NO126071B - - Google Patents
Download PDFInfo
- Publication number
- NO126071B NO126071B NO1390/71A NO139071A NO126071B NO 126071 B NO126071 B NO 126071B NO 1390/71 A NO1390/71 A NO 1390/71A NO 139071 A NO139071 A NO 139071A NO 126071 B NO126071 B NO 126071B
- Authority
- NO
- Norway
- Prior art keywords
- catalyst
- approx
- weight percent
- hydrocracking
- temperature
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 claims description 80
- 238000000034 method Methods 0.000 claims description 25
- 238000004517 catalytic hydrocracking Methods 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 239000001257 hydrogen Substances 0.000 claims description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 19
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 17
- 150000002430 hydrocarbons Chemical class 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 229930195733 hydrocarbon Natural products 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims description 9
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- 238000005470 impregnation Methods 0.000 claims 3
- 206010011416 Croup infectious Diseases 0.000 claims 1
- 201000010549 croup Diseases 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 150000002941 palladium compounds Chemical class 0.000 claims 1
- 238000005336 cracking Methods 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- 239000000908 ammonium hydroxide Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- 230000001066 destructive effect Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- NZJZJHQFVDOVMT-UHFFFAOYSA-N [O-2].[O-2].[O-2].[Al+3].[Al+3].O[Si](O)(O)O Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3].O[Si](O)(O)O NZJZJHQFVDOVMT-UHFFFAOYSA-N 0.000 description 2
- ZYIDINLBWNWHGY-UHFFFAOYSA-N [Si](O)(O)(O)O.[O-2].[Zr+4].[O-2].[Al+3] Chemical compound [Si](O)(O)(O)O.[O-2].[Zr+4].[O-2].[Al+3] ZYIDINLBWNWHGY-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- -1 e.g. when Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 235000015110 jellies Nutrition 0.000 description 2
- 239000008274 jelly Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 150000003754 zirconium Chemical class 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 241000158147 Sator Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- CTNKBLMNHFSRFU-UHFFFAOYSA-N [Th].[Mg] Chemical compound [Th].[Mg] CTNKBLMNHFSRFU-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 229940059913 ammonium carbonate Drugs 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- UQPSGBZICXWIAG-UHFFFAOYSA-L nickel(2+);dibromide;trihydrate Chemical compound O.O.O.Br[Ni]Br UQPSGBZICXWIAG-UHFFFAOYSA-L 0.000 description 1
- ZCYXXKJEDCHMGH-UHFFFAOYSA-N nonane Chemical compound CCCC[CH]CCCC ZCYXXKJEDCHMGH-UHFFFAOYSA-N 0.000 description 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N normal nonane Natural products CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- INIOZDBICVTGEO-UHFFFAOYSA-L palladium(ii) bromide Chemical compound Br[Pd]Br INIOZDBICVTGEO-UHFFFAOYSA-L 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- KGRJUMGAEQQVFK-UHFFFAOYSA-L platinum(2+);dibromide Chemical compound Br[Pt]Br KGRJUMGAEQQVFK-UHFFFAOYSA-L 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 125000005624 silicic acid group Chemical group 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D41/00—Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge aperture; Protective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
- B65D41/32—Caps or cap-like covers with lines of weakness, tearing-strips, tags, or like opening or removal devices, e.g. to facilitate formation of pouring openings
- B65D41/40—Caps or cap-like covers adapted to be secured in position by permanent deformation of the wall-engaging parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2401/00—Tamper-indicating means
- B65D2401/15—Tearable part of the closure
- B65D2401/35—Vertical or axial lines of weakness
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Closures For Containers (AREA)
- Catalysts (AREA)
Description
Fremgangsmåte til fremstilling av en hydrokrakkingkatalysator av den selektive typen. Method for producing a hydrocracking catalyst of the selective type.
Denne oppfinnelse angår en katalysator som kan anvendes til hydrokrakking av hydrocarboner, og en fremgangsmåte til fremstilling av en slik katalysator. This invention relates to a catalyst which can be used for the hydrocracking of hydrocarbons, and a method for producing such a catalyst.
Destruktiv hydrogenering, også omtalt som «hydrokrakking», til adskillelse fra den enkle addisjon av hydrogen ved umettede bindinger mellom hydrocarbonatomer, medfører bestemte strukturendringer og kan betegnes som krakking under slike hydrogeneringsbetingelser at de lavtkokende produkter fra krakkingreaksj onene er vesentlig mer mettet enn når hydrogen eller hydrogenavgivende stoffer ikke er til-stede. Destruktive hydrogeneringsprosesser anvendes i alminnelighet på kull eller tunge rest- eller destillatolj er for å fremstille vesentlige mengder av lavtkokende mettede produkter og for i noen utstrek-ning å fremstille mellomprodukter som kan nyttes som brensel i husholdningen, og enda tyngre fraksjoner som finner anvendelse og egner seg som smøremidler. Disse destruktive hydrogenerings- eller hydrokrakkings-prosesser kan finne sted enten på en rent termisk basis eller i nærvær av en katalysator. En hel del stoffer har vært anvendt som katalysatorer, f.eks. metallene i jerngrup-pen innbefattende jern, nikkel og kobolt, og oxydene og sulfidene av krom, molybden og wolfram som representerer metallene i venstre kolonne av Gruppe VI i det periodiske system (Gruppe VI B). I tillegg har tallrike katalysatorer på basis av blandet metall og metalloxyd vært prøvd, såvel som mindre vanlige metallsalter. Destructive hydrogenation, also referred to as "hydrocracking", to distinguish it from the simple addition of hydrogen by unsaturated bonds between hydrocarbon atoms, entails specific structural changes and can be described as cracking under such hydrogenation conditions that the low-boiling products from the cracking reactions are significantly more saturated than when hydrogen or hydrogen-releasing substances are not present. Destructive hydrogenation processes are generally used on coal or heavy residual or distillate oil to produce significant quantities of low-boiling saturated products and to some extent to produce intermediate products that can be used as fuel in the household, and even heavier fractions that find use and are suitable themselves as lubricants. These destructive hydrogenation or hydrocracking processes can take place either on a purely thermal basis or in the presence of a catalyst. Quite a few substances have been used as catalysts, e.g. the metals in the iron group including iron, nickel and cobalt, and the oxides and sulphides of chromium, molybdenum and tungsten which represent the metals in the left column of Group VI of the periodic table (Group VI B). In addition, numerous catalysts based on mixed metal and metal oxide have been tried, as well as less common metal salts.
