樣在12,000 g下離心10min並收集上清液。亦收集剩餘糰粒並重新懸浮於100 µl PBS中。將23 µl上清液及沈澱蛋白質試樣與5 µl加載緩衝液及2 µl DTT (Sigma-Aldrich)在80℃下共培育20min,然後將每一試樣之整個內容物加載於NuPAGE 4-12% Bis-Tris mini gel (Life Technologies)上並在190 V下運行約80min。然後使用iBlot 2機器將試樣轉移並將膜使用Superblock封閉緩衝液(Thermo Fisher)封閉,且隨後用1:2000兔多株SARS-CoV2棘抗體(亦與S1次單元交叉反應, Sino Biological, Beijin, China)染色並在4℃下培育過夜。然後將膜用PBST洗滌並與HRP偶聯抗兔二級抗體(1:5000) (Abcam)於室溫下培育1 h。墨點使用Lumi-Light西方墨點受質(Roche)顯色並使用Chemidoc MP (Biorad)可視化。
Western Blot : Use 100 µL of B-PER™ (Thermo Fisher) bacterial protein supplemented with 10% (v/v) lysozyme (Sigma-Aldrich) and 1% (v/v) DNaseI (Qiagen) Extraction Reagents Proteins were extracted from 2x1010 EDVCOVID. The extracted samples were then centrifuged at 12,000 g for 10 min and the supernatant was collected. The remaining pellet was also collected and resuspended in 100 μl PBS. Incubate 23 µl supernatant and precipitated protein samples with 5 µl loading buffer and 2 µl DTT (Sigma-Aldrich) at 80°C for 20 min, then load the entire content of each sample on NuPAGE 4-12 % Bis-Tris mini gel (Life Technologies) and run at 190 V for about 80 min. Samples were then transferred using an
α - 半乳糖神經醯胺加載於 EDVCOVID 中及細胞培養:將α-半乳糖神經醯胺醣脂佐劑(α-GC)使用EnGeneIC開發之專有方法加載於EDVCOVID中以產生EDVCOVID-αGC。 α - Galactosylceramide loading into EDVCOVID and cell culture: α-Galactosylceramide glycolipid adjuvant (α-GC) was loaded into EDVCOVID using a proprietary method developed by EnGeneIC to generate EDVCOVID-αGC.
將JAWSII細胞(ATCC)以EDVCOVID-αGC在96孔Perfecta 3D懸滴板(Sigma)中以1x10 4EDV-COVID-αGC/細胞處理。利用4µg/mL α-GC處理之JAWSII細胞用作陽性對照。然後將培養物在37℃及5% CO 2下培育24 h,且收集細胞並用CD1d-αGC抗體(ThermoFisher)染色,並使用Gallios流式細胞儀(Beckman)分析。結果係使用Kaluza Analysis軟體(Beckman)分析。 JAWSII cells (ATCC) were treated with EDVCOVID-αGC at 1×10 4 EDV-COVID-αGC/cell in a 96-well Perfecta 3D hanging drop plate (Sigma). JAWSII cells treated with 4 µg/mL α-GC were used as positive control. Cultures were then incubated at 37°C and 5% CO 2 for 24 h, and cells were harvested and stained with CDld-αGC antibody (ThermoFisher) and analyzed using a Gallios flow cytometer (Beckman). Results were analyzed using Kaluza Analysis software (Beckman).
動物研究 :6-7週齡之雌性Balb/c小鼠係自Western Australia之Animal Resources Company獲得。在試驗開始之前使小鼠適應一週。小鼠經由SC及IM注射來注射適當治療劑,並在注射後8 h、1週及4週經由尾靜脈收集血清,並收集脾臟及骨髓。 Animal studies : 6-7 week old female Balb/c mice were obtained from Animal Resources Company, Western Australia. Mice were acclimatized for one week before the start of the experiment. Mice were injected with appropriate therapeutic agents via SC and IM injections, and serum was collected via tail vein at 8 h, 1 week, and 4 weeks after injection, and spleen and bone marrow were collected.
圖 5 D -5 H顯示2 × 10
9EDV-COVID-α-GC肌內(IM)注射至五組BALB/c小鼠中後之結果,其中IFNα濃度(pg/mL) (圖5D)、IFNγ濃度(pg/mL) (圖5E)、IL12p40濃度(pg/mL) (圖5F)、IL6濃度(pg/mL) (圖5G)及TNFα濃度(pg/mL) (圖5H)顯示於圖之Y軸上。結果顯示,投與在注射後8h內導致強I型干擾素反應。五組小鼠(n = 6隻/組)為:第1組= 鹽水;第2組= EDV (沒有酬載之細菌袖珍型細胞);第3組= EDV
control(攜帶沒有表現棘蛋白之插入物之質體(即僅質體骨架)之EDV);第4組= EDV
Covid(包含SARS-CoV-2棘蛋白之細菌袖珍型細胞),及第5組= EDV
Covid + α GC(
圖 2A中所示之構築體)。
Figure 5 D -5 H shows the results after intramuscular (IM) injection of 2 × 10 9 EDV-COVID-α-GC into five groups of BALB/c mice, in which the concentration of IFNα (pg/mL) (Figure 5D), IFNγ concentration (pg/mL) (Fig. 5E), IL12p40 concentration (pg/mL) (Fig. 5F), IL6 concentration (pg/mL) (Fig. 5G) and TNFα concentration (pg/mL) (Fig. 5H) are shown in Fig. on the Y axis. The results showed that administration resulted in a strong type I interferon response within 8 h after injection. Five groups of mice (n = 6/group) were:
圖 6A-6F顯示在I.M給藥EDV-COVID-aGC (2 × 10 9,第1天第一劑量;1 × 10 9,第21天第二劑量)後4週Balb/c小鼠( n= 8隻/組)中之反應。在初始劑量後28天(其中在第21天加強投與),在利用EDV-COVID-α-GC免疫之小鼠之血清中檢測到高位準之抗S蛋白IgM ( 圖 6 A)及IgG ( 圖 6 B)抗體效價。 圖 6 C顯示在初始注射後28天自小鼠骨髓中分離B細胞並與SARS-CoV-2S蛋白離體共培育後之結果。已發現與測試之所有其他組相比,自EDV-COVID-α-GC免疫小鼠分離之B細胞因應於S蛋白之存在產生顯著較高量之S蛋白特異性IgG。 圖 6D顯示中和抗體分析之結果,其展示100%之利用EDV-COVID-α-GC免疫之小鼠之血清導致SARS-CoV-2 RBD與hACE2受體之結合受到抑制。使用用於在各種物種中檢測之cPASSTM SARS-CoV-2中和抗體分析(FDA批准;Tan等人, Nature Biotech, 2020)來評價RBD與hACE2受體結合之抑制。 Figures 6A-6F show Balb/c mice ( n = 8 rats/group). 28 days after the initial dose (with booster administration on day 21), high levels of anti-S protein IgM ( FIG. 6 A ) and IgG ( Figure 6 B ) Antibody titers. Figure 6C shows the results after B cells were isolated from mouse bone marrow and co - cultured with SARS-CoV-2 S protein ex vivo 28 days after the initial injection. It was found that B cells isolated from EDV-COVID-α-GC immunized mice produced significantly higher amounts of S protein-specific IgG in response to the presence of S protein compared to all other groups tested. Figure 6D shows the results of neutralizing antibody assays showing that 100% of the sera from mice immunized with EDV-COVID-α-GC resulted in inhibition of the binding of SARS-CoV-2 RBD to the hACE2 receptor. Inhibition of RBD binding to the hACE2 receptor was assessed using the cPASSTM SARS-CoV-2 Neutralizing Antibody Assay (FDA-approved; Tan et al., Nature Biotech , 2020) for detection in various species.
酶聯免疫吸附分析 :根據製造商說明書,藉由R&D Systems之標準夾心酶聯免疫吸附分析(ELISA)量測小鼠血清中IL-12p40、IFN-γ、TNFα、IL-6、IL2、IFNα及IFNβ之含量。所存在蛋白質之濃度係藉由針對使用純化蛋白質在相同分析中構建之標準曲線計算試樣之吸光度來確定。 ELISA : According to the manufacturer's instructions, IL-12p40, IFN-γ, TNFα, IL-6, IL2, IFNα and The content of IFNβ. The concentration of protein present was determined by calculating the absorbance of the samples against a standard curve constructed in the same assay using purified protein.
為分析抗RBD特異性IgG及IgM抗體,將96孔板(Immulon 4 HBX;Thermo Fisher Scientific)在4℃下用50µl/孔之2µg/ml抗covid棘RBD蛋白質(Genetex)懸浮於PBS (GIBCO)中之溶液塗佈。第二天,去除披蓋蛋白質溶液,且每孔中之試樣使用100µl/孔之在具有0.1% Tween 20 (PBST)之PBS中製備之3%脫脂乳在室溫下封閉1h。在此期間,在於PBST中製備之1%脫脂乳中製備小鼠血清之系列稀釋液。然後去除封閉溶液,並將100 µl每一系列稀釋之血清試樣添加至板並在室溫下培育2h。在培育期結束時,將板用250 µl/孔之0.1% PBST洗滌3次,然後添加100 µl在0.1% PBST中製備之山羊抗小鼠IgG/IgM-辣根過氧化物酶(HRP)偶聯二級抗體(ThermoFisher)之1:3,000稀釋液。將試樣在室溫下培育1h且然後再次用0.1% PBST洗滌三次。一旦完全乾燥,試樣藉由與TMD一起培育來可視化。然後使反應終止並使用KC Junior讀板儀(BioTek Instruments)在490nm下讀取試樣。For the analysis of anti-RBD specific IgG and IgM antibodies, 96-well plates (
抗體效價係使用ELISA藉由生成經治療小鼠血清試樣之1:3連續稀釋液來確定,並表示為具有陽性結果之最高稀釋度之倒數。Antibody titers were determined using ELISA by generating 1 :3 serial dilutions of treated mouse serum samples and expressed as the reciprocal of the highest dilution with a positive result.
統計分析 :使用Prism 8 (GraphPad)實施學生t測試(Student’s T-tests)及單因子ANOVA。P值< 0.05視為統計上顯著。 Statistical analysis : Student's T-tests and one-way ANOVA were implemented using Prism 8 (GraphPad). A P value < 0.05 was considered statistically significant.
結果result
為利用一次單一注射達成疫苗之有效及高效遞送,將αGC共加載於EDV Covid中以產生EDV Covid-αGC。共加載αGC之功能係藉由在EDVCovid-αGC處理後經由CD1d配體檢查其在JAWSII細胞上之呈現來測試。已發現,在處理後表現CD1d-αGC之JAWSII細胞之高百分比與用3µg/mL游離αGC所處理彼等之含量相當或更高。實施西方墨點分析以確保併入EDVCovid-αGC中之棘蛋白不受αGC之二次併入之影響。 To achieve effective and efficient delivery of the vaccine with a single injection, αGC was coloaded in EDV Covid to generate EDV Covid-αGC . The function of co-loaded αGC was tested by examining its presentation on JAWSII cells by CDld ligand after EDVCovid-αGC treatment. A high percentage of JAWII cells expressing CDld-αGC after treatment was found to be comparable or higher than their levels treated with 3 μg/mL free αGC. Western blot analysis was performed to ensure that spinin incorporated into EDVCovid-αGC was not affected by the secondary incorporation of αGC.
然後在活體內評價不同遞送方法對EDV Covid-αGC之效應。自藉助皮下(S.C.)、靜脈內(I.V.)及肌肉內(I.M.)注射投與之治療收集小鼠血清樣品並經由以下各項之ELISA含量進行分析:IFNα ( 圖 7C;注射後8h之血清IFNα濃度)、IFNγ ( 圖 7D;注射後8h之血清IFNγ濃度)、IL12 ( 圖 7E;注射後8h之IL12p40血清濃度)、IL6 ( 圖 7F;注射後8h之IL6血清濃度)及TNFα ( 圖 7G;濃度注射後8h之血清TNFα)。已發現,藉助I.M.注射投與之EDV Covid-αGC在注射後8h在小鼠中誘導所測試之所有細胞介素之產生方面極優良。 The effect of different delivery methods on EDV Covid-αGC was then evaluated in vivo. Mouse serum samples were collected from treatments administered by subcutaneous (SC), intravenous (IV) and intramuscular (IM) injections and analyzed by ELISA for IFNα ( FIG. 7C ; serum IFNα 8 h after injection concentration), IFNγ ( Fig. 7D ; serum IFNγ concentration of 8h after injection), IL12 ( Fig. 7E ; IL12p40 serum concentration of 8h after injection), IL6 ( Fig. 7F ; IL6 serum concentration of 8h after injection) and TNFα ( Fig. 7G ; Concentration of serum TNFα 8h after injection). It was found that EDV Covid-αGC administered by IM injection was excellent in inducing the production of all the tested interkines in mice 8 h after injection.
在初始注射後1週分析棘蛋白特異性抗體時,進一步證實EDV Covid-αGC之不同投與方法之間之差異。與藉助S.C.注射相比,藉助I.M.注射在EDVCovid-αGC治療之小鼠之血清中檢測到高棘蛋白特異性IgG效價。結論是,由於初始干擾素反應之高位準及隨後高IgG效價,藉助I.M.注射投與EDVCovid-αGC係較佳遞送策略。 Differences between the different administration methods of EDV Covid-αGC were further confirmed when spikin-specific antibodies were analyzed 1 week after the initial injection. High spinin-specific IgG titers were detected in the sera of EDVCovid-αGC-treated mice by IM injection compared to by SC injection. It was concluded that administration of EDV Covid-αGC by IM injection is a preferred delivery strategy due to the high level of initial interferon response and subsequent high IgG titers.
I.M.注射EDV、EDV αGC、EDV Control、EDV Control-αGC、EDV Covid、EDV Covid-αGC後之初始干擾素反應之詳細分析顯示,小鼠中之早期干擾素反應主要係由投與EDV攜帶之αGC (有或沒有伴隨之抗原特異性質體)誘導。參見 圖 12 A(IM注射後8h之血清IFNα濃度); 圖 12 B(IM注射後8h之血清IFNγ濃度); 圖 12 C(IM注射後8h之IL6血清濃度); 圖 12 D(IM注射後8h之血清TNFα濃度);及 圖 12 E(IM注射後8h之IL12p40血清濃度)。 Detailed analysis of the initial interferon response after IM injection of EDV, EDV αGC , EDV Control , EDV Control-αGC , EDV Covid , EDV Covid-αGC revealed that the early interferon response in mice is mainly caused by the administration of αGC carried by EDV (with or without concomitant antigen-specific plastids) induction. See Figure 12 A (the serum IFNα concentration of 8h after IM injection); Figure 12 B (the serum IFNγ concentration of 8h after IM injection); Figure 12 C (the IL6 serum concentration of 8h after IM injection); Figure 12 D (the serum concentration of IL6 after IM injection 8h serum TNFα concentration); and Figure 12E ( IL12p40 serum concentration 8h after IM injection).
注射後1週小鼠脾細胞之FACS分析顯示,與鹽水組相比,注射EDV
Covid-αGC之小鼠中CD3+CD8+細胞毒性T細胞數量增加。對離體脾細胞實施AIMS分析,且發現當利用棘蛋白刺激時,細胞毒性T細胞群體內之病毒抗原特異性CD69+ CD137+群體增加,處於較PHA刺激之陽性對照高之位準。
FACS analysis of splenocytes from
在初始注射後4週,在藉助I.M.注射投與之EDV
Covid-αGC治療之小鼠血清中觀察到最高含量之棘蛋白特異性IgG及IgM。感興趣的是,亦發現利用EDV
Control-αGC治療之小鼠血清亦含有棘蛋白「特異性」抗體。此發現藉由中和抗體分析證實。儘管利用EDV
Covid-αGC治療之小鼠血清含有最高量之中和抗體,但利用EDV
Control-αGC、EDV
Covid及EDV
αGC治療之小鼠血清亦導致可量測程度之棘蛋白與hACE受體結合之抑制。此似乎表明,單獨的αGC具有抗病毒特性,其中化合物之投與可能導致抑制病毒與體內細胞結合之抑制。與此相比,在不添加αGC之情況下單獨注射EDV
Covid能夠在血清中產生中和抗體,儘管與利用EDV
Covid-αGC治療相比,其含量要低得多。此展示將αGC作為免疫佐劑併入此系統中作為功能性疫苗之重要部分的重要性。
The highest levels of spinin-specific IgG and IgM were observed in the serum of EDV Covid-αGC- treated mice administered by
為進一步展示抗體反應之特異性,在初始注射後4週自治療小鼠之骨髓中提取B細胞,並在活體外利用棘蛋白刺激48小時。與所有其他治療組相比,來自用EDV
Covid-αGC治療之小鼠的B細胞產生最高含量之棘蛋白特異性IgG及IgM。
圖 5B顯示小鼠實驗之結果,其中評估四組小鼠(第1組=未經治療;第2組=沒有酬載之EDV;第3組=投與游離αGC;及第4組=投與包含SARS-CoV-2棘蛋白及αGC之組合之細菌袖珍型細胞疫苗(
圖 2A中所繪示))。
圖 5 B中所示之數據展示,EDV
TM-COVID-α-GC能夠將α-GC有效遞送至鼠類骨髓源性JAWSII細胞中並藉助CD1d-配體以與游離α-GC相似之效率呈現。
圖 5 C顯示使用針對RBD及S1次單元之多株抗體之西方墨點法分析,其中結果展示EDV
TM-COVID-GC內棘蛋白之存在。細菌表現之蛋白質併入EDV
TM中係發生在細胞分裂及細胞質蛋白質之分離期間。
To further demonstrate the specificity of the antibody response, B cells were extracted from the bone marrow of treated
圖 6 E顯示小鼠脾細胞中CD8+細胞毒性T細胞之E-FACS分析之結果,其展示利用EDV
COVID-α-GC免疫之小鼠在初始注射後4週時(在第21天1次加強)具有最高量之抗原特異性記憶CD137+CD69+細胞毒性T細胞,例如,與所有其他治療組相比,在EDV
Covid-αGC治療之小鼠中細胞毒性T細胞群體內有顯著高數量之CD137+ CD69+群體。CD137+信號傳導在CD8+ T細胞抗病毒反應中係必需的。
圖 6 F顯示離體AIMS分析之結果,其顯示棘抗原特異性CD8+T細胞反應。在EDV-Covid及EDV-Covid-aGC組中,CD69+/CD8+ T細胞數量在利用Covid棘蛋白刺激後增加,但在任何其他組中均無增加。PHA用作陽性對照。該等結果指示,EDV內所含之質體及蛋白質二者均產生特異性反應。
Figure 6 E shows the results of E-FACS analysis of CD8+ cytotoxic T cells in mouse splenocytes, which show that mice immunized with EDV COVID-α-GC were 4 weeks after the initial injection (1 booster on
因此,來自經治療小鼠之離體脾細胞之FACS分析顯示,與所有其他治療條件相比,EDV Covid-αGC治療導致CD69+ CD137+ 細胞毒性T細胞增加。亦觀察到,當用棘蛋白刺激離體球狀紅血球時,細胞毒性T細胞群體內之病毒抗原特異性CD69+ CD137- 細胞以類似於來自EDV Covid-αGC及EDV Covid治療之小鼠的PHA刺激陽性對照之速度增加。此在所有其他治療組中未觀察到。其指示,不像由EDV Covid-αGC治療觸發之抗病毒反應,αGC之抗病毒性質可係廣譜的而非抗原特異性的。 實例 3 Thus, FACS analysis of isolated splenocytes from treated mice showed that EDV Covid-αGC treatment resulted in an increase in CD69+ CD137+ cytotoxic T cells compared to all other treatment conditions. It was also observed that when ex vivo spheroids were stimulated with spinin, viral antigen-specific CD69+ CD137- cells within the cytotoxic T cell population were positive for PHA stimulation similar to those from EDV Covid-αGC and EDV Covid- treated mice Control speed increased. This was not observed in all other treatment groups. This indicates that, unlike the antiviral response triggered by EDV Covid-αGC treatment, the antiviral properties of αGC may be broad-spectrum rather than antigen-specific. Example 3
此實例之目的係展示使用本文所述之疫苗組合物針對SARS-CoV-2變異株所生成之免疫性。The purpose of this example is to demonstrate the immunity generated against a variant strain of SARS-CoV-2 using the vaccine compositions described herein.
