JPH0311978A - Gas-insulated water-cooled thyristor bulb - Google Patents
Gas-insulated water-cooled thyristor bulbInfo
- Publication number
- JPH0311978A JPH0311978A JP14343089A JP14343089A JPH0311978A JP H0311978 A JPH0311978 A JP H0311978A JP 14343089 A JP14343089 A JP 14343089A JP 14343089 A JP14343089 A JP 14343089A JP H0311978 A JPH0311978 A JP H0311978A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- corona
- water
- amount
- thyristor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Rectifiers (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は直流送電fi(HVDC)及び静止形無動電力
補償装置(SVC)等に用いられるSF6ガスを充填し
たガス絶縁水冷却サイリスタ・バルブに関す(従来の技
術)
SF6入りガス絶縁機器中に水分が混入すると、絶縁ス
ペーサーの表面結露による絶縁劣化及びSF6ガスと水
分との結合による絶縁性能の劣化を促進し、強いては絶
縁破壊の原因となる可能性かある。そこで予防保全の観
点から、突器ではガス中の水分量管理を定期的に行ない
、密封容器内のSF6ガスをサンプリングして水分分析
計にて分析したり、あるいは機器に組込んだ内部部分放
電測定装置等を用いて異常を事前察知する方法を用いて
いる。Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention is directed to a gas insulator filled with SF6 gas used in direct current power transmission fi (HVDC), static static power compensator (SVC), etc. Concerning water-cooled thyristors and valves (prior technology) When moisture gets into gas-insulated equipment containing SF6, it accelerates insulation deterioration due to condensation on the surface of the insulating spacer and deterioration of insulation performance due to the combination of SF6 gas and moisture. may cause dielectric breakdown. Therefore, from the perspective of preventive maintenance, we regularly control the moisture content in the gas in the gas chamber, sample the SF6 gas in the sealed container and analyze it with a moisture analyzer, or use internal partial discharges built into the equipment. A method is used to detect abnormalities in advance using measuring devices.
特に、従来のSF6入りガス絶縁機器内部部分放電測定
装置としては、充電部を絶縁支持する絶縁スペーサーの
内部に埋め込んだ検出用電極により、絶縁表面上に付着
するSF6ガス中の水分量による発生コロナ変化を測定
するものと、SF6入りガス絶縁機器の接地線に流れる
コロナパルスによりコロナレベル変化を測定する方法と
がある。In particular, the conventional partial discharge measurement device for gas-insulated equipment containing SF6 uses a detection electrode embedded inside an insulating spacer that insulates and supports a live part to generate corona caused by the amount of moisture in the SF6 gas adhering to the insulating surface. There is a method that measures changes in the corona level, and a method that measures changes in the corona level using corona pulses flowing through the ground wire of gas-insulated equipment containing SF6.
(発明が解決しようとする課題)
直流送電線<1lVOc)及び静止形無動電力補償装置
(SVC)等に用いられるサイリスタ・バルブでは、そ
の高電圧・大容量化、小形軽量化をはかるため、SF6
入りカス密封容器中にサイリスタ・バルブを収納して絶
縁する方式が絶縁の縮小化、長期安定化の点から検討さ
れている。(Problems to be Solved by the Invention) Thyristor valves used in DC power transmission lines <1lVOc), static static power compensators (SVC), etc. are designed to have high voltage, large capacity, and be compact and lightweight. SF6
A method of insulating the thyristor valve by storing it in a sealed container is being considered from the viewpoint of reducing the size of the insulation and ensuring long-term stability.
また冷却に関しては、既に空気中で実績のある冷却効率
の優れた水冷却の採用が検討されている。Regarding cooling, consideration is being given to using water cooling, which has a proven track record in air and has excellent cooling efficiency.