Hydrokrakkingen, eller spaltningen av bindinger mellem carbonatomer, er forholdsvis viktig ved behandling av krakkede bensiner, spesielt termisk krakket bensin, enten alene eller i blanding med vanlig destillert bensin. Kontrollert eller selektiv krakking er høyst ønskelig, fordi slik krakking vanligvis resulterer i et produkt med forbedrede anti-bankningsegenskaper. I alminnelighet har produktene med lavere molekylvekt høyere oktantall, og et endelig bensinprodukt med lavere gjennomsnittlig molekylvekt vil således normalt ha et høy-ere oktantall. Enn videre oppstår det under krakkingsreaksjonen isomerisering eller andre molekylære omordninger, som også resulterer i produkter med bedre anti-bankningsegenskaper. Den selektive krakkingen er spesielt fordelaktig når chargen inneholder bestanddeler som koker over ca. 204° C, og disse komponenter så skal over-føres til fraksjoner som koker under ca. 204° C. Det er derfor lett å innse at den selektive krakking ikke bare resulterer i et kvalitetsmessig forbedret produkt, men også i en øket mengde av det ønskede produkt. Hydrocracking, or the splitting of bonds between carbon atoms, is relatively important in the treatment of cracked petrol, especially thermally cracked petrol, either alone or in a mixture with ordinary distilled petrol. Controlled or selective cracking is highly desirable, because such cracking usually results in a product with improved anti-knock properties. In general, the products with a lower molecular weight have a higher octane number, and a final petrol product with a lower average molecular weight will thus normally have a higher octane number. Furthermore, isomerization or other molecular rearrangements occur during the cracking reaction, which also result in products with better anti-knock properties. The selective cracking is particularly advantageous when the charge contains components that boil over approx. 204° C, and these components must then be transferred to fractions that boil below approx. 204° C. It is therefore easy to realize that the selective cracking not only results in a quality-improved product, but also in an increased amount of the desired product.
Imidlertid må krakkingen være selektiv og må ikke resultere i at de normalt flytende hydrocarboner fullstendig eller i det vesentlige spaltes til normalt gassformige hydrocarboner. Den ønskede selektive krakkingen innbefatter vanligvis at et høyerekokende hydrocarbonmolekyl spaltes i to molekyler som begge normalt er flytende hydrocarboner. I mindre grad innbefatter den fjernelse av methyl-, ethyl- og propyl-grupper som, i nærvær av hydrogen, overføres til methan, ethan og propan. Imidlertid minskes fjernelsen av disse radi-kaler ved regulering av katalysatorblandin-gen og i noen grad ved regulering av reak-sjonsbetingelsene. F.eks. kan dekan i nærvær av hydrogen reduseres til to pentan-molekyler, heptan til hexan og nonan til oktan eller heptan. På den annen side vil uregulert eller ikke-selektiv krakking resultere i at de normalt flytende hydrocarboner spaltes til normalt gassformige hydrocarboner, som f.eks. når det under vedvarende de-methylering av normal-heptan dannes syv methyl-grupper som, i nærvær av hydrogen, overføres til methan. However, the cracking must be selective and must not result in the normally liquid hydrocarbons being completely or substantially split into normally gaseous hydrocarbons. The desired selective cracking usually involves splitting a higher-boiling hydrocarbon molecule into two molecules, both of which are normally liquid hydrocarbons. To a lesser extent, it involves the removal of methyl, ethyl and propyl groups which, in the presence of hydrogen, are transferred to methane, ethane and propane. However, the removal of these radicals is reduced by regulating the catalyst mixture and to some extent by regulating the reaction conditions. E.g. decane in the presence of hydrogen can be reduced to two pentane molecules, heptane to hexane and nonane to octane or heptane. On the other hand, unregulated or non-selective cracking will result in the normally liquid hydrocarbons being split into normally gaseous hydrocarbons, such as e.g. when, during sustained de-methylation of normal heptane, seven methyl groups are formed which, in the presence of hydrogen, are transferred to methane.
Enda en viktig innvending mot ikke-selektive eller ukontrollert krakking er at denne form for krakking vil resultere i hur-tigere dannelse av tørre mengder koks eller kullholdig stoff som avsettes på katalysatoren og nedsetter eller ødelegger dens katalyserende aktivitet med hensyn til de ønskede reaksjoner. Dette resulterer igjen i kortere drifts-sykluser eller -perioder, med nødvendigheten af hyppigere regenering av katalysatoren ved avbrenning av det kull-holdige produkt. Skulle katalysatoraktivi-teten ødelegges, kan det være nødvendig å stanse prosessen for å fjerne den gamle katalysatoren og erstatte den med en ny. Another important objection to non-selective or uncontrolled cracking is that this form of cracking will result in faster formation of dry amounts of coke or carbonaceous material which is deposited on the catalyst and reduces or destroys its catalytic activity with regard to the desired reactions. This in turn results in shorter operating cycles or periods, with the necessity of more frequent regeneration of the catalyst when burning the coal-containing product. Should the catalyst activity be destroyed, it may be necessary to stop the process to remove the old catalyst and replace it with a new one.
Den foreliggende oppfinnelse skaffer en katalysator som vil tilfredsstille alle de krav til kontrollert eller selektiv hydrokrakking som er fremsatt ovenfor, slik at optimalt utbytte av det ønskede produkt erholdes ved hydrokrakkingsprosessen. Katalysatoren ifølge den foreliggende oppfinnelsen (jfr. påstand 1) innbefatter en fast katalysatorbærer og minst en bestanddel valgt ut av metallene og oxyder av metallene i Gruppe VIII i elementenes periodiske system, idet dette katalysatormateri-alet er blitt oxydert ved en temperatur hovedsakelig i området me Hem 700° og 760° C og senere redusert i nærvær av hydrogen. The present invention provides a catalyst which will satisfy all the requirements for controlled or selective hydrocracking that are stated above, so that optimal yield of the desired product is obtained in the hydrocracking process. The catalyst according to the present invention (cf. claim 1) includes a solid catalyst carrier and at least one component selected from the metals and oxides of the metals in Group VIII in the periodic table of the elements, this catalyst material having been oxidized at a temperature mainly in the range of Heme 700° and 760° C and later reduced in the presence of hydrogen.
