201105291 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種代謝當量計算系統及其方法,尤1是 關於利时㈣健狀生理_,以自動卿縣類型並 提高代謝當量準確率之計算系統及其方法。 、 【先前技術】 __ _ 的物輯上設置有熱量消耗的訊 用者在使用該運動器材的過程中,可瞭 解運動時的生理狀態以及所消耗的熱量數值。 、 大部分具有熱量消耗的 將年齡、體重、時間及心率當作材’均 根據該運動器材的種類套用’’=、#因素’再 材進行某-類型之運動時,所^原則(例如以該運動器 約略推估出使用者所_的教範圍),而 =為使用者進行該運動:前 因本身的生理狀態及運動量強;:=耗的熱量也會 運動器材針對使用者夕^強度而有所差異’因此習用的 估算結果是不甚準確的^消耗所能提供的量測功能,其 中華民國第1263488铼「也θ 發明專利另縣—種^、、、1雜量财法及其震置」 1圖所示,該執量、、L f的熱量消耗量測裝置,請炎昭望 -儲存單元;;、=置”包含-輪入;= 理早兀95、—顯示單元 里^早疋94、-中央處 及一電源9?。該輪入單元91 201105291 係供使用者輸入年齡、體重等生理資料, 1 量消耗量測裝置9之電源的啟閉或設定量測作、工1 5亥熱 間及結束時間。該儲存單元92則錯存前述之始時 料。該計時器93用以計算運動時間。該量測單土元94 = 運動别之安靜心率以及運動後之運動心率。該巾央處^ 凡95係將前述之各項資料(年齡、體重、安靜心率、 心率以及運動時間)輸入該中央處理單元% 姑201105291 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a metabolic equivalent calculation system and a method thereof, and more particularly to the benefit of the time (4) healthy physiology, to the automatic Qingxian type and to improve the metabolic equivalent accuracy Computing system and method therefor. [Prior Art] __ _ The number of users who have heat consumption on the material list can understand the physiological state during exercise and the amount of heat consumed during the use of the exercise equipment. Most of the calorie-consuming materials that use age, weight, time, and heart rate are based on the type of sports equipment, and the ''=, # factor' is used to carry out a certain type of exercise. The exerciser roughly estimates the scope of the user's teaching, and = the user performs the exercise: the pre-existing physiological state and the amount of exercise;; = the amount of heat consumed by the exercise equipment for the user's evening strength However, there are differences. Therefore, the estimation results of the habits are not accurate. The measurement function that can be provided by the consumption is not included in the measurement. Among them, the Republic of China No. 1263488 铼 "also θ invention patents another county - species ^,,, 1 miscellaneous wealth and The shock is shown in Fig. 1 , the capacity, L F heat consumption measuring device, please Yan Zhaowang - storage unit;;, = set "including - wheel in; = 早早兀 95, - display unit In the early morning 94, the central part and a power supply 9?. The wheeling unit 91 201105291 is for the user to input physiological data such as age and weight, and the power supply of the measuring device 9 is turned on or off or set. , the work of 1 5 heat and the end time. The storage unit 92 is staggered as described above. The timer 93 is used to calculate the exercise time. The measurement of the single earth element 94 = the resting heart rate of the exercise and the exercise heart rate after the exercise. The central office of the towel ^ 95 series will be the aforementioned information (age , weight, heart rate, heart rate, and exercise time) Enter the central processing unit %
設公式計算出消耗熱量。該顯示單 ^預 A n 顯不刖述各項却 ^該電源97電性連接至前述各元件’以提供運作時的電 然而’由於上述習用裝置僅量測該使用者的心率 ,法更精確地分辨該使用者運動使用時運動強度,造成執 ^肖耗計算的誤差,且需自行設定縣種編無法藉由^ 裝置自動判別使用者正進行的運動類別。因此,上述習用 之熱量消耗量測之裝置及其方法顯歸加以改善之必要。 【發明内容】 本發明係提供-種代謝當量計算系統及其方法,主要係 藉由-動舰職組及生理感顯輯制的代謝當量交又 比對,以計算使用者消耗的代謝當量。 本發明之次一目的係提供一種代謝當量計算系統及其 方法’藉由感測該使用者活動時的慣性訊號,以識別該使用 者活動類別,並由此對應該動作類別之代謝當量。 為達到W述發明目的,本發明所運用之技術手段及藉 由該技術手段所能達到之功效包含有: 201105291 生理咸 糸統,其具有—動作感測模組、一 。鶴作感測模組係感測其本 身=時的慣性訊號’並擷取該慣性訊號之特徵值以產生 一十貝性特徵訊號,且比龍慣㈣徵赠與—第一資料庫 以辨識得一活動類別及該活動類別所對應之動 作代謝當量值。該生理感__勒卜❹者之生理訊 號’並將該生理訊號與—第二資料庫内之資料輯,以產 生該生理訊號所對應之生理代謝當量值。該運算模組接收 該動作代謝當量值及該生理代謝##值,再》演算法計 算得一輸出代謝當量值。 y種代謝當量計算方法,其包含:—慣性訊號感測步 驟,係藉由-慣性訊號感測單元感測一動作感測模組在空 間中的移動’以產生-慣性訊號;—廣性特徵處理步驟, 係以一慣性特徵擷取單元擷取該慣性訊號之特徵值以作為 一f貝性特徵訊號;一第一代謝當量計算步驟,其係由一第 一代謝當量計算單元比對該慣性特徵訊號與一第一資料庫 之資料,以辨識得一動作類別,並獲得該動作類別的代謝 當量值;一生理訊號感測步驟,其係藉由該生理訊號感測 模組感測一使用者之生理訊號;一第二代謝當量計算步 驟’其係由該第二代謝當量計算單元以該生理訊號與一第 二資料庫之資料進行比對’以產生一生理代謝當量值;一 代謝當量精確計算步驟,其以一演算法計算該生理代謝當 量值及動作代謝當量值,以求得一輸出代謝當量值;—熱 量計算步驟’其係累計該使用者之運動時間,並由該輪出 代謝當量值與運動時間計算出該使用者之消耗熱量值;〜 201105291 育料顯不步驟,其係利用一顯示單元顯示該輸出代謝當量 值、該消耗熱量值或該使用者輸入之個人資料的其中至少 一個。 【實施方式】 為讓本發明之上述及其他目的、特徵及優點能更明顯 易懂,下文特舉本發明之較佳實施例,並配合所附圖式, - 作詳細說明如下: φ 请參照第2至4圖所示,其係繪示本發明較佳實施例 之架構不意圖、立體圖及心電訊號波形示意圖。該代謝當 里计异系統包含一動作感測模組1、一生理感測模組2及一運 异杈組3,該動作感測模組1感測該使用者活動時的慣性 訊號,以識別該使用者所進行之活動類別,並以識別結果 查詢並輸出該活動類別之代謝當量〔metab〇lic equivalents ’ METs〕;該生理感測模組2感測該使用者活 動時的生觀號,及其所對應之代謝當量,並可將此生理 籲訊號做特徵#員取而獲得一生理特徵訊號,再計算該生理特 徵訊號所對應之代謝當量;該運算模組3由該動作感測模 組1及生理感測模組2接收該三種代謝當量,藉以運瞀 更精確的代謝當量值。 开獲仵 該動作感測模組1具有一慣性訊號感測單元U、一 性特徵操取單元12、一第一代謝當量計算單元及一= 傳輸單元14。該慣性訊號感測單元η係供在該 測模組1文到移動時產生該慣性訊號。此外,該慣性f 感測單元11較佳具有一加速度計、一類比數位轉換器 201105291 ^空制ϋ。該加速麟係供在軸倾賴組 =ΓΓ=測:…預設的座標系心:: 向各測侍—加速度值,並以該加速 釉 該類比數位_係_性訊 上;該微控制器具有二功能,其_ :為:ΗΖ以 波,另—則將已進行類比數位轉換之慣行據 3轉r並傳至該慣性特徵擷取單元心。