兩個SARS-CoV-2高關注變異株係UK (B.1.1.7)變異株及南非(B.1.351)變異株。UK (B.1.1.7)變異株(亦稱為α SARS-CoV-2變異株)已報告具有較其他變異株高71%之傳播率( BMJ, 「Covid-19: What have we learned about the new variant in the UK?」 2020年12月23日)。一份報告指出,UK變異株似乎藉由與現有循環變異株群體競爭而獲得主導地位,此強烈暗示在群體位準上更容易傳播之病毒之自然選擇(Lauring等人,「Genetic Variants of SARS-CoV-2-What do They Mean?」 JAMA, 325(6):529-531 (2021年2月9日))。南非(B.1.351)變異株與增加之傳染性、更高病毒負荷相關,且係由異常大量之突變界定。( www . thermofisher . com / blog / ask - a - scientist / what - you - need - to - know - about - the -501 y - v 2- b -1-351- south - african - variant - of - sars - cov -2/,2021年7月16日存取)。 Two SARS-CoV-2 variant strains of high concern UK (B.1.1.7) variant and South African (B.1.351) variant. The UK (B.1.1.7) variant (also known as the α SARS-CoV-2 variant) has been reported to have a 71% higher transmission rate than other variants ( BMJ , "Covid-19: What have we learned about the new variant in the UK?" December 23, 2020). One report indicated that UK variants appeared to gain dominance by competing with existing circulating variant populations, strongly suggesting natural selection of viruses that are more transmissible at the population level (Lauring et al., "Genetic Variants of SARS- CoV-2-What do They Mean?” JAMA , 325 (6):529-531 (February 9, 2021). The South African (B.1.351) variant was associated with increased infectivity, higher viral load, and was defined by an unusually high number of mutations. ( www . thermofisher . com / blog / ask - a - scientist / what - you - need - to - know - about - the -501 y - v 2 - b -1-351 - south - african - variant - of - sars - cov -2/ , access July 16, 2021).
圖 7 A -7 D藉由分析來自免疫小鼠之血清IgG針對病毒之UK (B.1.1.7)及南非(B.1.351)變異株之RBD及S1次單元之特異性及交叉反應性顯示EDV-COVID-α-GC所產生免疫性之強健性。結果顯示,儘管在一些EDV-COVID-α-GC免疫小鼠中產生UK變異株RBD特異性IgG ( 圖 7 A),但觀察到更高之S1特異性IgG抗體效價( 圖 7 B),此指示S蛋白特異性抗體之結合主要在RBD之外。SA變異株觀察到類似趨勢( 圖 7 C 及 D)。 Figure 7A - 7D is shown by analyzing the specificity and cross-reactivity of RBD and S1 subunits of UK (B.1.1.7) and South Africa (B.1.351) mutant strains of the virus from serum IgG from immunized mice Robustness of immunity generated by EDV-COVID-α-GC. The results showed that although UK variant strain RBD-specific IgG was produced in some EDV-COVID-α-GC immunized mice ( Figure 7A ), higher S1-specific IgG antibody titers were observed ( Figure 7B ), This indicates that the binding of the S protein-specific antibody is mainly outside the RBD. A similar trend was observed for the SA variant strains ( Fig. 7 C and D ).
此數據展示本揭示內容之疫苗組合物對抗SARS-CoV-2變異株之令人驚訝的廣泛有效性。 實例 4 This data demonstrates the surprisingly broad effectiveness of the vaccine compositions of the disclosure against SARS-CoV-2 variants. Example 4
此實例之目的係展示使用本文所述之疫苗組合物針對SARS-CoV-2變異株所生成之免疫性。The purpose of this example is to demonstrate the immunity generated against a variant strain of SARS-CoV-2 using the vaccine compositions described herein.
五組小鼠投與本文所述之COVID變異株疫苗及各種對照。五組小鼠(
n= 6隻/組;ELISA試樣一式三份運行)係:第1組= 鹽水;第2組= EDV (沒有酬載之細菌袖珍型細胞);第3組= EDV
control(攜帶沒有表現棘蛋白之插入物之質體(即,僅質體骨架)之EDV);第4組= EDV
Covid(包含質體及經編碼SARS-CoV-2棘蛋白之細菌袖珍型細胞)及第5組= EDV
Covid + α GC(
圖 2 A中所示之構築體)。
Five groups of mice were administered the COVID variant vaccines described herein and various controls. Five groups of mice ( n = 6/group; ELISA samples were run in triplicate):
圖 10 A - D顯示在第1及21天將3 × 10
9EDV投與給五組不同小鼠後IgG效價之結果,其中血清分析係在第28天。
圖 10A-D中所示詳述在第28天S1次單元特異性IgG效價之結果展示,自利用EDV-COVID-GC治療之小鼠獲得之血清IgG效價與所有四種突變株病毒棘蛋白強烈結合:(1) SARS-CoV-2變異株α (B.1.1.7.UK) (
圖 10A);(2) SARS-CoV-2變異株β (B.1.351. SA) (圖10B);(3) SARS-CoV-2變異株δ (B.1.617.2印度);及(4) SARS-CoV-2變異株γ (P.1巴西)。
Figures 10A - D show the results of IgG titers after administration of 3 x 10 9 EDV to five different groups of mice on
此數據展示本揭示內容之疫苗組合物對抗SARS-CoV-2變異株之令人驚訝的廣泛有效性。 實例 5 This data demonstrates the surprisingly broad effectiveness of the vaccine compositions of the disclosure against SARS-CoV-2 variants. Example 5
此實例之目的係闡述建議使用本文所述之COVID-19疫苗進行之臨床試驗。The purpose of this example is to illustrate a proposed clinical trial using the COVID-19 vaccine described herein.
健康志願者之臨床試驗將包含在第1天、第21天肌內注射8 × 10
9EDV-COVID-GC (
圖 2A),並在第28天及第3個月進行血清分析。結果預計展示針對SARS-CoV-2變異株所生成之免疫性,如藉由IgG分析所量測。
實例 6
The clinical trial in healthy volunteers will include intramuscular injection of 8 × 10 9 EDV-COVID-GC on
此實例闡述I/IIa期、開放標籤研究以在18歲及以上非COVID-19感染志願者中確定在EDV中包裝有編碼SARS-CoV-2棘蛋白之質體及醣脂a-半乳糖神經醯胺之EDV奈米細胞(EDV-質體-棘-GC)之安全性。This example illustrates a phase I/IIa, open-label study to identify plastids encoding the SARS-CoV-2 spike protein and glycolipid a-galactose nerves packaged in EDV in non-COVID-19-infected volunteers aged 18 years and older Safety of amide-based EDV nanocells (EDV-plastid-spine-GC).
所有參與者在其他方面均健康且未報告任何慢性健康狀況之病史。個體經由PCR測試鑑別為SARS-CoV-2未感染型(naive)及先前COVID-19疫苗未接種型(naïve)。所有個體接受9 × 10
9EDV-COVID-αGC之劑量,其中在第21天接受相同的加強劑量。所有劑量均在診所給藥,且給藥當天進行3小時安全性監測,包括生命徵象、實驗室測試及不良事件監測。
All participants were otherwise healthy and did not report any history of chronic health conditions. Individuals were identified by PCR testing as naive to SARS-CoV-2 and naïve to previous COVID-19 vaccines. All subjects received a dose of 9 x 109 EDV-COVID-αGC with the same booster dose on
試樣係在4個時間點收集:疫苗前基線(時間點1)、第21天加強疫苗接種前(時間點2)及第28天加強後一週(時間點3)。個體亦排定在3個月及6個月時間點返回。每一研究訪視包括收集20 mL外周血。研究在2021年9月開始,且在提交研究時,已有許多志願者自願參與研究。此處提供六名志願者之完整數據(所有時間點)。Samples were collected at 4 time points: pre-vaccine baseline (time point 1), before the
動物研究:6-8週齡之雌性BALB/C小鼠係自Western Australia之Animal Resource Centre獲得。在試驗開始之前使小鼠適應一週。治療組(n = 4-10,取決於試驗)包括EDV-COVID-αGC以及由鹽水、EDV、EDV-αGC、EDV-CONTROL (對照質體)及EDV-COVID組成之對照組。初始實驗涉及在第0天2 × 10
9i.m.顆粒劑量至單側腹,然後在第21天1 × 10
9之加強。隨後實驗施加較高i.m.,只是由於每側腹可接受之顆粒體積/濃度之限制,因此將3 × 10
9個顆粒之劑量分成每背側腹1.5 × 10
9個,其中在第21天以相同劑量及遞送方進行加強。端視實驗而定,血清及組織在初始注射後8 h、第7天、第21天及第28天收集。安樂死後立即經由心臟穿刺收集血液,或尾部採血用於持續分析。收穫之其他組織包括脾、淋巴結及來自股骨之骨髓。
Animal studies : 6-8 week old female BALB/C mice were obtained from the Animal Resource Center in Western Australia. Mice were acclimatized for one week before the start of the experiment. Treatment groups (n = 4-10, depending on the trial) included EDV-COVID-αGC and a control group consisting of saline, EDV, EDV-αGC, EDV-CONTROL (control plastids) and EDV-COVID. The initial experiment involved a 2 x 109 im pellet dose to unilateral flank on
方法細節method details
重組 CoV 蛋白及抗體:SARS-CoV-2棘蛋白係自ACRObiosystems Inc購得。SARS-CoV-2 (Cov-19) S蛋白、His標籤、超級穩定三聚體(MALS & NS-EM驗證) (Cat.編號SPN-C52H9)在早期實驗中用於分析IgG及IgM反應,以及用於活化免疫細胞標記分析(AIM)。隨後,隨著新的高關注變異株之出現及重組蛋白之可用性增加,購買以下產品:SARS-CoV-2 UK α S1蛋白(HV69-70del、Y144del、N501Y、A570D、D614G、P681H、T716I、S982A、D1118H),His標籤(Cat. 編號SPN-C52H6);SARS-CoV-2 S UK α蛋白RBD (N501Y),His標籤(Cat. 編號SPD-C52Hn);SARS-CoV-2 SA β S蛋白(L18F、D80A、D215G、242-244del、R246I、K417N、E484K、N501Y、D614G、A701V)三聚體,50ug Cat. #SPN-C52Hk;SARS-CoV-2 SA β S蛋白RBD (K417N, E484K, N501Y),His標籤(MALS驗證) (Cat. 編號SPD-C52Hp);SARS-CoV-2 Brazil γ S1蛋白(L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、D614G、H655Y、T1027I、V11 (Cat. #SPN-C52Hg);SARS-CoV-2印度δ棘S1 (T95I、G142D、E154K、L452R、E484Q、D614G、P681R),His標籤(Cat. 編號S1N-C52Ht);SARS-CoV-2 ο棘蛋白HRP (RBD、G339D、S371L、S373P、S375F、K417N、N440K、G446S、S477N、T478K、E484A、Q493R、G496S、Q498R、N501Y、Y505H、His標籤)-HRP (Cat編號Z03730)。 Recombinant CoV proteins and antibodies: SARS-CoV-2 spike protein was purchased from ACRObiosystems Inc. SARS-CoV-2 (Cov-19) Spike protein, His tag, super stable trimer (MALS & NS-EM verified) (Cat. No. SPN-C52H9) was used to analyze IgG and IgM responses in early experiments, and For the assay of activated immune markers (AIM). Subsequently, as new high-concern variants emerged and the availability of recombinant proteins increased, the following products were purchased: SARS-CoV-2 UK αS1 protein (HV69-70del, Y144del, N501Y, A570D, D614G, P681H, T716I, S982A , D1118H), His tag (Cat. No. SPN-C52H6); SARS-CoV-2 S UK α protein RBD (N501Y), His tag (Cat. No. SPD-C52Hn); SARS-CoV-2 SA β S protein ( L18F, D80A, D215G, 242-244del, R246I, K417N, E484K, N501Y, D614G, A701V) trimer, 50ug Cat. #SPN-C52Hk; SARS-CoV-2 SA β S protein RBD (K417N, E484K, N501Y ), His tag (MALS verification) (Cat. No. SPD-C52Hp); SARS-CoV-2 Brazil γ S1 protein (L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I, V11 (Cat. #SPN-C52Hg); SARS-CoV-2 Indian delta spine S1 (T95I, G142D, E154K, L452R, E484Q, D614G, P681R), His tag (Cat. No. S1N-C52Ht); SARS-CoV-2 o Spipin HRP (RBD, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, His tag)-HRP (Cat No. Z03730).
針對S1及S2次單元之SARS-CoV-2 (COVID-19)棘抗體係自Genetex購得(Cat. 編號GTX135356及編號GTX632604),用於西方墨點法確認EDV TM內之S蛋白。使用抗原親和性純化之SARS-CoV-2 (2019-nCoV)棘RBD兔PAb (Cat. 編號40592-T62, Sino Biological)用於使用ELISA定量EDV內之S蛋白。 The SARS-CoV-2 (COVID-19) spike-antibody system against S1 and S2 subunits was purchased from Genetex (Cat. No. GTX135356 and No. GTX632604), and was used to confirm the S protein in EDV TM by Western blot method. Antigen affinity purified SARS-CoV-2 (2019-nCoV) spine RBD rabbit PAb (Cat. No. 40592-T62, Sino Biological) was used to quantify the S protein in EDV using ELISA.
細胞系:JAWSII小鼠骨髓源性樹突細胞(ATCC ®CRL-11904™)係在具有核糖核苷及去氧核糖核苷之α-最低必需培養基(4 mM L-glut、1 mM丙酮酸鈉、5 ng/ml GMCSF及20% FBS)中在37℃、5% CO 2下生長。 Cell line: JAWSII mouse bone marrow-derived dendritic cells (ATCC ® CRL-11904™) were cultured in α-minimal essential medium with ribonucleosides and deoxyribonucleosides (4 mM L-glut, 1 mM sodium pyruvate , 5 ng/ml GMCSF and 20% FBS) at 37°C, 5% CO 2 .
在細菌啟動子下表現 SARS-CoV-2 S 蛋白之質體的生成:表現盒係藉由將SARS-Cov-2 (Covid-19)棘蛋白(Wuhan序列;GeneBank MN908947.3)之編碼核苷酸序列放置於經修飾β-內醯胺酶啟動子之3'-末端生成,該啟動子先前已用於在鼠傷寒沙氏桿菌菌株中表現(Su等人,1992)。然後將表現盒插入PUC57-Kan骨架質體之M13多選殖位點之KpnI 5’及SalI 3’位點之間,以產生pLac-CoV2。序列在藉由Genscript服務製造之前針對鼠傷寒沙氏桿菌密碼子使用進行最佳化。陰性對照質體pLac-對照係如上所述藉由自pLac-CoV2去除CoV2序列產生( 圖 5C 及 D 以及 11A-K)。 Generation of plastids expressing the SARS-CoV-2 S protein under a bacterial promoter : the expression cassette is obtained by incorporating the encoding nucleotides of the SARS-Cov-2 (Covid-19) spike protein (Wuhan sequence; GeneBank MN908947.3) The acid sequence was placed at the 3'-end of a modified β-lactamase promoter that was previously used for expression in S. typhimurium strains (Su et al., 1992). The expression cassette was then inserted between the KpnI 5' and SalI 3' sites of the M13 multiple selection site of the pUC57-Kan backbone plastid to generate pLac-CoV2. Sequences were optimized for S. typhimurium codon usage prior to fabrication by the Genscript service. Negative control plastid pLac-control was generated by removing the CoV2 sequence from pLac-CoV2 as described above ( FIGS. 5C and D and 11A-K ).
將pLac-CoV2及pLac選殖於鼠傷寒沙氏桿菌產生EDV之菌株中並評價EDV內之質體及S蛋白Colonization of pLac-CoV2 and pLac in EDV-producing strains of Salmonella typhimurium and evaluation of plastids and S proteins in EDV
選殖:將PLac-Cov2及pLac-CoV2-對照使用Gene Pulser Xcell™ (Bio-Rad, Hercules CA)電穿孔於化學勝任鼠傷寒沙氏桿菌中間菌株(其缺少質體限制機制)。轉形體於TSB培養基中在37℃下恢復1.5小時,然後平板接種於含有75 µg/ml康黴素(Sigma-Aldrich, St. Louis, Missouri)之TSB瓊脂板上。將分離物挑取至具有75 µg/ml康黴素之TSB肉湯中並使用Qiagen miniprep套組(Qiagen, Hilden, Germany)根據製造商之說明書提取質體DNA。隨後,將來自4004菌株之經提取質體DNA如上所述電穿孔於產生EDV TM之鼠傷寒沙氏桿菌株(ENSm001)中。含有pLac-CoV2之純系產生經編碼Covid-19棘蛋白,該棘蛋白與質體DNA一起在細胞分裂期間併入EDV中以產生EDV-COVID。以相同方式產生含有pLac之EDV (EDV-CONTROL)以用作陰性對照。 Colonization: PLac-Cov2 and pLac-CoV2-control were electroporated into a chemically competent S. typhimurium intermediate strain (which lacks the plastid restriction mechanism) using Gene Pulser Xcell™ (Bio-Rad, Hercules CA). Transformants were recovered in TSB medium at 37°C for 1.5 hours, and then plated on TSB agar plates containing 75 µg/ml kamycin (Sigma-Aldrich, St. Louis, Missouri). Isolates were picked into TSB broth with 75 µg/ml kanamycin and plastid DNA was extracted using a Qiagen miniprep kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. Subsequently, extracted plastid DNA from the 4004 strain was electroporated into an EDV ™ producing S. typhimurium strain (ENSm001 ) as described above. A clone containing pLac-CoV2 produces an encoded Covid-19 spike protein that, along with plastid DNA, is incorporated into EDV during cell division to generate EDV-COVID. EDV containing pLac (EDV-CONTROL) was generated in the same manner to serve as a negative control.