Oppfinnelsen skaffer videre en fremgangsmåte til fremstilling av en hydrokrakkingkatalysator som vil gjøre det mulig å gjennemføre en hydrokrakkingsprosess under de økonomisk mest ønskelige forhold, hvorved de maksimale mengder av hydrocarboner overføres til ønskelige produkter. Ved denne fremgangsmåte ifølge oppfinnelsen (jfr. påstand 1) blir en fast katalysatorbærer impregnert med en forbindelse av minst ett av metallene av Gruppe VIII i elementenes periodiske system, og det im-pregnerte bærermateriale underkastes en oxyderingsbehandling ved en temperatur hovedsakelig i området mellom 700° og 760° C og senere en reduksjonsbehandling ved forhøyet temperatur i nærvær av hydrogen (jfr. påstand 1). The invention further provides a method for producing a hydrocracking catalyst which will make it possible to carry out a hydrocracking process under the most economically desirable conditions, whereby the maximum amounts of hydrocarbons are transferred to desirable products. In this method according to the invention (cf. claim 1), a solid catalyst carrier is impregnated with a compound of at least one of the metals of Group VIII in the periodic table of the elements, and the impregnated carrier material is subjected to an oxidation treatment at a temperature mainly in the range between 700° and 760° C and later a reduction treatment at elevated temperature in the presence of hydrogen (cf. claim 1).
Det har vist seg, at den temperatur ved hvilken en sammensetning innbefattende en forbindelse av minst ett av metallene i Gruppe VIII i elementenes periodiske system på et fast bærermateriale kalsineres eller oxyderes, er viktig for erholdelse av en katalysator som skal kunne yte maksimal effekt under fremstillingen av det ønskede produkt. Således omfatter katalysatoren, foruten bærermaterialet, minst et metall, eller oxyd av dette, valgt fra gruppen bestående av jern, kobolt, nikkel, palladium, platina, ruthenium, rhodium, osmium og iridium. Blandt passende faste bærermate-rialer finnes forskjellige som er effektive som krakkingskatalysatorer, f.eks. naturlig forekommende aluminiumsilikater, spesielt når de er syrebehandlet, og syntetisk produserte sammensetninger av kiselsyre-aluminiumoxyd, kiselsyre-zirkoniumoxyd, kiselsyre-aluminiumoxyd-zirkoniumoxyd, kiselsyre-magnesiumoxyd, kiselsyre-aluminiumoxyd-magnesiumoxyd og kiselsyre-aluminiumoxyd-thoriumoxyd. Det foretrukne faste bæremateriale innbefatter en syntetisk sammensetning av kiselsyre og aluminiumoxyd. It has been shown that the temperature at which a composition including a compound of at least one of the metals in Group VIII in the periodic table of the elements on a solid support material is calcined or oxidized is important for obtaining a catalyst that should be able to produce maximum effect during production of the desired product. Thus, the catalyst comprises, in addition to the carrier material, at least one metal, or oxide thereof, selected from the group consisting of iron, cobalt, nickel, palladium, platinum, ruthenium, rhodium, osmium and iridium. Among suitable solid support materials there are various which are effective as cracking catalysts, e.g. naturally occurring aluminum silicates, especially when acid-treated, and synthetically produced compositions of silica-alumina, silica-zirconium, silica-alumina-zirconium, silica-magnesium, silica-alumina-magnesium and silica-alumina-thorium. The preferred solid support material includes a synthetic composition of silicic acid and aluminum oxide.
De syntetisk produserte faste bære-materialer kan fremstilles ved hvilke som helst passende metoder, omfattende separat eller suksessiv utfelning eller samutfelning. F.eks. kan aluminiumoxyd fremstilles ved å tilsette et reagens, som f.eks. ammonium-hydroxyd eller -carbonat, til et aluminiumsalt, som f.eks. aluminiumklorid, aluminiumnitrat eller aluminiumacetat, og i slike mengder at der dannes aluminiumhydro-xyd, som ved tørring overføres til aluminiumoxyd. Vanligvis foretrekkes å anvende som aluminiumsalt et aluminiumklorid for derved å lette de senere vaskings- og filt-reringsprosesser, og også fordi det synes å gi de beste resultater. Etter at aluminium-oxydet er fremstillet, vaskes og filtreres vanligvis en eller flere ganger for å få fjernet oppløselige forurensninger. Filtreringen av aluminlumoxydet bedres når vaskevan-net inneholder små mengder ammonium-hydroxyd. Kiselsyre kan fremstilles ved enhver passende metode, f.eks. ved å blande vannglass og en mineralsyre under betingelser som medfører utfelning av en kiselsyre-hydrogel som så vaskes med vann inneholdende en liten mengde elektrolytt for å få fjernet natrium-ioner. Magnesium-thorium- og zirkoniumoxyder kan fremstilles ved lignende velkjente metoder. The synthetically produced solid support materials can be prepared by any suitable methods, including separate or successive precipitation or co-precipitation. E.g. aluminum oxide can be prepared by adding a reagent, such as ammonium hydroxide or -carbonate, to an aluminum salt, such as e.g. aluminum chloride, aluminum nitrate or aluminum acetate, and in such quantities that aluminum hydroxide is formed, which on drying is transferred to aluminum oxide. It is usually preferred to use an aluminum chloride as the aluminum salt in order to facilitate the later washing and filtering processes, and also because it seems to give the best results. After the aluminum oxide is produced, it is usually washed and filtered one or more times to remove soluble impurities. The filtration of the aluminum oxide is improved when the wash water contains small amounts of ammonium hydroxide. Silicic acid can be prepared by any suitable method, e.g. by mixing water glass and a mineral acid under conditions which lead to the precipitation of a silicic acid hydrogel which is then washed with water containing a small amount of electrolyte to remove sodium ions. Magnesium-thorium and zirconium oxides can be prepared by similar well-known methods.