該慣:: 取早疋U連接於該慣性訊號感測單元u且接 ^擷 === 進行操_值的相關運算 =特徵訊说。其中,該慣性特徵操取單元12 可由平均值、軸間相關性、均方根值、 =差專取值方法中選取’並以該加速度值作為各該二 自變數,且以該取值方法計算獲得之應變數作騎 貝μ寺徵訊號;然而,該慣性特徵榻取單元 ^ 徵值的取值方法係可使用各種用以取得一數列::: 徵值^習用取值方法,其並非僅限於上述之取值方法特 m發明之動作感測模組1的第一代謝當量計算單元η 係連接該慣性特徵擷取單元12,並罝有 ^内預先儲存有數種活動類別之資ί,二= 動組1在各種活_別下所產生的特徵值及各該活 ^所對應的代謝當量值。藉此,該第—代^ 早几13將該慣性特徵訊 里冲斤 孩使用者目前的活動_的動作代謝當量值。該第 201105291 單元14之二端·分職接_ 及運算模組3,以便將兮筐项田里。丁开早兀13 之_㈣“ 代謝#量計算料13所輸出 幹單ΓΓ:Γ傳輸至該運算模組3。其中,當該第-傳 訊號傳輪線以利用有線方式進行訊號 傳輸和·,該弟一傳輪星亓14 翰 14之二鳊部即為二訊號傳輸接 ㈣十*^傳輸單70 14選擇為—無線傳輸模組以利用 無線方式進行訊號傳輸時,該第—傳輪單元14之二端部係Set the formula to calculate the calories burned. The display unit is not described in detail, but the power source 97 is electrically connected to the aforementioned components to provide power during operation. However, since the conventional device only measures the heart rate of the user, the method is more accurate. The ground motion is used to distinguish the motion intensity of the user during exercise, which causes the error of the calculation of the chimney consumption, and it is necessary to set the county type to automatically determine the type of motion that the user is performing by the device. Therefore, the above-described conventional device for measuring the calorie consumption and its method are obviously necessary for improvement. SUMMARY OF THE INVENTION The present invention provides a metabolic equivalent calculation system and a method thereof, which are mainly used to calculate metabolic equivalents consumed by a user by comparing the metabolic equivalents of the mobile warfare group and the physiological sense. A second object of the present invention is to provide a metabolic equivalent calculation system and method thereof for identifying the user activity category by sensing the inertia signal of the user's activity, and thereby corresponding to the metabolic equivalent of the action category. In order to achieve the object of the invention, the technical means and the functions that can be achieved by the technical means include: 201105291 Physiological salty system, which has a motion sensing module, a. The crane-based sensing module senses the inertial signal of its own = and extracts the characteristic value of the inertial signal to generate a ten-feet characteristic signal, and the first database is identified by the dragon's habit (4). An activity category and an action metabolic equivalent value corresponding to the activity category are obtained. The physiological sensation __the physiological signal of the sputum and the physiological signal and the data in the second database are compiled to generate physiological metabolic equivalent values corresponding to the physiological signal. The computing module receives the action metabolic equivalent value and the physiological metabolic ## value, and the algorithm calculates an output metabolic equivalent value. y metabolic equivalent calculation method, comprising: - an inertial signal sensing step, by sensing an movement of a motion sensing module in space by an inertial signal sensing unit to generate an inertial signal; The processing step is: taking an inertial feature extraction unit to extract the characteristic value of the inertial signal as a f-feature feature signal; and a first metabolic equivalent calculation step, wherein the first metabolic equivalent calculation unit compares the inertia The characteristic signal and the data of the first database are used to identify an action category and obtain a metabolic equivalent value of the action category; a physiological signal sensing step is performed by the physiological signal sensing module a physiological signal of the user; a second metabolic equivalent calculation step of: the second metabolic equivalent calculation unit compares the physiological signal with the data of a second database to generate a physiological metabolic equivalent value; An accurate calculation step of metabolic equivalents, wherein the physiological metabolic equivalent value and the action metabolic equivalent value are calculated by an algorithm to obtain an output metabolic equivalent value; Calculating the exercise time of the user, and calculating the calorie value of the user from the rounded metabolic equivalent value and the exercise time; ~ 201105291 The no-product step is displayed by using a display unit to display the output metabolic equivalent The value, the calorie value, or at least one of the personal data entered by the user. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 2 to 4 are schematic diagrams showing the structure, the perspective view and the waveform of the electrocardiogram signal of the preferred embodiment of the present invention. The metabolic sensing system includes a motion sensing module 1, a physiological sensing module 2, and a different sensing group 3, and the motion sensing module 1 senses an inertial signal of the user when the user moves. Identifying the activity category performed by the user, and querying and outputting the metabolic equivalent of the activity category (metab〇lic equivalents ' METs) by the recognition result; the physiological sensing module 2 sensing the vital number of the user activity And the corresponding metabolic equivalent, and the physiological call signal can be obtained as a characteristic feature to obtain a physiological characteristic signal, and then the metabolic equivalent corresponding to the physiological characteristic signal is calculated; the operation module 3 is sensed by the motion The module 1 and the physiological sensing module 2 receive the three metabolic equivalents to thereby operate a more precise metabolic equivalent value. The motion sensing module 1 has an inertial signal sensing unit U, a characteristic feature operation unit 12, a first metabolic equivalent calculation unit and a = transmission unit 14. The inertial signal sensing unit η is configured to generate the inertia signal when the test module 1 moves to the text. In addition, the inertia f sensing unit 11 preferably has an accelerometer and an analog-to-digital converter. The acceleration collar is provided in the axis depreciation group = ΓΓ = measurement: ... preset coordinate center:: to each measurement - acceleration value, and the acceleration glaze analogy _ system _ sex message; the micro control The device has two functions, the _: is: ΗΖ wave, and the other is the analog data of the analog-to-digital conversion is transferred to the inertia feature extraction unit core. The habit:: Take the early 疋U connected to the inertial signal sensing unit u and connect ^ 撷 === to perform the operation of the _ value = characteristic message. The inertial feature operation unit 12 may select 'from the average value, the inter-axis correlation, the root mean square value, and the = difference specific value method, and use the acceleration value as each of the two independent variables, and use the value method. Calculate the number of strains obtained for the riding of the Bayi Temple sign; however, the method of calculating the value of the inertial feature of the inertial feature can be used to obtain a series of numbers::: levy ^ conventional value method, which is not The first metabolic equivalent calculation unit η of the motion sensing module 1 of the present invention is connected to the inertial feature extraction unit 12, and has a plurality of activity categories pre-stored therein. 2 = the characteristic value generated by the moving group 1 under various activities and the metabolic equivalent value corresponding to each of the activities. In this way, the first generation of the first inertia feature will signal the action metabolic equivalent value of the current activity of the user. The second end of the unit of the 201105291 unit 14 is divided into the _ and the arithmetic module 3, so that the basket item field will be placed. Ding Kai early 兀 13 _ (four) "metabolism # quantity calculation material 13 output dry ΓΓ: Γ transmission to the computing module 3. Where, when the first transmission signal transmission line to use the wired signal transmission and The younger brother of the first round of the singer of the 14th singer is the second signal transmission (four) ten * ^ transmission list 70 14 selected as - wireless transmission module to use the wireless way for signal transmission, the first transmission The two ends of unit 14
分:為1線訊號發射器及—無線訊號接收器,且該無線 訊^發射讀、連接該動作感測模組〗,該無線訊號接收器 ^接該運算餘3。另’當該第—傳輪單元14為無線傳 輸4 ’其傳輸方式係可選擇為射雜輸方式、紅外線傳輸 方式或藍芽傳輸方式。The sub-band is a 1-wire signal transmitter and a wireless signal receiver, and the wireless signal transmits and connects the motion sensing module, and the wireless signal receiver connects the computing remainder 3. Further, when the first-passing wheel unit 14 is a wireless transmission 4', the transmission mode can be selected to be a spurious transmission mode, an infrared transmission mode, or a Bluetooth transmission mode.