為確定EDV-COVID及EDV-CONTROL之質體含量,使用Qiaprep Spin miniprep套組(Qiagen)按照製造商之說明書,自2x10 9EDV提取質體。空的EDV以相同方式處理並用作對照。然後使用生物光度計(Eppendorf)藉由在OD 260nm處之吸收量測DNA質體之數量。質體之拷貝數係使用以下計算: To determine the plastid content of EDV-COVID and EDV-CONTROL, plastids were extracted from 2x109 EDV using the Qiaprep Spin miniprep kit (Qiagen) according to the manufacturer's instructions. Empty EDVs were treated in the same manner and served as controls. The number of DNA plasmids was then measured by absorbance at OD 260 nm using a biophotometer (Eppendorf). The copy number of the plastid was calculated using the following:
西方墨點法:使用補充有10% (v/v)溶菌酶(Sigma-Aldrich)及1% (v/v) DNaseI (Qiagen)之100 µL B-PER™ (細菌蛋白提取試劑;Thermo Fisher)自2 × 10
10EDV-COVID提取蛋白質。然後將所提取試樣在12000 g下離心10 min並收集上清液。亦收集糰粒並重新懸浮於100 µl PBS中。將23 µl上清液及沈澱蛋白質試樣與5 µl加載緩衝液及2 µl DTT (Sigma-Aldrich)在80℃下共培育20 min,然後將每一試樣之整個內容物加載於NuPAGE 4-12% Bis-Tris mini Protein Gel (ThermoFisher)上並在190 V下運行約80 min。然後使用iBlot 2系統(ThermoFisher)將凝膠轉移,此後將膜使用SuperBlock™封閉緩衝液(ThermoFisher)封閉,且隨後用1:1000兔多株抗SARS-CoV-2棘(S1)抗體(Genetex)或1:1000小鼠單株抗SARS-CoV-2棘(S2)抗體 (Genetex)染色並在4℃下培育過夜。然後將膜用PBST洗滌並與HRP偶聯抗兔(1:5000) (Abcam)或抗小鼠(1:5000) (ThermoFisher) IgG二級抗體於RT下培育1 h。墨點使用Lumi-Light西方墨點受質(Roche)顯色並使用Chemidoc MP (Bio-rad)可視化。
Western blotting: using 100 µL of B-PER™ (Bacterial Protein Extraction Reagent; Thermo Fisher) supplemented with 10% (v/v) lysozyme (Sigma-Aldrich) and 1% (v/v) DNaseI (Qiagen) Proteins were extracted from 2 × 10 10 EDV-COVID. The extracted samples were then centrifuged at 12000 g for 10 min and the supernatant was collected. Pellets were also harvested and resuspended in 100 µl PBS. Incubate 23 µl of supernatant and precipitated protein samples with 5 µl of loading buffer and 2 µl of DTT (Sigma-Aldrich) at 80°C for 20 min, then load the entire contents of each sample on NuPAGE 4- 12% Bis-Tris mini Protein Gel (ThermoFisher) and run at 190 V for about 80 min. The gel was then transferred using the
藉由 ELISA 評估 EDV S 蛋白:將4 × 10 9EDV-COVID顆粒藉由在13000 g下離心8 min糰粒化。將100 µL補充有100 µg/反應之溶菌酶(Sigma)及5U/反應rDNase I (Macherey-Nagel)之B-Per™細菌溶解劑添加至每一試樣並在RT下在渦旋振盪器上以600 rpm培育2 h。然後將試樣與1:5二硫蘇糖醇(ThermoFisher)混合並置於80℃熱區塊(Eppendorf)上以600 rpm再攪動20 min。按照製造商說明書,使用DC蛋白質分析套組(Bio-rad)分析蛋白質數量。 Evaluation of EDV S protein by ELISA : 4×10 9 EDV-COVID particles were pelleted by centrifugation at 13000 g for 8 min. 100 µL of B-Per™ Bacterial Lysis Reagent supplemented with 100 µg/reaction of lysozyme (Sigma) and 5 U/reaction of rDNase I (Macherey-Nagel) was added to each sample and incubated at RT on a vortex shaker Incubate at 600 rpm for 2 h. The samples were then mixed with 1 :5 dithiothreitol (ThermoFisher) and placed on an 80°C heat block (Eppendorf) with agitation at 600 rpm for an additional 20 min. Protein quantities were analyzed using the DC protein assay kit (Bio-rad) following the manufacturer's instructions.
藉助連續稀釋棘蛋白(ACRObiosystems)以達成以下濃度來生成標準品:2000、1000、500、250、125、62.5、31.3 pg/mL。將EDV-COVID S蛋白試樣1:1000稀釋於PBS中。然後將標準品及EDV棘蛋白試樣塗佈於ELISA板上、密封並O/N在4℃下培育。然後將板利用300 µL PBST使用板洗滌器洗滌3次。將200 µL無蛋白質之封閉緩衝液(Astral Scientific)添加至板,將板密封並在RT下培育1 h。Standards were generated by serial dilution of spinin (ACRObiosystems) to achieve the following concentrations: 2000, 1000, 500, 250, 125, 62.5, 31.3 pg/mL. The EDV-COVID S protein sample was diluted 1:1000 in PBS. Standards and EDV spinin samples were then coated on ELISA plates, sealed and incubated O/N at 4°C. Plates were then washed 3 times with 300 µL PBST using a plate washer. 200 µL of protein-free blocking buffer (Astral Scientific) was added to the plate, the plate was sealed and incubated for 1 h at RT.
將棘RBD兔PAb檢測抗體(Sino Biological) 1:10000稀釋於10 mL PBST中並100 µL/孔添加並在RT下培育1 h。將板如上所述在PBST中洗滌,然後添加於10 mL PBST中之100 µL綿羊抗兔IgG (H+L)-過氧化酶(Merck, 1:10000)。將密封板在RT下在黑暗中培育30 min。將板如上所述再次洗滌並每孔添加100 µL之TMB溶液(ThermoFisher)。在TMB添加之幾分鐘內藉由每孔添加50 µL 2 M H 2SO 4來停止反應。試樣使用µQuant讀板儀(Bio-TEK Instruments, Inc.)及KC junior軟體在OD 450nm下分析。 The spiny RBD rabbit PAb detection antibody (Sino Biological) was diluted 1:10000 in 10 mL PBST and added at 100 µL/well and incubated at RT for 1 h. Plates were washed in PBST as described above, then 100 µL of sheep anti-rabbit IgG (H+L)-peroxidase (Merck, 1:10000) in 10 mL of PBST was added. Incubate the sealed plate for 30 min at RT in the dark. Plates were washed again as above and 100 µL per well of TMB solution (ThermoFisher) was added. The reaction was stopped by adding 50 µL per well of 2 MH2SO4 within minutes of TMB addition. Samples were analyzed at OD 450nm using a µQuant plate reader (Bio-TEK Instruments, Inc.) and KC junior software.
將 α - 半乳糖神經醯胺加載於 EDV-COVID 中:如前所述,攜帶S蛋白之EDV-COVID奈米顆粒藉助親代細菌鼠傷寒沙氏桿菌之生物發酵進行大批量純化,然後切向流過濾(TFF)以自親代純化EDV-COVID顆粒(MacDiarmid等人 ,2007)。然後基於Singh等人(2014)中闡述之方案,將EDV-COVID顆粒自培養基中緩衝交換至補充有0.5%泰洛沙泊(tyloxapol)(Sigma-Aldrich)之PBS pH 7.4 (Dulbecco’s;ThermoFisher)中,然後加載αGC。 Loading α - galactosylceramide into EDV-COVID : As described above, the EDV-COVID nanoparticles carrying the S protein were purified in large quantities by the biofermentation of the parent bacterium Salmonella typhimurium, and then tangentially Flow filtration (TFF) was used to purify EDV-COVID particles from their parents (MacDiarmid et al. , 2007). EDV-COVID particles were then buffer exchanged from the medium into PBS pH 7.4 (Dulbecco's; ThermoFisher) supplemented with 0.5% tyloxapol (Sigma-Aldrich) based on the protocol described in Singh et al. (2014) , and then load αGC.
將α-半乳糖神經醯胺醣脂佐劑(αGC;Advanced Molecular Technologies, Melbourne)儲積劑調配於100% DMSO (Sigma)中。將儲積αGC以10 µM之最終濃度(8.58 µg/mL當量)添加至PBS中之EDV-COVID溶液。EDV-COVID顆粒與αGC之共培育係在37℃下在攪拌的同時過夜實施。未加載之αGC藉由將顆粒於PBS pH 7.4 (Dulbecco’s;ThermoFisher)中藉助0.2 µm TFF系統洗滌來去除。然後將EDV-COVID-αGC顆粒在PBS pH 7.4中濃縮,隨後緩衝液交換至200 mM海藻糖(Cat.編號T9531, Sigma)中,準備用於小瓶填充及冷凍乾燥。Alpha-galactosylceramide glycolipid adjuvant (αGC; Advanced Molecular Technologies, Melbourne) depot was formulated in 100% DMSO (Sigma). Stock αGC was added to the EDV-COVID solution in PBS at a final concentration of 10 µM (equivalent to 8.58 µg/mL). Co-cultivation of EDV-COVID particles with αGC was performed overnight at 37°C with stirring. Unloaded αGC was removed by washing the particles in PBS pH 7.4 (Dulbecco's; ThermoFisher) with a 0.2 µm TFF system. EDV-COVID-αGC particles were then concentrated in PBS pH 7.4 followed by buffer exchange into 200 mM trehalose (Cat. No. T9531, Sigma) ready for vial filling and lyophilization.
在用於動物實驗之前,EDV-COVID-αGC批次小瓶經過品質控制測試,包括顆粒計數、均勻性、無菌性、S蛋白濃度、質體拷貝數和每10 9個EDV顆粒之αGC濃度。經加載αGC藉助樹突細胞(DC)攝取及藉助CD1d T細胞受體呈現之活動係如下所述實施。 Prior to use in animal experiments, batch vials of EDV-COVID-αGC underwent quality control testing, including particle count, homogeneity, sterility, S protein concentration, plastid copy number, and αGC concentration per 10 9 EDV particles. The uptake of loaded αGC by dendritic cells (DC) and presentation by CDld T cell receptor was carried out as follows.
αGC 藉由鼠類 DC 攝取及呈現:將JAWSII細胞(ATCC)利用EDV-COVID-αGC於96孔Perfecta3D懸滴板(Sigma-Aldrich)中以1x10 9EDV-COVID-αGC/孔進行處理。利用2 µg/mL αGC (Advanced Molecular Technologies)處理之JAWSII細胞用作陽性對照。然後將培養物在37℃及5% CO 2下培育24 h,且收集細胞並用PE偶聯CD1d: αGC複合物抗體(ThermoFisher, 1:2000)染色並使用Gallios流式細胞儀(Beckman)分析。結果係使用Kaluza Analysis軟體(V.2.1, Beckman)進行分析。 αGC uptake and presentation by murine DC : JAWII cells (ATCC) were treated with EDV-COVID-αGC in 96-well Perfecta3D hanging drop plate (Sigma-Aldrich) with 1×10 9 EDV-COVID-αGC/well. JAWSII cells treated with 2 µg/mL αGC (Advanced Molecular Technologies) were used as a positive control. Cultures were then incubated at 37°C and 5% CO 2 for 24 h, and cells were harvested and stained with PE-conjugated CDld:αGC complex antibody (ThermoFisher, 1:2000) and analyzed using Gallios flow cytometry (Beckman). Results were analyzed using Kaluza Analysis software (V.2.1, Beckman).
在 EDV-COVID-αGC 共培育後檢測鼠類 DC 中之棘蛋白及 CD1d 相關 αGC :將JAWSII細胞(ATCC)以5 × 10 4個細胞/孔接種於96孔懸滴板(Sigma-Aldrich)上。將僅EDV單獨、EDV-αGC、EDV-CONTROL、EDV-COVID及EDV-COVID-αGC與細胞以1x10 9EDV/孔共培育。未處理之JAWSII細胞用作對照。將試樣在37℃及5% CO 2下培育48 h,然後收集並用PE抗小鼠αGC:CD1d複合物抗體(ThermoFisher, 1:2000)及SARS-CoV-2 S1蛋白質多株一級抗體(Genetex, 1:2000)於室溫下在黑暗中共染色30 min。試樣然後用Alexa Fluor 647山羊抗兔IgG (H+L)高交叉吸附二級抗體(ThermoFisher, 1:1000)於4℃下再染色20 min並使用Gallios流式細胞儀(Beckman Coulter)進行分析。小鼠IgG2a及兔IgG (Biolegend)用作同型對照。DAPI用於區分活/死細胞,且單一染色試樣用於生成補償。試樣係使用Kaluza分析軟體(V2.1, Beckman Coulter)進行分析。 Detection of spinin and CD1d- related αGC in murine DCs after EDV-COVID-αGC co-cultivation : JAWII cells (ATCC) were seeded on 96-well hanging drop plates (Sigma-Aldrich) at 5 × 104 cells/well . EDV alone, EDV-αGC, EDV-CONTROL, EDV-COVID and EDV-COVID-αGC were co-incubated with cells at 1×10 9 EDV/well. Untreated JAWSII cells were used as controls. The samples were incubated at 37°C and 5% CO 2 for 48 h, then collected and treated with PE anti-mouse αGC:CD1d complex antibody (ThermoFisher, 1:2000) and SARS-CoV-2 S1 protein polyclonal primary antibody (Genetex , 1:2000) were co-stained for 30 min at room temperature in the dark. Samples were then restained with Alexa Fluor 647 goat anti-rabbit IgG (H+L) highly cross-adsorbed secondary antibody (ThermoFisher, 1:1000) at 4°C for 20 min and analyzed using a Gallios flow cytometer (Beckman Coulter) . Mouse IgG2a and rabbit IgG (Biolegend) were used as isotype controls. DAPI was used to differentiate live/dead cells, and single stained samples were used to generate compensation. The samples were analyzed using Kaluza analysis software (V2.1, Beckman Coulter).
自 EDV-COVID-αGC 提取 αGC 用於定量:αGC提取方法係自先前類似研究改編(Sartorius等人,2018;von Gerichten等人,2017)。獲得必要數量之EDV小瓶,以達成每試樣總共4 × 10 10EDV用於提取αGC。僅EDV之試樣用作陰性對照。 Extraction of αGC from EDV-COVID-αGC for quantification: The αGC extraction method was adapted from previous similar studies (Sartorius et al., 2018; von Gerichten et al., 2017). Obtain the necessary number of EDV vials to achieve a total of 4 x 1010 EDV per sample for extraction of αGC. A sample of EDV alone was used as a negative control.
所有凍乾小瓶重新懸浮於400 µL之PBS (Dulbecco’s,不含Ca 2+Mg 2+,ThermoFisher)中。將每一試樣等分以在埃彭道夫管中給出約2 × 10 10EDV/試樣(即,每一試樣兩個管),並將所有試樣在13200 rpm下離心7.5 min。自每一試樣去除上清液並將EDV糰粒重新懸浮於800 µL PBS中用於每一2 × 10 10,並如上所述再次離心。再次去除上清液,並將所有試樣重新懸浮於500 µL之UltraPure™ H 2O (ThermoFisher)中。 All lyophilized vials were resuspended in 400 µL of PBS (Dulbecco's, Ca 2+ Mg 2+ free, ThermoFisher). Each sample was aliquoted to give approximately 2 x 1010 EDV/sample in Eppendorf tubes (ie, two tubes per sample), and all samples were centrifuged at 13200 rpm for 7.5 min. The supernatant was removed from each sample and the EDV pellet was resuspended in 800 µL PBS for each 2 x 1010 and centrifuged again as above. The supernatant was removed again, and all samples were resuspended in 500 µL of UltraPure™ H 2 O (ThermoFisher).
為進行α-GC提取,將每一500 µL試樣轉移至錐形底部2 mL微量管(Axygen)中。將一個不銹鋼珠粒(5 mm)添加至每一試樣且然後在Qiagen TissueLyser II均質器(Qiagen)上使用攪拌對試樣進行均質化。均質化係在25 Hz下以兩輪2 min攪拌實施,組間有短暫停頓。然後將溶解物轉移至新試管中,組合來自每一試樣之500 µL等分試樣,得到1 mL試樣(留下珠粒)。For α-GC extraction, each 500 µL sample was transferred to a
然後藉由添加1 mL氯仿/甲醇(2:1 CHCl3: MeOH比率)、手動劇烈振動並在37℃下培育15 min提取每一1 mL試樣之脂質,其中每5 min超音波處理1 min。15 min後,將試樣在臺式微型離心機中以2000 g離心10 min。將有機層(底部)移至新試管中。將試樣乾燥,然後進行分析。Lipids were then extracted from each 1 mL sample by adding 1 mL of chloroform/methanol (2:1 CHCl3:MeOH ratio), manual vigorous shaking, and incubating at 37°C for 15 min with sonication for 1 min every 5 min. After 15 min, the samples were centrifuged at 2000 g for 10 min in a tabletop microcentrifuge. Transfer the organic layer (bottom) to a new tube. The samples were dried and then analyzed.
αGC 之定量 LC-MS/MS 分析 :將標準品α-半乳糖神經醯胺(αGC)及內標準品(IS) D-半乳糖基-β-1,1' N-棕櫚醯基-D-赤-神經鞘胺醇溶於DMSO至1 mM或2 mM,若需要,在60-80℃加熱5 min以溶解。在數據獲取之前,使用標準原液在MeOH:H 2O (95:5)中製備儲備稀釋液。製備最終濃度為200 ng/mL之工作IS溶液。 Quantitative LC-MS/MS analysis of αGC : standard α-galactosylceramide (αGC) and internal standard (IS) D-galactosyl-β-1,1' N-palmityl-D- Erythro-sphingosine was dissolved in DMSO to 1 mM or 2 mM, and if necessary, heated at 60-80°C for 5 min to dissolve. Prior to data acquisition, stock dilutions were prepared in MeOH:H 2 O (95:5) using standard stocks. Prepare a working IS solution with a final concentration of 200 ng/mL.
標準品係藉由使用摻加有200 ng/mL IS之αGC (STD)之五個校正點(62.5、125、250、500及1000 ng/mL) (Sartorius等人,2018)製備。使用標準品:IS面積比率作為用作校正曲線(CC)點或線性度,以此來量化未知試樣。將試樣乾燥並在1ml工作IS稀釋液中複水。Standards were prepared by using five calibration points (62.5, 125, 250, 500 and 1000 ng/mL) using αGC (STD) spiked with 200 ng/mL IS (Sartorius et al., 2018). Unknown samples were quantified using standard:IS area ratios as calibration curve (CC) points or linearity. Samples were dried and rehydrated in 1 ml of working IS diluent.
試樣連同新鮮製備之CC標準品係在與Vanquish (ThermoFisher) UHPLC (超高效液相層析) (LC)介接之TSQ Altis (ThermoFisher)三重四極桿質譜儀(MS)上獲取。用於數據獲取所採用之LC-MS儀器方法係根據Sartorius等人最佳化(2017) (Sartorius等人,2018)。Xcalibur及TraceFinder軟體分別用於數據獲取及分析(ThermoFisher)。Samples together with freshly prepared CC standards were acquired on a TSQ Altis (ThermoFisher) triple quadrupole mass spectrometer (MS) interfaced with a Vanquish (ThermoFisher) UHPLC (ultra high performance liquid chromatography) (LC). The LC-MS instrumental method employed for data acquisition was optimized according to Sartorius et al. (2017) (Sartorius et al., 2018). Xcalibur and TraceFinder software were used for data acquisition and analysis (ThermoFisher), respectively.