Når katalysatoren ønskes fremstillet i form av partikler av ensartet størrelse og form, kan dette lett la seg gjennemføre ved at man maler den delvis tørrede oxyd-kake med et passende smøremiddel, som f.eks. stearinsyre, harpiks eller grafitt, hvoretter partiklene formes i et hvilket som helst passende pelletiserings- eller ekstrusjons-apparat. When the catalyst is to be produced in the form of particles of uniform size and shape, this can easily be achieved by grinding the partially dried oxide cake with a suitable lubricant, such as e.g. stearic acid, resin or graphite, after which the particles are formed in any suitable pelletizing or extrusion apparatus.
Når krakking-komponenten innbefatter minst to varmefaste uorganiske oxyder, kan sammensetningen fremstilles ved enhver passende kjent metode omfattende separate, suksessive eller samutfelnings-metoder. When the cracking component includes at least two refractory inorganic oxides, the composition may be prepared by any suitable known method including separate, successive or co-precipitation methods.
De foretrukne krakkingbestanddeler innbefattende kiselsyre- aluminiumoxyd og kiselsyre-aluminiumoxyd-zirkoniumoxyd, fremstilles fortrinnsvis ved at man blander en syre, som f.eks. saltsyre eller svovelsyre, med kommersielt vannglass under betingelser som medfører utfelning av kiselsyre, vasker med ansyret vann eller på annen måte fjerner natrium-ioner, blander i et aluminiumsalt som f.eks. aluminiumklorid, aluminiumsulfat, aluminiumnitrat og/eller zirkoniumsalt, og enten tilsetter et basisk utfelningsmiddel, som f.eks. ammonium-hydroxyd, for å få utfelt aluminiumoxyd og/ eller zirkoniumoxyd, eller danner det ønskede oxyd eller oxyder ved termisk spalt-ning av saltet, alt etter som forholdene til-later. Krakkingbestanddelen kiselsyre-aluminiumoxyd-zirkoniumoxyd kan dannes ved at man tilsetter aluminium- og/eller zirkoniumsaltene sammen eller hver for seg. De andre krakkingbestanddelene kan fremstilles på lignende måte, dog ikke nød-vendigvis med ekvivalente resultater. Kule-formede oxyder eller oxyd-sammensetninger egner seg også i høy grad. Disse kan fremstilles ved kjente metoder som vanligvis innebærer at små dråper av kolloidale oxydoppløsninger ledes inn i et oljebad under forhold som bevirker at stoffene fast-ner til gel-kuler som så aldres, vaskes og tørres. En typisk metode til fremstilling av en krakkingbestanddel av kiselsyre-aluminiumoxyd er beskrevet i det første av nedenstående eksempler, og krakkingbestanddelen som er fremstillet i dette ek-semplet representerer et spesielt foretruk-ket bærermateriale til anvendelse i kataly- The preferred cracking ingredients, including silicic acid-aluminum oxide and silicic acid-aluminum oxide-zirconium oxide, are preferably prepared by mixing an acid, such as e.g. hydrochloric or sulfuric acid, with commercial water glass under conditions which result in the precipitation of silicic acid, wash with de-acidified water or otherwise remove sodium ions, mix in an aluminum salt such as e.g. aluminum chloride, aluminum sulfate, aluminum nitrate and/or zirconium salt, and either adds a basic precipitating agent, such as e.g. ammonium hydroxide, to precipitate aluminum oxide and/or zirconium oxide, or form the desired oxide or oxides by thermal decomposition of the salt, depending on what the conditions allow. The cracking component silicic acid-aluminium oxide-zirconium oxide can be formed by adding the aluminum and/or zirconium salts together or separately. The other cracking components can be prepared in a similar way, although not necessarily with equivalent results. Spherical oxides or oxide compositions are also highly suitable. These can be produced by known methods which usually involve small drops of colloidal oxide solutions being introduced into an oil bath under conditions which cause the substances to stick to gel balls which are then aged, washed and dried. A typical method for producing a silicic aluminum oxide cracking component is described in the first of the examples below, and the cracking component produced in this example represents a particularly preferred carrier material for use in catalytic
satoren ifølge den foreliggende oppfinnelse. sator according to the present invention.
Den bestanddel av katalysatoren som omfatter metallet fra Gruppe VIII, blandes med det faste bærermateriale vanligvis i en totalmengde fra ca. 0,01 til 20 vektprosent av katalysatoren, beregnet som metall. De spesielt ønskelige metaller omfatter platina, palladium og nikkel, og de kan forenes med katalysatoren ved enhver passende metode. En slik metode går ut på å forene metall-bestanddelen med krakkingbestanddelen ved å danne en vannoppløsning av metal-lets halogenid, som f.eks. platina-klorid, palladium-klorid, nikkel-klorid, platina-bromid, palladium-bromid, nikkel-bromid, eller av et nitrat, for eksempel nikkel-nitrat, derpå fortynne oppløsningen og tilsette den erholdte fortynnede oppløsning til krakkingbestanddelen i en damptørke. Ved en alternativ metode tilsettes separate vandige oppløsninger av metallforbindel-sen og ammoniumhydroxydet for å gi den påfølgende oppløsning en pH innen området fra 5 til ca. 10. Denne oppløsningen blandes derpå med den andre bestanddelen av katalysatoren. Andre passende former i hvilke metallene kan anvendes, omfatter kolloidale oppløsninger eller supensjoner av f.eks. cyanidet, hydroxydet eller sulfidet av det ønskede metall. The component of the catalyst comprising the metal from Group VIII is mixed with the solid support material usually in a total amount from approx. 0.01 to 20 percent by weight of the catalyst, calculated as metal. Particularly desirable metals include platinum, palladium, and nickel, and they may be combined with the catalyst by any suitable method. Such a method involves combining the metal component with the cracking component by forming a water solution of the metal's halide, such as e.g. platinum chloride, palladium chloride, nickel chloride, platinum bromide, palladium bromide, nickel bromide, or of a nitrate, for example nickel nitrate, then dilute the solution and add the resulting dilute solution to the cracking component in a steam dryer. In an alternative method, separate aqueous solutions of the metal compound and the ammonium hydroxide are added to give the subsequent solution a pH within the range from 5 to approx. 10. This solution is then mixed with the second component of the catalyst. Other suitable forms in which the metals can be used include colloidal solutions or suspensions of e.g. the cyanide, hydroxide or sulfide of the desired metal.