本!X明之生理感測模組2具有一生理訊號感測單元21、 -生理特簡取單元22、—第二代謝#量計算單元23及一第 二傳輸單元24。魅舰號❹桿元21餘制該使用者之 生理訊號’例如該生理訊縣測單元21 τ為設有至少二量測 電極211之心電感測器,且該量測電極211係供貼設在該使用 者之體表,以量測並擷取該使用者的心跳訊號作為該生理訊 號;或者,亦可選擇該生理訊號_單元21為—齡感應器, ,、4貞測並4异由該使用者之體表經過該熱漲感應器之熱抗性 材料邊緣所消散的熱量,以作為該生理·。該生理特徵摘取 單元22連接於該生理訊號感測模組21且接收該生理訊號,並 對該生理訊號進行特徵值的相關運算,以獲得該生理特徵訊 號。其中,當該生理訊號感測單元21選自該心電感測器時, 該生理特麵取單元22之特徵值運算包含喊分析及頻域分 201105291 t 析’且該時域分析是將 該頻域分析是將简錄剛計算,而 間期的頻譜之後,針變動的訊號轉換成心跳 算。 〜跳間期的頻譜資料進行統計學計The physiological sensing module 2 of the present invention has a physiological signal sensing unit 21, a physiological simple sensing unit 22, a second metabolic # quantity calculating unit 23 and a second transmitting unit 24. The sensor number of the user is more than 21, and the physiological measurement unit 21 τ is a cardiac inductor having at least two measuring electrodes 211, and the measuring electrode 211 is attached. In the body surface of the user, the heartbeat signal of the user is measured and captured as the physiological signal; or the physiological signal_unit 21 may be selected as the age sensor, 4, 4 and 4 different The heat dissipated by the edge of the heat-resistant material of the heat-expanding sensor by the body surface of the user as the physiological body. The physiological feature extracting unit 22 is connected to the physiological signal sensing module 21 and receives the physiological signal, and performs correlation calculation on the physiological signal to obtain the physiological characteristic signal. Wherein, when the physiological signal sensing unit 21 is selected from the cardiac inductive detector, the eigenvalue operation of the physiological special surface taking unit 22 includes a shout analysis and a frequency domain segment 201105291 t and the time domain analysis is the frequency The domain analysis is to calculate the short record, and after the interval spectrum, the signal of the needle change is converted into a heartbeat calculation. ~ hop period spectrum data for statistical calculation
在照第4圖所示,其為—心電訊號波形圖。 在般正吊的心電訊號波形中,R 振幅之波峰處,故在心雷㈣南挪々电械中具有最大 的進行心跳計算或心率:方面,多以R波為偵測標 該心電訊號之每二單元22係侦測 間期〔RR間期〕,並料一^于母一相鄰尺波之間的波肇 間期序列進行前述之時域分析,如間f列^此’可將此跋 準差、變異數血相Γ間期的平均值、標 ,數,以作為所擷取之特徵值;若欲進行頻= 特列進行等距取樣,並利用如傅立葉轉換、希伯 寺轉換#异法將訊號從時域轉域 平方值表示而進行量化之後,即可 、度,進而突顯在心率f異程度上的微小波動。如 ’猎由計算該賴分析所得之高頻功率、 到如高頻、低頻、極低頻及超低頻等心率;異:: 域为析參數,以作為所擷取之特徵值。 ’、’、 =代謝當量計算單元23與該生理訊號_模組 及該生理特徵娜單元22鱗接,並 :預先儲存有數筆生理資料,該生理資料It; Z下所對應的代謝當量值’以及該生理特徵擷取單元η所 生的生理特徵訊號之各特徵值所對應的代謝當量值。藉此, 201105291As shown in Fig. 4, it is an electrocardiogram waveform. In the ECG signal waveform of the normal hanging, the peak of the R amplitude, so in the heart thunder (4) South Norfolk electrical machinery has the largest heartbeat calculation or heart rate: in terms of R wave as the detection target ECG signal Each of the two units 22 is a detection interval (RR interval), and the time domain analysis of the inter-wave sequence between the adjacent ones of the mother is performed, such as the interval f column ^ this can The mean value, the number, and the number of the 血 跋 、 、 、 、 血 血 血 血 血 血 血 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值The conversion #异法 quantizes the signal from the time domain to the squared value representation, and then the degree, and