SF6ガス自身の絶縁強度は、SF6ガス中の水分にそ
れ程影響されないが、SF6ガス中に固体絶縁物が存在
すると、絶縁物表面への水分付着により沿面絶縁特性が
影響を受ける。そしてSF6ガス中の水分と絶縁物表面
沿面閃絡電圧特性は、露点を0°C以下になるように水
分量を管理できれば、絶縁低下は殆ど無視できる。なん
となれば、SF6ガス中の水分の露点が0℃以下の場合
には水分が氷結するため、絶縁低下の原因とならないか
らである。The dielectric strength of the SF6 gas itself is not significantly affected by moisture in the SF6 gas, but if a solid insulator is present in the SF6 gas, the creeping insulation properties are affected by moisture adhering to the surface of the insulator. Regarding the water content in the SF6 gas and the creeping voltage characteristics on the surface of the insulator, if the amount of water can be controlled so that the dew point is 0°C or less, the deterioration in insulation can be almost ignored. This is because when the dew point of the moisture in the SF6 gas is 0° C. or lower, the moisture freezes and does not cause a decrease in insulation.
これらのことからSF6入りガス絶縁機器のSF6ガス
中の水分量の管理値は、許容値をSl’6ガス中におけ
る水分露点0°C時の含有水分量とし、そのための管理
値をSF6ガス中における水分露点−5°C以下の時の
含有水分量としている。Based on these facts, the control value for the moisture content in SF6 gas of gas insulated equipment containing SF6 is based on the permissible value as the moisture content at the moisture dew point of 0°C in Sl'6 gas, and the control value for this as the moisture content in SF6 gas. This is the amount of water contained when the water dew point is -5°C or less.
更に各社のS[6ガス圧が異なるため、適用SF’6ガ
ス圧力範囲を2.0〜5.0kg/−・「と規定して下
記水分管理値を採用している。Furthermore, since the S[6 gas pressure of each company is different, the applicable SF'6 gas pressure range is defined as 2.0 to 5.0 kg/-.'', and the following moisture management value is adopted.
許容値=1,000 ppn+(vol、)管理値−5
001)Dis(■0!、)一方、SF6入りガス絶縁
水冷サイリスタ・バルブは、定格SF6ガス0.3bl
r/−・gの採用を省えているので、従来のSF6ガス
絶縁機器と同一思想で水分管理値を求めてみると、下記
に示されるように比較的大きな値となる。Tolerance value = 1,000 ppn + (vol,) management value - 5
001) Dis(■0!,) On the other hand, the gas insulated water-cooled thyristor valve containing SF6 has a rated SF6 gas of 0.3bl.
Since the adoption of r/-.g can be omitted, if the moisture management value is calculated using the same concept as the conventional SF6 gas insulated equipment, it will be a relatively large value as shown below.
許容値−4,000ppn(vol、)管理値−3,0
00paIl(vol、)第2図はSF6ガス中の水分
量に対する肛コロナ発生電荷量との関係を示す特性図で
あり、図から明らかなようにSF6ガス中の水分量が増
加するに従ってコロナ発生電荷量が減少する傾向にある
。Tolerance value - 4,000 ppn (vol,) Management value - 3,0
00paIl (vol,) Figure 2 is a characteristic diagram showing the relationship between the amount of anal corona generated charge and the amount of moisture in SF6 gas.As is clear from the figure, as the amount of moisture in SF6 gas increases, the amount of corona generated charge increases. The amount tends to decrease.
なお、条件としては第2図に示される通り絶縁支持物上
に1間厚の電極板を10IIII#iれて配置し、方の
電極にへ〇電圧を印加したものであり、その場合のSF
6のガス圧はOkf/−・g、ガス温は11〜13℃で
ある。As shown in Fig. 2, the conditions were that electrode plates with a thickness of 10 mm were arranged on an insulating support, and a voltage of 10 was applied to one of the electrodes, and the SF in that case was
The gas pressure in No. 6 is Okf/-.g, and the gas temperature is 11 to 13°C.
そして、従来の測定方法では外部雑音と被測定対象とを
区別するなめに、被測定対象発生電荷量は約100pc
以上必要であったことを考慮すると、前記管理値の場合
、検出レベルが低くなり過ぎるという問題があった。In the conventional measurement method, in order to distinguish between external noise and the object to be measured, the amount of charge generated by the object to be measured is approximately 100pc.
Considering the above requirements, there was a problem that the detection level was too low in the case of the control value.
本発明は上記事情に鑑みてなされたものであり、高精度
で水分量の検出の可能な測定手段を備えたガス絶縁水冷
却サイリスタ・バルブを提供することを目的としている
。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas-insulated water-cooled thyristor valve equipped with a measuring means capable of detecting water content with high accuracy.