Konsentrasjonen av metall- eller me-talloxydbestanddelen valgt ut fra Gruppe VIII i det periodiske system ligger fortrinnsvis innenfor området fra ca. 0,01 til ca. 10 vektprosent av den endelige katalysator (beregnet som metallet). The concentration of the metal or metal oxide component selected from Group VIII in the periodic table is preferably within the range from approx. 0.01 to approx. 10% by weight of the final catalyst (calculated as the metal).
Den endelige sammensetningen etter at alle katalysatorens bestanddeler er til-stede, tørres derpå i et tidsrom av ca. 1 til ca. 8 timer eller mer i en damptørke og oxyderes så i en oxyderende atmosfære, som f.eks. luft eller annen gass som inneholder oxygen, ved en temperatur i området fra ca. 700° til ca. 760° C over et tidsrom av ca. 1 til ca. 8 timer eller mer. Katalysatoren reduseres deretter over et tidsrom av ca. en halv til ca. en time ved en temperatur mellom ca. 260° og ca. 540° C i nærvær av hydrogen. Det er også ment å skulle ligge innenfor denne oppfinnelses ramme, at re-duksjonen av den tidligere anvendte katalysator derav kan gjennomføres ved at man reduserer katalysatoren in situ ved hjelp av en hydrogenstrøm under en temperatur på ca. 315° C etter at katalysatoren er blitt plasert i en reaksjonssone for hydrokrakking og før materialet som skal hydrokrak-kes er blitt ledet inn i denne reaksjons-sonen. The final composition, after all the catalyst's constituents are present, is then dried for a period of approx. 1 to approx. 8 hours or more in a steam dryer and then oxidized in an oxidizing atmosphere, such as air or other gas containing oxygen, at a temperature in the range from approx. 700° to approx. 760° C over a period of approx. 1 to approx. 8 hours or more. The catalyst is then reduced over a period of approx. a half to approx. one hour at a temperature between approx. 260° and approx. 540° C in the presence of hydrogen. It is also intended to be within the framework of this invention, that the reduction of the previously used catalyst can be carried out by reducing the catalyst in situ by means of a hydrogen stream under a temperature of approx. 315° C after the catalyst has been placed in a reaction zone for hydrocracking and before the material to be hydrocracked has been led into this reaction zone.
Som angitt ovenfor er katalysatorene som fremstilles ved fremgangsmåten ifølge den foreliggende oppfinnelse spesielt egnet til bruk ved hydrokrakking av gassolje og fraksjoner derav. De eksakte driftsbetingelser avhenger dels av chargens art og dels av den anvendte katalysators aktivitet. Vanligvis utføres prosessen ved temperaturer mellom ca. 260° og 540° C, et trykk mellom ca. 3,4 og ca. 100 atmosfærer eller mer, og med tilførselshastighet (definert som det flytende oljevolum tilført pr. time pr. katalysatorvolum i reaksjons-sonen) mellom ca. 0,5 og ca. 20 eller mer. Hydro-krakkingreaksjonen utføres i nærvær av hydrogen som kan tilføres fra en egen kilde eller inngå syklisk i prosessen. Ved den foretrukne driftsmåte produseres og re-sirkuleres tilstrekkelig hydrogen slik at til-førsel av hydrogen utenfra ikke er nødven-dig. As indicated above, the catalysts produced by the method according to the present invention are particularly suitable for use in the hydrocracking of gas oil and fractions thereof. The exact operating conditions depend partly on the nature of the charge and partly on the activity of the catalyst used. Usually, the process is carried out at temperatures between approx. 260° and 540° C, a pressure between approx. 3.4 and approx. 100 atmospheres or more, and with a feed rate (defined as the liquid oil volume fed per hour per catalyst volume in the reaction zone) between approx. 0.5 and approx. 20 or more. The hydrocracking reaction is carried out in the presence of hydrogen which can be supplied from a separate source or included cyclically in the process. In the preferred mode of operation, sufficient hydrogen is produced and recycled so that supply of hydrogen from outside is not necessary.
Hydrokrakkingprosessen, hvor katalysatoren anvendes utføres enten satsvis eller fortrinnsvis som en kontinuerlig prosess. Ved en foretrukken kontinuerlig prosess ledes hydrocarbonene som skal behandles, kontinuerlig gjennom et stasjonært kata-lysatorskikt, enten i en stigende eller i en synkende strøm. Ved en kontinuerlig drift hvor skiktet er i bevegelse, ledes katalysatoren og hydrocarbonene enten i medstrøm eller i motstrøm gjennom en reaksjonssone. Ved en suspensoid kontinuerlig drift ledes katalysatoren og hydrocarbonene som en velling gjennom reaksjons-sonen. The hydrocracking process, where the catalyst is used, is carried out either in batches or preferably as a continuous process. In a preferred continuous process, the hydrocarbons to be treated are continuously led through a stationary catalyst layer, either in an ascending or descending stream. In a continuous operation where the bed is in motion, the catalyst and hydrocarbons are led either in co-flow or in counter-flow through a reaction zone. In a suspensoid continuous operation, the catalyst and the hydrocarbons are guided as a slurry through the reaction zone.
De følgende eksempler har til formål ytterligere å klargjøre katalysatoren og fremgangsmåten ifølge den foreliggende oppfinnelse. The following examples are intended to further clarify the catalyst and the method according to the present invention.
Eksempel 1. Example 1.