then highlights the small fluctuations in the heart rate. For example, ‘hunting calculates the high-frequency power obtained from the analysis, and the heart rate such as high frequency, low frequency, extremely low frequency and ultra low frequency; the different:: domain is the parameter, as the extracted characteristic value. ', ', = metabolic equivalent calculation unit 23 is squashed with the physiological signal module and the physiological characteristic unit 22, and: a plurality of physiological data are stored in advance, and the physiological equivalent of the physiological data It; And a metabolic equivalent value corresponding to each characteristic value of the physiological characteristic signal generated by the physiological characteristic extraction unit η. With this, 201105291
該一代謝田里叶异單元23以該生理訊號及生理特徵訊號與 該f料庫Γ的生理資料進行比對,即可取得據該使用者之生理 狀心所推并之生理代謝當量值及一特徵代謝當量值。其中, 田該生理訊號為該心電訊號時,該生理代謝當量值係可為該使 用f之〜跳鮮所對應之代謝當量值;*雜徵代謝當量值的 推异方法則為··以該心率變異之時域及頻域分析所產生之各該 特徵值分另JI對應取得一代謝當量值观過權重分配方式由各 «亥代謝田里料异得該特徵代謝當量值。該第二傳輸單元Μ 之二端部分別連接該第二代謝當量計算單S23及運算模组 3,以便將該第二代謝#量計算單元23職生之生理代謝當量 值及特徵代謝當量值傳送至該運算麵3。其巾,該第二傳 輸單元24之構成係與該第—傳輸單元14相同,可利^有 線方式或無線方式進行訊號傳輸。 請再參照第2騎示,料算触3有 元31及-顯示⑽谢央處料元31接二= 极组1所獲得之動作代謝當量值,以及該生理_模6且2 所獲得之生理代謝當量值及特徵代謝當量值,並以一㈣ 法進行計算,以_本發明之代謝當量計算她所得之輸Z 代謝當量值。其中該演算法係可選擇為—智慧型演算法, 例如-模糊〔Fuzzy Logic〕演算法、一類神經The metabolic unit leaf unit 23 compares the physiological signal and the physiological characteristic signal with the physiological data of the material library, and obtains the physiological metabolic equivalent value according to the physiological heart of the user. And a characteristic metabolic equivalent value. Wherein, when the physiological signal is the ECG signal, the physiological metabolic equivalent value may be a metabolic equivalent value corresponding to the use of the f-fresh; and the method for differentiating the metabolic equivalent value of the miscellaneous is ··································································································· value. The second end of the second transmission unit Μ is connected to the second metabolic equivalent calculation unit S23 and the operation module 3, respectively, so as to calculate the physiological metabolic equivalent value and the characteristic metabolic equivalent of the second metabolic # quantity calculation unit 23 The value is transferred to the calculation surface 3. The second transmission unit 24 is configured in the same manner as the first transmission unit 14, and can perform signal transmission in a wired manner or in a wireless manner. Please refer to the 2nd riding show again, and it is expected that the 3rd element 31 and the - display (10) Xieyang material element 31 are connected to the second group = the action metabolic equivalent value obtained by the pole group 1, and the physiological _ modulo 6 and 2 are obtained. The physiological metabolic equivalent value and the characteristic metabolic equivalent value are calculated by the one-fourth method, and the metabolic Z-element equivalent value obtained by the metabolic equivalent of the present invention is calculated. The algorithm can be selected as a smart algorithm, such as a fuzzy Logic algorithm, a class of nerves.