[発明の構成コ
(課題を解決するための手段)
上記目的を達成するため、本発明ではSr6ガスの充填
されたサイリスタ・バルブ容器内の水分量を検出する手
段を備えたガス絶縁水冷却サイリスタ・バルブにおいて
、前記容器内にあるサイリスタ・バルブ印加回路に対し
て、絶縁支持物上に所定の間隔をおいて設置した対向電
極及び前記各対向電極に接続された接続線より構成され
るコロナ検出器を組込み、前記コロナ検出器と容器外部
のコロナ測定器とを接続するよう構成した。[Structure of the Invention (Means for Solving the Problem) In order to achieve the above object, the present invention provides a gas insulated water-cooled thyristor equipped with a means for detecting the amount of water in the thyristor valve container filled with Sr6 gas.・In the valve, corona detection consists of counter electrodes installed at a predetermined interval on an insulating support and connecting wires connected to each of the counter electrodes for the thyristor valve application circuit in the container. The corona detector was configured to be connected to a corona measuring device outside the container.
(作 用)
SF6ガス中の水分量が増えると、コロナ発生電荷量が
減少することがわかっている。従ってコロナ検出器とこ
れに接続されたコロナ測定器によりコロナ発生電荷量の
変化を検出すれば、SF6ガス中の水分量を検出できる
。(Function) It is known that as the amount of water in SF6 gas increases, the amount of corona generated charge decreases. Therefore, by detecting a change in the amount of corona generated charge using a corona detector and a corona measuring device connected to the corona detector, the amount of water in the SF6 gas can be detected.
(実施例) 以下図面を参照して実施例を説明する。(Example) Examples will be described below with reference to the drawings.
第1図は本発明によるガス絶縁水冷却サイリスク・バル
ブの一実施例の構成図である。第1図において1はSF
6ガスの入ったサイリスタ・バルブ容器であり、内部に
は複数のサイリスタ・バルブ2が図示しない電源に直列
接続される。旦はコロナ検出器(後述する)であり、サ
イリスタ・バルブ2と直列に接続された分圧器4の両端
子間に接枕される。またコロナ検出器ユにコンデンサ5
と抵抗6からなる回路を容器外部で並列接続し、更に抵
抗6の端子間に抵抗等の回路を介して同調式コロナ測定
器7を接続する。FIG. 1 is a block diagram of one embodiment of a gas-insulated water-cooled syrisk valve according to the present invention. In Figure 1, 1 is SF
This is a thyristor valve container containing six gases, and a plurality of thyristor valves 2 are connected in series to a power source (not shown) inside. The other is a corona detector (described later), which is connected across the terminals of a voltage divider 4 connected in series with the thyristor valve 2. Also, there is a capacitor 5 in the corona detector unit.
A circuit consisting of a resistor 6 and a resistor 6 are connected in parallel outside the container, and a tunable corona measuring device 7 is further connected between the terminals of the resistor 6 via a circuit such as a resistor.
第3図はコロナ検出器の構成図であり、第3図(a)は
平面図、第3図(b)は側面図である。図に示されるよ
うに、コロナ検出器ユは板状の絶縁支持物(以下絶縁板
という)30と、この絶縁板上に所定の間隔をおいて設
置した板状の対向型f!31と前記対向電極に接続され
た接続線32とから構成される。FIG. 3 is a block diagram of the corona detector, with FIG. 3(a) being a plan view and FIG. 3(b) being a side view. As shown in the figure, the corona detector unit includes a plate-shaped insulating support (hereinafter referred to as an insulating plate) 30, and a plate-shaped facing f! 31 and a connection line 32 connected to the counter electrode.
次に作用説明をする。Next, I will explain the effect.
先ず、分圧器4を介してサイリスタ・バルブの電圧がコ
ロナ検出器ユにかかり、コロナ検出8旦はコロナを発生
する。このコロナによる発生電荷量は第2図に示すよう
にSF6ガス中の水分量によって変化する。First, the voltage of the thyristor valve is applied to the corona detector via the voltage divider 4, and corona is generated when the corona is detected. The amount of charge generated by this corona changes depending on the amount of moisture in the SF6 gas, as shown in FIG.