I dette eksempel ble 796 g vannglass (28 pst. Si02) fortynnet med 1580 ml vann og under røring tilsatt til 315 ml saltsyre pluss 630 ml vann. Denne kiselsyre-sol ble tilsatt til 4075 ml av en Al2 (S04);i-o<pp>løs-ning, hvor nevnte oppløsning hadde en spesifikk vekt på 1,28 og var fremstillet av krystaller av jernfritt Al2(S04);t.x H20. Aluminiumoxyd-kiselsyre-solen ble derpå under kraftig røring tilsatt til 1850 ml am-moniumhydroxyd (28 pst. NH3), og den endelige pH ble 8,2. Deretter ble 65 ml am-moniumhydroxyd tilsatt for å øke pH til 8,5. Geléen ble filtrert, kuttet i små stykker og vasket i et rør av Pyrex-glass i 24 timer med 7,6 liter vann pluss 150 ml 1,5 N ammonium-hydroxyd pr. time ved 80° C. Geléen ble tør-ret over et tidsrom av ca. 16 timer ved 150° C og formet til 3,2 mm piller. Deretter ble pillene kalcinert i ytterligere 3 timer ved 650° C. Det endelige produkt inneholdt ca. 63 vektprosent aluminiumoxyd og 37 vektprosent kiselsyre. In this example, 796 g of water glass (28 percent SiO 2 ) was diluted with 1580 ml of water and, with stirring, added to 315 ml of hydrochloric acid plus 630 ml of water. This silicic acid sol was added to 4075 ml of an Al 2 (SO 4 );in-o<pp>solution, said solution having a specific gravity of 1.28 and made from crystals of iron-free Al 2 (SO 4 );t.x H 2 O. The aluminum oxide-silicic acid sol was then added to 1850 ml of ammonium hydroxide (28% NH 3 ) with vigorous stirring, and the final pH was 8.2. Then 65 ml of ammonium hydroxide was added to raise the pH to 8.5. The jelly was filtered, cut into small pieces and washed in a Pyrex glass tube for 24 hours with 7.6 liters of water plus 150 ml of 1.5 N ammonium hydroxide per hour at 80° C. The jelly was dried over a period of approx. 16 hours at 150° C and formed into 3.2 mm pellets. The pellets were then calcined for a further 3 hours at 650° C. The final product contained approx. 63 weight percent aluminum oxide and 37 weight percent silicic acid.
Katalysatorens metallbestanddel ble så tilsatt, idet 2,0 g renset palladium-klorid ble oppløst i 250 ml vann pluss 12 ml saltsyre og oppløsningen deretter fortynnet til 300 ml med vann og hellet over 300 g av kiselsyre-aluminiumoxyd, fremstillet i samsvar med foregående avsnitt, i en roterende damptørke. Pillene ble tørret i 2 timer i en damptørke og i 1 time i en tørkeovn ved 150° C. De tørrede pillene ble adskilt i 4 deler og ble oxydert i 1 time i en muffeovn ved forskjellige temperaturer. Den første delen, som kan betegnes som katalysator A, ble oxydert ved en temperatur på 538° C, katalysator B ved 649° C, katalysator C ved 704° C og katalysator D ved 760° C. Deretter ble alle katalysatorene redusert i et glass-rør med en fallstrøm på 28,3 normalt-liter hydrogen pr. time ved 427° C i en halv time. Katalysatorskiktet ble renset med hydrogen ved værelsestemperatur. I eksempel 2 er vist at katalysatorene C og D ifølge foreliggende oppfinnelse er katalysatorene A og B overlegne. The metal component of the catalyst was then added, 2.0 g of purified palladium chloride being dissolved in 250 ml of water plus 12 ml of hydrochloric acid and the solution then diluted to 300 ml with water and poured over 300 g of silica-alumina, prepared in accordance with the previous paragraph , in a rotary steam dryer. The pills were dried for 2 hours in a steam dryer and for 1 hour in a drying oven at 150° C. The dried pills were separated into 4 parts and oxidized for 1 hour in a muffle furnace at different temperatures. The first part, which can be designated as catalyst A, was oxidized at a temperature of 538° C, catalyst B at 649° C, catalyst C at 704° C and catalyst D at 760° C. Then all the catalysts were reduced in a glass - pipe with a drop flow of 28.3 normal liters of hydrogen per hour at 427° C for half an hour. The catalyst layer was cleaned with hydrogen at room temperature. In example 2, it is shown that the catalysts C and D according to the present invention are superior to the catalysts A and B.
Eksempel 2. Example 2.
Katalysatorene som ble fremstillet som anført i eksempel 1 ovenfor ble brukt til hydrokrakking av en charge «White Oil» med kokepunktsområde mellom 371° og 482° C. Ett hundre ml av hver av katalysatorene A, B, C og D ble brukt i fire omgan-ger under like betingelser, dvs. en katalysa-tortemperatur på 274° C, et trykk på 102 atmosfærer, en tilførelseshastighet som definert ovenfor lik 1 og resirkulert hydrogen tilført i et forhold av 535 ms pr. ms charge. Reaktoren ble senket ned i en salt-smelte som ble holdt på tilnærmet samme temperatur som reaktoren. Resultatene av disse forsøk er sammenfattet i tabell 1. The catalysts prepared as stated in Example 1 above were used for the hydrocracking of a charge of "White Oil" with a boiling point range between 371° and 482° C. One hundred ml of each of the catalysts A, B, C and D were used in four rounds -gives under the same conditions, i.e. a catalyst temperature of 274° C, a pressure of 102 atmospheres, a supply rate as defined above equal to 1 and recycled hydrogen supplied at a ratio of 535 ms per ms charge. The reactor was immersed in a salt melt which was kept at approximately the same temperature as the reactor. The results of these trials are summarized in table 1.
I den følgende tabell ble katalysatorene brukt under ellers like betingelser, men ved en rekke forskjellige temperaturer. Omformningen (volum pst. destillert ved 204° C) ved tre temperaturnivåer var som følger: In the following table, the catalysts were used under otherwise similar conditions, but at a range of different temperatures. The conversion (volume pst. distilled at 204° C) at three temperature levels was as follows:
De samme katalysatorer ble også brukt i forsøksserier hvor omformningen (volum pst. destillert) ble bestemt ved 343° C. Resultatene av disse forsøksserier ved fire forskjellige driftstemperaturer er vist i tabell 3. The same catalysts were also used in test series where the conversion (volume pst. distilled) was determined at 343° C. The results of these test series at four different operating temperatures are shown in table 3.
Det er derfor tydelig at katalysatoren D, som var kalcinert ved 760° C, under moderate driftsbetingelser (lavere temperaturer på 274° og 288° C) fremviste en mer vesentlig økning i omformningen eller hydrokrakkingen av chargen til de ønskede produkter enn hva tilfelle var med de katalysatorer som var kalcinert eller oxydert ved lavere temperaturer. It is therefore clear that the catalyst D, which was calcined at 760° C, under moderate operating conditions (lower temperatures of 274° and 288° C) exhibited a more significant increase in the reforming or hydrocracking of the charge to the desired products than was the case with those catalysts that were calcined or oxidized at lower temperatures.