Network〕演算法或一模糊類神經〔 Neural/Neuro-Fuzzy Network〕演算法等。此外,該中央产 理單元31可另紀錄該使用者的活動時間,以供計算出該= Μ㈣耗之熱量值之用Q請同時參照第3圖‘;顒 不單元32連接祕巾央纽單元31,以縣該中央處理 201105291 單元31所計算出的消耗熱量’且該顯示單元32可另具有 至少一按鍵321供使用者操作,以便該顯示單元32在數種 資料顯示模式之間進行切換’且該數種資料顯示模式可至 少包含一資料輸入模式、一目標顯示模式及一消耗熱量模 式。在該資料輸入模式下,該顯示單元32係供使用者輸入 姓名、年齡、身高、體重及性別等各種基本資料,且該中 央處理單元31不僅可將該輸出代謝當量值乘以該活動時 間及使用者的體重,而計算出該使用者所消耗之熱量值, 且該中央處理單元31亦可根據上述基本資料計算得該使 用者之單日消耗熱量的目標值;在該目標顯示模式下,該 顯示單元32係顯示該目標值或該使用者所預設之一當曰 預定消耗熱量值;在該消耗熱量模式下,該顯示單元^ 係顯示該使用者目前所進行之活動類別、持續進行該活動 之時間、當曰已消耗之熱量值及尚待消耗的熱量值〔即該 =定消耗熱量值與該消耗熱量值之紐,或該目標值與該〆 消耗熱量值之差值〕。 及生觀3村___模組1 模組!二二的至:-個-趙設置’則當該動作感測 Η’而將該第—代#得輸早几 理單元W, 田兀直接連接至該中央處 時,可省略該理感測模組2與該運算模組3 -體設置 . 利用該動作感測模組〗及生理舄制y4 〇 初步取得之代如 Μ理❹彳她2所各別 田里值’可透過該·馳3之中央處理單元 —12 — 201105291 當用者在進行各種活動時的代謝 元3! f由該顯示單元32顯示該中央處理單 算李她:使用者可利用本發明之代謝當量計 其母曰已消耗之熱量值及尚待消耗的熱量值,進 μ用於減重或體能訓練等用途。 旦n^、’、第5圖所7^ ’其係為本發明較佳實施例之代謝當 里口十异方法之操作流程圖。該計算方法包含:一慣 =在,中的移動,以產生該慣性訊號;一慣性特徵處理步 ’,、係以該慣性特徵擷取單元12運算該慣性訊號而取得 =特徵訊號;-第一代謝當量計算步驟S3,其係由該第 謝畲量計算單元η㈣慣性特徵訊賴識該使用者目 則所進行之動作的活動類別及其代謝當量值,以產生該動 =謝當量值;一生理訊號感測步驟S4,其藉由該生理訊 號感測單元21感駿用者之生理訊號;—生理特徵處理步 驟S5,其係以該生理特徵擷取單元22運算該使用者生理 ,號而取得該使用者之生理特徵訊號;一第二代謝當量計 算步驟S6 ’其係由該第二代謝當量計算單元23分別以該 生理訊號及生理特徵訊號產生該生理代謝當量值及特徵代 ϋί量值;一代謝當量精確計算步驟幻,其係使用前述之 决异法由該動作代謝當量值、生理代謝當量值及特徵代謝 當量值求得該輸出代謝當量值,即針對該使用者所進行之 活動所取得之較為精確的代謝當量值;一熱量計算步驟 % ’其係累計該使用者進行該活動的運動時間,並由該輸 ί ί —13 — 201105291 出代謝當量值、該i 該運動時_體㈣算㈣錢者於該各Network] algorithm or a neural-Neuro-Fuzzy Network algorithm. In addition, the central processing unit 31 can additionally record the activity time of the user, so as to calculate the calorific value of the Μ(4) consumption, please refer to FIG. 3 at the same time; 31. The heat consumption calculated by the central processing unit 201105291 unit 31 and the display unit 32 may further have at least one button 321 for the user to operate, so that the display unit 32 switches between several data display modes. And the plurality of data display modes may include at least one data input mode, one target display mode, and one heat consumption mode. In the data input mode, the display unit 32 is for the user to input various basic materials such as name, age, height, weight, and gender, and the central processing unit 31 can multiply the output metabolic equivalent value by the activity time. And calculating the amount of heat consumed by the user, and the central processing unit 31 can calculate the target value of the single-day calorie consumption of the user according to the basic data; in the target display mode The display unit 32 displays the target value or one of the presets of the user as a predetermined calorie consumption value; in the calorie consumption mode, the display unit displays the activity category currently performed by the user, and continues The time at which the activity was performed, the amount of calories burned and the amount of calories to be consumed (ie, the value of the calorific value of calories and the calorific value of calories, or the difference between the target value and the calorific value of calories) . And the view of the village 3 village ___ module 1 module! 22 to: - a - Zhao set 'when the action senses Η ' and the first generation of the first generation unit W, Tian Hao When directly connected to the center, the rational sensing module 2 and the computing module can be omitted. The action sensing module and the physiological control system y4 are used to obtain the initial generation. Her 2 fields value 'can pass through the central processing unit of the Chi 3 - 201105291 when the user is performing various activities of the metabolic element 3! f is displayed by the display unit 32 the central processing unit Li Li The user can use the caloric value of the present invention to calculate the amount of calories he has consumed and the amount of calories to be consumed, and use it for weight loss or physical training. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The calculation method includes: a shift of inertia = in, to generate the inertia signal; an inertia feature processing step ', the inertial feature capturing unit 12 calculates the inertial signal to obtain a = characteristic signal; - first a metabolic equivalent calculation step S3, which is an activity type and a metabolic equivalent value of the action performed by the user's objective by the inertia characteristic of the η(4) inertia characteristic unit to generate the motion=thank-equivalent value; The physiological signal sensing step S4 is performed by the physiological signal sensing unit 21 to sense the physiological signal of the user; the physiological characteristic processing step