この発生電荷量は、並列に接続されたコンデンサ5と抵
抗6の回路を経て同調式コロナ測定器7で測定される。The amount of generated charge is measured by a tunable corona measuring device 7 via a circuit including a capacitor 5 and a resistor 6 connected in parallel.
以上、述べたようにSF6ガス絶縁水冷却サイリスタ・
バルブ容器1内部に絶縁板30と・絶縁板上に所定の間
隔をおいて設;!シた板状の対向電極31及び前記対向
電極に接続された接続線32よりなるコロナ検出8旦を
設けることにより、SF6ガス絶縁水冷却サイリスク・
バルブ容器1の内部のSF6ガス中の水分量を把握する
ことができる。As mentioned above, SF6 gas insulated water cooled thyristor
An insulating plate 30 is installed inside the valve container 1 at a predetermined interval on the insulating plate; By providing a corona detection circuit consisting of a plate-shaped counter electrode 31 and a connecting wire 32 connected to the counter electrode, an SF6 gas-insulated water-cooled silica
The amount of moisture in the SF6 gas inside the valve container 1 can be determined.
第4図は他の実施例の構成図である。FIG. 4 is a block diagram of another embodiment.
本実施例では分圧器4をコンデンサによって構成し、更
に抵抗8をこれに直列に接続するとともに、この抵抗端
に同調式コロナ測定器を接続したものである。その他の
構成は第1図と同様である。In this embodiment, the voltage divider 4 is constituted by a capacitor, and a resistor 8 is further connected in series with this, and a tunable corona measuring device is connected to the end of this resistor. The other configurations are the same as in FIG. 1.
以上のように構成することによりSF6入りガス絶縁水
冷却サイリスタ・バルブ容器1外部に出力される抵抗の
端子電圧を、数10v以下とすることが可能となり、よ
り扱い易いガス絶縁水冷却サイリスタ・バルブが得られ
る。With the above configuration, it is possible to reduce the terminal voltage of the resistor output to the outside of the SF6-containing gas-insulated water-cooled thyristor valve container 1 to several tens of volts or less, making it easier to handle the gas-insulated water-cooled thyristor valve. is obtained.
第5図は更に他の実施例の構成図である。FIG. 5 is a block diagram of still another embodiment.
本実施例ではサイリスタ・パルプ容Bl内にはコロナ検
出8旦のみを設置し、その外部にコロナ検出器3と並列
にコンデンサ5と抵抗6とからなる回路を接続し、抵抗
6に同調式コロナ測定器7を接続したものである。なお
、9は交流電源である。In this embodiment, only a corona detector 8 is installed in the thyristor pulp chamber Bl, and a circuit consisting of a capacitor 5 and a resistor 6 is connected in parallel with the corona detector 3 outside, and a tunable corona detector is connected to the resistor 6 in parallel with the corona detector 3. A measuring device 7 is connected to it. Note that 9 is an AC power source.
以上のように構成することにより、コロナ検出8且に印
加される電圧はサイリスタ・バルブの電圧波形と異なり
、正弦波とすることができる。これにより、サイリスタ
・バルブ本体雑音の影響を受けずに、精度の高い測定が
可能となる。更に、測定時にのみコロナ検出器ユに電圧
を印加し測定することも可能なため、常時発生していた
コロナによる分解ガスの生成を抑制することが可能とな
り、他に影響を及ぼさずに電気的にSF6ガス中の水分
量を測定できる。With the above configuration, the voltage applied to the corona detection 8 can be made into a sine wave, unlike the voltage waveform of the thyristor valve. This enables highly accurate measurement without being affected by thyristor valve body noise. Furthermore, since it is possible to apply a voltage to the corona detector unit only during measurement, it is possible to suppress the production of decomposed gas due to corona, which is always generated, and to prevent electrical damage without affecting other components. The amount of moisture in SF6 gas can be measured.