Det viste seg også at bruken av katalysatorer som var oxydert ved temperaturer på 816°, 871° og 927° C ga forholdsvis gode omformningsresultater. Bruken av disse kalcineringstemperaturer førte imidlertid til at katalysatoren skrumpet inn, med en påfølgende økning i den tilsynelatende massetettheten, slik at anvendelse av en større katalysatorvekt ble nødvendig. F.eks. hadde fire adskilte katalysatorer, som hver var på 100 ml og som var kalcinert ved forskjellige temperaturer, men ellers fremstillet under like betingelser, forskjellige relative vekter som vist i den følgende tabell: It also turned out that the use of catalysts that were oxidized at temperatures of 816°, 871° and 927° C gave relatively good conversion results. However, the use of these calcination temperatures caused the catalyst to shrink, with a consequent increase in the apparent mass density, so that the use of a larger catalyst weight became necessary. E.g. had four separate catalysts, each of which was 100 ml and which were calcined at different temperatures but otherwise prepared under the same conditions, different relative weights as shown in the following table:
Eksempel 3. Example 3.
En katalysator-grunnmasse ble fremstillet som beskrevet i eksempel 1 ovenfor. Etter formningen til piller, ble 1,0 ml platina-oppløsning inneholdende 0,311 g platina pr. ml fortynnet til 90 ml med vann pluss 2 ml saltsyre. Oppløsningen ble hellet over 78 g av pillene i en roterende damp-tørke og tørret i 2 timer. Deretter ble katalysatoren delt i tre; katalysator E ble oxydert i en muffeovn i 1 time ved 649° C, katalysator F ble oxydert ved 704° C og katalysator G ved 760° C. Katalysatorene ble så videre redusert i en halv time i nærvær av hydrogen ved en temperatur på 427° C. Hydrokrakkingsaktiviteten hos disse katalysatorer differerte på samme måte som vist for de tilsvarende katalysatorer B, C og D i eksempel 2. A catalyst matrix was prepared as described in Example 1 above. After forming into pellets, 1.0 ml of platinum solution containing 0.311 g of platinum per ml diluted to 90 ml with water plus 2 ml hydrochloric acid. The solution was poured over 78 g of the pills in a rotary steam dryer and dried for 2 hours. Then the catalyst was divided into three; catalyst E was oxidized in a muffle furnace for 1 hour at 649° C, catalyst F was oxidized at 704° C and catalyst G at 760° C. The catalysts were then further reduced for half an hour in the presence of hydrogen at a temperature of 427° C. The hydrocracking activity of these catalysts differed in the same way as shown for the corresponding catalysts B, C and D in Example 2.
Eksempel 4. Example 4.
I dette eksempel ble en katalysator-grunnmasse innbefattende kiselsyre-aluminiumoxyd fremstillet i samsvar med fremgangsmåten i eksempel 1 ovenfor. Særskilte hydrokrakkings-katalysatorer ble så fremstillet ved å oxydere nikkel-nitrat på nevnte kiselsyre-aluminiumoxyd ved forskjellige temperaturer. Fem særskilte katalysatorer ble fremstillet. Katalysator I, II og III ble fremstillet ved å tilsette nikkel-nitrat til nevnte kiselsyre-aluminiumoxyd slik at 1 pst. nikkel inngikk i den ferdige katalysator, med påfølgende oxydering ved temperaturer på henholdsvis 593°, 649° og 704° C. Katalysator IV og V ble fremstillet ved å tilsette nikkel-nitrat til nevnte kiselsyre-aluminiumoxyd slik at den ferdige katalysator inneholdt 6 pst. nikkel på kiselsyre-aluminiumoxyd, og ved å oxydere ved henholdsvis 704° og 760° C. Etter oxyder-ingen fulgte i hvert tilfelle reduserende behandling med hydrogen som beskrevet i eksempel 2 ovenfor. Dvs. en prøve på 100 ml av hver av katalysatorene I, II, III, IV og V ble hver for seg testet ved en temperatur på 274° C, et trykk på ca. 102 atmosfærer, en tilførselshastighet som ovenfor definert lik 1 og med en hydrogentilførsel på 535 kubikkmeter pr. kubikkmeter charge. En katalysator som innbefatter 0,4 pst. palladium i kiselsyre-aluminiumoxyd ble benyttet som norm for hydrokrakkingsaktiviteten. Den relative hydrokrakkings-virksomhet for nevnte palladium i kiselsyre-aluminiumoxyd ble satt til 100. In this example, a catalyst matrix comprising silica-alumina was prepared in accordance with the method in example 1 above. Separate hydrocracking catalysts were then prepared by oxidizing nickel nitrate on said silicic aluminum oxide at different temperatures. Five separate catalysts were prepared. Catalysts I, II and III were produced by adding nickel nitrate to said silicic aluminum oxide so that 1 percent of nickel was included in the finished catalyst, with subsequent oxidation at temperatures of 593°, 649° and 704° C respectively. Catalyst IV and V were produced by adding nickel nitrate to said silicic aluminum oxide so that the finished catalyst contained 6 percent nickel on silicic aluminum oxide, and by oxidizing at 704° and 760° C, respectively. After oxidation, in each case reducing treatment with hydrogen as described in example 2 above. That is a sample of 100 ml of each of the catalysts I, II, III, IV and V was separately tested at a temperature of 274° C, a pressure of approx. 102 atmospheres, a supply rate as defined above equal to 1 and with a hydrogen supply of 535 cubic meters per cubic meter charge. A catalyst containing 0.4 percent palladium in silicic aluminum oxide was used as a norm for the hydrocracking activity. The relative hydrocracking activity for said palladium in silicic aluminum oxide was set to 100.
Virkningen av oxydasjonstemperatur-ene for de forskjellige katalysatorer på hydrokrakkings-virksomheten er vist i den følgende tabell: The effect of the oxidation temperatures of the various catalysts on the hydrocracking operation is shown in the following table:
Det fremgår av tabellen ovenfor at It appears from the table above that
katalysatorene som ble oxydert ved temperaturer i området fra 704° til 760° C, opp-viser en langt høyere hydrokrakkingaktivitet enn hva tilfelle er med de katalysatorer the catalysts which were oxidized at temperatures in the range from 704° to 760° C, exhibit a much higher hydrocracking activity than is the case with the catalysts
som ble oxydert ved lavere kalcineringstemperaturer. which was oxidized at lower calcination temperatures.