層析分析(LC)係在Acquity BEH Phenyl管柱(Waters, 100 × 2.1 mm, 1.7 μm)上實施,利用在1 min內自95:5 MeOH/H2O至100% MeOH之短梯度程式、隨後100% MeOH下之等度溶析達4 min進行溶析。流速設定為0.4 mL/min且管柱溫度為40℃。αGC係以1.53 min之RT溶析,IS以1.07 min溶析。出於定量目的及確認分析鑑別,監測STD及IS二者之MRM躍遷。每一化合物之最強躍遷(即,對於STD為m/z 856.7 > 178.9且對於IS為m/z 698.5 > 89.2)用作分析反應。Chromatography (LC) was performed on an Acquity BEH Phenyl column (Waters, 100 × 2.1 mm, 1.7 μm) using a short gradient program from 95:5 MeOH/H2O to 100% MeOH in 1 min, followed by 100 Dissolution was carried out by isocratic elution under % MeOH for 4 min. The flow rate was set at 0.4 mL/min and the column temperature was 40 °C. αGC was eluted at RT of 1.53 min, and IS was eluted at 1.07 min. For quantitative purposes and to confirm analytical identity, MRM transitions were monitored for both STD and IS. The strongest transition for each compound (ie, m/z 856.7 > 178.9 for STD and m/z 698.5 > 89.2 for IS) was used for the analytical reaction.
血清之分離:使SST真空采血管(VACUETTE®)中之全血試樣於RT下凝結1 h。在800 g下離心10 min後,將血清層等分並儲存於-80℃下,用於藉由ELISA及中和抗體分析檢測SARS-CoV-2特異性抗體。 Separation of serum : Coagulate whole blood samples in SST vacuum blood collection tubes (VACUETTE®) for 1 h at RT. After centrifugation at 800 g for 10 min, the serum layer was aliquoted and stored at -80°C for detection of SARS-CoV-2-specific antibodies by ELISA and neutralizing antibody assays.
鼠類脾細胞分離 :使用Dounce均質器自經治療BALB/C小鼠之解剖脾臟中分離組織懸浮液,並再懸浮於RPMI-1640培養基(Sigma-Aldrich)中。然後將經均質化組織藉助無菌70 µm MACS SmartStrainers (Miltenyi Biotec)過濾並如製造商所建議與紅血球溶解緩衝液Hybri-Max™ (Sigma-Aldrich)一起培育。然後將細胞重新懸浮於2.5 mL autoMACS運行緩衝液(Miltenyi Biotec)中並穿過70 µm MACS SmartStrainer,以獲得單細胞懸浮液。 Murine splenocyte isolation : Tissue suspensions were isolated from dissected spleens of treated BALB/C mice using a Dounce homogenizer and resuspended in RPMI-1640 medium (Sigma-Aldrich). The homogenized tissue was then filtered through sterile 70 µm MACS SmartStrainers (Miltenyi Biotec) and incubated with erythrocyte lysis buffer Hybri-Max™ (Sigma-Aldrich) as recommended by the manufacturer. Cells were then resuspended in 2.5 mL of autoMACS running buffer (Miltenyi Biotec) and passed through a 70 µm MACS SmartStrainer to obtain a single cell suspension.
細胞介素 ELISA :來自小鼠血清之IFNγ、TNFα、IL-6、IFNα、IL-12p40、IL-10、IL-2及IL-4係使用來自R&D Systems DuoSet ®ELISA套組根據製造商說明書量測。IL-21之血清含量係使用LEGEND MAX小鼠IL-21 ELISA套組(Biolegend)根據製造商之說明書分析。細胞介素濃度係藉由根據標準曲線計算試樣之吸光度來確定,該標準曲線係在使用純化材料之相同分析中構建。 Interleukin ELISA : IFNγ, TNFα, IL-6, IFNα, IL-12p40, IL-10, IL-2, and IL-4 from mouse serum were measured using the DuoSet® ELISA kit from R&D Systems according to the manufacturer’s instructions Measurement. Serum levels of IL-21 were analyzed using the LEGEND MAX mouse IL-21 ELISA kit (Biolegend) according to the manufacturer's instructions. Interleukin concentrations were determined by calculating the absorbance of the samples against a standard curve constructed in the same assay using purified material.
S - 蛋白 RBD 及 S 1 IgG / IgM 血清 效價 ELISA :為分析抗RBD特異性IgG及IgM抗體,將96孔板(Immulon 4 HBX;Thermo Fisher Scientific)在4℃利用50 µL/孔之2 µg/mL懸浮於PBS (GIBCO)中之所測試相應變異株(ACRObiosystems)之RBD或S1蛋白之溶液塗佈。第二天,去除塗佈蛋白溶液,並添加100 µL於PBS/0.1% Tween 20 (PBST)中之3%脫脂乳封閉溶液或無蛋白封閉溶液(G-Biosciences)並在RT下培育1 h。小鼠血清之系列稀釋液係在1%脫脂乳/PBST或無蛋白封閉溶液中製備。去除封閉溶液,將100 μL之每一血清試樣添加至板中並在RT下培育2 h。培育後,將細胞用250 µL之0.1% PBST洗滌3次,然後添加100 µL於0.1% PBST中製備之山羊抗小鼠IgG (H+L)或IgM (Heavy)-辣根過氧化物酶(HRP)偶聯二級抗體(ThermoFisher, 1:3000)。將試樣於RT下培育1 h並用0.1% PBST洗滌三次。一旦完全乾燥,試樣藉由與TMB一起培育可視化。然後終止反應,並將試樣使用KC Junior讀板儀(BioTek Instruments)在OD
490 nm下讀取。
S - protein RBD and
抗體效價係使用ELISA藉由生成經治療小鼠血清試樣之1:3連續稀釋來測定並表示為具有陽性結果之最高稀釋度之倒數。Antibody titers were determined using ELISA by generating 1 :3 serial dilutions of treated mouse serum samples and expressed as the reciprocal of the highest dilution with a positive result.
自鼠類骨髓提取 B 細胞 :將0.5 mL微量離心管用21號針頭在底部刺破且然後置於2 mL管內。將分離之鼠脛骨及股骨置於該等1 mL管中,其中骨頭之切割側在底部。經由以≥10000 g離心30 s自脛骨及股骨中提取骨髓細胞。將糰粒化細胞重新懸浮於1 mL RPMI-1640培養基(Sigma-Aldrich)中,並與Hybri-Max™紅血球溶解緩衝液(Sigma-Aldrich)一起培育5 min。溶解緩衝液利用15 mL補充有10%胎牛血清(FBS) (Interpath)之RPMI-1640培養基中和,並在300 g下離心10 min。將細胞重新懸浮於最終體積為10 mL之RPMI-1640培養基中用於最終計數。B細胞係使用Pan B細胞分離套組(Miltenyi Biotec)根據製造商之說明書分離。 Extraction of B cells from murine bone marrow : A 0.5 mL microcentrifuge tube was pierced at the bottom with a 21 gauge needle and then placed into a 2 mL tube. Isolated mouse tibias and femurs were placed in the 1 mL tubes with the cut side of the bone at the bottom. Bone marrow cells were extracted from tibia and femur by centrifugation at ≥10000 g for 30 s. The pelleted cells were resuspended in 1 mL of RPMI-1640 medium (Sigma-Aldrich) and incubated with Hybri-Max™ Erythrocyte Lysis Buffer (Sigma-Aldrich) for 5 min. The lysis buffer was neutralized with 15 mL of RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) (Interpath), and centrifuged at 300 g for 10 min. Cells were resuspended in RPMI-1640 medium in a final volume of 10 mL for final counts. B cell lines were isolated using the Pan B Cell Isolation Kit (Miltenyi Biotec) according to the manufacturer's instructions.
B 細胞刺激及 ELISA :將ELISA微板用2 µg/mL SARS-CoV-2棘蛋白三聚體(ACRObiosystems)塗佈並在4℃下培育過夜。將微板用磷酸鹽緩衝鹽水(PBS)洗滌3x並用200 µl/孔之無蛋白封閉緩衝液PBST (G-Biosciences)在RT下封閉2 h。 B cell stimulation and ELISA : ELISA microplates were coated with 2 µg/mL SARS-CoV-2 spinin trimer (ACRObiosystems) and incubated overnight at 4°C. The microplate was washed 3x with phosphate-buffered saline (PBS) and blocked with 200 μl/well protein-free blocking buffer PBST (G-Biosciences) for 2 h at RT.
自經治療小鼠分離小鼠脾細胞並將1x10 5個細胞接種於每一孔中於200 µL AIMV培養基中,並在37℃下培育48 h。 Mouse splenocytes were isolated from treated mice and 1x105 cells were seeded per well in 200 µL AIMV medium and incubated at 37°C for 48 h.
在培育期結束時,自每一孔取出細胞,並將每一微板用PBST中之200 µL/孔之0.05% Tween 20洗滌5次。然後將試樣以100 µL/孔於PBST中之1:5000小鼠IgG-HRP在RT下在黑暗中培育2 h,然後在250 µL PBST中洗滌3x。藉由添加100 µL/孔之TMB受質系統並培育長達20 min或直至形成顯色溶液檢測Covid特異性IgG之存在。藉由添加50 µL/孔之2N H2SO4停止溶液停止酶反應。試樣使用CLARIOstar微板讀取器(BMG LABTECH)在OD
450nm下以OD
540nm作為參考波長分析並使用MARS軟體進行分析。
At the end of the incubation period, cells were removed from each well, and each microplate was washed 5 times with 200 µL/well of 0.05
活化誘導之標記 (AIM) 分析:將經分離脾細胞以1 × 10 6個細胞/200 µL/孔接種於96孔U-底部板中之AIMV (Life Technologies)無血清培養基中。將細胞用1 µg/mL SARS-CoV-2三聚體(ACRObiosystems)在37℃、5% CO 2下刺激24 h。1 µg/mL DMSO用作陰性對照且10 µg/mL PHA (Sigma)作為陽性對照。刺激24 h後,將試樣收集於1.5 mL微量離心管中,藉由上下移液收集細胞,並在300 g下離心10 min。收集上清液並冷凍用於藉由ELISA (DuoSet, R&D Systems)處理IFNγ。 Activation-induced marker (AIM) analysis: The isolated splenocytes were seeded in AIMV (Life Technologies) serum-free medium in 96-well U-bottom plates at 1×10 6 cells/200 µL/well. Cells were stimulated with 1 µg/mL SARS-CoV-2 trimer (ACRObiosystems) for 24 h at 37°C, 5% CO 2 . 1 µg/mL DMSO was used as negative control and 10 µg/mL PHA (Sigma) as positive control. After 24 h of stimulation, samples were collected in 1.5 mL microcentrifuge tubes, cells were collected by pipetting up and down, and centrifuged at 300 g for 10 min. Supernatants were collected and frozen for processing of IFNγ by ELISA (DuoSet, R&D Systems).
對於T細胞活化染色,將來自以上之細胞糰粒在500 µL FACS緩衝液中洗滌兩次,如上所述離心。將最終細胞糰粒重新懸浮於500 µL FACS緩衝液中並用適當抗體(套組中所包括者)在RT下在黑暗中染色30分鐘。然後將細胞在300 g下離心5 min並用500 µL FACS緩衝液洗滌兩次。然後將在4℃下在1%多聚甲醛中固定10 min且之後在300 g下再次離心5 min。最終重新懸浮於300 µL之FACS緩衝液中,然後在Gallios流式細胞儀(Beckman)上分析。使用單一染色試樣及小鼠IgG同型對照用於產生染色補償。For T cell activation staining, cell pellets from above were washed twice in 500 µL FACS buffer and centrifuged as above. The final cell pellet was resuspended in 500 µL of FACS buffer and stained with the appropriate antibody (included in the kit) for 30 minutes at RT in the dark. Cells were then centrifuged at 300 g for 5 min and washed twice with 500 µL FACS buffer. They will then be fixed in 1% paraformaldehyde for 10 min at 4°C and then centrifuged again at 300 g for 5 min. Finally resuspended in 300 µL of FACS buffer and analyzed on a Gallios flow cytometer (Beckman). A single stained sample and a mouse IgG isotype control were used to generate staining compensation.
Th1/Th2 表型分析:Th1/Th2表型分析係使用小鼠Th1/Th2/Th17表型分析套組(BD)實施。首先,根據AIM分析,將經分離脾細胞以1 × 10 6個細胞/200 µL/孔接種於96孔U-底部板中之AIMV (Life Technologies)無血清培養基中。將細胞用1 µg/mL SARS-CoV-2三聚體(ACRObiosystems)在37℃、5% CO 2下刺激24 h。1 µg/mL DMSO用作陰性對照。刺激24 h後,每200 µL/孔之細胞培養物添加1 μL之BD GolgiStop™ (蛋白質轉運抑制劑;BD),充分混合並在37℃下再培育2 h。然後將細胞在250 g下離心10 min並用染色緩衝液(FBS) (BD)洗滌2次。根據製造商之說明數,對細胞進行計數並將大約1百萬個細胞轉移至每一流式試管進行免疫螢光染色。細胞在整個染色程序期間避光。首先,將細胞在RT下以250 g旋轉10 min並徹底地重新懸浮於1 mL冷BD Cytofix™緩衝液(BD)中來固定,並在RT下培育10-20 min。固定後,將細胞以250 g在RT下糰粒化10 min並在RT下在染色緩衝液(FBS)中洗滌兩次。藉由旋轉去除染色緩衝液並將細胞糰粒重新懸浮於稀釋於蒸餾水中之1X BD Perm/Wash™緩衝液(BD)中並在RT下培育15 min。將細胞以250 g在RT下旋轉10 min並去除上清液。為進行染色,將經固定/可滲透化處理之細胞徹底地再懸浮於50 μL之BD Perm/Wash™緩衝液中,與套組中所包括之20 µL/管混合物(小鼠CD4 PerCP-Cy5.5 (純系:RM4-5)、小鼠IL-17A PE (純系:TC11-18H10.1)、小鼠IFN-GMA FITC (純系:XMG1.2)、小鼠IL-4 APC (純系:11B11))或適當陰性對照培育。將試樣在RT下在黑暗中培育30 min,然後在Gallios流式細胞儀(Beckman)上進行FACs分析。使用單一染色對照對每一通道實施手動補償。 Th1/Th2 phenotype analysis: Th1/Th2 phenotype analysis was performed using mouse Th1/Th2/Th17 phenotype analysis kit (BD). First, according to AIM analysis, isolated splenocytes were seeded in AIMV (Life Technologies) serum-free medium in 96-well U-bottom plates at 1 × 10 6 cells/200 µL/well. Cells were stimulated with 1 µg/mL SARS-CoV-2 trimer (ACRObiosystems) for 24 h at 37°C, 5% CO 2 . 1 µg/mL DMSO was used as a negative control. After 24 h of stimulation, add 1 μL of BD GolgiStop™ (protein transport inhibitor; BD) per 200 μL/well of cell culture, mix well and incubate at 37°C for another 2 h. Cells were then centrifuged at 250 g for 10 min and washed twice with staining buffer (FBS) (BD). Cells were counted and approximately 1 million cells were transferred to each flow tube for immunofluorescent staining according to the manufacturer's instructions. Cells were protected from light throughout the staining procedure. First, cells were fixed by spinning at 250 g for 10 min at RT and thoroughly resuspended in 1 mL of cold BD Cytofix™ Buffer (BD) and incubated for 10-20 min at RT. After fixation, cells were pelleted at 250 g for 10 min at RT and washed twice in staining buffer (FBS) at RT. Staining buffer was removed by spinning and the cell pellet was resuspended in 1X BD Perm/Wash™ buffer (BD) diluted in distilled water and incubated at RT for 15 min. Spin cells at 250 g for 10 min at RT and remove supernatant. For staining, the fixed/permeabilized cells were thoroughly resuspended in 50 μL of BD Perm/Wash™ Buffer with 20 μL/tube of the mix included in the kit (mouse CD4 PerCP-Cy5 .5 (clonal: RM4-5), mouse IL-17A PE (clonal: TC11-18H10.1), mouse IFN-GMA FITC (clonal: XMG1.2), mouse IL-4 APC (clonal: 11B11 )) or an appropriate negative control incubation. Samples were incubated in the dark at RT for 30 min before FACs analysis on a Gallios flow cytometer (Beckman). Manual compensation was performed for each channel using a single staining control.
SARS-CoV-2 替代病毒中和測試 ( 小鼠及人類試樣 ) :中和抗體之評價係使用FDA批准之「cPASS SARS-CoV-2替代病毒中和測試套組」(Genscript) (Tan等人,2020)實施。套組係模擬病毒中和過程之阻斷ELISA檢測工具,適於與來自小鼠及其他物種之血清一起使用。捕獲板預先塗佈hACE2蛋白。將所需hACE2塗佈板條帶置於板上並將剩餘部分儲存於2-8℃下。根據方案,將HRP-RBD (Wuhan, Genscript)以1:1000稀釋於HRP稀釋緩衝液中,以提供總共10 mL。將小鼠及人類血清試樣、PBMC上清液及陽性以及陰性對照以1:10稀釋(10 µL + 90 µL試樣稀釋緩衝液)並與HRP-RBD以1:1比率(60 µL + 60 µL)預培育,以使中和Ab與HRP-RBD結合。將混合物在37℃下培育30 min。將100 µL試樣或對照添加至適當孔。將板用板密封劑覆蓋並在37℃下培育15 min。去除板密封劑,用260 µL之1X洗滌溶液洗滌4次。將板在洗滌後輕輕拍乾(pat dried)。然後將100 µL TMB溶液添加至每一孔並將板在黑暗中在RT下培育長達15 min。添加50 µL停止溶液以終止反應。立即使用CLARIOstar微板讀取器在OD 450nm下分析吸光度。HACE2受體結合抑制係使用製造商提供之公式(%抑制=1-(試樣之OD值/陰性對照之OD值) × 100%計算。根據規格單,正值解釋為> 30%且負值解釋為< 30%。 SARS-CoV-2 Surrogate Virus Neutralization Test ( Mice and Human Samples ) : The evaluation of neutralizing antibodies was performed using the FDA-approved "cPASS SARS-CoV-2 Surrogate Virus Neutralization Test Kit" (Genscript) (Tan et al. People, 2020) implementation. The kit is a blocking ELISA detection tool that simulates the process of virus neutralization, and is suitable for use with sera from mice and other species. Capture plates are pre-coated with hACE2 protein. The desired hACE2-coated plate strips were plated and the remainder stored at 2-8°C. According to the protocol, HRP-RBD (Wuhan, Genscript) was diluted 1:1000 in HRP dilution buffer to give a total of 10 mL. Mouse and human serum samples, PBMC supernatants, and positive and negative controls were diluted 1:10 (10 µL + 90 µL sample dilution buffer) and HRP-RBD was diluted 1:1 (60 µL + 60 µL) to allow neutralizing Ab to bind to HRP-RBD. The mixture was incubated at 37°C for 30 min. Add 100 µL of sample or control to appropriate wells. Plates were covered with plate sealant and incubated at 37°C for 15 min. Remove plate sealant and wash 4 times with 260 µL of 1X wash solution. Plates were pat dried after washing. 100 µL of TMB solution was then added to each well and the plate was incubated for up to 15 min at RT in the dark. Add 50 µL of stop solution to terminate the reaction. Absorbance was immediately analyzed at OD 450nm using a CLARIOstar microplate reader. HACE2 receptor binding inhibition was calculated using the formula provided by the manufacturer (% inhibition = 1-(OD value of sample/OD value of negative control) × 100%. According to the specification sheet, positive values are interpreted as > 30% and negative values Interpreted as <30%.