[発明の効果]
以上説明したように、本発明によればSF6ガスの入っ
たサイリスタ・バルブ容器内にコロナ検出器を組込み、
コロナ検出器によるコロナの発生穆度を測定するよう構
成しなので、SF6ガス中の水分を高精度で測定するこ
との可能なガス絶縁水冷却サイリスタ・バルブを提供で
きる。[Effects of the Invention] As explained above, according to the present invention, a corona detector is incorporated into a thyristor valve container containing SF6 gas,
Since the corona detector is configured to measure the degree of corona generation, it is possible to provide a gas-insulated water-cooled thyristor valve that can measure moisture in SF6 gas with high accuracy.
第1図は本発明によるガス絶縁水冷却サイリスタ・バル
ブの一実施例の構成図、第2図はSf6カス水分量とコ
ロナ発生電荷量との関係を示す特性図、第3図はコロナ
検出器の概略構成図、第4図は他の実施例の構成図、第
5図は更に他の実施例の構成図である。
1・・・サイリスタ・バルブ容器
2・・・サイリスタ・バルブ
ユ・・・コロな検出器 4・・・分圧器7・・・同
調式コロナ測定器Fig. 1 is a configuration diagram of an embodiment of the gas insulated water-cooled thyristor valve according to the present invention, Fig. 2 is a characteristic diagram showing the relationship between the Sf6 scum water content and the amount of corona generated charge, and Fig. 3 is a corona detector. FIG. 4 is a schematic diagram of another embodiment, and FIG. 5 is a diagram of still another embodiment. 1... Thyristor/valve container 2... Thyristor/valve unit... Corona detector 4... Voltage divider 7... Tunable corona measuring device
Claims (1)
分量を検出する手段を備えたガス絶縁水冷却サイリスタ
・バルブにおいて、前記容器内にあるサイリスタ・バル
ブ印加回路に対して、絶縁支持物上に所定の間隔をおい
て設置した対向電極及び前記各対向電極に接続された接
続線より構成されるコロナ検出器を組込み、前記コロナ
検出器と容器外部のコロナ測定器とを接続することによ
り、発生コロナ量に対応する水分量を検出することを特
徴とするガス絶縁水冷却サイリスタ・バルブ。In a gas-insulated water-cooled thyristor valve having means for detecting the amount of water in a thyristor valve container filled with SF6 gas, a predetermined portion on an insulating support is provided for a thyristor valve application circuit located in said container. By incorporating a corona detector consisting of counter electrodes installed at intervals of A gas insulated water cooled thyristor valve characterized by detecting the amount of water corresponding to the amount of water.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14343089A JPH0311978A (en) | 1989-06-06 | 1989-06-06 | Gas-insulated water-cooled thyristor bulb |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14343089A JPH0311978A (en) | 1989-06-06 | 1989-06-06 | Gas-insulated water-cooled thyristor bulb |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0311978A true JPH0311978A (en) | 1991-01-21 |
Family
ID=15338538
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP14343089A Pending JPH0311978A (en) | 1989-06-06 | 1989-06-06 | Gas-insulated water-cooled thyristor bulb |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0311978A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9603762B2 (en) | 2007-02-08 | 2017-03-28 | Invacare Corporation | Wheelchair suspension |
| US9700470B2 (en) | 2012-02-15 | 2017-07-11 | Invacare Corporation | Wheelchair suspension |
| US9827823B2 (en) | 2007-02-14 | 2017-11-28 | Invacare Corporation | Stability control system |
| US9925100B2 (en) | 2002-10-25 | 2018-03-27 | Invacare Corporation | Suspension for wheeled vehicles |
| US9987177B2 (en) | 2000-10-27 | 2018-06-05 | Invacare Corporation | Obstacle traversing wheelchair |
| US11096845B2 (en) | 2009-10-09 | 2021-08-24 | Invacare Corporation | Wheelchair suspension |
| US11213441B2 (en) | 2002-10-25 | 2022-01-04 | Invacare Corporation | Suspension for wheeled vehicles |
| US11903887B2 (en) | 2020-02-25 | 2024-02-20 | Invacare Corporation | Wheelchair and suspension systems |
-
1989
- 1989-06-06 JP JP14343089A patent/JPH0311978A/en active Pending
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9987177B2 (en) | 2000-10-27 | 2018-06-05 | Invacare Corporation | Obstacle traversing wheelchair |