S5, wherein the physiological characteristic capturing unit 22 calculates the physiological state of the user. Obtaining the physiological characteristic signal of the user; a second metabolic equivalent calculating step S6' is generated by the second metabolic equivalent calculating unit 23 to generate the physiological metabolic equivalent value and the characteristic quantity by the physiological signal and the physiological characteristic signal respectively Value; an accurate calculation step of a metabolic equivalent, which is obtained by using the above-described different regression method from the metabolic equivalent value, the physiological metabolic equivalent value, and the characteristic metabolic equivalent value The equivalent value, that is, the more accurate metabolic equivalent value obtained for the activity performed by the user; a calorie calculation step % 'which accumulates the exercise time of the user for the activity, and the input is ί ί —13 — 201105291 The metabolic equivalent value, the i, the movement _ body (four) count (four) money in each
央處理單元31 儲存各時間點所對應的代謝當量值、消耗之 ;一資料顯示步驟S10 一資料儲存步驟S9,係利用該中 熱量及使用者白;ί—私λ .The central processing unit 31 stores the metabolic equivalent value and the consumption corresponding to each time point; a data display step S10, a data storage step S9, uses the medium heat and the user white;
的資訊。 32顯示該資料儲存步驟S9中所儲存 請參照第6圖所示,其係綠示該使用者使用本發明較 佳實施例之代謝當量計算系統之轉圖。軸佩測模电丄 裝設於該使用者之手腕,且該運算肋3與該動作感測模 組1 -體設置,因而可省略該第一傳輸單元14;該生理感 測模組2係選擇為該,並喊貼近於該使用者 最接近’、^臟。[5位的體表,且該使用者可透過該按鍵奶操 作本發明之代謝當量計算祕。其+,魏作感測模組!所 預設的座標系統較佳係具有相互垂直之- X軸、-γ軸及 一 Z軸,以便在該動作感測模組丨 慣性訊號感測單元u的該三個軸向各測得一 ax、ay或az,以構成該慣性訊號。 此外,需注意的是,當該生理訊號感測單元21選自該熱 張感應器’以偵測並計算由該使用者之體表經過該熱漲感應器 所消散的熱量作為該生理訊號時,則該生理感測模組2可省略 該生理特徵擷取單元22,而該生理訊號感測單元21、第二代 謝當量計算單元23及第二傳輸單元24係串聯連接。據此,該 第二代謝當量計算單元23係僅根據該生理訊號取得該生理代 謝當量值’而該中央處理單元31亦僅利用該動作代謝當量 值及生理代謝當量值以該演算法計算獲得該輸出代謝當量 —14 — 201105291 二另=該生理感測模組2省略設置該生理特徵擷取單元 未^丰®/明之代謝當4計算方法射對應省略該生理特徵 處理步驟85,且該第二代謝當量計算步驟S6僅由該第 代謝當=料元η㈣生料缝纽纽代謝匕 =該:枓儲存步驟89亦可省略,而直接將各該代謝 步驟SK)顯示。用者自讀人之個人資料由資料顯示Information. 32 shows the storage in the data storage step S9. Referring to Fig. 6, it is a green diagram showing the user's use of the metabolic equivalent calculation system of the preferred embodiment of the present invention. The shaft sensing die is mounted on the wrist of the user, and the computing rib 3 is disposed in the body of the motion sensing module, so that the first transmitting unit 14 can be omitted; the physiological sensing module 2 is Select for this and shout close to the user closest to ', ^ dirty. [5-position body surface, and the user can operate the metabolic equivalent calculation of the present invention through the button milk. Its +, Wei Zuo sensing module! Preferably, the preset coordinate system has mutually perpendicular - X axis, - γ axis and a Z axis, so as to be measured in the three axial directions of the motion sensing module 丨 inertial signal sensing unit u Ax, ay or az to constitute the inertial signal. In addition, it should be noted that when the physiological signal sensing unit 21 is selected from the thermal sensor to detect and calculate the heat dissipated by the user's body surface through the thermal sensor as the physiological signal. The physiological sensing module 2 can omit the physiological feature capturing unit 22, and the physiological signal sensing unit 21, the second metabolic equivalent calculating unit 23, and the second transmitting unit 24 are connected in series. Accordingly, the second metabolic equivalent calculation unit 23 obtains the physiological metabolic equivalent value only based on the physiological signal, and the central processing unit 31 also uses only the action metabolic equivalent value and the physiological metabolic equivalent value to the algorithm. Calculating and obtaining the output metabolic equivalent - 14 - 201105291 2. The physiological sensing module 2 omits the setting of the physiological characteristic capturing unit, and the metabolism is determined by omitting the physiological characteristic processing step 85, and The second metabolic equivalent calculation step S6 is only performed by the first metabolism = material element η (four) raw material joint metabolism 该 = the: 枓 storage step 89 can also be omitted, and each of the metabolic steps SK) is directly displayed. User profile of self-reading person is displayed by data