為評價針對變異株SARS-CoV-2株之中和抗體,自Genscript購買以下HRP-RBD蛋白用於替代cPASS套組:SARS-CoV-2 α棘蛋白(RBD、E484K、K417N、N501Y、Avi及His標籤)-HRP、SARS-CoV-2 β棘蛋白(RBD、N501Y、Avi及His標籤)-HRP、SARS-CoV-2 γ棘蛋白(RBD、E484K、K417T、N501Y、Avi及His標籤)-HRP、SARS-CoV-2 δ棘蛋白(RBD、L452R、T478K、Avi及His標籤)-HRP、SARS-CoV-2 ο棘蛋白HRP (RBD、G339D、S371L、S373P、S375F、K417N、N440K、G446S、S477N、T478K、E484A、Q493R、G496S、Q498R、N501Y、Y505H、His標籤)-HRP。To evaluate neutralizing antibodies against mutant SARS-CoV-2 strains, the following HRP-RBD proteins were purchased from Genscript to replace the cPASS kit: SARS-CoV-2 α-spike proteins (RBD, E484K, K417N, N501Y, Avi and His tag)-HRP, SARS-CoV-2 β-spike protein (RBD, N501Y, Avi and His tag)-HRP, SARS-CoV-2 γ-spike protein (RBD, E484K, K417T, N501Y, Avi and His tag)- HRP, SARS-CoV-2 δ spike protein (RBD, L452R, T478K, Avi and His tag)-HRP, SARS-CoV-2 δ spike protein HRP (RBD, G339D, S371L, S373P, S375F, K417N, N440K, G446S , S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, His tag)-HRP.
中和效價分析:將血清試樣以1:1、1:10、1:20、1:40、1:80、1:160、1:320及1:640稀釋並使用FDA批准之「cPASS SARS-CoVv-2替代病毒中和測試套組」針對野生型SARS-CoV-2病毒如前所述進行分析。中和效價測定為最終血清稀釋度,由此導致大於或等於30%之RBD與hACE2結合抑制。 Neutralization titer analysis: Dilute serum samples at 1:1, 1:10, 1:20, 1:40, 1:80, 1:160, 1:320 and 1:640 and use FDA-approved "cPASS The SARS-CoVv-2 Surrogate Virus Neutralization Test Kit" was assayed against wild-type SARS-CoV-2 virus as previously described. Neutralizing titers were determined as final serum dilutions resulting in greater than or equal to 30% inhibition of RBD binding to hACE2.
人類試樣中 T 細胞及 B 細胞之 FACS 分析:T細胞分析係使用DuraClone IM T細胞亞群管(Beckman Coulter)實施。將1 × 10 6個純化PBMC直接添加至100 µL管中,並在RT下在黑暗中培育30 min。然後將試樣以300 g糰粒化5分鐘,並在3ml PBS中洗滌一次。將最終試樣重新懸浮於500 µL含0.1%甲醛之PBS中。檢測之補償係使用IM DuraCloneT細胞亞群管中提供之補償套組使用經純化PBMC產生。 FACS Analysis of T and B Cells in Human Samples : T cell analysis was performed using DuraClone IM T cell subpopulation tubes (Beckman Coulter). Add 1 x 106 purified PBMCs directly to a 100 µL tube and incubate for 30 min at RT in the dark. Samples were then pelleted at 300 g for 5 min and washed once in 3 ml PBS. Resuspend the final sample in 500 µL of PBS containing 0.1% formaldehyde. Compensation for the assay was generated using purified PBMC using the compensation kit provided in the IM DuraClone T cell subset tube.
志願者PBMC係使用人類SARS-CoV-2棘B細胞分析套組(Miltenyi Biotec)來分析。簡言之,將PBMC用SARS-CoV2棘蛋白-生物素染色,然後利用鏈黴抗生物素蛋白PE及鏈黴抗生物素蛋白PE-Vio 770共標記,以消除非特異性結合之機會。然後將細胞利用7AAD、CD19、CD27、IgG及IgM,然後使用FACS進行分析。所有補償均使用UltraComp eBeads™ Plus補償珠粒(ThermoFisher)實施。將試樣使用Gallios流式細胞儀(Beckman Coulter)進行分析並使用Kaluza軟體(Beckman Coulter)進行分析。Volunteer PBMC lines were analyzed using the Human SARS-CoV-2 Spike B Cell Assay Kit (Miltenyi Biotec). Briefly, PBMCs were stained with SARS-CoV2 spinin-biotin and then co-labeled with streptavidin PE and streptavidin PE-Vio 770 to eliminate the chance of non-specific binding. Cells were then analyzed using 7AAD, CD19, CD27, IgG and IgM, and then using FACS. All compensations were performed using UltraComp eBeads™ Plus compensation beads (ThermoFisher). Samples were analyzed using a Gallios flow cytometer (Beckman Coulter) and analyzed using Kaluza software (Beckman Coulter).
試樣使用Gallios流式細胞儀(Beckman)進行處理且結果使用Kaluza Analysis軟體(ver 2.1, Beckman)進行分析。Samples were processed using a Gallios flow cytometer (Beckman) and results were analyzed using Kaluza Analysis software (ver 2.1, Beckman).
人類試樣中活化誘導之標記 (AIM) 分析:將志願者PBMC以1 × 10 6個細胞/200 µL/孔接種於96孔U-底部板中之AIMV (Life Technologies)無血清培養基中。將細胞用2 µg/mL SARS-CoV-2三聚體(ACRObiosystems)在37℃、5% CO 2下刺激24 h。2 µg/mL DMSO用作陰性對照且PHA (eBiosciences)作為陽性對照。刺激24 h後,將試樣收集於1.5 mL微量離心管中,藉由上下移液收集細胞,並在300 g下離心10 min。收集上清液並冷凍用於藉由ELISA (DuoSet, R&D Systems)處理IFNγ及使用cPASS套組(Genscript)用於SARS-CoV-2野生型替代病毒中和測試。試樣之陰性對照亦使用IL-21人類ELISA套組(ThermoFisher)根據製造商之說明書用於IL-21分析。 Activation-induced marker (AIM) analysis in human samples: PBMC from volunteers were seeded in AIMV (Life Technologies) serum-free medium in 96-well U-bottom plates at 1 × 10 6 cells/200 µL/well. Cells were stimulated with 2 µg/mL SARS-CoV-2 trimer (ACRObiosystems) for 24 h at 37°C, 5% CO 2 . 2 µg/mL DMSO was used as negative control and PHA (eBiosciences) as positive control. After 24 h of stimulation, samples were collected in 1.5 mL microcentrifuge tubes, cells were collected by pipetting up and down, and centrifuged at 300 g for 10 min. Supernatants were collected and frozen for IFNγ treatment by ELISA (DuoSet, R&D Systems) and for SARS-CoV-2 wild-type surrogate virus neutralization testing using the cPASS kit (Genscript). A negative control of the samples was also used for IL-21 analysis using the IL-21 human ELISA kit (ThermoFisher) according to the manufacturer's instructions.
結果 : SARS - CoV -2 EDV 調配物及雙 抗原呈現:癌症治療性EDV與細胞毒性酬載一起包裝,並經由特異性針對EDV脂多醣及癌細胞受體(例如EGFR)之scFv雙特異性抗體靶向癌細胞(MacDiarmid等人,2007)。在此實例中,產生EDV-COVID-αGC,其係攜帶SARS-CoV-2棘蛋白及醣脂佐劑α-半乳糖神經醯胺之雙重包裝奈米細胞( 圖 11 A)。在經修飾β-內醯胺酶啟動子下表現SARS-CoV-2 S-蛋白之pLac-CoV2細菌重組質體( 圖 11 B)轉變於產生EDV之鼠傷寒沙氏桿菌中且經純化EDV-COVID奈米細胞藉由西方墨點法使用針對S1之多株抗體及針對S2次單元之單株抗體顯示含有S-蛋白之兩個次單元( 圖 5 C)。EDV質體提取及量化給出約100個拷貝pLac-CoV2/EDV之質體拷貝數,同時蛋白質定量顯示約16ng棘蛋白/10 9EDV。 Results : SARS - CoV -2 EDV formulation and dual antigen presentation: cancer therapeutic EDV was co-packaged with cytotoxic payloads via scFv bispecific antibodies specific for EDV lipopolysaccharide and cancer cell receptors (e.g. EGFR) Targets cancer cells (MacDiarmid et al., 2007). In this example , EDV-COVID-αGC, a double-packaged nanocell carrying the SARS-CoV-2 spike protein and the glycolipid adjuvant α-galactosylceramide, was generated ( FIG . 11A ). pLac-CoV2 bacterial recombinant plasmids expressing the SARS-CoV-2 S-protein under the modified β-lactamase promoter ( Fig . 11B ) were transformed into EDV-producing S. typhimurium and purified EDV- COVID Nanocells were shown to contain two subunits of the S-protein by Western blotting using polyclonal antibodies against S1 and monoclonal antibodies against the S2 subunit ( Fig. 5C ) . EDV plastid extraction and quantification gave a pLac-CoV2/EDV plastid copy number of about 100 copies, while protein quantification showed about 16ng spinin/10 9 EDV.
將經純化EDV-COVID加載αGC以產生EDV-COVID-αGC且脂質提取之EDV-COVID-αGC之LC-MS/MS量測顯示約30 ng αGC/10 9EDV。經EDV-COVID-αGC處理並利用抗CD1d:αGC染色之鼠類JAWS II細胞之流式細胞分析展示αGC之攝取及CD1d介導之表面呈現( 圖 5 B)。此外,JAWS II細胞利用抗棘S1及抗CD1d:αGC共同染色證實在與EDV-COVID-αGC共培育後S-蛋白及αGC二者在DC表面上之呈現( 圖 11 C)。 Purified EDV-COVID was loaded on αGC to generate EDV-COVID-αGC and LC-MS/MS measurement of lipid extracted EDV-COVID-αGC showed about 30 ng αGC/10 9 EDV. Flow cytometric analysis of murine JAWS II cells treated with EDV-COVID-αGC and stained with anti-CDld:αGC revealed uptake of αGC and CDld-mediated surface presentation ( FIG . 5B ). Furthermore, co-staining of JAWS II cells with anti-Spine S1 and anti-CDld:αGC confirmed the presentation of both S-protein and αGC on the surface of DCs after co-incubation with EDV-COVID-αGC ( FIG . 11C ).
利用 EDV-COVID-αGC 治療之小鼠中之早期細胞介素反應:與對照組相比,BALB/c小鼠肌內(i.m)接種單一第一劑量之2 × 10 9或3 × 10 9EDV-COVID-αGC導致8 h血清試樣顯示升高之Th1細胞免疫反應細胞介素。如 圖 11 ( D - I )中所示,與包括鹽水、EDV、EDV-CONTROL (棘陰性質體)及EDV-COVID (僅棘蛋白)之對照相比,IFNα、IFNγ、IL-12p40、IL-2、TNFα及IL-6在EDV-COVID-αGC組中升高至顯著較高含量,此展示αGC之影響。IL-21 (對抗病毒活性至關重要之Th2細胞介素因子)在利用EDV-COVID-αGC治療之小鼠中在8 h時顯著升高( 圖 11 J)。IL-10 (亦係Th2細胞介素)在所有群組中相對升高( 圖 11 K)。 Early cytokine responses in mice treated with EDV-COVID-αGC: BALB / c mice intramuscularly (im) inoculated with a single first dose of 2 × 10 9 or 3 × 10 9 EDV compared to controls -COVID-αGC caused 8 h serum samples to show elevated Th1 cell immune response cytokines. As shown in Figure 11 ( D - I ) , IFNα, IFNγ, IL-12p40, IL -2. TNFα and IL-6 increased to significantly higher levels in the EDV-COVID-αGC group, which shows the influence of αGC. IL-21, a Th2 cytokine factor critical for antiviral activity, was significantly elevated at 8 h in mice treated with EDV-COVID-αGC ( FIG . 11 J ). IL-10 (also a Th2 cytokine) was relatively elevated in all groups ( Fig. 11K ) .
利用 EDV-COVID-αGC 治療之小鼠中之 S- 蛋白特異性抗體:在第28天使用S-蛋白特異性ELISA分析i.m.利用2 × 10
9或3 × 10
9EDV給藥及在第21天等量加強之小鼠之血清IgM及IgG抗體效價。與鹽水、EDV及EDV-CONTROL組相比,EDV-COVID及EDV-COVID-αGC之兩個劑量含量均給出升高之IgM (
圖 12 A)及IgG (
圖 12 B) S-蛋白特異性抗體效價。與EDV-COVID相比,EDV-COVID-αGC之抗體效價較高。對於EDV-COVID及EDV-COVID-αGC二者,IgM (
圖 12C)及IgG (
圖 12D)含量顯示在第7天升高至相當含量。到第21天加強前,EDV-COVID及EDV-COVID-αGC兩個組之IgM效價均下降(
圖 12E),但IgG仍升高,特別地在EDV-COVID-αGC組中(
圖 12 F)。
S- protein-specific antibodies in mice treated with EDV -COVID-αGC : analysis on day 28 using S-protein-specific ELISA im administered with 2 × 10 9 or 3 × 10 9 EDV and on
S - 蛋白特異性 B 及 T 細胞 反應:為在小鼠以2 × 10 9及3 × 10 9兩個位準免疫後研究B細胞反應,將骨髓源性B細胞離體利用SARS-CoV-2 S-蛋白刺激並量測B細胞分泌之S特異性IgM及IgG效價。與以2 × 10 9給藥之所有其他組相比,2 × 10 9EDV-COVID-αGC之劑量導致顯著升高之IgM及IgG含量( p=0.0081, p<0.0001),且類似地,與以3 × 10 9給藥之所有其他組相比,3 × 10 9EDV-COVID-αGC導致顯著升高之IgM及IgG含量( p<0.0001, p=0.0175) ( 圖 13 A 及 B)。 S - protein-specific B and T cell responses: In order to study B cell responses after immunization of mice at two levels of 2 × 10 9 and 3 × 10 9 , bone marrow-derived B cells were isolated from SARS-CoV-2 S-protein stimulation and measurement of S-specific IgM and IgG titers secreted by B cells. A dose of 2 × 10 9 EDV-COVID-αGC resulted in significantly increased IgM and IgG content compared to all other groups dosed at 2 × 10 9 ( p = 0.0081, p < 0.0001), and similarly, with 3×10 9 EDV-COVID-αGC resulted in significantly increased IgM and IgG content compared to all other groups dosed at 3×10 9 ( p <0.0001, p =0.0175) ( FIG . 13 A and B ).
當藉由流式細胞術分析活化標記CD69作為離體脾CD8 +T細胞群體內CD3/CD69之百分比時,與DMSO刺激相比,2 × 10 9EDV-COVID-αGC之劑量在利用S-蛋白刺激後產生較高T細胞反應( p=0.0159) ( 圖 13 C)。此較高% CD3/CD69比率亦在3 × 10 9之劑量下觀察到( p=0.0185) ( 圖 13 D)。在 圖 13 E中,S-蛋白刺激離體脾細胞後之Th1/Th2表型分析顯示,與其他無反應之組相比,來自EDV-COVID及EDV-COVID-αGC小鼠之CD4+ T細胞在24 h內產生IFNγ,但未產生IL-4。 When the activation marker CD69 was analyzed by flow cytometry as a percentage of CD3/CD69 within the isolated splenic CD8 + T cell population, a dose of 2 × 10 9 EDV-COVID-αGC was significantly more effective in utilizing S-protein compared to DMSO stimulation. Stimulation resulted in a higher T cell response ( p = 0.0159) ( Fig. 13C ) . This higher % CD3/CD69 ratio was also observed at a dose of 3×10 9 ( p =0.0185) ( FIG . 13D ). In Figure 13E , the Th1/ Th2 phenotype analysis of isolated splenocytes stimulated by S-protein showed that CD4+ T cells from EDV-COVID and EDV-COVID-αGC mice were significantly higher in IFNγ was produced within 24 h, but IL-4 was not produced.
使用替代病毒中和測試 (s VNT ) 量測 EDV-COVID-αGC 之多菌株中和:使用FDA批准之cPASS™
sVNT套組來評估在i.m.接種2 × 10
9及3 × 10
9(對於野生型武漢株)及對於α、β、γ及δ株3 × 10
9後第28天小鼠血清中中和抗體之含量。根據套組之說明書,認為試樣在30%抑制位準之中和為陽性(Jung等人,2021;Tan等人,2020)。根據該等指南,在2 × 10
9及3 × 10
9兩個劑量下,100%利用EDV-COVID-αGC治療之小鼠中和野生型SARS-CoV-2之RBD,而相應劑量之EDV-COVID分別有50%及75%顯示RBD中和(
圖 13 F及
G)。100%之利用3 × 10
9EDV-COVID-αGC治療之小鼠中和來自α株之各別RBD,對於β為80%且對於γ及δ為90% (
圖 13 H - K)。
Multi-strain neutralization of EDV-COVID-αGC measured using the Surrogate Virus Neutralization Test ( sVNT ) : The FDA-approved cPASS™ sVNT kit was used to assess 2 × 10 9 and 3 × 10 9 (for wild-type Wuhan strain) and for α, β, γ and
臨床結果 :來自I期研究同類群組之接受9x10
9EDV-COVID-αGC之健康志願者在第28天對SARS-CoV2病毒之野生型、δ及ο變異株展現強中和活性(>PRNT
90當量)。為比較,中和結果亦包括接受至少2個劑量之Pfizer疫苗之5名志願者的ο變異株(
圖 14A)。該等志願者之血清IFNγ (
圖 14B)及IFNα (
圖 14C)含量並持續。總PBMC分析顯示,自第1天至第28天經疫苗接種志願者中之CD4
+(
圖 14D)及CD8
+(
圖 14E)循環記憶B細胞增加。第28天分離之離體PBMC因應於SARS-CoV2棘蛋白刺激並產生升高含量之IFNγ (
圖 14F)。類似地,棘蛋白刺激後,PBMC中之CD69
+T細胞增加(
圖 14G)。初始注射後2個月,PBMC中棘蛋白特異性B細胞之百分比增加(
圖 14H),在棘蛋白特異性記憶B細胞中亦觀察到類似趨勢(
圖 14I)。初始注射後2個月觀察到B細胞類別轉換,其可看出IgM
+B細胞數量減少(
圖 14J)及IgG
+B細胞數量增加(
圖 14K)之總體趨勢。
Clinical results : Healthy volunteers from the Phase I study cohort who received 9x10 9 EDV-COVID-αGC showed strong neutralizing activity (>PRNT 90 equivalent). For comparison, the neutralization results also included the o variant of 5 volunteers who received at least 2 doses of Pfizer vaccine ( FIG. 14A ). Serum IFNγ ( FIG. 14B ) and IFNα ( FIG. 14C ) levels of these volunteers persisted. Total PBMC analysis showed an increase in CD4 + ( FIG. 14D ) and CD8 + ( FIG. 14E ) circulating memory B cells in vaccinated volunteers from
儘管已說明並闡述某些實施例,但應理解,可根據此項技術中之普通技術對其進行改變及修改,而不背離隨附申請專利範圍中所定義之在更寬態樣中之技術。While certain embodiments have been illustrated and described, it should be understood that changes and modifications can be made thereto according to ordinary skill in the art without departing from the technology in broader aspects as defined in the appended claims .