| US9925100B2 (en) | 2002-10-25 | 2018-03-27 | Invacare Corporation | Suspension for wheeled vehicles |
| US11213441B2 (en) | 2002-10-25 | 2022-01-04 | Invacare Corporation | Suspension for wheeled vehicles |
| US10512572B2 (en) | 2002-10-25 | 2019-12-24 | Invacare Corporation | Suspension for wheeled vehicles |
| US10912690B2 (en) | 2007-02-08 | 2021-02-09 | Invacare Corporation | Wheelchair suspension |
| US11819464B2 (en) | 2007-02-08 | 2023-11-21 | Invacare Corporation | Wheelchair suspension |
| US11464687B2 (en) | 2007-02-08 | 2022-10-11 | Invacare Coporation | Wheelchair suspension |
| US10265229B2 (en) | 2007-02-08 | 2019-04-23 | Invacare Corporation | Wheelchair suspension |
| US9603762B2 (en) | 2007-02-08 | 2017-03-28 | Invacare Corporation | Wheelchair suspension |
| US11097589B2 (en) | 2007-02-14 | 2021-08-24 | Invacare Corporation | Stability control system |
| US10532626B2 (en) | 2007-02-14 | 2020-01-14 | Invacare Corporation | Stability control system |
| US9827823B2 (en) | 2007-02-14 | 2017-11-28 | Invacare Corporation | Stability control system |
| US11535078B2 (en) | 2007-02-14 | 2022-12-27 | Invacare Corporation | Stability control system |
| US11096845B2 (en) | 2009-10-09 | 2021-08-24 | Invacare Corporation | Wheelchair suspension |
| US11857470B2 (en) | 2009-10-09 | 2024-01-02 | Invacare Corporation | Wheelchair suspension |
| US12453665B2 (en) | 2009-10-09 | 2025-10-28 | Invacare Corporation | Wheelchair suspension |
| US10434019B2 (en) | 2012-02-15 | 2019-10-08 | Invacare Corporation | Wheelchair suspension |
| US11234875B2 (en) | 2012-02-15 | 2022-02-01 | Invacare Corporation | Wheelchair suspension |
| US9700470B2 (en) | 2012-02-15 | 2017-07-11 | Invacare Corporation | Wheelchair suspension |
| US11903887B2 (en) | 2020-02-25 | 2024-02-20 | Invacare Corporation | Wheelchair and suspension systems |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7129693B2 (en) | Modular voltage sensor | |
| Dakin et al. | The voltage endurance of cast epoxy resins | |
| JPH0311978A (en) | Gas-insulated water-cooled thyristor bulb | |
| CN104502808A (en) | DC long-term live test method, system, and electrode loading method and device | |
| Schei | Diagnostics techniques for surge arresters with main reference to on-line measurement of resistive leakage current of metal-oxide arresters | |
| Husain et al. | Surface discharge studies with uniform field electrodes at low pressures | |
| JPS6022567Y2 (en) | gear press lightning arrester | |
| JPH0311977A (en) | Gas-insulated water-cooled thyristor bulb | |
| JPH09261813A (en) | Gas insulated switchgear | |
| JP2867505B2 (en) | Instrument transformer | |
| Bartnikas | High voltage measurements | |
| CN223229678U (en) | Lightning arrester state detection assembly | |
| JPH0510911A (en) | Moisture absorption detector for electrical equipment | |
| JPS5954183A (en) | Zinc oxide arrester | |
| JPS6014152A (en) | Apparatus for detecting decomposition product in electrical apparatus insulated by gas | |
| JP3335855B2 (en) | DC reactor insulation deterioration monitoring device | |
| JP3457366B2 (en) | Lightning arrester monitoring device | |
| Brown et al. | The prevention of ionization in impregnated paper dielectrics | |
| JPH03120761A (en) | Optical voltage detector for high voltage | |
| RU1774285C (en) | Liquid dielectric testing device | |
| JPS5928335Y2 (en) | Humidity and temperature measuring device for gas insulated switchgear | |
| JPS62278468A (en) | Grounding-fault point locator | |
| CN206671528U (en) | A kind of dielectric dissipation factor standard | |
| KR860001784B1 (en) | Vacuum monitoring device for vacuum breaker | |
| Studniarz et al. | The voltage endurance of cast epoxy resin-II |