Claims (4)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE5044/70A SE342199B (en) | 1970-04-14 | 1970-04-14 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| NO126071B true NO126071B (en) | 1972-12-18 |
Family
ID=20265581
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| NO1390/71A NO126071B (en) | 1970-04-14 | 1971-04-14 |
Country Status (12)
| Country | Link |
|---|---|
| JP (1) | JPS5211633B1 (en) |
| AT (1) | AT313736B (en) |
| BE (1) | BE765726A (en) |
| CA (1) | CA947702A (en) |
| CH (1) | CH536233A (en) |
| DK (1) | DK128346B (en) |
| ES (1) | ES196416Y (en) |
| FI (1) | FI52553C (en) |
| GB (1) | GB1320490A (en) |
| NL (1) | NL144219B (en) |
| NO (1) | NO126071B (en) |
| SE (1) | SE342199B (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE381237B (en) * | 1974-05-10 | 1975-12-01 | Wicanders Korkfabriker Ab | CAPITAL SUBJECT WITH RIPING INSTRUCTIONS |
| USRE31869E (en) * | 1974-05-10 | 1985-04-23 | Ab Wicanders Korkfabriker | Bottle caps |
| US3974931A (en) * | 1975-05-29 | 1976-08-17 | American Flange & Manufacturing Co., Inc. | Bottle cap |
| JPS5551250Y2 (en) * | 1977-09-26 | 1980-11-28 | ||
| US4429801A (en) * | 1981-05-05 | 1984-02-07 | American Flange & Manufacturing Co. Inc. | Tear-off cap for closing bottles |
| SE426382B (en) * | 1981-05-08 | 1983-01-17 | Wicanders Ab | REMOVABLE BOTTLE CAPS |
| JPS60167885U (en) * | 1984-04-16 | 1985-11-07 | 小野 守 | Plug with check valve |
| JPH0514749U (en) * | 1991-08-12 | 1993-02-26 | 株式会社タブチ | Check valve with constant flow function |
-
1970
- 1970-04-14 SE SE5044/70A patent/SE342199B/xx unknown
-
1971
- 1971-04-08 FI FI710998A patent/FI52553C/en active
- 1971-04-08 NL NL717104808A patent/NL144219B/en not_active IP Right Cessation
- 1971-04-13 CA CA110,161A patent/CA947702A/en not_active Expired
- 1971-04-13 ES ES1971196416U patent/ES196416Y/en not_active Expired
- 1971-04-13 DK DK173671AA patent/DK128346B/en not_active IP Right Cessation
- 1971-04-13 AT AT309671A patent/AT313736B/en not_active IP Right Cessation
- 1971-04-14 JP JP46023787A patent/JPS5211633B1/ja active Pending
- 1971-04-14 CH CH539071A patent/CH536233A/en not_active IP Right Cessation
- 1971-04-14 NO NO1390/71A patent/NO126071B/no unknown
- 1971-04-14 BE BE765726A patent/BE765726A/en not_active IP Right Cessation
- 1971-04-19 GB GB2692371*A patent/GB1320490A/en not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| NL144219B (en) | 1974-12-16 |
| ES196416U (en) | 1975-03-01 |
| CH536233A (en) | 1973-04-30 |
| DK128346B (en) | 1974-04-16 |
| GB1320490A (en) | 1973-06-13 |
| AT313736B (en) | 1974-02-25 |
| ES196416Y (en) | 1975-08-16 |
| FI52553C (en) | 1977-10-10 |
| SE342199B (en) | 1972-01-31 |
| CA947702A (en) | 1974-05-21 |
| NL7104808A (en) | 1971-10-18 |
| BE765726A (en) | 1971-08-30 |
| JPS5211633B1 (en) | 1977-04-01 |
| FI52553B (en) | 1977-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU1797496C (en) | Catalyst for reforming of naphtha stock and method for catalytic reforming of naphtha stock | |
| US4022681A (en) | Production of monoaromatics from light pyrolysis fuel oil | |
| US2890167A (en) | Conversion process using a phosphoruscontaining platinum group metal catalyst | |
| NO139070B (en) | PROCEDURE FOR THE PRESERVATION OF RAAT MEAT MATERIAL | |
| KR930008441B1 (en) | Highly active and highly selective aromatization catalyst | |
| NO300201B1 (en) | Process for the preparation of extrudates and catalysts | |
| US4325804A (en) | Process for producing lubricating oils and white oils | |
| US3642660A (en) | Preparation of a catalytic composite comprising a combination of germanium and halogen with alumina | |
| US2980632A (en) | Alumina of controlled density and catalysts prepared therefrom | |
| NO148296B (en) | ROUGH THE SOLUTION. | |
| US2932620A (en) | Process for preparing catalysts utilizing alumina in the carriers | |
| NO126071B (en) | ||
| US2708180A (en) | Carrying out catalytic reactions with hydrocarbons in the presence of hydrogen | |
| US3860532A (en) | Method for preparing silica-alumina catalysts for the conversion of hydrocarbon | |
| Jarullah et al. | Evaluation of synthesized Pt/HY-H-Mordenite composite catalyst for Isomerization of Light Naphtha | |
| KR930008442B1 (en) | Aromatization reaction catalyst with high activity and high selectivity | |
| US3067127A (en) | Catalytic hydrocracking with the use of a silica-zirconia composite | |
| US3847796A (en) | Hydrocracking process for the production of lpg | |
| US3511773A (en) | Process for producing lpg and a high octane reformate | |
| US3869522A (en) | Aromatics hydrogenation process | |
| US2781323A (en) | Method of producing a platinum catalyst on refractory oxide support | |
| US3491019A (en) | Hydrotreating of light cycle oils | |
| US2636863A (en) | Manufacture of alumina-platinum catalysts | |
| US3963600A (en) | Combination process for the conversion of heavy distillates to LPG | |
| US2939837A (en) | Reforming process using a group vi metal sulfide or oxide-containing catalyst |