本文中說明性地闡述之實施例可在不存在本文未特定揭示之任一或多種要素、一或多種限制之情況下適當實踐。因此,例如術語「包含」、「包括」、「含有」等應應廣泛且不受限制地解讀。另外,本文所採用之術語及表達用作說明性而非限制性之術語,且在該等術語及表達之使用中並不意欲排除所顯示及闡述之特徵之任何等效形式或其部分,但應認識到,在所主張技術之範圍內可進行各種修改。另外,片語「基本上由…組成」將理解為包括彼等特定列出之要素及彼等對所主張技術之基本及新穎特徵沒有實質性影響之額外要素。片語「由…組成」排除任何未指定之要素。The embodiments illustratively set forth herein may be suitably practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms "comprising", "including", "containing", etc. should be read broadly and without limitation. Furthermore, the terms and expressions employed herein are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions to exclude any equivalents or parts thereof of the features shown and described, but It should be recognized that various modifications may be made within the scope of the claimed technology. Additionally, the phrase "consisting essentially of" will be understood to include both those specifically listed elements as well as additional elements which do not materially affect the basic and novel characteristics of the claimed technology. The phrase "consisting of" excludes any unspecified element.
本揭示內容不受限於本申請案中所闡述之特定實施例。可做出許多修改及變化而不背離其精神及範圍,此對於熟習此項技術者而言將係顯而易見的。除本文所列舉之彼等以外,在本揭示內容範圍內之功能上等效之方法及組合物對於熟習此項技術者自前述描述將係顯而易見的。該等修改及變化意欲在隨附申請專利範圍之範圍內。本揭示內容應僅受隨附申請專利範圍之條款以及該等申請專利範圍所享有之等效內容之全部範圍的限制。應理解,此揭示內容並不限於特定方法、試劑、化合物或組合物,該等當然可變化。亦應理解,本文中所使用之術語僅用於闡述特定實施例之目的,且並不意欲進行限制。The disclosure is not limited to the particular embodiments set forth in this application. Many modifications and changes can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and compositions within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to be within the scope of the appended patent applications. The disclosure should be limited only by the terms of the accompanying claims and the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds or compositions, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
此外,當按照Markush群組闡述本發明之特徵或態樣時,彼等熟習此項技術者將認識到,本揭示內容亦由此根據Markush群組之任一個別成員或成員之子群組來描述。Furthermore, when features or aspects of the invention are described in terms of the Markush group, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group .
如熟習此項技術者將瞭解,出於任何及所有目的,特別地在提供書面描述方面,本文所揭示之所有範圍亦涵蓋任何和所有可能之子範圍及其子範圍之組合,包括端點。任何所列示之範圍均可容易地識別為充分描述並使相同範圍能夠分成至少相等的一半、三分之一、四分之一、五分之一、十分之一等。作為非限制性實例,本文所討論之每一範圍均可容易地分為下三分之一、中三分之一及上三分之一等。熟習此項技術者亦應瞭解,諸如「最高」、「至少」、「大於」、「小於」及諸如此類之所有語言均包括所列舉數字且係指範圍,該等範圍可隨後分成如上所討論之子範圍。最後,如熟習此項技術者應瞭解,範圍包括每一個別成員。As will be understood by those skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof, including endpoints. Any listed range is readily identifiable as adequately describing and enabling the same range to be divided into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be easily divided into a lower third, a middle third, an upper third, etc. Those skilled in the art will also appreciate that all language such as "highest," "at least," "greater than," "less than," and the like include the recited numbers and refer to ranges that may then be divided into the subcategories discussed above. scope. Finally, as those skilled in the art will understand, the scope includes each individual member.
本說明書中所提及之所有出版物、專利申請案、已發佈專利及其他文件均以引用的方式併入本文中,如同每一個別出版物、專利申請案、已發佈專利或其他文件均特定且個別地指示其整體以引用的方式併入本文中一般。文本中所包含以引用的方式併入之定義在與本揭示內容中之定義相矛盾之程度上被排除在外。All publications, patent applications, issued patents, and other documents mentioned in this specification are hereby incorporated by reference as if each individual publication, patent application, issued patent, or other document were specifically and are individually indicated to be incorporated herein by reference in their entirety. Definitions incorporated by reference contained in the text are excluded to the extent they contradict definitions in this disclosure.
其他實施例闡釋於以下申請專利範圍中。 參考文獻 Other embodiments are set forth in the following claims. references
Agnihothram S、Gopal R、Yount BL等人,Evaluation of serologic and antigenic relationships between Middle Eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J Infect Dis.2014;209(7):995-1006. Available from: http://www. ncbi.nlm.nih.gov/pmc/articles/PMC3952667/ Agnihothram S, Gopal R, Yount BL, et al. Evaluation of serologic and antigenic relationships between Middle Eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J Infect Dis. 2014(2909):2909 -1006. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952667/
Ansel等人,(1999). In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med
190, 1123-1134. 10.1084/jem.190.8.1123。
Ansel et al., (1999). In vivo-activated CD4 T cells upregulate
Avery等人,(2008). IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. Journal of immunology (Baltimore, Md. : 1950) 181, 1767-1779. 10.4049/jimmunol.181.3.1767。 Avery et al., (2008). IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. Journal of immunology (Baltimore, Md. : 1950) 181 , 1767-1779. 10.4049 /jimmunol.181.3.1767.
Avery等人,(2010). B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med 207, 155-171. 10.1084/jem.20091706。 Avery et al., (2010). B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med 207 , 155-171. 10.1084/jem.20091706.
Bauquet等人,(2009). The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nature immunology
10, 167-175. 10.1038/ni.1690。
Bauquet et al., (2009). The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of focal T helper cells and TH-17 cells.
Beier等人,(2000). Induction, binding specificity and function of human ICOS. European journal of immunology
30, 3707-3717. 10.1002/1521-4141(200012)30:12<3707::aid-immu3707>3.0.co;2-q。
Beier et al., (2000). Induction, binding specificity and function of human ICOS. European journal of
Bergamaschi等人,(2021). Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell reports 36, 109504. 10.1016/j.celrep.2021.109504。 Bergamaschi et al., (2021). Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell reports 36 , 109504. 10.1016/j .celrep.2021.109504.
Bolles M、Deming D、Long K等人,A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol.2011;85(23):12201-12215. Available from: http://jvi.asm.org/content/85/23/12201.abstract Bolles M, Deming D, Long K et al., A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol. 2011;85(23):122101 Available from: http://jvi.asm.org/content/85/23/12201.abstract
Bonhagen等人,(2003). ICOS+ Th cells produce distinct cytokines in different mucosal immune responses. European journal of immunology 33, 392-401. 10.1002/immu.200310013。 Bonhagen et al., (2003). ICOS+ Th cells produce distinct cytokines in different mucosal immune responses. European journal of immunology 33 , 392-401. 10.1002/immun.200310013.
Breitfeld等人,(2000). Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med
192, 1545-1552. 10.1084/jem.192.11.1545。
Breitfeld et al., (2000). Follicular B helper T cells express
Bricard, G.及Porcelli, S.A. (2007). Antigen presentation by CD1 molecules and the generation of lipid-specific T cell immunity. Cellular and molecular life sciences : CMLS 64, 1824-1840. 10.1007/s00018-007-7007-0。 Bricard, G. and Porcelli, SA (2007). Antigen presentation by CD1 molecules and the generation of lipid-specific T cell immunity. Cellular and molecular life sciences : CMLS 64 , 1824-1840. 10.1007/s00018-007-7007-0 .
Brouwer等人,(2020). Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science (New York, N.Y.) 369, 643-650. 10.1126/science.abc5902。 Brouwer et al., (2020). Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science (New York, NY) 369 , 643-650. 10.1126/science.abc5902.
Cele等人,(2021). Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 593, 142-146. 10.1038/s41586-021-03471-w。 Cele et al., (2021). Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 593 , 142-146. 10.1038/s41586-021-03471-w.
Chan等人,Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 9, 221-236 (2020)。 Chan et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect . 9, 221-236 (2020).
Crotty, S. (2014). T follicular helper cell differentiation, function, and roles in disease. Immunity
41, 529-542. 10.1016/j.immuni.2014.10.004。
Crotty, S. (2014). T focal helper cell differentiation, function, and roles in disease.
Drosten C、Günther S、Preiser W等人,Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967-1976。 Drosten C, Günther S, Preiser W et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med . 2003;348(20):1967-1976.
Duan, Y. N.及Qin, J. Pre- and posttreatment chest CT findings: 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020。Duan, Y. N. and Qin, J. Pre- and posttreatment chest CT findings: 2019 novel coronavirus (2019-nCoV) pneumonia.
Eertwegh等人,(1993). In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. I. In vivo expression of CD40 ligand, cytokines, and antibody production delineates sites of cognate T-B cell interactions. The Journal of experimental medicine 178, 1555-1565. 10.1084/jem.178.5.1555。 Eertwegh et al., (1993). In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. I. In vivo expression of CD40 ligand, cytokines, and antibody production delineates sites of cognate TB cell interactions. The Journal of ed iceriment 178 , 1555-1565. 10.1084/jem.178.5.1555.
Ewer等人,(2021). T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nature Medicine
27, 270-278. 10.1038/s41591-020-01194-5。
Ewer et al., (2021). T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a
Garside等人,(1998). Visualization of specific B and T lymphocyte interactions in the lymph node. Science (New York, N.Y.) 281, 96-99. 10.1126/science.281.5373.96。 Garside et al., (1998). Visualization of specific B and T lymphocyte interactions in the lymph node. Science (New York, NY) 281 , 96-99. 10.1126/science.281.5373.96.
Grohskopf, L. A.等人,Prevention and control of seasonal influenza with vaccines: Recommendations of the Advisory Committee on Immunization Practices-United States, 2018-19 influenza season. MMWR. Recomm. Rep. 67, 1-20 (2018)。Grohskopf, L. A. et al., Prevention and control of seasonal influenza with vaccines: Recommendations of the Advisory Committee on Immunization Practices-United States, 2018-19 influenza season. MMWR. Recomm. Rep. 67, 1-20 (2018).
Guan, W.等人,Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv. (2020)。Guan, W. et al., Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv. (2020).
Gunn等人,(1998). A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391, 799-803. 10.1038/35876。 Gunn et al., (1998). A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391 , 799-803. 10.1038/35876.
Haidar等人,(2021). Immunogenicity of COVID-19 Vaccination in Immunocompromised Patients: An Observational, Prospective Cohort Study Interim Analysis. medRxiv, 2021.2006.2028.21259576. 10.1101/2021.06.28.21259576。Haidar et al., (2021). Immunogenicity of COVID-19 Vaccination in Immunocompromised Patients: An Observational, Prospective Cohort Study Interim Analysis. medRxiv, 2021.2006.2028.21259576. 10.1101/2021.06.25.21259
Hermans等人,(2003). NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. Journal of immunology (Baltimore, Md. : 1950) 171, 5140-5147. 10.4049/jimmunol.171.10.5140。 Hermans et al., (2003). NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. Journal of immunology (Baltimore, Md. : 1950) 171 , 5140-5147. /jimmun.49 171.10.5140.
Hu等人,(2011). Noncanonical NF-kappaB regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development. Proc Natl Acad Sci U S A 108, 12827-12832. 10.1073/pnas.1105774108。 Hu et al., (2011). Noncanonical NF-kappaB regulates inducible costimulator (ICOS) ligand expression and T focal helper cell development. Proc Natl Acad Sci USA 108 , 12827-12832. 10.1073/pnas.1105774108.
Huang等人,Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395, 497-506 (2020)。 Huang et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet . 395, 497-506 (2020).
Jacob等人,(1991). Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389-392. 10.1038/354389a0。 Jacob et al., (1991). Intraclonal generation of antibody mutants in germinal centres. Nature 354 , 389-392. 10.1038/354389a0.
Jiang, S.、He, Y.及Liu, S. SARS vaccine development. Emerg. Infect. Dis. 11, 1016-1020 (2005)。Jiang, S., He, Y., and Liu, S. SARS vaccine development. Emerg. Infect. Dis. 11, 1016-1020 (2005).
Jung等人,(2021). Analytical and clinical performance of cPass neutralizing antibodies assay. Clinical biochemistry. 10.1016/j.clinbiochem.2021.09.008。Jung et al., (2021). Analytical and clinical performance of cPass neutralizing antibodies assay. Clinical biochemistry. 10.1016/j.clinbiochem.2021.09.008.
Kao等人,(2015). A Significant Metabolic and Radiological Response after a Novel Targeted MicroRNA-based Treatment Approach in Malignant Pleural Mesothelioma. Am J Respir Crit Care Med 191, 1467-1469. 10.1164/rccm.201503-0461LE。 Kao et al., (2015). A Significant Metabolic and Radiological Response after a Novel Targeted MicroRNA-based Treatment Approach in Malignant Pleural Mesothelioma. Am J Respir Crit Care Med 191 , 1467-1469. 10.1164/rccm.201503-0461LE.
Kim等人,(2001). Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med 193, 1373-1381. 10.1084/jem.193.12.1373。 Kim et al., (2001). Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med 193 , 1373-1381. 10.1084/jem.193.12.1373.
Ksiazek TG、Erdman D、Goldsmith CS等人,A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953-1966。 Ksiazek TG, Erdman D, Goldsmith CS et al., A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med . 2003;348(20):1953-1966.
Lan等人,(2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220. 10.1038/s41586-020-2180-5。 Lan et al., (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581 , 215-220. 10.1038/s41586-020-2180-5.
Lew TWK、Kwek T-K、Tai D等人,Acute respiratory distress syndrome in critically Ill patients with severe acute respiratory syndrome. JAMA. 2003;290(3):374-380. Available from: http://jama.ama-assn.org/cgi/content/abstract/290/3/374。 Lew TWK, Kwek TK, Tai D et al., Acute respiratory distress syndrome in critically Ill patients with severe acute respiratory syndrome. JAMA . 2003;290(3):374-380. Available from: http://jama.ama-assn .org/cgi/content/abstract/290/3/374.
Liang等人,(2020). Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol
21, 335-337. 10.1016/S1470-2045(20)30096-6。
Liang et al., (2020). Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China.
Löhning等人,(2003). Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J Exp Med
197, 181-193. 10.1084/jem.20020632。
Löhning et al., (2003). Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of
Ma, C.S.及Deenick, E.K. (2014). Human T follicular helper (Tfh) cells and disease. Immunology and cell biology 92, 64-71. 10.1038/icb.2013.55。 Ma, CS and Deenick, EK (2014). Human T focal helper (Tfh) cells and disease. Immunology and cell biology 92 , 64-71. 10.1038/icb.2013.55.
MacDiarmid等人,(2009). Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol 27, 643-651. 10.1038/nbt.1547。 MacDiarmid et al., (2009). Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol 27 , 643-651. 10.1038/nbt.1547.
MacDiarmid等人,(2007). Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell
11, 431-445. 10.1016/j.ccr.2007.03.012。
MacDiarmid et al., (2007). Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapy.
MacLennan, I.C. (1994). Germinal centers. Annual review of immunology
12, 117-139. 10.1146/annurev.iy.12.040194.001001。
MacLennan, IC (1994). Germinal centers. Annual review of
Menachery VD、Yount BL Jr、Debbink K等人,A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015;21:1508-1513。 Menachery VD, Yount BL Jr, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med . 2015;21:1508-1513.
Pegu等人,(2021). Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science (New York, N.Y.) 373, 1372-1377. 10.1126/science.abj4176。 Pegu et al., (2021). Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science (New York, NY) 373 , 1372-1377. 10.1126/science.abj4176.
Pène等人,(2004). Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. Journal of immunology (Baltimore, Md. : 1950) 172, 5154-5157. 10.4049/jimmunol.172.9.5154。 Pène et al., (2004). Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. Journal of immunology (Baltimore, Md. : 1950) 172 , 5154-5157. 10.4049/jimmunol .172.9.5154.
Regla-Nava, J. A.等人,Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. J. Virol. 89, 3870-3887 (2015)。 Regla-Nava, JA et al., Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. J. Virol . 89, 3870-3887 (2015).
Sagnella等人,(2020). Cyto-Immuno-Therapy for Cancer: A Pathway Elicited by Tumor-Targeted, Cytotoxic Drug-Packaged Bacterially Derived Nanocells. Cancer Cell 37, 354-370 e357. 10.1016/j.ccell.2020.02.001。 Sagnella et al., (2020). Cyto-Immuno-Therapy for Cancer: A Pathway Elicited by Tumor-Targeted, Cytotoxic Drug-Packaged Bacterially Derived Nanocells. Cancer Cell 37 , 354-370 e357. 10.1016/j.ccell.2020.02.001 .
Sattler等人,(2020). SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest 130, 6477-6489. 10.1172/jci140965。 Sattler et al., (2020). SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest 130 , 6477-6489. 10.1172/jci140965.
Schoggins JW、Wilson SJ、Panis M等人,A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481-485。 Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature . 2011;472(7344):481-485.
Sartorius等人,(2018). Vectorized Delivery of Alpha-GalactosylCeramide and Tumor Antigen on Filamentous Bacteriophage fd Induces Protective Immunity by Enhancing Tumor-Specific T Cell Response. Front Immunol
9, 1496. 10.3389/fimmu.2018.01496。
Sartorius et al., (2018). Vectorized Delivery of Alpha-GalactosylCeramide and Tumor Antigen on Filamentous Bacteriophage fd Induces Protective Immunity by Enhancing Tumor-Specific T Cell Response.
Schaerli等人,(2000). CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med
192, 1553-1562. 10.1084/jem.192.11.1553。
Schaerli et al., (2000).
Shang W、Yang Y、Rao Y及Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral Vaccines npj Vaccines (2020) 5:18。Shang W, Yang Y, Rao Y, and Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral Vaccines npj Vaccines (2020) 5:18.
Sheahan T、Whitmore A、Long K等人,Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus. J Virol. 2011;85(1):217-230. Available from: http://jvi. asm.org/content/85/1/217.abstract。 Sheahan T, Whitmore A, Long K et al., Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus. J Virol . 2011;85(1):217-230. Available from: http ://jvi.asm.org/content/85/1/217.abstract.
Singh等人,(2014). Direct incorporation of the NKT-cell activator alpha-galactosylceramide into a recombinant Listeria monocytogenes improves breast cancer vaccine efficacy. Br J Cancer 111, 1945-1954. 10.1038/bjc.2014.486。 Singh et al., (2014). Direct incorporation of the NKT-cell activator alpha-galactosylceramide into a recombinant Listeria monocytogenes improves breast cancer vaccine efficacy. Br J Cancer 111 , 1945-1954. 10.1038/bjc.2014.486.
Song等人,(2018). Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS pathogens
14, e1007236. 10.1371/journal.ppat.1007236。
Song et al., (2018). Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2.
Su等人, Infection and Immunity, 60(8):3345-3359 (1992)。 Su et al., Infection and Immunity , 60 (8):3345-3359 (1992).
Tan等人,(2020). A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol 38, 1073-1078. 10.1038/s41587-020-0631-z。 Tan et al., (2020). A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol 38 , 1073-1078. 10.1038/s41587-020-0631-z .
Toellner等人,(1996). Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation. Journal of Experimental Medicine 183, 2303-2312. 10.1084/jem.183.5.2303。 Toellner et al., (1996). Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation. Journal of Experimental Medicine 183 , 2303-2312. 10.1084/jem.183.5.2303.
Uriu等人,(2021). Ineffective neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine sera. bioRxiv, 2021.2009.2006.459005. 10.1101/2021.09.06.459005。Uriu et al., (2021). Ineffective neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine sera. bioRxiv, 2021.2009.2006.459005. 10.1101/2021.09.06.459005.
van Zandwijk等人,(2017). Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol
18, 1386-1396. 10.1016/S1470-2045(17)30621-6。
van Zandwijk et al., (2017). Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man,
Vinuesa等人,(2016). Follicular Helper T Cells. Annual review of immunology 34, 335-368. 10.1146/annurev-immunol-041015-055605。 Vinuesa et al., (2016). Follicular Helper T Cells. Annual review of immunology 34 , 335-368. 10.1146/annurev-immunol-041015-055605.
von Gerichten等人,(2017). Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res 58, 1247-1258. 10.1194/jlr.D076190。 von Gerichten et al., (2017). Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res 58 , 1247-1258. 10.1194/jlr.D076190.