4 ’不上所述’相較於習知之熱量雜量測裝置僅由量測 j使用者〜跳頻率且需自行設定動作_觸應之代謝冬 量值’完全未將使用者本身從事該項活動而隨時變動的i =程度納入評估範嘴,而導致其所計算的結果具有極 j、、π本發明之代謝#量計算⑽及其方法乃利用該動 <£ 1自動細彳使用者所進行之活朗類別及該活 所對應之動作代謝當量值,且更以該生理特徵娜單元 f求得使用者的生理訊號,以及彻該生理訊號進行特徵 4取所獲叙生轉徵訊號’时別求得該生理訊號及生 理特徵訊號所分別對應之生理代謝當量值及特徵代謝當量 值。猎此’本發明之代謝當量計算系統及其方法可藉由該三 種代謝w里值以―演异法更為精確地計算該 f ’並由本系統根據使用者之基本資料計算並顯it用 者目别所進行之活動類別、持續進行該活動之時間、當曰 已消耗之熱量值及尚待消耗的熱量值。 雖然本發明已利用上述較佳實施例揭示,然其並非用以 限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍 之内’相對上述實施例進行各種更動與修改仍屬本發明所保護 一 J5 — 201105291 之技術购’因此本發明·之保護麵當視後附之申請專利範 所界定者為準。 【圖式簡單說明】 第1圖··習用熱量消耗量測兼置。 第2圖♦·本發明較佳實施例之代謝當量計算系統之架構 示意圖。 第3圖:本發明較佳實施例之代謝當4計算祕之立體 圖。 旭· =圖本發明較佳實施例之心電訊號波形示意圖。 流程圖5。圖:本發明較佳實施例之代謝當量計算方法之操作 第6圖:本剌較佳實_之代謝#量計算純之示意 【主要元件符號說明】 〔本發明〕 慣性訊號感測單元 第一傳輸單元 生理訊號感測單元 生理特徵擷取單元 第二傳輸單元 中央處理單元 1動作感測模組 u 12慣性特徵擷取單元 13第一代謝當量計算單元14 2 生理感測模組 u 211量測電極 n 23第二代謝當量計算單元24 3 運算模組 —16 — 201105291 32 顯示單元 S1 慣性訊號感測步驟 S3第一代謝當量計算步驟 S4 生理訊號感測步驟 S6第二代謝當量計算步驟 S7 代謝當量精確計算步驟 S8熱量計算步驟 S10資料顯示步驟 ax X軸加速度訊號 az Z軸加速度訊號 〔習知〕 9 熱量消耗量測裝置 92儲存單元 94 量測單元 96 顯示單元 321按鍵 S2 慣性特徵處理步驟 S5 生理特徵處理步驟 S9 資料儲存歩驟 ay Y軸加速度訊號 91 輸入單元 93 計時器 95 中央處理單元 97 電源 一 17 _4 'not on the above' compared to the conventional thermal measurement device only by measuring the j user ~ hop frequency and need to set the action _ the metabolic winter value of the touch - the user is not engaged in the item The i = degree of activity and change at any time is included in the evaluation of the mouth, and the result of the calculation has a maximum j, π metabolism of the invention # quantity calculation (10) and its method is to use the movement < £ 1 to automatically fine-tune the user The activity type and the action metabolic equivalent value corresponding to the activity, and the physiological signal of the user is obtained by the physiological unit Na, and the feature 4 is obtained by the physiological signal. At the time of the signal, the physiological metabolic equivalent value and the characteristic metabolic equivalent value corresponding to the physiological signal and the physiological characteristic signal are respectively determined. The metabolic equivalent calculation system and method thereof of the present invention can calculate the f ' more accurately by the "differential method" by the three metabolic w values and calculate and display the user based on the basic data of the user. The type of activity performed, the time of the activity, the amount of calories burned, and the amount of calories still to be consumed. Although the present invention has been disclosed in the above-described preferred embodiments, it is not intended to limit the invention, and it is intended that those skilled in the art can make various changes and modifications to the above-described embodiments without departing from the spirit and scope of the invention. The invention is protected by the technology of J5 — 201105291. Therefore, the protection of the present invention is subject to the definition of the patent application. [Simple description of the diagram] Fig. 1 · The use of calorie consumption measurement. Figure 2 is a schematic illustration of the architecture of a metabolic equivalent calculation system in accordance with a preferred embodiment of the present invention. Fig. 3 is a perspective view showing the metabolism of the preferred embodiment of the present invention. Asahi = a schematic diagram of the ECG waveform of the preferred embodiment of the present invention. Flow chart 5. Figure: Operation of the metabolic equivalent calculation method of the preferred embodiment of the present invention. Fig. 6: Benxi's preferred _ metabolism _ quantity calculation pure indication [main component symbol description] [present invention] inertial signal sensing unit first Transmission unit physiological signal sensing unit physiological characteristic capturing unit second transmission unit central processing unit 1 motion sensing module u 12 inertial feature capturing unit 13 first metabolic equivalent calculating unit 14 2 physiological sensing module u 211 measuring Electrode n 23 second metabolic equivalent calculation unit 24 3 arithmetic module - 16 - 201105291 32 display unit S1 inertial signal sensing step S3 first metabolic equivalent calculation step S4 physiological signal sensing step S6 second metabolic equivalent calculation step S7 metabolic equivalent Accurate calculation step S8 calorie calculation step S10 data display step ax X-axis acceleration signal az Z-axis acceleration signal [conventional] 9 calorie consumption measuring device 92 storage unit 94 measurement unit 96 display unit 321 button S2 inertial characteristic processing step S5 physiological Feature Processing Step S9 Data Storage Step ay Y-Axis Acceleration Signal 91 Input Unit 93 Timer 95 Central A power supply unit 97 _ 17