Whittle等人,(2015). First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma. J Clin Neurosci
22, 1889-1894. 10.1016/j.jocn.2015.06.005。
Whittle et al., (2015). First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma.
Wu, F.等人,A new coronavirus associated with human respiratory disease in China. Nature. (2020)。Wu, F. et al., A new coronavirus associated with human respiratory disease in China. Nature. (2020).
Zaki AM、van Boheemen S、Bestebroer TM等人,Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814-1820。 Zaki AM, van Boheemen S, Bestebroer TM et al., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med . 2012;367(19):1814-1820.
圖 1 A繪示掃描電子顯微鏡影像,其顯示EnGeneIC Dream Vector (EDV™)奈米細胞(即,完整、細菌源性袖珍型細胞)自安全的細菌鼠傷寒沙氏桿菌( Salmonella typhimurium)菌株之產生,且 圖 1 B繪示透射式電子顯微照片影像,其顯示空的EDV細菌奈米細胞之結構,其中直徑為約400 nm。 Figure 1A depicts a scanning electron microscope image showing the generation of EnGeneIC Dream Vector (EDV™) nanocells ( i.e., intact, pocket-sized cells of bacterial origin) from a safe strain of the bacterium Salmonella typhimurium , and FIG. 1 B shows a transmission electron micrograph image showing the structure of an empty EDV bacterial nanocell with a diameter of about 400 nm.
圖 2 A係包含細菌表現質體(「EDV」)(例如圖1B中所示)之EDV-COVID-19疫苗組合物之圖形繪示,其中EDV首先在EDV細胞質中表現SARS-CoV-2之棘蛋白並另外攜帶或加載有CD1d限制型iNKT細胞抗原醣脂α-半乳糖神經醯胺(α-GalCer) IFN-γ作為佐劑或刺激劑。由SARS-CoV-2編碼之經表現棘蛋白係由圖2A上之星形指定。 圖 2 B顯示含有凍乾EDV-COVID-19疫苗組合物之實例性小瓶。 Figure 2A is a graphical representation of an EDV-COVID-19 vaccine composition comprising a bacterial expression plasmid ("EDV") , such as that shown in Figure 1B, where EDV first expresses the expression of SARS-CoV-2 in the EDV cytoplasm Spinin and additionally carried or loaded with CD1d-restricted iNKT cell antigen glycolipid α-galactosylceramide (α-GalCer) IFN-γ as an adjuvant or stimulator. The expressed spinins encoded by SARS-CoV-2 are designated by the stars on Figure 2A. Figure 2B shows an exemplary vial containing a lyophilized EDV- COVID -19 vaccine composition.
圖 3係包含細菌表現質體(「EDV」)(例如圖1B中所示)之EDV-COVID-19疫苗組合物之圖形繪示,其中EDV含有(i) 質體,其表現來自原始SARS-CoV-2及多個基因變異株(例如δ變異株及巴西變異株)之經選殖棘蛋白,(ii)基因表現啟動子,其在EDV細胞質中將所有蛋白質表現為單一mRNA及單獨蛋白質,(iii) 多個棘蛋白,其包括由SARS-CoV-2產生之棘蛋白、巴西變異株棘蛋白及δ變異株棘蛋白,及(iv) 作為佐劑或刺激劑之CD1d限制型iNKT細胞抗原醣脂α-半乳糖神經醯胺(α-GalCer) IFN-γ。所編碼之經表現棘蛋白係由圖3上之星形指定。 Figure 3 is a graphical representation of an EDV-COVID-19 vaccine composition comprising a bacterial expression plasmid ("EDV") (such as that shown in Figure 1B), wherein the EDV contains (i) a plasmid expressed from the original SARS- Selected spike proteins of CoV-2 and multiple genetic variants (e.g., delta variant and Brazilian variant), (ii) a gene expression promoter that expresses all proteins as a single mRNA and individual proteins in the EDV cytoplasm, (iii) Multiple spinins including spinin produced by SARS-CoV-2, Brazilian variant spinin and delta variant spinin, and (iv) CD1d-restricted iNKT cell antigens as adjuvants or stimulators Glycolipid α-galactosylceramide (α-GalCer) IFN-γ. The encoded expressed spinins are designated by the stars on FIG. 3 .
圖 4 A - C顯示將包含α-半乳糖神經醯胺(α-GalCer)之細菌袖珍型細胞經39天時期投與給三名胰臟癌患者(CB03、CB17及CB41)或經46天時期投與給4名胰臟癌患者(CB11、CB14、CB18及CB41)之結果。血清IFN-α (pg/mL) ( 圖 4 A)及血清IFN-γ ( 圖 4 B)之量測值顯示於 圖 4 A及 4 B中所繪示圖表之Y軸上。數據顯示,EDV-αGC在胰臟癌患者中引發Th1反應及增加之淋巴球含量。 圖 4 A顯示在2個劑量之EDV-αGC後來自所有3名患者之血清IFNα含量持續增加,且 圖 4B顯示在2個劑量(相隔一週)之EDV-αGC後所有3名患者之血清IFNγ含量持續增加。IFN含量係經由ELISA自整個治療週期獲取之患者血清試樣量測。 圖 4C顯示在2個劑量(相隔一週)之EDV-αGC後經46天時期量測四名胰臟癌患者(CB11、CB14、CB18及CB41)之淋巴球計數(x10 9/L)之結果。 圖 4 C中繪示之結果顯示在四名胰臟癌患者中淋巴球計數升高至正常範圍(1.0-4.0)內。淋巴球含量係藉由病理學服務在整個治療週期自患者血液試樣量測。 Figure 4 A - C shows the administration of bacterial pocket cells containing α-galactosylceramide (α-GalCer) to three pancreatic cancer patients (CB03, CB17 and CB41) over a period of 39 days or over a period of 46 days Results of administration to 4 pancreatic cancer patients (CB11, CB14, CB18 and CB41). Measurements of serum IFN-α (pg/mL) ( FIG . 4A ) and serum IFN- γ ( FIG. 4B ) are shown on the Y-axis of the graphs plotted in FIGS . 4A and 4B . The data showed that EDV-αGC elicited a Th1 response and increased lymphocyte content in pancreatic cancer patients. Figure 4A shows that serum IFNα levels from all 3 patients continued to increase after 2 doses of EDV-αGC, and Figure 4B shows serum IFNγ levels from all 3 patients after 2 doses (one week apart) of EDV - αGC Continued to increase. IFN levels were measured by ELISA from patient serum samples obtained throughout the treatment period. Figure 4C shows the results of measuring lymphocyte counts ( x109 /L) in four pancreatic cancer patients (CB11, CB14, CB18 and CB41) over a 46-day period after 2 doses (one week apart) of EDV-αGC. The results depicted in Figure 4C show that lymphocyte counts were elevated within the normal range (1.0-4.0) in four pancreatic cancer patients. Lymphocyte levels were measured from patient blood samples throughout the treatment period by the pathology service.
圖 5 A - H顯示EDV-SARS-CoV-2疫苗之構築體設計(
圖 5 A)。表現盒係藉由將SARS-Cov-2 (Covid-19)棘蛋白(Genebank MN908947.3)之編碼核苷酸序列置於經修飾β-內醯胺酶啟動子之3'-末端生成,該啟動子先前已用於在鼠傷寒沙氏桿菌菌株中表現(Su等人,
Infection and Immunity,
60(8):3345-3359 (1992))。然後將表現盒插入PUC57-Kan骨架質體之M13多選殖位點之Kpn 5’及Sal I 3’位點之間,以產生P-Blac-Cov。
圖 5B顯示小鼠實驗之結果,其中評估四組小鼠(第1組 = 未經治療;第2組 = 沒有酬載之EDV;第3組 = 投與游離αGC;及第4組 = 投與包含SARS-CoV-2棘蛋白及αGC之組合之細菌袖珍型細胞疫苗(圖2A中所繪示))。
圖 5 B中所示使用FACS分析之數據展示,EDV
TM-COVID-α-GC能夠將α-GC有效遞送至鼠類骨髓源性JAWSII細胞並藉助CD1d-配體以與游離α-GC相似之效率呈現。
圖 5 D -5 H顯示將2 × 10
9EDV-COVID-α-GC肌內(IM)注射至五組BALB/c小鼠中後之結果,其中IFNα濃度(pg/mL) (
圖 5 D)、IFNγ濃度(pg/mL) (
圖 5 E)、IL12p40濃度(pg/mL) (
圖 5 F)、IL6濃度(pg/mL) (
圖 5 G)及TNFα濃度(pg/mL) (
圖 5 H)顯示於圖之Y軸上。結果顯示,投與在注射後8h內導致強I型干擾素反應。五組小鼠(
n= 6隻/組;ELISA試樣一式三份運行)為:第1組 = 鹽水;第2組 = EDV (沒有酬載之細菌袖珍型細胞);第3組 = EDV
control(攜帶沒有表現棘蛋白之插入物之質體(即,僅質體骨架)之EDV);第4組 = EDV
Covid(包含質體及經編碼SARS-CoV-2棘蛋白之細菌袖珍型細胞)及第5組 = EDV
Covid + α GC(
圖 2 A中所示之構築體)。
Figures 5A - H show the construct design of the EDV- SARS -CoV - 2 vaccine ( Figure 5A ). The expression cassette is generated by placing the coding nucleotide sequence of the SARS-Cov-2 (Covid-19) spike protein (Genebank MN908947.3) at the 3'-end of the modified β-lactamase promoter, which The promoter has previously been used for expression in S. typhimurium strains (Su et al., Infection and Immunity , 60 (8):3345-3359 (1992)). The expression cassette was then inserted between the Kpn 5' and Sal I 3' sites of the M13 multiple selection site of the PUC57-Kan backbone plastid to generate P-Blac-Cov. Figure 5B shows the results of a mouse experiment in which four groups of mice were evaluated (
圖 6 A -6 F顯示在I.M給藥EDV-COVID-aGC (2 × 10 9,第1天第一劑量;1 × 10 9,第21天第二劑量)後4週Balb/c小鼠( n= 8隻/組)中之反應。在初始劑量後28天(其中在第21天加強投與),在利用EDV-COVID-α-GC免疫之小鼠之血清中檢測到高位準之抗S蛋白IgM ( 圖 6 A)及IgG ( 圖 6 B)抗體效價。 圖 6 C顯示在初始注射後28天自小鼠骨髓中分離B細胞並與SARS-CoV-2S蛋白離體共培育後之結果。已發現與測試之所有其他組相比,自EDV-COVID-α-GC免疫小鼠分離之B細胞因應於S蛋白之存在產生顯著較高量之S蛋白特異性IgG。 圖 6D顯示中和抗體分析之結果,其展示100%之利用EDV-COVID-α-GC免疫之小鼠之血清導致SARS-CoV-2 RBD與hACE2受體之結合受到抑制。使用用於在各種物種中檢測之cPASS TMSARS-CoV-2中和抗體分析(FDA批准;Tan等人, Nature Biotech, 2020)來評價RBD與hACE2受體結合之抑制。 圖 6E顯示小鼠脾細胞中CD8+細胞毒性T細胞之FACS分析之結果,其展示利用EDV COVID-α-GC免疫之小鼠在初始注射後4週時(在第21天1次加強)具有最高量之抗原特異性記憶CD137+CD69+細胞毒性T細胞,例如,與所有其他治療組相比,在EDV Covid-αGC治療之小鼠中細胞毒性T細胞群體內有顯著高數量之CD137+ CD69+群體。CD137+信號傳導在CD8+ T細胞抗病毒反應中係必需的。 Figure 6 A - 6 F shows that Balb /c mice ( n = 8 responses in each group). 28 days after the initial dose (with booster administration on day 21), high levels of anti-S protein IgM ( FIG. 6 A ) and IgG ( Figure 6 B ) Antibody titers. Figure 6C shows the results after B cells were isolated from mouse bone marrow and co - cultured with SARS-CoV-2 S protein ex vivo 28 days after the initial injection. It was found that B cells isolated from EDV-COVID-α-GC immunized mice produced significantly higher amounts of S protein-specific IgG in response to the presence of S protein compared to all other groups tested. Figure 6D shows the results of neutralizing antibody assays showing that 100% of the sera from mice immunized with EDV-COVID-α-GC resulted in inhibition of the binding of SARS-CoV-2 RBD to the hACE2 receptor. Inhibition of RBD binding to the hACE2 receptor was assessed using the cPASS ™ SARS-CoV-2 Neutralizing Antibody Assay (FDA approved; Tan et al., Nature Biotech , 2020) for detection in various species. Figure 6E shows the results of FACS analysis of CD8+ cytotoxic T cells in mouse splenocytes, which show that mice immunized with EDV COVID-α-GC had the highest expression at 4 weeks after the initial injection (1 boost on day 21). Quantities of antigen-specific memory CD137+CD69+ cytotoxic T cells, eg, in EDV Covid-αGC treated mice there was a significantly higher number of CD137+CD69+ populations within the cytotoxic T cell population compared to all other treatment groups. CD137+ signaling is required for CD8+ T cell antiviral responses.
圖 6 F顯示離體AIMS分析之結果,其顯示棘抗原特異性CD8+T細胞反應。在EDV-Covid及EDV-Covid-aGC組中,CD69+ CD8+ T細胞數量在利用Covid棘蛋白刺激後增加,但在任何其他組中均無增加。PHA用作陽性對照。該等結果指示,EDV內所含之質體及蛋白質二者均產生S蛋白特異性反應。 Figure 6F shows the results of ex vivo AIMS analysis showing spine antigen - specific CD8+ T cell responses. The number of CD69+ CD8+ T cells increased after stimulation with Covid-spike protein in the EDV-Covid and EDV-Covid-aGC groups, but not in any other group. PHA was used as a positive control. These results indicate that both the plastid and the protein contained within EDV give rise to S protein-specific responses.
圖 7 A -7 D藉由分析來自免疫小鼠之血清IgG針對病毒之UK (B.1.1.7)及南非(B.1.351)變異株之RBD及S1次單元之特異性及交叉反應性顯示EDV-COVID-α-GC所產生免疫性之強健性。結果顯示,儘管在一些EDV-COVID-α-GC免疫小鼠中產生UK變異株RBD特異性IgG ( 圖 7 A),但觀察到更高之S1特異性IgG抗體效價( 圖 7 B),此指示S蛋白特異性抗體之結合主要在RBD之外。SA變異株觀察到類似趨勢( 圖 7 C 及 D)。 Figure 7A - 7D is shown by analyzing the specificity and cross - reactivity of RBD and S1 subunits of UK (B.1.1.7) and South Africa (B.1.351) mutant strains of the virus from serum IgG from immunized mice Robustness of immunity generated by EDV-COVID-α-GC. The results showed that although UK variant strain RBD-specific IgG was produced in some EDV-COVID-α-GC immunized mice ( Figure 7A ), higher S1-specific IgG antibody titers were observed ( Figure 7B ), This indicates that the binding of the S protein-specific antibody is mainly outside the RBD. A similar trend was observed for the SA variant strains ( Fig. 7 C and D ).
圖8顯示SARS-CoV-2病毒之基因體,其鑑別轉錄位點及蛋白質編碼結構域。www.viralzone.espasy.ort/resources/nCoV_genome_ bis.png。Figure 8 shows the genome of the SARS-CoV-2 virus, identifying transcription sites and protein coding domains. www.viralzone.espasy.ort/resources/nCoV_genome_bis.png.
圖 9繪示SARS-CoV-2病毒及已知變異株之代表性種系發生樹。全基因體SARS-CoV-2序列係於2021年1月19日自GISAID (https://www.gisaid .org/)下載,使用MAFFT: https://mafft.cbrc.jp/alignment/software/對齊並使用BioEdit v7.2.5手動編輯。種系發生樹構築係使用FastTree v2.1.11搭配Shimodaira-Hasegawa類局部分支支持實施,並使用FigTree v1.4.4展示。摘選自Toovey等人, J . Infect ., 82(5):e23-324 (2021年2月3日)。 Figure 9 shows a representative phylogenetic tree of SARS-CoV-2 virus and known variants. Whole-genome SARS-CoV-2 sequence was downloaded from GISAID (https://www.gisaid .org/) on January 19, 2021, using MAFFT: https://mafft.cbrc.jp/alignment/software/ Aligned and manually edited using BioEdit v7.2.5. The phylogenetic tree construction system was implemented using FastTree v2.1.11 with Shimodaira-Hasegawa class local clade support and displayed using FigTree v1.4.4. Excerpted from Toovey et al., J. Infect . , 82 (5):e23-324 (3 February 2021) .
圖 10 A - D顯示投與給五組不同小鼠後IgG效價之結果(
n= 6隻/組;ELISA試樣一式三份運行):第1組= 鹽水;第2組= EDV (沒有酬載之細菌袖珍型細胞);第3組= EDV
control(攜帶沒有表現棘蛋白之插入物之質體(即,僅質體骨架)之EDV);第4組= EDV
Covid(包含質體及經編碼SARS-CoV-2棘蛋白之細菌袖珍型細胞)及第5組= EDV
Covid + α GC(
圖 2 A中所示之構築體)。該等小鼠給予3 × 10
9EDV。
圖 10 A - D中所示詳述分次劑量IM後在第28天S1次單元特異性IgG效價之結果展示,自利用EDV-COVID-GC治療之小鼠獲得之血清IgG效價與所有四種突變株病毒棘蛋白強烈結合:(1) SARS-CoV-2變異株α (B.1.1.7.UK) (
圖 10 A);(2) SARS-CoV-2變異株β (B.1.351. SA) (
圖 10 B);(3) SARS-CoV-2變異株δ (B.1.617.2印度);及(4) SARS-CoV-2變異株γ (P.1巴西)。
Figure 10 A - D shows the results of IgG titers after administration to five different groups of mice ( n =6/group; ELISA samples were run in triplicate):
圖 11 A - K繪示SARS-CoV-2 S-蛋白構築體設計、抗原加工及呈現至DC細胞以及引發Th1及Th2反應之能力。 圖 11 A顯示EDV-COVID-αGC之影像,其繪示LPS、膜及奈米細胞內容物,包括plac-CoV-2質體、S-蛋白及αGC。 圖 11 B顯示構築體:SARS-CoV-2棘蛋白核苷酸序列(Genbank MN908947.3),其位於經修飾組成型基因表現β-內醯胺酶啟動子之3'-末端並插入PUC57-Kan骨架質體之M13多選殖位點之KpnI 5'與SalI 3'位點之間,以產生plac-CoV2。 圖 11 E顯示JAWSII細胞利用抗CD1d:αGC及抗棘Ab之共染色,其展示αGC及S-蛋白藉由EDV之遞送,其中EDV-COVID-αGC將S-蛋白及αGC二者遞送於相同細胞表面上。 圖 11D-F :I.M.注射2及3 (x 10 9) EDV-COVID-αGC於BALB/c小鼠中在第1劑量後8 h導致增加之IFNα、IFNγ、IL-12-p40含量: 圖 11G :第1劑量8 h後在2 × 10 9及3 × 10 9EDV-CoV2-αGC顆粒劑量中之IL-2含量。 圖 11H及 11I:第1劑量8 h後在2及3 (x 10 9) EDV-CoV2-αGC顆粒劑量中之TNFα及IL-6含量。 圖 11 J :第28天時所量測之3 × 10 9劑量含量之含量IL-21。 圖 11 K :第1劑量8 h後3 × 10 9EDV-CoV2-αGC顆粒劑量中之IL-10含量。 Figure 11 A - K depicts SARS-CoV-2 S-protein construct design, antigen processing and presentation to DC cells and ability to elicit Th1 and Th2 responses. Figure 11 A shows an image of EDV-COVID-αGC depicting LPS, membrane and nanocellular contents including plac-CoV-2 plastids, S-protein and αGC. Figure 11 B shows the construct: SARS-CoV-2 spike protein nucleotide sequence (Genbank MN908947.3), which is located at the 3'-end of the modified constitutively expressed β-lactamase promoter and inserted into the PUC57- Between the KpnI 5' and SalI 3' sites of the M13 multi-selection site of the Kan backbone plastid to generate plac-CoV2. Figure 11E shows co-staining of JAWSII cells with anti-CDld:αGC and anti-Spin Ab, which demonstrates delivery of αGC and S - protein by EDV, where EDV-COVID-αGC delivers both S-protein and αGC to the same cells On the surface. Figure 11D-F : IM injection of 2 and 3 (x 10 9 ) EDV-COVID-αGC in BALB/c mice resulted in increased IFNα, IFNγ, IL-12-p40 levels 8 h after the first dose: Figure 11G : IL-2 content in 2 × 10 9 and 3 × 10 9 EDV-CoV2-αGC particle doses 8 h after the first dose. Figures 11H and 11I : TNFα and IL-6 levels in 2 and 3 (x 109 ) EDV-CoV2-αGC particle doses 8 h after the 1st dose. FIG. 11 J : IL-21 content of 3×10 9 doses measured on day 28. Fig. 11 K : IL-10 content in 3 × 10 9 EDV-CoV2-αGC particle doses 8 h after the first dose.
圖 12 A - G . S - 特異性 IgM 及 IgG 效價。( 圖 12 A) 2 × 10 9及3 × 10 9劑量含量之第28天IgM S-蛋白特異性效價。( 圖 12B) 2 × 10 9及3 × 10 9劑量含量之第28天IgG S-蛋白特異性效價。( 圖 12C-F) 在第7天( 圖 12C, D)及在第21天( 圖 12E, F)之3 × 10 9劑量之IgM及IgG S-蛋白特異性效價。 ( 圖 12G)iNKT許可之樹突細胞活化之示意圖;(1) 將EDV-COVID-αGC i.m.注射於小鼠中,(2) 藉由樹突細胞(DC)吞噬、在溶酶體中降解,(3.1) αGC自EDV釋放,(3.2) CD1d結合至αGC,(3.3) CD1d:αGC複合物展示於DC細胞表面上,(4.1) 棘多肽亦自EDV釋放,(4.2) MHC II類結合至S-肽,(4.3) 該等展示於相同DC細胞表面上。(5) iNKT半不變T細胞受體結合至CD1d/αGC複合物,(6) 快速分泌IFNγ,此觸發DC中CD40配體之上調,從而藉助CD80、CD86、CCR7、MHC I類分子、促發炎細胞介素IL-12及趨化介素CCL17之上調誘導DC成熟/活化及增加之共刺激能力。(7) CD1d:αGC複合物結合至iNKT TCR觸發穿孔蛋白釋放,此殺死展示DC之CD1d/αGC複合物。(8) S-多肽自瀕死DC釋放,(9) 被經活化CD11c+ DC及(10)幼稚B細胞經由B細胞表面受體內吞,及(11, 12) 經由MHC II類展示於每一細胞表面上。(13) DC表面上之MHC II類/棘結合至CD4+ T濾泡輔助性(T FH)細胞上之CD4+ TCRβ,及(14.1) 該等信號誘導T FH細胞分化及趨化介素受體CXCR5之上調及CCR7之下調,此允許該等細胞遷移至T/B邊界。(14.2) 藉由BCR之S-多肽接合活化之B細胞使CCR7表現增加並遷移至T/B濾泡邊界尋找同源CD4+ T細胞。(15) 藉由TCRβ識別B細胞上之S-肽/MHC II複合物使TFH細胞(16)能夠表現CD40配體及ICOS,及(17) 分泌細胞介素IL-21、IFNγ、IL-4、IL-2及IL-10。T FH細胞強烈富集表現最高含量IL-21之細胞。(18) 此同源有助於刺激B細胞經歷強烈增殖,誘導Ig類別轉換,分化為能夠分泌所有主要Ig同型之漿樣細胞(plasma-like cell)。(19) 在GC內,B細胞經歷體細胞超突變並僅選擇具有高親和力抗體之B細胞。(20) 該等漿細胞分泌高親和力S特異性抗體,該等抗體可中和各種S-突變株。(21) 該等B細胞分化為長壽命記憶B細胞。貫穿此過程,IL-21誘導CD25之表現,此使得B細胞能夠因應於亦源自T FH細胞之IL-2,此促進IL-21之效應。類似地,IL-21誘導IL-6R在PC上之表現,此允許該等細胞藉由IL-6整合存活信號。(22)經由MHC II類展示S-肽之DC亦引發S特異性CD8+ T細胞反應。 Figure 12 A - G . S - Specific IgM and IgG titers. ( FIG. 12A ) Day 28 IgM S - protein specific titers for 2×10 9 and 3×10 9 dose levels. ( FIG. 12B ) Day 28 IgG S-protein specific titers for 2×10 9 and 3×10 9 dose levels. ( FIG. 12C-F ) IgM and IgG S-protein specific titers at 3×10 9 doses at day 7 ( FIG. 12C , D ) and at day 21 ( FIG. 12E , F ). ( FIG. 12G) Schematic diagram of dendritic cell activation permitted by iNKT; (1) EDV-COVID-αGC im injected into mice, (2) phagocytized by dendritic cells (DC), degraded in lysosomes, ( 3.1) αGC is released from EDV, (3.2) CD1d binds to αGC, (3.3) CD1d:αGC complex is displayed on the surface of DC cells, (4.1) spine polypeptide is also released from EDV, (4.2) MHC class II binds to S- Peptides, (4.3) These were displayed on the surface of the same DC cells. (5) binding of the iNKT semi-invariant T cell receptor to the CD1d/αGC complex, (6) rapid secretion of IFNγ, which triggers the upregulation of CD40 ligands in DCs, which, via CD80, CD86, CCR7, MHC class I molecules, Upregulation of the inflammatory cytokine IL-12 and the chemokine CCL17 induces DC maturation/activation and increased co-stimulatory capacity. (7) Binding of the CDld:αGC complex to the iNKT TCR triggers the release of perforin, which kills the CDld/αGC complex of displaying DCs. (8) S-polypeptide is released from dying DC, (9) is endocytosed by activated CD11c+ DC and (10) naive B cells via B cell surface receptors, and (11, 12) is displayed on the surface of each cell via MHC class II superior. (13) MHC class II/spine binding on the DC surface to CD4+ TCRβ on CD4+ T follicular helper ( TFH ) cells, and (14.1) these signals induce TFH cell differentiation and the chemokine receptor CXCR5 Up-regulation and down-regulation of CCR7, which allows the cells to migrate to the T/B border. (14.2) B cells activated by BCR S-peptide engagement increase CCR7 expression and migrate to the T/B follicle border to seek cognate CD4+ T cells. (15) TCRβ recognizes the S-peptide/MHC II complex on B cells so that TFH cells (16) can express CD40 ligand and ICOS, and (17) secrete cytokines IL-21, IFNγ, IL-4 , IL-2 and IL-10. TFH cells were strongly enriched for cells expressing the highest levels of IL-21. (18) This homology helps stimulate B cells to undergo robust proliferation, induce Ig class switching, and differentiate into plasma-like cells capable of secreting all major Ig isotypes. (19) Within GC, B cells undergo somatic hypermutation and only B cells with high affinity antibodies are selected. (20) These plasma cells secrete high-affinity S-specific antibodies that neutralize various S-mutants. (21) These B cells differentiate into long-lived memory B cells. Throughout this process, IL-21 induces the expression of CD25, which enables B cells to respond to IL-2, also derived from TFH cells, which promotes the effects of IL-21. Similarly, IL-21 induces the expression of IL-6R on PCs, which allows these cells to integrate survival signals through IL-6. (22) DCs displaying S-peptide via MHC class II also elicited S-specific CD8+ T cell responses.
圖 13A-K. 對鼠類骨髓源B細胞及脾細胞進行離體AIM分析及對小鼠血清進行替代病毒中和測試(sVNT)。利用SARS-CoV-2 S-蛋白離體刺激後,在初始劑量後第28天自2 × 10 9及3 × 10 9治療之小鼠分離之骨髓源B細胞之IgM ( 圖 13A)及IgG ( 圖 13 B) S-蛋白特異性效價。#:與所有2 × 10 9注射之小鼠相比,差異顯著;*:與所有3 × 10 9組相比,差異顯著。在使用SARS-CoV-2 S-蛋白刺激離體脾細胞後,在2 × 10 9( 圖 13C)及3 × 10 9( 圖 13D) EDV免疫小鼠中CD8 +細胞毒性T細胞群體內之S特異性CD69表現。*:與DMSO (-ve)刺激之對照相比,差異顯著。數據呈現為平均值 ± SEM。SARS-CoV-2 S-蛋白刺激之離體脾細胞中CD3 +CD4 +T細胞群體之( 圖 13E) IFNγ (Th1)及IL-4 (Th2)表現。( 圖 13 F-K) 使用cPASS TMSARS-CoV-2中和抗體分析(經FDA批准)在各物種中進行檢測之病毒中和測試(VNT)用於評價RBD與hACE2受體結合之抑制。( 圖 13 F) 使用2 × 10 9及( 圖 13 G) 3 × 10 9EDV免疫之小鼠之血清針對SARS-CoV-2 RBD武漢野生型之VNT。後續VNT係使用3 × 10 9EDV免疫小鼠之血清針對α ( 圖 13 H)、β ( 圖 13 I)、γ ( 圖 13 J)及δ ( 圖 13 K)變異株RBD實施。 Figure 13A-K . Ex vivo AIM analysis of murine bone marrow-derived B cells and splenocytes and surrogate virus neutralization test (sVNT) of mouse sera. IgM ( FIG. 13A ) and IgG ( Figure 13 B ) S-protein specific titers. #: Significant difference compared with all 2 × 10 9 injected mice; *: Significant difference compared with all 3 × 10 9 groups. After stimulating isolated splenocytes with SARS-CoV-2 S-protein, S in CD8 + cytotoxic T cell populations in 2 × 10 9 ( Figure 13C ) and 3 × 10 9 ( Figure 13D ) EDV-immunized mice Specific CD69 expression. *: Significant difference compared to DMSO (-ve) stimulated control. Data are presented as mean ± SEM. Expression of IFNγ (Th1) and IL-4 (Th2) in CD3 + CD4 + T cell populations in isolated splenocytes stimulated by SARS-CoV-2 S-protein ( FIG. 13E ). ( FIG. 13 F-K ) The virus neutralization test (VNT) using the cPASS ™ SARS-CoV-2 neutralizing antibody assay (FDA-approved) detected in various species was used to evaluate the inhibition of RBD binding to the hACE2 receptor. ( FIG. 13F ) Sera from mice immunized with 2×10 9 and ( FIG. 13G ) 3×10 9 EDV were directed against SARS - CoV-2 RBD Wuhan wild-type VNT. Subsequent VNT was carried out against α ( Fig. 13 H ), β ( Fig . 13 I ), γ ( Fig . 13 J ) and δ ( Fig . 13 K ) mutant RBD using serum from 3 × 10 9 EDV-immunized mice.
圖 14A-K. 在初始注射後28天來自前4名EDV-COVID臨床試驗志願者之數據。
數據來自 1 期臨床試驗之同類群組 2 。 ( 圖 14A)在初始注射後第1、21、28天及3個月時志願者血清針對SARS-CoV2 RBD之野生型(WT)、δ、ο及ο BA2變異株之SVNT分析。使用來自5名接受至少2個劑量之Pfizer疫苗之志願者之結果作為比較。
( 圖 14B)初始注射後血清第1、21及28天之IFNγ含量。
( 圖 14C)初始注射後第1、21及28天之血清IFNα含量。
( 圖 14D)在第1及28天之CD4
+中央記憶T細胞(CD45RA
-CD27
+CCR7
+CD3
+CD4
+)分析。
( 圖 14E)在第1及28天之CD8
+中央記憶T細胞(CD45RA
-CD27
+CCR7
+CD3
+CD8
+)分析。
( 圖 14F)在第1及28天在SARS-CoV2棘蛋白刺激後IFNγ之離體PBMC產生。
( 圖 14 G )在第1及28天在SARS-CoV2棘蛋白刺激後離體PBMC中T細胞(CD45
+CD3
+CD69
+)中之CD69表現。
( 圖 14 H )在初始注射後在第1、28天、2個月及3個月時PBMC中棘蛋白特異性CD19
+B細胞之量。
( 圖 14 I )在初始注射後在第1、28天、2個月及3個月時PBMC中棘蛋白特異性CD19
+CD27
+記憶B細胞之量。
( 圖 14 J )在初始注射後在第1、28天、2個月及3個月時PBMC中IgM
+CD19
+CD27
+記憶B細胞之量。
( 圖 14 K )在初始注射後在第1、28天、2個月及3個月時PBMC中IgG
+CD19
+CD27
+記憶B細胞之量。數據呈現為平均值 ± SEM。
Figures 14A-K . Data from the first 4 EDV-COVID clinical trial volunteers 28 days after initial injection. Data are from
Claims (23)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202163224838P | 2021-07-22 | 2021-07-22 | |
| US63/224,838 | 2021-07-22 | ||
| US17/480,073 US12357687B2 (en) | 2020-03-24 | 2021-09-20 | Compositions and vaccines for treating and/or preventing viral infections, and methods of using the same |
| US17/480,073 | 2021-09-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TW202311282A true TW202311282A (en) | 2023-03-16 |
Family
ID=84979156
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111127437A TW202311282A (en) | 2021-07-22 | 2022-07-21 | Compositions and vaccines for treating and/or preventing coronavirus variant infections and methods of using the same |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP4373520A4 (en) |
| TW (1) | TW202311282A (en) |
| WO (1) | WO2023002433A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2018335571B2 (en) | 2017-09-25 | 2025-05-08 | Agrospheres, Inc. | Compositions and methods for scalable production and delivery of biologicals |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7396822B2 (en) * | 2001-05-24 | 2008-07-08 | Vaxiion Therapeutics, Inc. | Immunogenic minicells and methods of use |
| SG11202100507PA (en) * | 2018-07-23 | 2021-02-25 | Engeneic Molecular Delivery Pty Ltd | Compositions comprising bacterially derived minicells and methods of using the same |
| CN110951756B (en) * | 2020-02-23 | 2020-08-04 | 广州恩宝生物医药科技有限公司 | Nucleic acid sequence for expressing SARS-CoV-2 virus antigen peptide and its application |
| US10973908B1 (en) * | 2020-05-14 | 2021-04-13 | David Gordon Bermudes | Expression of SARS-CoV-2 spike protein receptor binding domain in attenuated salmonella as a vaccine |
| CN111662389A (en) * | 2020-06-05 | 2020-09-15 | 广州中医药大学(广州中医药研究院) | SARS-CoV-2 fusion protein and vaccine composition thereof |
-
2022
- 2022-07-21 TW TW111127437A patent/TW202311282A/en unknown
- 2022-07-21 WO PCT/IB2022/056759 patent/WO2023002433A1/en not_active Ceased
- 2022-07-21 EP EP22845545.7A patent/EP4373520A4/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| WO2023002433A1 (en) | 2023-01-26 |
| EP4373520A4 (en) | 2025-06-11 |
| EP4373520A1 (en) | 2024-05-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Campos et al. | Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice | |
| JP2021185136A (en) | Coronavirus vaccine | |
| Lee et al. | Nasal delivery of chitosan/alginate nanoparticle encapsulated bee (Apis mellifera) venom promotes antibody production and viral clearance during porcine reproductive and respiratory syndrome virus infection by modulating T cell related responses | |
| US20140086888A1 (en) | Ebv-specific cytotoxic t-lymphocytes for the treatment of locoregional nasopharyngeal carcinoma (npc) | |
| US20230041309A1 (en) | Compositions and vaccines for treating and/or preventing coronavirus variant infections and methods of using the same | |
| Kakkassery et al. | Immunogenicity of SARS-CoV-2 vaccines in patients with cancer | |
| Kim et al. | Mycobacterium tuberculosis PE27 activates dendritic cells and contributes to Th1-polarized memory immune responses during in vivo infection | |
| Zhang et al. | Immunization with a novel mRNA vaccine, TGGT1_216200 mRNA-LNP, prolongs survival time in BALB/c mice against acute toxoplasmosis | |
| Pan et al. | Chlamydia abortus Pmp18. 1 induces IL-1β secretion by TLR4 activation through the MyD88, NF-κB, and caspase-1 signaling pathways | |
| Circelli et al. | Immunological effects of a novel RNA-based adjuvant in liver cancer patients | |
| Li et al. | A novel Toxoplasma gondii TGGT1_316290 mRNA-LNP vaccine elicits protective immune response against toxoplasmosis in mice | |
| Li et al. | Advancements in the development of nucleic acid vaccines for syphilis prevention and control | |
| Masip et al. | Vaccination with parasite-specific TcTASV proteins combined with recombinant baculovirus as a delivery platform protects against acute and chronic Trypanosoma cruzi infection | |
| TW202311282A (en) | Compositions and vaccines for treating and/or preventing coronavirus variant infections and methods of using the same | |
| JP5265545B2 (en) | Methods for inducing or inducing an immune response | |
| Pai et al. | Nasopharyngeal carcinoma‐associated Epstein–Barr virus‐encoded oncogene latent membrane protein 1 potentiates regulatory T‐cell function | |
| Gong et al. | Chloroform-methanol residue of Coxiella burnetii markedly potentiated the specific immunoprotection elicited by a recombinant protein fragment rOmpB-4 derived from outer membrane protein B of Rickettsia rickettsii in C3H/HeN mice | |
| US20230263827A1 (en) | Expanded memory subsets of gamma delta t cells for immunotherapy | |
| WO2022011271A2 (en) | Probiotics for use in the prevention or treatment of illness and/or symptoms associated with coronaviruses | |
| US12357687B2 (en) | Compositions and vaccines for treating and/or preventing viral infections, and methods of using the same | |
| Salerno-Gonçalves et al. | Use of a novel antigen expressing system to study the Salmonella enterica serovar Typhi protein recognition by T cells | |
| JP2023518484A (en) | Compositions and vaccines for treating and/or preventing viral infections, including coronavirus infections, and methods of their use | |
| Geriletu et al. | Immunogenicity of orally administrated recombinant Lactobacillus casei Zhang expressing Cryptosporidium parvum surface adhesion protein P23 in mice | |
| Salerno-Gonçalves et al. | Differential functional patterns of memory CD4+ and CD8+ T-cells from volunteers immunized with Ty21a typhoid vaccine observed using a recombinant Escherichia coli system expressing S. Typhi proteins | |
| Li et al. | Human adenovirus type 7 subunit vaccine induces dendritic cell maturation through the TLR4/NF-κB pathway is highly immunogenic |

